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Abstract

Middleware for distributed real-time embedded (DRE) sys-
tems has grown more and more complex in recent years, to ad-
dress functional and temporal requirements of complex real-time
applications. While current approaches for modeling middle-
ware have eased the task of assembling, deploying and config-
uring middleware and applications, a more formal, fundamental
and lower-level set of models is needed to be able to uncover
subtle safety and timing errors introduced by interference be-
tween computations, particularly in the face of alternative con-
currency strategies in the middleware layer.

In this paper, we examine how formal models of lower-level
middleware building blocks provide an appropriate level of ab-
straction for both modeling and synthesis of a variety of kinds
of middleware from these building blocks. When combined with
model checking techniques, these formal models can help devel-
opers in constructing correct combinations and configurations
of middleware mechanisms, for each particular application.

1 Introduction

Significant research has been conducted over the past decade
to make middleware more flexible and customizable through
the use of pattern-oriented software frameworks [1, 2]. Al-
though this research has increased the flexibility and applicabil-
ity of middleware to different kinds of applications, managing
the choices for customization available to the application devel-
oper has become an increasing concern.

To allow middleware to be configured and customized to meet
the stringent demands of different distributed real-time embed-
ded (DRE) applications, a body of ongoing research has fo-
cused on applying model-driven techniques to developing QoS-
enabled middleware. While current approaches for modeling
middleware focus on easing the task of assembling, deploying
and configuring middleware and middleware-based applications,
a more fine-grained formal basis for correct middleware con-
struction and configuration for each application is needed.

Formal models have been used to uncover high-level design
flaws early in system development. However, these models of-
ten are not adequately extended and refined throughout the en-
tire development lifecycle. For example, decisions regarding the
deployment of application components or the choice of mid-
dleware mechanisms are not reflected in the high-level model.
This may result in subtle safety and timing errors being intro-
duced by unexpected interference between computations, partic-
ularly in the face of alternative middleware concurrency strate-
gies. Therefore, a more foundational set of formal models is
needed to be able to uncover such errors.

In this research, we are developing formal models of lower-
level middleware building blocks that are fundamental to a vari-
ety of kinds of middleware. These lower-level models can then
be composed with higher-level formal models to provide a more
complete model of a system. Our ultimate goal is that these com-
posed models then can be validated for correctness, with high
fidelity to the system itself, using model checking techniques.
Meeting this goal at a realistic scale will require significant fur-
ther work, to which the research described in this paper con-
tributes. Specifically, our approach assists in composing correct
combinations of middleware mechanisms, and configuring those
mechanisms for each specific application. Our approach has the
following major impacts: (1) it adds rigor to the model-based
approaches to middleware development currently being pursued
by the systems research community; (2) it provides high fidelity
composable models of foundational middleware building blocks,
to the formal modeling community.

Approach: Our approach hinges on the idea that interference
occurs when the activities of multiple components in a sys-
tem affect each other in ways that may produce adverse con-
sequences for the system. The notion of interference is already
well-known in the field of programming languages, where an in-
terference graph over program variables whose live-ranges over-
lap [3] is used by compilers for register allocation, to minimize
the total number of registers needed.

In this research, we extend the notion of interference to ad-
dress concurrency and timing issues crucial to real-time sys-
tems. Just as interference graphs are used to analyze interfer-
ence between variables in programming languages, we use for-
mal models to analyze how interference between computations
in real-time embedded systems impacts the timing behavior of
these computations. Specifically, in this research, we examine
how different forms of interference produced by different mid-
dleware mechanisms can be modeled and analyzed formally.

