
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2011-96

2011

2-Edge-Connectivity and 2-Vertex-Connectivity with Fault 2-Edge-Connectivity and 2-Vertex-Connectivity with Fault

Containment Containment

Abusayeed Saifullah

Self-stabilization for non-masking fault-tolerant distributed system has received considerable

research interest over the last decade. In this paper, we propose a self-stabilizing algorithm for

2-edge-connectivity and 2-vertex-connectivity of an asynchronous distributed computer

network. It is based on a self-stabilizing depth-first search, and is not a composite algorithm in

the sense that it is not composed of a number of self-stabilizing algorithms that run

concurrently. The time and space complexities of the algorithm are the same as those of the

underlying self-stabilizing depth-first search algorithm.

... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Saifullah, Abusayeed, " 2-Edge-Connectivity and 2-Vertex-Connectivity with Fault Containment" Report
Number: WUCSE-2011-96 (2011). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/71

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/71?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/71

2-Edge-Connectivity and 2-Vertex-Connectivity with Fault Containment 2-Edge-Connectivity and 2-Vertex-Connectivity with Fault Containment

Abusayeed Saifullah

Complete Abstract: Complete Abstract:

Self-stabilization for non-masking fault-tolerant distributed system has received considerable research
interest over the last decade. In this paper, we propose a self-stabilizing algorithm for 2-edge-connectivity
and 2-vertex-connectivity of an asynchronous distributed computer network. It is based on a self-
stabilizing depth-first search, and is not a composite algorithm in the sense that it is not composed of a
number of self-stabilizing algorithms that run concurrently. The time and space complexities of the
algorithm are the same as those of the underlying self-stabilizing depth-first search algorithm.

https://openscholarship.wustl.edu/cse_research/71?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/71?utm_source=openscholarship.wustl.edu%2Fcse_research%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2011-96

2-Edge-Connectivity and 2-Vertex-Connectivity with Fault Containment

Authors: Abusayeed Saifullah

Corresponding Author: saifullaha@cse.wustl.edu

Web Page: http://www.cse.wustl.edu/~saifullaha/

Abstract: Self-stabilization for non-masking fault-tolerant distributed system has received considerable research
interest over the last decade. In this paper, we propose a self-stabilizing algorithm for 2-edge-connectivity and
2-vertex-connectivity of an asynchronous distributed computer network. It is based on a self-stabilizing
depth-first search, and is not a composite algorithm in the sense that it is not composed of a number of
self-stabilizing algorithms that run concurrently. The time and space complexities of the algorithm are the same
as those of the underlying self-stabilizing depth-first search algorithm.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

2-Edge-Connectivity and 2-Vertex-Connectivity with Fault

Containment

Abusayeed Saifullah

Computer Science and Engineering

Washington University in St Louis

saifullaha@cse.wustl.edu

ABSTRACT

Self-stabilization for non-masking fault-tolerant distributed system has received considerable research in-

terest over the last decade. In this paper, we propose a self-stabilizing algorithm for 2-edge-connectivity

and 2-vertex-connectivity of an asynchronous distributed computer network. It is based on a self-stabilizing

depth-first search, and is not a composite algorithm in the sense that it is not composed of a number of

self-stabilizing algorithms that run concurrently. The time and space complexities of the algorithm are the

same as those of the underlying self-stabilizing depth-first search algorithm which are O(dn∆) rounds and

O(n log ∆) bits per processor, respectively, where ∆(≤ n) is an upper bound on the degree of a node,

d(≤ n) is the diameter of the graph, and n is the number of nodes in the network.

KEY WORDS

Distributed system, fault-tolerance, self-stabilization, depth-first search tree, bridge, articulation point, bridge-

connected component.

1 Introduction

A distributed system is a set of processing elements or state machines interconnected by a network of some

fixed topology. Distributed systems are exposed to constant changes of their environment and the design

of such systems is quite complex, in part due to unpredictable faults. Implicit in the notion of fault is

the specification of what constitutes the correct state of the system. A transient fault is an event that may

change the state of a system by corrupting the local states of the machines. The property of self-stabilization

can recover the system from transient faults and represents a departure from previous approaches to fault

tolerance.

