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Abstract—Real-time hybrid testing of civil structures, in
which computational models and physical components must be
integrated with high fidelity at run-time represents a grand
challenge in the emerging area of cyber-physical systems.
Actuator dynamics, complex interactions among computers and
physical components, and computation and communication
delays all must be managed carefully to achieve accurate tests.

To address these challenges, we have developed a novel mid-
dleware for integrating cyber and physical components flexibly
and with suitable timing behavior within aCyber-physical
Instrument for Real-time hybrid Structural Testing (CIRST ).
This paper makes three main contributions to the state of the
art in middleware for cyber-physical systems: (1) a novel mid-
dleware architecture within which cyber-physical components
can be integrated flexibly through XML-based configuration
specifications, (2) an efficient middleware implementationin
C++ that can maintain necessary real-time performance, and
(3) a case study that evaluates the middleware’s performance
and demonstrates its suitability for real-time hybrid testing.

I. I NTRODUCTION

Structural Engineering increasingly relies on sophisti-
cated computational monitoring and control systems in-
volving mechanical and structural components, and these
cyber-physical systems must be tested and validated using
similarly sophisticated techniques. While high-fidelity val-
idation is critical to the acceptance of structural monitoring
and control systems, in many applications testing numerous
possible scenarios of a new structural control device or a
new monitoring system is not feasible due to the cost and
time required for such a comprehensive test. For instance,
in developing civil infrastructure, the performance of a
new vibration suppression system (e.g., for earthquake or
hurricane mitigation) usually cannot be validated at full
scale prior to its implementation (e.g., on a large bridge).In
the current state of the art, the cost of such testing prohibits
performing more than a few representative tests at small
scales relative to the massive sizes of the structures, and
thus additional validation steps are needed. Furthermore,
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these tests are often destructive, so that only one test can
be performed with each test specimen.

As we noted in [1], the scale of civil structures often
makes it infeasible to test them fully through empirical
techniques alone. While reduced scale testing is useful,
it cannot always capture important behaviors of the full
scale structure, even if scaling effects have been carefully
considered. Numerical simulation is therefore an equally
important technique in modern structural analysis, and has
benefited significantly by leveraging hardware innovations
that offer improved computational capabilities. However,
experimental validation is still essential to examine the
underlying assumptions made by the numerical models,
especially considering the existence of highly nonlinear
elements under extreme dynamic loading.

Hybrid testing, which integrates both physical com-
ponents of the structure of interest and computational
models of other known structural components, thus im-
proves significantly on either purely numerical or purely
empirical approaches. Due to the lack of real-time support
for hybrid testing, however, hybrid testing at a slow (a.k.a.
pseudodynamic) time scale is the state of the art [2], [3],
[4], [5]. Unfortunately, testing at such time scales may
not reveal critical dynamic system features, necessitating a
real-time approach. The leap from slow time scales to real-
time raises significant research challenges such as real-time
coordination, fault tolerance and control stability. These
issues in turn require the development and use of new kinds
of cyber-physical instruments for real-time hybrid testing.

In our previous work [1] we developed an initial proto-
type of aCyber-physical Instrument for Real-time hybrid
Structural Testing(CIRST), to illustrate the feasibility
of our vision and to gain insights into the design and
implementation challenges for developing robust reusable
middleware for such systems. In this paper we present three
main contributions to the state of the art in middleware for
cyber-physical systems: (1) a novel middleware architec-
ture for CIRST within which cyber-physical components
can be integrated flexibly through XML-based configura-



tion specifications, (2) an efficient implementation of that
architecture in C++ that can maintain necessary real-time
performance, and (3) a case study that evaluates the CIRST
middleware’s performance and demonstrates its suitability
for real-time hybrid testing.

Section II surveys related work in the areas of au-
tomatic configuration and hybrid testing. In Section III
we describe the cyber-physical middleware design and
implementation requirements imposed by real-time hybrid
testing. Section IV presents the design and implementation
of the CIRST middleware to meet those requirements.
In Section V we present a case study that applies the
CIRST middleware to different real-time hybrid testing
scenarios and evaluates its performance. We summarize
the contributions of this research and describe future work
in Section VI.