Formalization: We formalize our definition of interference
in real-time embedded systems as follows. Let � �� �������
	����������
��� where ����� , denote a set of concurrently
running computations in an application. Let � be the set of
available resources, a subset of which is used by each of the
computations in � . Note that these resources may be ac-
quired and released repeatedly by computations over a period
of time. Let � represent a continuous time domain over the set
of positive real numbers. Let ���������! #"%$ be a func-
tion that defines the resource usage of a computation over time.
Note that �'&(�
)*�,+*-/.0� , &(�
)213�4�,+516��- . Two computations
�
) and �87 ( 9��;:=<��>� and 9@?��: ) interfere with each other
if �'&(�
)*�,+*-BAC�'&(�D7E�,+*-F?�HG . That is, if two computations need
the same resource at the same time, then there is interference
between them.
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Models: This definition of interference guides our selection of
models for analysis of timing and concurrency. In general, we
use model checking to ensure soundness. Due to the potential
size of the state spaces that need to be checked, we are cur-
rently pursuing several optimizations: (1) building highly mod-
ular models, by sub-dividing them into fine-grain composable
automata; (2) migrating our models from static model checkers
to model checkers that allow automata to be added to a model,
or removed from it, dynamically; and (3) adopting a hybrid
approach in which parts of the analysis are provided by other
techniques thus reducing the state space that must be explored
through model checking.

The rest of this paper is structured as follows. Section 2
presents our solution approach. Section 3 gives examples of how
interference may be caused by different middleware concurrency
and communication strategies, and in turn affect system safety
and liveness properties. For each example, we describe how
safety and liveness can be analyzed using composable formal
models. Section 4 describes related work and Section 5 offers
concluding remarks and summarizes future work.

2 Formal Modeling Approach

Our approach addresses the following challenges:

1. Middleware should provide common abstractions that can
be re-used across different applications.

2. It should then be possible to make fine-grained modifica-
tions or select appropriate configurations to tailor the mid-
dleware to the requirements of each specific application.

3. The middleware should allow flexible integration of mech-
anisms to resolve interference between middleware and/or
application components.

4. The application developer should be able to validate the
correctness of the customized middleware in the context of
the application, both formally and rigorously.

These challenges can be resolved by taking a principled and
formal model-driven approach to middleware development, us-
ing composable models of common middleware building blocks.
We contend that the activities of modeling and engineering
should be done in an integrated manner rather than as disparate
activities. The insights obtained from modeling should be made
available and used while making engineering decisions and vice-
versa, thus producing the following benefits:

� More complete and detailed models of systems formed by
composing application and infrastructure models can make
the overall model more faithful to the actual system.

� Safety and liveness properties can be verified automatically.
� Formal models offer more rigorous documentation of mid-

dleware engineering expertise currently represented less
formally, e.g., as patterns [4].

� Formal approaches to correct construction of fine-grain
middleware elements enables future work on tools for cor-
rect construction of entire systems.

High fidelity modeling of DRE middleware: A crucial chal-
lenge is to determine the appropriate level of abstraction at
which to model system software. To answer this question, one
must look at the kinds of abstractions used in state-of-the art sys-
tem implementation. For example, distribution middleware such
as CORBA [5] object request brokers (ORBs) provides a level
of abstraction that is needed for portability and reusability and
hence makes an appealing candidate for formal modeling.

Since state-of-the-art distribution middleware implementa-
tions expose sets of configuration options used to tailor the mid-
dleware to particular applications, modeling the combinations of
configuration options [6] is a useful and necessary step toward
model-driven construction of DRE systems. We contend, how-
ever, that to evaluate systemic issues such as safety and liveness,
which are crucial to many DRE systems, fine-grained models of
lower-level middleware building blocks are needed to analyze
crucial details related to concurrency and timing properties.

Results of our previous experience with system software con-
struction indicate the efficacy of such a fine-grained approach.
In that work we built a special-purpose ORB called nORB [7],
with support for real time operation dispatching in the context of
memory constrained networked embedded systems. We took a
fine-grained bottom-up approach to the development of nORB,
starting with lower level elements of the ACE [1] framework:
Reactor, Acceptor, Connector, CDR Stream, etc. Along with
taking a fine-grained approach to building nORB, we used the
application itself as a guide for making tradeoffs (e.g., between
feature richness and footprint). For example, we restricted the
supported sets of data types and message formats to those re-
quired by the target application. That work has given us insights
into application-driven construction and customization of DRE
middleware for this and other domains, allowing us to define
composable models with a high degree of fidelity to how DRE
middleware is built in practice.