The notion of self-stabilization was first proposed by Dijkstra [5, 6]. A system is self-stabilizing if,

starting at any state, possibly illegitimate, it eventually converges to a legitimate state in finite time. A

self-stabilizing system is capable of tolerating any unexpected transient fault without being assisted by any

external agent. Regardless of the initial state, it can reach a legitimate global state in finite time and can

remain so thereafter unless it experiences any subsequent fault. In this paper, we propose a simple self-

stabilizing algorithm for detecting the bridges, articulation points, and bridge-connected components of

an asynchronous distributed network. When a distributed system is modelled as an undirected connected

graph, an edge is called a bridge if its removal disconnects the graph whereas an articulation point is a

node whose removal disconnects the graph. A maximal component without any bridge of the graph is called

a bridge-connected component. Bridge-connectivity (2-edge-connectivity) and biconnectivity (2-vertex-

connectivity) call for considerable attention in graph theory since these properties represent the extent to

which a graph is connected. In distributed systems, these properties represent the reliability of the network

in presence of link or node failures. Moreover, when communication links are expensive, these properties

play a vital role to minimize the communication cost.

Several self-stabilizing algorithms for 2-edge-connectivity and 2-vertex-connectivity are available. The

algorithm in [1] can find the bridge-connected components by assuming the existence of a depth-first search

spanning tree of the system. This algorithm stabilizes in two phases and, for a system with n processors,

each phase requires O(n2) moves to reach a legitimate configuration by assuming that the preceding phase

has stabilized. If a breadth-first search tree of the network is known, then the algorithm in [10] can detect

the bridges in O(n3) moves and that in [8] can detect the articulation points in O(n3) moves. The algorithm

in [9] finds the biconnected components in O(n2) moves if a breadth-first search tree and all the bridges of

the network are known. Each of the algorithms [1, 8, 9, 10] mentioned above requires O(n∆ lg∆) bits per

processor, where ∆ is an upper bound on the degree of a processor. The algorithm proposed by Devismes [4]

uses a weaker model (one that does not require every node to have a distinct identifier) and can detect the

cut-nodes and bridges in O(n2) moves if a depth-first search tree of the network is known. This algorithm is

memory efficient (O(n lg ∆+lgn) bits per processor) but does not find the bridge-connected or biconnected

components.

It is pointed out in [12] that each of the aforementioned algorithms is just one component of a com-

posite algorithm and hence the time complexity presented is different from that of the composite algorithm.

Since the algorithm must run concurrently with a self-stabilizing spanning tree algorithm (which is another

component of the composite algorithm), when the last transient fault had elapsed and the spanning tree

algorithm has stabilized, the processor may make redundant moves on the spanning tree algorithm which

could significantly lengthen the time that the composite algorithm needs to stabilize. In the worst case, the

time complexity of the composite algorithm is the product of the time complexities of the algorithms that

make up the composite algorithm and is thus bounded below by that of the spanning tree algorithm. Ad-

dressing all these issues, Tsin [12] has shown how to incorporate Tarjan’s depth-first-search based algorithm

for biconnectivity into the self-stabilizing depth-first search algorithm of Collin and Dolev [3] to produce

a self-stabilizing algorithm for bridge-connectivity and biconnectivity. The time and space complexities of

the resulting algorithm are bounded above by those of the depth-first search algorithm. Following this ele-

gant approach [12], our algorithm simplifies all existing algorithms for bridge-connectivity and biconnectiv-

ity [1, 4, 8, 9, 10] by embedding the detection method of bridges and articulation points in the self-stabilizing

depth-first search algorithm of Collin and Dolev [3] and by avoiding any distributed protocol composition.