II. RELATED WORK

In addition to a real-timetarget systemconnected to
hydraulic actuators, inner loop controllers, sensors, analog-
to-digital (A/D) and digital-to-analog (D/A) converters,a
separate host computer is often used for hybrid testing
system design, and for monitoring and visualization of test
results. Host systems do not require real-time capabilities
and are generally realized by standard desktop computers.
However, the target system is the center of a real-time
hybrid testing system and its design has the greatest impact
on the accuracy of the entire system and thus on the fidelity
of the experiments run with it. In this section we therefore
focus primarily on prior research into the computational
aspects of target systems for hybrid testing and consider
only a representative sample of other relevant software
tools.

Target Systems:A controlled system can be specified
using high level Simulink models and then compiled into
object code for target systems. The object code is then
linked with a light weight real-time kernel which provides
basic interrupts and I/O services to generate executables.
dSPACE’s TargetLink [6] is an integrated toolset which
includes the Simulink model compiler and a real-time
kernel to produce executables in their hardware platforms.
The xPC target [7] from Mathworks is a similar toolset
that targets generic x86 hardware instead. For example, the
platform developed at UIUC [8] targets more generic x86
hardware, allowing greater flexibility in the experimental
equipment. The major benefit of both solutions is that
the tools provide streamlined environments from model
definition and evaluation to target deployment that requires
little programming for basic systems.

However, for more complicated hybrid testing systems
with hundreds of degrees of freedom, more complex non-
linear material and structural models are needed, which are
core elements of the OpenSees [9] open source structural

analysis framework adopted by NEES [10]. OpenSees
also uses object oriented programming to provide tools
for re-usably specifying numerical models for simulations.
OpenSees is purely for computation of the response of
the numerical model, and provides no built-in support for
real-time operation. NEES runs it on Phar Lap ETS (an
real-time OS which provides a subset of Win32 APIs to
minimize the effort for porting desktop application to em-
bedded systems) in order to achieve real-time performance.

Model Driven Development:The MARTE[11] UML
profile specification adds capabilities for model-driven
development of real-time and embedded systems, including
specification, design, verification, and validation support
to improve communication between developers and in-
teroperability between tools from different vendors. Our
research is currently focused on more fundamental middle-
ware issues, though code generation and verification from
MARTE models may be beneficial as future work.

III. M IDDLEWARE REQUIREMENTS

In this section we describe the requirements imposed
by real-time hybrid testing, which motivate and guide
the design and implementation of the CIRST middleware
presented in Section IV and a case study of the CIRST
middleware as a platform for hybrid testing presented
in Section V. These requirements fall into three main
categories: encapsulation of concerns, specialized infras-
tructure, and flexible configuration, which we now consider
in detail.

Encapsulation of Concerns:The first requirement
imposed by real-time hybrid testing systems is that the
middleware provide a mechanism for encapsulation of
different cyber and physical abstractions, so that different
elements of a real-time hybrid testing system can be
added or removed without inordinate impact on the other
components of the system. For example, a small scale
experiment may use a physical actuator and a physical test
specimen to obtain models of their behaviors, and then a
larger scale experiment may integrate different instancesof
those models with the physical test specimen and actuator.
Encapsulation of each actual or simulated element allows
it to be re-used and configured independent of the others.

This kind of encapsulation is the norm in existing hybrid
testing platforms such as dSPACE [6] (which leverages
Simulink’s intuitive block based design to allow users to
decompose systems into constituent parts) and OpenSees
(which offers an object oriented approach for specifying
experiments, thereby promoting reusability and the ability
to better manage the complexity inherent in complicated
experiment designs). Any cyber-physical middleware for
real-time hybrid testing must therefore offer comparable
encapsulation capabilities.



Specialized Infrastructure:While the previously men-
tioned requirement has led to the design of reusable
middleware frameworks (e.g., CIAO [12], TAO [13],
nORB [14] and ACE [15]) to constrain system complexity
while maintaining real-time performance for other appli-
cation domains, the nuances of real-time hybrid testing
require further innovation in middleware design and im-
plementation beyond those frameworks.