Tools and formalisms for modeling: We use timed au-
tomata [8] to model fine-grained DRE middleware mechanisms.
We use a model-checking [9] approach to verify safety and live-
ness properties. To illustrate the kinds of fine-grained models

?upcall(caller)
t:=0

t==processingtime
caller!upcall_return()

Figure 1. Simplified Event Handler Model

used in our approach, Figures 1 and 2 show simplified formal
models developed in the UPPAAL [10] model checker, for two
middleware mechanisms: an event handler and a reactor, respec-
tively. An event handler receives a system event through invoca-
tion of one of its methods, processes the event, and the method
call then returns. A reactor is an event dispatching mechanism
used in distributed systems to deliver events arriving from mul-
tiple sources to event handlers running in one or more threads.
For example, reactors can be used in ORBs to demultiplex and
dispatch incoming method invocation requests and replies from
sockets connected to peer ORBs. Event handlers (e.g., request
and reply handlers) are registered with each reactor. The reactor
uses a synchronous event demultiplexer (e.g., the UNIX select
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system call), to wait for messages to arrive from one or more
ORBs. When a message arrives, the synchronous event demulti-
plexer notifies the reactor, which then dispatches the appropriate
event handler based on the event source.

Idle

WaitOnDemultiplexor

DispatchingUpcall

WaitForUpcallReturn

?handle_events(caller)

?events_ready()

ready_handle_set_size > 0
eh!upcall(self)

?upcall_return()

caller!handle_events_return()

Figure 2. Simplified Reactor Model

3 Illustrative Examples

To illustrate how timed automata models can be used to an-
alyze safety and liveness properties in practice, we now con-
sider four simple but representative example scenarios. In each
of these scenarios, we vary the semantics of the reactor and event
handler models to illustrate interference for different middleware
policy and mechanism choices, and to show how in each case the
particular form of interference can be analyzed through model
checking.

Example 1 – blocking in a single reactor: In real-time em-
bedded systems, safety properties can involve timing constraints
such as receiving the result of a method invocation before a rela-
tive deadline. In this example, we consider a case where system
timing is affected by interference between nominally indepen-
dent call sequences, when they must contend for resources such
as CPU cycles. Figure 3 shows two call sequences in which
Client1 and Client2 invoke methods and receive replies from
event handlers EH1 and EH2 respectively – Client1 and Client2
have relative deadlines at 6 and 8 msec after sending the invoca-
tion request message, by which they must receive their respec-
tive reply messages.

Figure 3. Timeline for Example 1

The extent to which the event handlers contend for shared re-
sources impacts whether or not a deadline miss can occur. Using
our models we can determine (1) whether any deadline misses
can occur due to interference between the two call sequences,
and (2) if a deadline miss is possible under what conditions it
can occur. For example, if both EH1 and EH2 are deployed on
the same single-threaded reactor, as shown in Figure 4, then they
can only handle events sequentially. If Client1 and Client2 send

messages to EH1 and EH2 respectively at roughly the same time,
then whichever event handler is dispatched first will delay the
other event handler, potentially resulting in a missed deadline.

Figure 4. Example 1 Deployment

Figure 5 shows the system model for this example composed
in UPPAAL from our fine-grained models. Several features of
the model for Reactor1 are worth noting. First, the Reactor1 au-
tomaton contains separate transition branches for dispatching to
EH1 and EH2. Second, the Reactor1 automaton communicates
with the EH1 and EH2 automata via UPPAAL rendezvous an-
notations, to model calls from the reactor to the event handlers.
Third, state variables are used to model a single thread of execu-
tion by making the dispatching of event handler calls sequential.