The proposed algorithm also determines all the bridge-connected components since, upon stabilization of

the algorithm, all the nodes of the same component contain the same identifier. The space complexity is also

significantly improved in our algorithm. The space requirement for each of the algorithms of [1, 8, 9, 10]

is O(n2 log(n)) bits per processor for a system with n processors. This is due to the propagation of a set of

non-tree edges that bypass a tree edge in the depth-first search spanning tree of the system. However, we

show that passing only the size of that set is sufficient for detecting all the bridges and articulation points

which substantially reduces the size of the message. Specifically, the time complexity of our algorithm is

O(dn∆) rounds and the space complexity for every processor is O(n log∆) bits. Note that the space com-

plexity for the self-stabilizing depth-first algorithm of Collin and Dolev [3] is O(n log ∆) bits per processor

and the time complexity is O(dn∆) rounds. The model we use is the same as that of Collin and Dolev [3],

which is weaker than that used in [1, 2, 8, 9, 10].

2

2 Computational Model

The distributed system is represented by an undirected connected graph G = (V,E). The set of nodes V in

G represents the set of processors {v1, v2, · · · , vn}, where n is the total number of processors in the system,

and E represents the set of bidirectional communication links between two processors. We shall use the

terms node and processor (edge and link, respectively) interchangeably throughout this paper. We assume

that the graph is bridgeless.

All the processors, except v1, are anonymous. The processor v1 is a special processor and is designated

as the root. For the processors vi, 2 ≤ i ≤ n, the subscripts 2, · · · , n are used for ease of notation only

and must not be interpreted as identifiers. Two processors are neighboring if they are connected by a

link. The processors run asynchronously and the communication facilities are limited only between the

neighboring processors. Communication between the neighbors is carried out using shared communication

registers (called registers throughout this paper). Each register is serializable with respect to read and write

operations.

Every processor vi, 1 ≤ i ≤ n, contains a register. A processor can both read and write to its own

register. It can also read the registers of the neighboring processors but cannot write to those registers. The

contents of the registers are divided into fields. Each processor vi orders its edges by some arbitrary ordering

αi. For any edge e = (vi, vj), αi(j) (αj(i), respectively) denotes the edge index of e according to αi (αj ,

respectively). Furthermore, for every processor vi and any edge e = (vi, vj), vi knows the value of αj(i).
We consider a processor and its register to be a single entity, thus the state of a processor fully describes

the value stored in its register, program counter, and the local variables. Let χi be the set of possible states

of processor vi. A configuration c ∈ (χ1 × χ2 × · · ·χn) of the system is a vector of states, one for each

processor. Execution of the algorithm proceeds in steps (or atomic steps) using read/write atomicity. An

atomic step of a processor consists of an internal computation followed by either read or write, but not

both. Processor activity is managed by a scheduler (also called daemon). At any given configuration, the

scheduler activates a single processor which executes a single atomic step.

An execution of the system is an infinite sequence of configurations ℜ = (c0, c1, · · · , ci, ci+1, · · ·) such

that for i ≥ 0, ci → ci+1 (called a single computation step) denotes that configuration ci+1 can be reached

from configuration ci by executing on step. A fair execution is an infinite execution in which every processor

executes atomic steps infinitely often. A suffix of a sequence of configurations (c0, c1, · · · , ci, ci+1, · · ·) is

a sequence (ck, ck+1, · · ·), where k ≥ 0. The finite sequence (c0, c1, · · · , ck−1) is a prefix of the sequence

of configurations. A task is defined by a set of executions, called legal executions. A distributed algorithm

is self-stabilizing for a task if every fair execution of the algorithm has a suffix belonging to the set of

legal executions of that task. The time complexity of the algorithm is expressed in terms of the number of

rounds [7]. The first round of an execution ℜ is the shortest prefix of ℜ in which every processor executes

at least one step. Let ℜ = ℜ1ℜ2 such that ℜ1 is the prefix consisting of the first k rounds of ℜ. Then the

(k + 1)-th round of ℜ is the first round of ℜ2.