The scale and complexity of experiments that already
can be conducted using existing hybrid testing approaches
such as dSPACE [6], OpenSees [9], and NEES [10] im-
poses a stingent performance requirement for middleware
that would support similarly rich hybrid testing in real-
time. To achieve suitable real-time performance, data and
event flows through the system must be flexible, correct,
efficient, and temporally predictable even at small time
scales (e.g., to support hybrid testing of a multi-story civil
structure at 1280Hz).

Implementation complexity is an important concern
for the kinds of fine-grained time scales that must be
achieved, and based on our previous middleware design
experiences [14], specialization of the supporting middle-
ware infrastructure to enforce correctness and temporal
predictability (e.g., low level data handling to avoid un-
necessary copying, or routing data along multiple paths) is
the second crucial requirement.

Flexible Configuration: The third requirement im-
posed by real-time hybrid testing systems is that con-
figuration capabilities must allow system developers to
specifyboth declaratively and flexiblywhich elements will
constitute the system, and how those elements will be
initialized and interconnected. Such configurability allows
both recurring questions and new ones to be investigated
through the assembly and deployment of real-time hybrid
structural testing systems from common sets of reusable
elements..

In addition to easing the task of specifying system con-
figurations, these capabilities also must reduce the risk of
configuration errors. Our previous experience developing
a prototype system for conducting simple hybrid testing
experiments [1] often involved tedious and error-prone
experimental configuration changes, which motivates the
importance of this requirement. Without suitable tools for
system wide configuration of cross-cutting cyber and phys-
ical concerns (e.g., to avoid type errors due to inconsistent
representation of physical units as data moves through the
system), implementing those experimental configuration
changes required code changes throughout the prototype
system, which in turn risked introducing further problems
that would need to be addressed.

IV. D ESIGN AND IMPLEMENTATION

To address the requirements discussed in Section III,
the CIRST middleware is designed to: (1)encapsulate

system abstractions as components, (2) providespecialized
infrastructureto enforce type safety and timing properties
within and between components, and (3) provideflexible
configurationcapabilities end-to-end.

A. Encapsulation

The CIRST middleware allows computational function-
ality to be encapsulated as distinctcomponentswith de-
fined input and output interfaces through which to com-
municate with other components. Unlike traditional object
oriented frameworks, there is no notion of an inheritance
hierarchy between components in the CIRST middleware,
since real-time hybrid testing is largely data-flow oriented.

Communication between components is based on a set
of interfaces, which we refer to asflow portssince different
data types can be configured to flow between components
through them. Flow ports that receive data from other
components are calledin-ports; and those that send data
to other components are calledout-ports. A component
comp1 can deliver data to another componentcomp2
when a connection is made between an out-port ofcomp1
to an in-port of comp2. In the CIRST middleware, a
connection can be established via a single C++ statement
in the following style:

comp1.out_port() = comp2.in_port();

Given two componentsa and b and a connection be-
tween an out-port ofa and an in-port ofb, we refer to
a as theupstream componentand b as thedownstream
component for that connection.

B. Specialized Infrastructure

The CIRST middleware infrastructure has four important
areas of specialization: component ports, data movement,
multicast support, and timing constraint handling. Com-
ponent ports enforce enforce type safety by checking
compatibility along a connection of the data type sent
by an out-port and the data type expected by an in-
port. The CIRST middleware infrastructure avoids data
unnecessary copying by allowing an upstream component
to declare whether the data it sends should be modified
by its downstream components, and allowing downstream
components to decide whether to copy its input data or
reuse the input buffer. The CIRST middleware infrastruc-
ture provides a multicast capability by allowing the out-
port of a component to be connected to multiple in-ports
of other components and preserves the integrity of the data
passed between the connections such that all downstream
components see the same data value passed from their in-
ports. Finally, the CIRST middleware infrastructure allows
timing constraints to be associated with a component, and
appropriate handlers to dispatched if a constraint is violated
at run-time.