We can then use the composed model to analyze whether there
are any deadline misses, by checking temporal logic expressions
such as “E

�
Client1.DeadlineMiss or Client2.DeadlineMiss”

(whether there is any state in the state space where the Client1
automaton or the Client2 automaton is in its DeadlineMiss state).
If this property is true, then the model checker can generate a
trace of the call sequence that leads to the property becoming
true. For example, Figure 6 depicts a trace generated by UP-
PAAL that shows a call sequence leading to a deadline miss for
Client1. The call sequence shows that the single thread in the
reactor first processes the request from Client2 and makes the
upcall to EH2. This introduces a blocking delay in the process-
ing of the request from Client1. Using UPPAAL we also veri-
fied that there is no missed deadline if only one of Client1 and
Client2 is hosted in the reactor. This shows that the combination
of the two call sequences in the same thread is what causes a
missed deadline.

Example 2 – multiple reactors, WaitOnReactor strategy: In
addition to analyzing interference arising from direct contention
between handlers for a resource, it is important to evaluate
more complex interference scenarios involving chains of inter-
dependent handlers. For example, consider a scenario where
EH1 and EH2 are deployed on different single-threaded reac-
tors, and a third event handler, EH3, is deployed on the same
reactor as EH1 as shown in Figure 7.

In this example, we show how timing properties of the system
are affected not only by interfering call sequences, but also the
type of strategies chosen to wait for replies from remote calls in
a distributed system. For example, if EH1 depends on EH2 for
part of its processing, then EH1 would send a message to EH2
on Server 2, and wait for a reply from EH2 before completing
its processing and sending a reply back to the client that sent
it a message. For purpose of illustration, consider a scenario
in which Client 1 invokes EH1 and Client 2 invokes EH3 with
relative deadlines of 8 and 7 msec, respectively.

Figure 8 shows the two call sequences for this scenario, one of
which goes through a single reactor and the other going through
two reactors. Each of these reactors has a single thread. When
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Figure 5. Example 1 - Composed System Model in UPPAAL
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Figure 6. Example 1 Trace - Missed Deadline

Figure 7. Deployment for Examples 2 and 3

EH1 makes a remote call to EH2, it waits on the reactor (Re-
actor1) for the reply. While waiting for the reply, there could
be interleaving requests that get processed by the reactor. This
causes blocking delays in the processing of the reply that EH1 is
waiting on. In this example, we can use Client2 to introduce an
interleaving call to EH3, while EH1 is waiting for its reply from
EH2.

Figure 8. Timeline for Example 2

The composed model in UPPAAL for this example is very
similar to the one shown in Figure 5, except for the modified
models of Reactor1 shown in Figure 9 and EH1 shown in Fig-
ure 10. In this example, the reactor waits for either the reply to
come back from EH2, or for another request message for EH1
or EH3 to arrive from a client, and dispatches whichever event
arrives first: meanwhile, EH1 waits on the reactor until the pend-
ing reply comes back from EH2 and is delivered to EH1. Be-
cause of the synchronous nature of the two-way (request-reply)
calls made between Client 1, EH1 and EH2, and between Client
2 and EH3, if the request from Client 2 to EH3 arrives just after
the call from the reactor to EH3, then EH3 must finish and send
the reply back to Client 2 before the reactor can return its thread

of execution to EH1. Even if the reply from EH2 arrived just
after the call to EH3 was initiated, its handling is blocked until
EH3 completes.