3 The Algorithm

The algorithm uses the self-stabilizing depth-first search algorithm of Collin and Dolev [3] to construct a

depth-first search spanning tree. In the self-stabilizing depth-first search algorithm of Collin and Dolev [3],

every processor vi has a field, denoted by pathi, in its register. At any point of time during the execution of

the algorithm, pathi contains the sequence of indices of the links on a path connecting the root v1 with node

vi. The algorithm uses a lexicographical order relation ≺ on the path representation and the concatenation

of any link with a path is denoted by the operator ⊕. The root processor v1 always writes ⊥ in its path1

3

field and, in the lexicographical order relation, ⊥ is the minimal character. When a depth-first search tree

is constructed in the network, pathi contains the smallest (with respect to the lexicographical order ≺) path

connecting v1 with vi. The last links on the smallest paths of vi, i ≥ 2, form a depth-first search tree, called

the first depth-first search tree. Given that in the first depth-first search tree, a node vj is an ancestor of a

node vi if the smallest path of vi contains the smallest path of vj , then, the node vj is an ancestor of a node

vi if pathj is a prefix of pathi, i.e. (∃s)(pathi = pathj ⊕ s). If there exists a unique neighbor vj of vi such

that pathi = pathj ⊕ αj(i), then vj is the parent of vi. The degree of a processor vi, denoted by δi, is the

number of incident edges (links) on vi. Once a depth-first search tree is constructed, at each processor vi,

the type of each incident link (vi, vj) (or (vj , vi)) can be determined by pathi, pathj, αi(j), and αj(i) in the

following ways:

• The link (vj, vi) is a parent link if and only if pathi = pathj ⊕ αj(i);

• The link (vi, vj) is a child link if and only if pathj = pathi ⊕ αi(j);

• The link (vi, vj) is an outgoing non-tree edge (i.e. it is a non-tree link and vj is an ancestor of vi)

if and only if (∃s)((pathi = pathj ⊕ s)∧(s 6= αj(i))); The total number of outgoing non-tree edges

incident on processor vi is denoted by outi.

• The link (vj , vi) is an incoming non-tree edge (i.e. it is a non-tree link and vj is a descendant of vi)

if and only if (∃s)((pathj = pathi ⊕ s)∧(s 6= αi(j))); The total number of incoming non-tree edges

incident on processor vi is denoted by ini.

We omit the description of that part of the algorithm for constructing a depth-first search tree T , as it

is available in [3]. The idea underlying our algorithm is to count the total number of non-tree edges that

bypass a tree edge in T . A non-tree edge (vk, vl) (vk is a descendant of vl) bypasses a tree edge (vi, vj) (vi
is the parent of vj) if and only if vk is a descendant of vj while vl is an ancestor of vi. The total number of

non-tree edges bypassing the parent link of processor vi is denoted by counti. During the execution of the

algorithm this number is propagated towards the root whereas in [1, 10, 8, 9], for every node vi, the whole

set of non-tree edges bypassing the parent link of vi is calculated and routed towards the root. Since, in our

algorithm, only the cardinality of the set is propagated, the message cost is drastically reduced. IN T , let ini

and outi be the number of incoming non-tree edges and the number of outgoing non-tree edges, respectively,

incident on vi, and Ci be the set of children of vi, and incoming(vj , vi) be the number of incoming non-tree

edges (vl, vi) such that vl is a descendant of vj ∈ Ci. Then counti is calculated recursively as follows:

counti :=
∑

vj∈Ci

countj − ini + outi;

The algorithm is based on the Theorem 1 and Theorem 2 due to Tarjan [11].

Theorem 1. (i) If a non-root node vi has a child vj in T , then vi is an articulation point of G if and only

if countj = incoming(vj , vi).

(ii) The root v1 is an articulation point of G if and only if v1 has two or more children.

Theorem 2. Let (vi, vj) be a tree edge in T such that vi is the parent of vj . Then (vi, vj) is a bridge in G if

and only if countj = 0.

Corollary 1 follows from Theorem 1 and Theorem 2.

Corollary 1. Each of the end nodes of a bridge is an articulation point unless it is a node of degree one.

Remark 1. For each leaf node vi, ini = 0 and counti = outi.