Component Ports: The CIRST middleware
infrastructure uses a polymorphic function wrapper
(std::tr1::function) [16] and a generic callback
mechanism to implement out-ports. To simplify the
management of flow ports we set the arity of the
function wrapper to 1 and the return type as int (for
indicating error conditions); therefore, a typical out-
port which sends a non-modifiable data of typeT
would be declared asstd::tr1::function<int
(const T&)> out_port();. In-ports, on the
other hand, are implemented as reference wrappers
(std::tr1::reference_wrapper) or function
objects which allows an overloadedoperator() to set
up a connection with an out-port as shown previously in
this section.

Data is passed between components using aFlowData
class template with two type parameters,ContentType
andTagType. To ensure type safety, the CIRST middle-
ware infrastructure uses concrete data types instead void*
or abstract data types to pass data between components.
The ContentType parameter gives the actual data type
to be processed by a component (e.g., a vector or matrix
of numeric data for a numerical simulation computation).
The TagType is used for data synchronization between
different data flows. If the test structure is sufficiently
complex, the computation time of a required finite element
method may be longer than the period between sensor
inputs or actuator outputs, in which case the numeric
computation must be divided into several parts and dis-
patched to different physical processors or CPU/GPU cores
for parallel computation. TheTagType then is used to
combine the results of different parallel sub-computations.
Other uses of theTagType include allowing filtering out
data (e.g., if it arrives with higher frequency but has lesser
importance to a particular experiment).

Data Movement:To avoid unnecessary copying, we
simulate the r-value reference (ormove semantics) in
C++0x [17] with a specialMoveable template to pass
flow data from an upstream component to a downstream
component when the data passed is no longer needed by
the upstream component. This allows a downstream com-
ponent to optimize by reusing existing memory and avoid
unnecessary copying. AMoveable<T> object contains a
pointer toT which can be accessed viaoperator->; in
addition, theMoveable template provides an type con-
version operator to convert an object ofMoveable<T>
to const T&. For run-time efficiency, a function invoca-
tion with statementfun(Moveable(obj); can be dis-
patched correctly tovoid fun(Moveable<T>& obj)
when available or toint fun(const T& obj) if the
moveable version does not exist.

An alternative would have been to use a simple
non-const reference to play the role ofMoveable in

above example. However, it is not obvious which ver-
sion would be used by the the caller for a statement
like fun(obj). Furthermore, under the current C++
standard,std::tr1::function is not able to dis-
tinguish correctly between two overload functions with
const and non-const references. That is, given an ob-
ject declared asstd::tr1::function<int (const
T&)> callback; and a function declared asvoid
fun(T&), the statementcallback=fun can be com-
piled without any warning even though the caller expects
the callee not to modify its parameter, yet the compiler
allows the callee to change its input argument. Using
Moveable<T> avoids this problem, and therefore the
CIRST middleware infrastructure usesMoveable<T>
instead ofT& to indicate that the data passed from a port
can be modified directly by a downstream component.

With the the introduction of move semantics for
component interfaces, a component in-port is implemented
by overloading operator() : one of them takes
a constant reference parameter, and the other takes a
Moveable parameter. Thus if the out-port of a component
is of typestd::tr1::function<int(const T&)>
it can only bind to the member function with constant
reference parameter; if the out-port is of type is of type
std::tr1::function<int(Moveable<T>)>, it
can bind to either the constant reference or the moveable
parameter member function, depending on the availability
of the moveable parameter member function in the
in-port’s interface.

Multicast Support:The CIRST middleware is special-
ized to support multicast from the out-port of a component
to the in-ports of several downstream components. This is
implemented in the CIRST middleware via an intermedi-
ateFlowSplitter component to connect the upstream
component and downstream components. If the data passed
by the upstream component is of typeMoveable<T>,
the FlowSplitter will invoke the member function
with constant reference parameter unless it is the last
downstream component of the given out-port to receive
that data. Theboost::signal[18] capability provides
a similar multicast functionality, but does not offer the
optimization to pass moveable data to the last downstream
component. We can achieve this optimization only because
we fixed the arity of each in-port and out-port to be 1, while
boost::signal allows arbitrary arity.