4

In order to extend this depth-first search algorithm to find the bridges and articulation points, and bridge-

connected components every processor vi, in addition to the field pathi, maintains two fields: counti and

bcci. The field bcci is a unique identifier of the bridge-connected component containing vi. For every bridge-

connected component, a representative node is defined. A representative node vj of a bridge-connected

component is the ancestor of all other nodes of the component containing vj . When the algorithm stabilizes,

every bridge-connected component is uniquely identified by the path-value of its representative node, and

bcc-fields of all nodes of this component contain this path-value.

Lemma 1. A node vi is a representative node if and only if counti = 0.

Proof. Let vi be a representative node and counti > 0. Let (vm, vl) be a non-tree edge such that vl is

an ancestor and vm is a descendant of vi. Node vl can be reached from vi using the tree path vi − vm
followed by the non-tree edge (vm, vl) while vl can also be reached from vi using another path vi − vl and

these two paths are disjoint. That is, the ancestor vl is bridge-connected to vi which contradicts that vi is

a representative node. Again, by Theorem 2, if counti = 0 then no ancestor of vi can be reached from vi
when the parent link of vi is removed. Hence vi is a representative node of the bridge-connected component

containing vi,

During the execution of the algorithm, every non-root node vi, i ≥ 2, repeatedly reads in countj of every

vj ∈ Ci, and based on ini and outi, it counts the value counti. Furthermore, every representative node vi
repeatedly writes its own path value pathi into bcci field and every non-representative node vl repreatedly

reads in bccm of its parent vm and writes this value into bccl. The root v1 always writes 0 into count1 field

and ⊥ (i.e. path1 value) into bcc1 field.

The algorithm is presented as the 2-EDGE & 2-VERTEX CONNECTIVITY algorithm. The functions

read and write are the functions for reading from and writing to a register, respectively. The fields in the

register of vi, 1 ≤ i ≤ n, are: pathi, counti, bcci; the local variables are path, read pathj , read countj ,

and read bccj (1 ≤ j ≤ δj).

Theorem 3. For every fair execution of the 2-EDGE & 2-VERTEX CONNECTIVITY algorithm, there is

a suffix in which for every node vi, 1 ≤ i ≤ n, bcci = patht in every configuration, where vt, 1 ≤ t ≤ n, is

the representative node of the bridge-connected component containing vi.

Proof. In the 2-EDGE & 2-VERTEX CONNECTIVITY algorithm, new instructions for determining the

bridges, and articulation points are embedded in the self-stabilizing depth-first search algorithm of Collin

and Dolev [3]. These new instructions do not affect the original function of the depth-first search algorithm.

Therefore, by Theorem 3.2 in [3], for every fair execution of the 3-EDGE-CONNECTIVITY algorithm,

there is a suffix S of the execution in which pathi, 1 ≤ i ≤ n, contains the correct value in every configura-

tion. Suppose the execution has reached a configuration c in S. By Observation 3.1 in [3], the correct values

in pathi, 1 ≤ i ≤ n, specify a depth-first search tree T .

Let vi be any leaf node in T . Since pathj , 1 ≤ i ≤ n, is correctly determined, after vi reads in the

path field from each outgoing non-tree link, counti value is correctly determined. Let S′ be a suffix of the

execution in which all the nodes on level h or higher (i.e. farther from the root) have correctly computed

their count values. Consider any non-leaf node vi, on level h − 1. By the induction hypothesis, for each

vj ∈ Ci, the values of countj are correctly calculated. Therefore, vi correctly calculates counti. Hence,

there is a suffix of the suffix S′ in which for every configuration, counti are correctly computed for every

node vi, 1 ≤ i ≤ n.

Suppose the execution has reached a configuration in the aforementioned suffix of suffix S′. The root

node v1 is a representative node and always correctly writes the value of path1 (i.e. ⊥) into the field bcc1.

Let S′′ be a suffix in the suffix S′ of the execution in which, for every node vm on level h or lower (i.e.