Timing Constraint Handling:The CIRST middleware
is specialized to allow each component to be optionally
enabled with timing constraint checking. The required
frequency and acceptable arrival jitter in the invocations
of an in-port of a component can be specified. We also
support three different policies for how to handle deadline
misses: skip, continue or stop. In the skip policy, the
computational operation of the component simply won’t



be invoked and the out-ports of the component will not
be called; however, the experiment can still go on. With
the continue policy, not only will the experiment keep
executing but, the component will still be invoked and
its outputs produced as though no deadline had been
missed. With thestoppolicy, an exception will be thrown
when a deadline is missed, to stop the experiment and
perform required cleanup operations. With any of these
three policies, if the data arrivedearlier than expected, the
component’s computation operation is simply delayed until
its expected start time.

C. Flexible Configuration

To ease configuration through declarative specifications,
and to make CIRST accessible to users without C++
background, the CIRST middleware provides XML based
configuration scripting capability to set up and run a
cyber-physical experiment. XML configuration file spec-
ifies the components used by an experiment, the connec-
tions between components, the configuration parameters
needed by each component, the timing constraints for each
component, and the timing instrumentation points to be
used for performance analysis. We achieve this capability
through a code generator that reads the XML configuration
file and emits C++ code that can be compiled into an
executable program. The configuration file can also be read
by the executable program when it starts up, to change the
component configuration parameters without regenerating
and re-compiling the C++ code. However, it is not possible
to configure other aspects of the system without regenerate
the C++ code in our current implementation.

The CIRST middleware provides further support for
flexible configuration by allowing component port adapters
to be generated from the XML configuration file. If
components out-ports and in-ports cannot be connected
directly due to data type mismatches, but an acceptable
data conversion exists (e.g., between different units of
measure) the CIRST middleware allows users to specify
data conversion expressions that are parsed by the code
generator and used to generate C++ components that
perform the specified conversion. By relieving system
developers of the tedious and error-prone responsibility
to either ensure exact type matching among component
ports or to code C++ components to perform the necessary
conversions, the automatic generation of these adapters
further assists system developers in using the CIRST
middleware. flexibly, correctly, and easily.

V. CASE STUDY

In this section we present a case study that (1) describes
a representative experimental setup for real-time hybrid
testing, (2) shows how the CIRST middleware can be
applied to develop and run different cyber-physical exper-
iments using that experimental setup, and (3) evaluates the

Figure 1. Input ground motion

performance of the middleware and of the resulting real-
time hybrid testing system as a whole. The results of those
evaluations confirm the efficacy of the CIRST middleware
for running accurate real-time hybrid tests and comparing
the performance of alternate configurations of physical and
computational components in those tests.

A. Experimental Setup

The physical test specimenused in our experimental
setup is composed of a small scale steel compression spring
which is used to represent the bending stiffness of an actual
column in a portal frame structure. The linear elastic spring
has a nominal stiffness of 37.6 kN/m (215 lb/in) and a
maximum allowable deflection of 7 cm (2.77 in).

The rest of frame are all modeled in acomputational
substructurethat assumes (1) each column has same stiff-
ness value as the physical test specimen, and (2) classical
proportional damping of 2% for each structure mode.
Earthquake acceleration data taken from Woodward-clyde
Federal Services database, and shown in Figure 1, are
used as a ground motion input to excite the computational
subsstructure. The data is scaled down in magnitude to
avoid a situation in which the maximum structure response
might exceed the deflection limit of the experimental setup.

A Shore-Western 910D double-ended hydraulicactuator
is employed as the loading device to drive the physical
test specimen. The actuator has a maximum stroke of 6
inches, with a built-in concentric linear variable differential
transformer (LVDT) for ready integration into a position
feedback control system. A Schenck-Pegasus 162M ser-
vovalve rated for 15 GPM at a 1,000 psi pressure drop is
used to control the actuator. The servo-valve has a nominal
operational frequency range of 0-60 Hz and is driven by a
Schenck-Pegasus 5910 digital controller. An Omega load
cell with a range of 1 kip is included in series with the
physical test specimen to measure the restoring force.



Figure 2. Experimental setup for hydraulic structure testing

Kp 3 mA/in controller proportional gain
τv 2.76e-3 s servo-valve time constant
Kq 26.959 in3/s/mA valve flow gain

K
′

c 2.499e-4 in3/s/psi valve flow pressure gain
A 0.652 in2 piston area
Cl 2.476e-5 in3/s/psi piston leakage coefficient
Vt 36.59 in3 volume of fluid
βe 96153 psi effective bulk modulus
mt 1.754e-2 lb − s2/in mass of test specimen
ct 8.429 lb − s/in viscous damping coefficient
k 212.62 lb/in stiffness of specimen

Table I
IDENTIFIED ACTUATOR PARAMETERS

The experimental setup is shown in Figure 2. Experi-
ments conducted using this setup were performed in the
Washington University Structural Control and Earthquake
Engineering Laboratory, which houses a hydraulic pump
that can be operated at 3,000 psi with maximum flow rate
of 43 GPM.

B. System Model

An experimental transfer function for the overall phys-
ical component was obtained under a band-limited white
noise excitation signal with a bandwidth of 50 Hz and
magnitude root mean square of 0.07 cm (0.028 inch).
Actuator parameters are identified using a nonlinear least
square optimization routine to curve-fit the experimental
data, values for each parameter as well as its physical
meaning are shown in Table I.

As can be seen in Figure 3, the curve-fitted model
represents the actuator dynamics well within a 0-50 Hz
frequency range. For this reason we use it for the controller
design to compensate actuator dynamics. Since stability
and accuracy are the major concerns for dynamic analysis,
the applied hybrid testing methodology is studied by com-
paring a prototype single degree of freedom (SDOF) hybrid
system with a reference system whose input (excitation
force) and output (displacement) relationship is governed
by transfer function Equation 1:

Ganyl =
1

Ms2 + Cs + K
(1)

The closed-loop hybrid system is shown schematically
in Figure 4 and can be described by the transfer function

Figure 3. Experiment transfer function versus model.

Figure 4. Closed-loop hybrid system

shown in Equation 2. Equation 3 represents experimental
components’ transfer functions between the input com-
mand and output displacement measurements.

Ghyd =
1

Msims2 + Csims + Ksim+

Gmu(s) · [Mexps
2 + Cexps + Kexp]

(2)

Gmu(s) =
Kp

KqA

Kc

H(s)
(3)

whereH(s) =

( Vt

4βeKc
mtτv)s

4 + ( Vt

4βeKc
mt + mtτv + Vt

4βeKc
ctτv)s3+

(mt + Vt

4βeKc
ct + A2

Kc
τv + ctτv + Vt

4βeKc
kτv)s

2+

(ct + Vt

4βeKc
k + A2

Kc
+ kτv)s + k + Kp

KqA

Kc
.

Two complex conjugate poles of the hybrid system
represent structure poles that are modified in the complex
plane due to the introducing of servo-hydraulic system.
These poles dominate the dynamic characteristics of the
hybrid system, as opposed to the other four poles with



Natural Frequency (Hz)
Sys-1 1 2 5 10
Sys-2 1 2 5.0001 10.002
Sys-3 .9999 1.9996 4.993 9.9469

Table II
NATURAL FREQUENCIES WHENKexp = Ksim = K

Damping
Sys-1 0.02 0.02 0.02 0.02
Sys-2 0.0177 0.0153 0.0088 0.0007
Sys-3 0.0083 -0.0034 -0.0374 -0.0851

Table III
DAMPING RATIOS WHENKexp = Ksim = K

much faster dynamics. Assuming that the total mass, total
damping and half of the stiffness are modeled in the
computational substructure, Tables II and III show the
comparison of natural frequencies and damping ratios
respectively, between the reference system (sys-1) and the
hybrid systems with (sys-2) and without (sys-3) compen-
sation.

Although the natural frequency variation is small, sig-
nificant damping reduction has been observed in the hybrid
system. This can be improved by the use of the compen-
sation scheme. More damping reduction is associated with
the test when the natural frequency of the reference system
increases, which indicates a larger error introduced by the
hybrid testing methodology. Instability will occur if the
damping becomes negative.