5

closer to the root), bccm = pathl, where vl is the representative node of the bridge-connected component

containing vm. Let vi be any non-root node on level h + 1. The value nexti can be read from Si which

is correctly calculated. If vi is a representative node, then vi correctly writes pathi into bcci. If vi is not a

representative node, then vi reads in the bcc-field of its parent which is correct by the induction hypothesis

and writes it into bcci. Hence, there is a suffix of the fair execution in which for every node vi, 1 ≤ i ≤ n,

bcci = patht in every configuration, where vt, 1 ≤ t ≤ n, is the representative node of the bridge-connected

component containing vi.

2-EDGE & 2-VERTEX CONNECTIVITY Algorithm

Let vij , 1 ≤ j ≤ δi, be the neighboring processors of processor vi, 1 ≤ i ≤ n, such that αi(ij) = j,

1 ≤ j ≤ δi, 1 ≤ i ≤ n.

root v1:

for forever do
write path1 := ⊥; write count1 := 0; write bcc1 := ⊥;

end

non-root vi, i ≥ 2:

for forever do

/* Calculate pathi */

for j := 1 to δi do read pathj := read(pathij); /* read path-value of neighbor vij */

write pathi :=min≺{|read pathj ⊕ αij(i)|N such that 1 ≤ j ≤ δi}; /* compute pathi */

/* Calculate counti */

path := read(pathi);

in := out := count := 0; /* initialize in, out, and count */

for j := 1 to δi do

if (read pathj = path⊕ αij(i)) then /* (vi, vij) is a child link */

read countj :=read(countij); /* read count value of child vij */

count := count+ read countj; /* update count */

end

else if (∃s)((read pathj = path⊕ s) ∧ (s 6= αij(i))) then /* incoming non-tree edge */

count := count− 1; /* update count */

else if (∃s)((path = read pathj ⊕ s) ∧ (s 6= αij(i))) then /* outgoing non-tree edge */

count := count+ 1; /* update count */

end

write counti := count; /* write counti */

/* Calculate bridge-connected component identifier bcci */

count := read(counti); path :=read(pathi);

if (count = 0) then

write bcci := path;/* vi is a representative node. Write pathi into bcci */

else

for j := 1 to δi do

if (path = read pathj ⊕ αij(i)) then /* ((vij , vi) is the parent link */

read bccj :=read(bccij); write bcci := read bccj; /* (write bcc of vij in bcci */

end

end

end

Lemma 2. When the 2-EDGE & 2-VERTEX CONNECTIVITY algorithm stabilizes, all the bridges, ar-

ticulation points, and bridge-connected components are determined.

Proof. When the algorithm stabilizes, by Theorem 3, every node vi, 1 ≤ i ≤ n, knows its children, parent,

all incident tree-edges and non-tree edges, counti values, and bcci values. By Theorem 2, any tree edge

6

(vi, vj) with counti = countj = 0 is a bridge, and, by Corollary 1, each of these two nodes is an articulation

point unless its degree is one. By Theorem 1, any other non-root node vi having a child Cj such that

countj = incoming(vj , vi) is an articulation point. If the root v1 has more than one child then v1 is an

articulation point. Every bridge-connected component has a unique representative node and, by Theorem 3,

the path value of this node is written into bcc field of every node of this component. Hence bcci value of

every node vi, 1 ≤ i ≤ n, uniquely identifies the bridge-connected component containing vi.

Lemma 3. The 2-EDGE & 2-VERTEX CONNECTIVITY algorithm stabilizes in O(dn∆) rounds, where

∆ is an upper bound on the degree of a node, d is the diameter of the graph.

Proof. It is easily verified that the new instructions added to the depth-first search algorithm of Collin and

Dolev [3] only increase the time complexity for constructing a depth-first search tree by a constant factor.

The for loop for computing the count-values takes O(H) rounds, where H is the height of T and the for

loop for computing the bcc values takes O(1) rounds. Therefore, the time required by the 2-EDGE & 2-

VERTEX CONNECTIVITY algorithm remains same as that of the underlying depth-first search algorithm

(i.e. O(dn∆) rounds).

Lemma 4. The space complexity of the 2-EDGE & 2-VERTEX CONNECTIVITY algorithm is O(n log∆)

bits per processor.