Consider also another (worst) case with zero stiffness
but again with the total mass and total damping modeled
in the computational substructure. Table IV and V show
the natural frequencies and damping ratios of this worst
case test scenario, with faster damping reduction which
indicated degraded stability and less accuracy.

Through this simple example, we can conclude that
overall hybrid system behavior depends not only on local

Natural Frequency (Hz)
Sys-1 1 2 5 10
Sys-2 1 2 5.0003 10.006
Sys-3 .9999 1.9991 4.9875 9.9534

Table IV
NATURAL FREQUENCIES WHENKexp = K AND Ksim = 0

Damping
Sys-1 0.02 0.02 0.02 0.02
Sys-2 0.0153 0.0107 -0.0024 -0.0185
Sys-3 -0.0035 -0.0268 -0.0947 -0.1898

Table V
DAMPING RATIOS WHENKexp = K AND Ksim = 0

Figure 5. Component assembly

behaviors such as accurate modeling and good compensa-
tion strategy, but also intrinsically on the experimental plan
and setup, e.g. on the proper partition of physical properties
between the numerical and experimental elements of the
system.

C. Middleware Configuration

To demonstrate how the CIRST middleware can be
applied to develop and run different cyber-physical ex-
periments using the experimental setup described in Sec-
tion V-A and the system model described in Section V-B,
we configured a component assembly that integrates a
commercially available I/O device and C++ and Matlab
simulation components on a standard Linux machine.

The CIRST middleware component assembly, imple-
mented by C++ code generated from an XML configura-
tion file, is shown in Figure 5. We ran the component as-
sembly on a Dual Pentium 4 Xeon 2.40 GHz processor ma-
chine with one gigabyte of RAM. For communication with
the analog sensors and actuators in the experimental setup,
we used a National Instruments Data Acquisition Board
(BNC-2120 DAB). TheDaqReader and DaqWriter
components in Figure 5 represent the software components
for reading from and writing to the data acquisition board.

Each simulation step executes the required computation
following the order of flow ports in the assembly and
then generates commands to the actuators. Our initial
assembly used the onboard clock from the data acquisition
board to trigger each simulation step. However, due to
unforseen variation in the triggering times produced by
that mechanism we replaced it with a software based
triggering mechanism that gave much more regular timing
behavior, an experience that further illustrates the utility
of a configurable component middleware approach to real-
time hybrid testing.

D. Experimental Evaluation

To evaluate the scalability of our middleware, we first
extend our experiment to use a sequence ofn-story struc-
tures (for different values ofn) each of which is equivalent



Figure 6. The deadline misses of an-story structure experiment

in our system model to ann degree-of-freedom (DOF) sys-
tem; however, only one column of the first story is captured
from the physical rigid beam specimen, and data for all
other stories are purely based on analytical computation.
We used a 15 second earthquake wave and a simulation
frequency of 1280Hz. We varied the value ofn and for
each n ran 10 trials. To assess the system’s ability to
perform at the specified simulation frequency we recorded
the number of times that a deadline was missed (i.e, when
the completion of a component’s execution was past the
end of the current period at that simulation frequency).
The results of these trials, with the trials for each number
of degrees of freedom sorted by the number of deadline
misses, are shown in Figure 6. As those results show, the
real-time hybrid test system had very few deadline misses
as n goes up to 80. After that, however the computation
load becomes too large for the system to maintain at 1280
Hz. However, even whenn is small, we still see a few
deadline misses in some 15 second run of the system.

Attribution of Deadline Misses:To examine the
sources of these deadline misses, we instrumented the
system to measure the time required for the following
operations: reading sensor data, writing actuator commands
and performing other numerical computations. Figure 7
shows the cumulative distributions for each of the oper-
ations individually and in aggregate, whenn is 5, 60 and
90.

The results in Figure 7 show that reading from and
writing to the DAQ board dominate the aggregate timing
whenn is 5 or 60. Table VI shows the worst case scenario
for those segments. In the case ofn = 60, the average total
execution time is 554µs , which is far below our deadline
780µs. However, the worst case is941 µs, which happens
when the DAQ write operation spends578 µs.

These results identify variation in the timing of the read

5 60 90
read 401 483 520
write 439 578 627
computation 39 216 647
total 701 941 1745

Table VI
WORST CASE TIME INµsec FOR EACH SEGMENT OF A SIMULATION

STEP

Figure 8. The hybrid test and simulation results of single DOF setup

and write DAQ board operations as an important cause of
deadline misses when the computational load on the system
is otherwise sufficiently low. However, since the timing of
these operations is subject to the behavior of a proprietary
device driver whose implementation we do not control we
were left with two alternatives: (1) replace the standard
off-the-shelf DAQ board we had available, or (2) evaluate
the extent to which the deadline misses were affecting the
fidelity of our test system, and determine whether or not
the result was acceptable (or could be ameliorated if not).

Fidelity Comparison between Hybrid Tests and Simu-
lations: We pursued the latter alternative, by comparing the
fidelity of our hybrid test results obtained in the presence
of those deadline misses, to comparable tests using pure
simulation models that did not suffer that effect. Figures 8,
9 and 10 show the results of hybrid and simulation tests
with 1, 5, and 60 degrees of freedom respectively. Each
DOF indicates one lumped mass. The single DOF test
assumes a 1910 kg floor mass and the other two tests
assume a 175 kg mass per structure floor.

The error norm in each case is calculated as the percent-
age ratio between the standard deviation of the displace-
ment error and the simulated displacement. As shown in
the Figures, the error norm decreases as the DOF increases,
even though the 60 DOFs case introduces more deadline



Figure 7. The cost of DAQ read/write and other computations

Figure 9. The hybrid test and simulation results of 5 DOFs setup

misses. This is because the test errors are mostly associated
with physical component. In our experimental setup, only a
single column of the bottom story are actually represented
by the physical components and all others are simulation
model. As the DOF increases, the errors introduced by the
physical components in the system will have less effect
on the fidelity of system. Therefore, the possible errors
introduced by any source would have less impact on the
results with heavier computational loads than with lighter
ones in this case.

The data obtained from the real-time hybrid experiments
matched well with the simulation results for all 3 tests,
which indicates that the infrequent deadline misses did
not have a large impact on the fidelity of the hybrid
experiments. However, since the error between the hybrid

Figure 10. The hybrid test and simulation results of 60 DOFs setup

tests and the simulations could be attributed to a variety of
possible sources including imperfect sensor measurement,
modeling inaccuracy which does not consider nonlinearity
of the physical test specimen, or insufficiently detailed
timing information about the physical specimen or the
actuator, further study is needed to fully quantify the effects
of deadline misses in the cyber portions of our real-time
hybrid testing system.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have described how cyber-physical sys-
tem domains like real-time hybrid motivate development of
novel middleware infrastructures that can address the kinds
of requirements described in Section III. In Section IV we
presented the design and implementation of a novel mid-



dleware infrastructure for the Cyber-physical Instrument
for Real-time hybrid Structural Testing (CIRST) we are
developing in this research. The case study in Section V
demonstrates both the suitability of the CIRST middleware
for real-time hybrid testing, and the need for further
investigation into remaining sources of timing variability
and other factors that may impact real-time hybrid test
systems.

Our immediate future work will also focus on further
modeling and evaluation of the DAQ read and write timing
variability, and on potential mitigation strategies that may
be needed for particular real-time hybrid testing scenarios
that are sensitive to those variations. We plan to expand
the use of parallel execution of the numeric simulation
algorithms, aided by the data synchronization features of
the CIRST middleware, to achieve and quantify further
scalability of our approach through aggregation of more
computational resources.

We plan to improve our hydraulic actuator model to
capture the dynamics of physical components over a
broader frequency range, as well as to capture associated
nonlinearity. In conjunction with study the effects of jitter
in when the command displacement signal is sent to the
actuator, we plan to explore other dynamic compensation
strategies in order to apply the desired signal to test
specimen more accurately.
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