Proof. In the depth-first search algorithm of Collin and Dolev [3], the space required by every processor

is O(n log∆) bits. This is the space required to store the path value of the processor. In the 2-EDGE

& 2-VERTEX CONNECTIVITY algorithm, bcc field requires O(n log∆) bits, and count filed requires

O(log(n∆)) ≈ O(log n) bits. The space complexity per processor is thus O(n log∆) bits.

Figure 1 is a depth-first spanning tree of the corresponding undirected graph. An execution of our

algorithm over this tree is shown below.

The count values at non-root nodes v4, v6, v11, and v14 are 0, and hence, by Lemma 2, the bridges are

(v11, v14), (v10, v11), (v5, v6), (v1, v4). The articulation points are v1, v4, v5, v6, v10, v11, v14, and bridge-

connected components are: {v1, v2, v3}, {v4, v5, v10}, {v6, v7, v8, v9}, {v11, v12, v13}, and {v14, v15, v16}.

4 Conclusion

We have presented an algorithm for the 2-edge-connectivity and 2-vertex-connectivity problem based on a
self-stabilizing depth-first search algorithm. The algorithm constructs a depth-first search tree in O(dn∆)
rounds and then determines the bridges, articulation points, and bridges-connected components based on the
depth-first search tree. In the worst case, when d = ∆ = n, our algorithm requires O(n3) rounds. Clearly,
the time complexity of our algorithm is dominated by the time spent in constructing the depth-first search
tree. Should there be an improvement made on the time bound required to construct the depth-first search
tree, the time complexity of our algorithm will improve as well.

References

[1] CHAUDHURI, P. An O(n2) self-stabilizing algorithm for computing bridge-connected components. Computing

62, 1 (February 1999), 55–67.

[2] CHAUDHURI, P. A self-stabilizing algorithm for detecting fundamental cycles in a graph. Journal of Computer

and System Science 59, 1 (August 1999), 84–93.

[3] COLLIN, Z., AND DOLEV, S. Self-stabilizing depth-first search. Information Processing Letters 49, 6 (March

1994), 297–301.

7

tree edge (directed
from child to parent)

non-tree edge

Bridges:

(v11, v14), (v10, v11),

(v5, v6), (v1, v4)

Articulation Points:
v1, v4, v5, v6, v10, v11, v14

root = v1
v1

v4v2

v3 v5

v6

v7

v8

v9

v10

v11

v14

v15

v16

v12

v13

Figure 1: Depth-First Search Spanning Tree T

[4] DEVISMES, S. A silent self-stabilizing algorithm for finding cut-nodes and bridges. Parallel Processing Letters

15, 1&2 (March & June 2005), 183–198.

[5] DIJKSTRA, E. W. Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 1

(November 1974), 643–644.

[6] DIJKSTRA, E. W. A belated proof of self-stabilization. Distributed Computing 1, 1 (January 1986), 5–6.

[7] DOLEV, S. Self-stabilization. MIT Press, Cambridge, Massachusetts, 2000.

[8] KARAATA, M. H. A self-stabilizing algorithm for finding articulation points. International Journal of Founda-

tions of Computer Sciences 10, 1 (1999), 33–46.

[9] KARAATA, M. H. A stabilizing algorithm for finding biconnected components. Journal of Parallel and Dis-

tributed Computing 62, 5 (May 2002), 982–999.

[10] KARAATA, M. H., AND CHAUDHURI, P. A self-stabilizing algorithm for bridge finding. Distributed Computing

12, 1 (March 1999), 47–53.

[11] TARJAN, R. E. Depth-first search and linear graph algorithms. SIAM J. Computing 1 (1972), 146–160.

[12] TSIN, Y. H. An improved self-stabilizing algorithm for biconnectivity and bridge-connectivity. Information

Processing Letters 102 (2007), 27–34.

8

	2-Edge-Connectivity and 2-Vertex-Connectivity with Fault Containment
	Recommended Citation
	2-Edge-Connectivity and 2-Vertex-Connectivity with Fault Containment

	tmp.1415131658.pdf.H4D9K