Checking this model for deadline misses as in Example 1
yields a trace with a call sequence where Client 2 sends a request
to EH3 that arrives and is dispatched to EH3 just after the call
from EH1 to EH2 is made, leading to a system state in which
Client 1 misses its deadline. The trace confirms that the inter-
leaving call sequence from Client2 to EH3 can cause a crucial
blocking delay when EH1 is waiting for the reply from EH2.

conn_c1_s1==1

eh1_upcall!

conn_c2_s3==1

eh3_upcall!

conn_s1_s2_reply==1

reply_eh_upcall!

eh1_upcall_return?
handle_events_done:=1

eh3_upcall_return?
handle_events_done:=1

reply_eh_upcall_return?
handle_events_done:=1

conn_c1_s1==0 and
conn_s1_s2_reply==0 and
conn_c2_s3==0 and
handle_events_done==1

mod_reactor1_handle_events_return!
reactor1_notified:=0

notify_reactor1?
reactor1_notified:=1

mod_reactor1_handle_events?
handle_events_done:=0

Figure 9. Reactor Model for Example 2

time<=2

time<=1

eh1_upcall?
time:=0,
conn_c1_s1:=0

to_conn_s1_s2!

time==1
to_conn_c1_s1_reply!

eh1_upcall_return!

mod_reactor1_handle_events!

mod_reactor1_handle_events_return?

got_reply==1
time:=0

got_reply==0

Figure 10. Example 2 - EH1 Waits on Reactor

Example 3 – multiple reactors, WaitOnConnection strategy:
The problem raised in Example 2 by the WaitOnReactor strat-
egy, in which nesting of calls by the reactor leads to a dead-
line miss in the preempted call chain, can be alleviated in part
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through use of an alternative strategy for waiting for the reply
from the remote event handler, called WaitOnConnection. The
composed model is similar to Figure 5, except that as Figure 11
shows, the EH1 automaton models the fact that when EH1 sends
a remote request to EH2 it waits directly on the connection for
the reply, instead of waiting on the reactor as in Example 2.

time<=2

time<=1

eh1_upcall?
time:=0,
conn_c1_s1:=0

to_conn_s1_s2!

time:=0

from_conn_s1_s2_reply?

time==1
to_conn_c1_s1_reply!

eh1_upcall_return!

Figure 11. Example 3 - EH1 Waits on Connection

However, this approach in turn introduces further concurrency
issues that must be evaluated, which our approach does through
model checking. Consider for example another scenario based
on the same deployment as in Example 2 (shown in Figure 7),
but in which a call chain spans all three handlers, with EH1 de-
pending on EH2 and EH2 depending on EH3. Because of the
interference between the WaitOnConnection reply wait strategy,
the topology of the event handler call graph and the use of a
single thread in the reactor, deadlock can occur when the single
thread in Reactor1 is already in an upcall when there is an incom-
ing request from EH2 to EH3. Figure 12 shows the timed call
sequence. The deadline for Client1 at 15msec is missed when
no progress can be made by the system after the request is sent
from EH2 to EH3.

Figure 12. Timeline for Example 3

In real-time systems where each handler has a particular dead-
line, checking for a missed deadline as in the previous examples
will reveal a deadlock indirectly, when the first deadline after the
deadlock is reached passes without its completion criterion be-
ing satisfied. However, our approach also generalizes to systems
where a deadlock will simply stop system progress, and will not
produce an explicit failure such as a missed deadline. In those
cases, checking the temporal logic query “A[] not deadlock” in
the UPPAAL verifier will reveal any deadlock in the system.

Example 4 – multiple reactors, multiple threads: The sce-
nario in Example 3 can be resolved by adding reactor threads,
as illustrated in Figure 13. However, adding more threads does

Figure 13. Deployment for Example 4

not guarantee deadlock freedom in general, since more than one

client might call EH1 concurrently, again leading to deadlock as
illustrated in Figure 14: any � threads in Reactor1 can be ob-
tained by � distinct concurrent calls to EH1, leaving no threads
to handle the call to EH3 and deadlocking each call chain.

Figure 14. Timeline for Example 4

A more detailed analysis of this particular problem, and alter-
native protocols to avoid it, have been developed in complemen-
tary research [11], in which we examine alternative approaches
to reduce the amount of analysis that must be performed through
model checking. In that research, we have developed thread al-
location protocols for deadlock avoidance by using the informa-
tion about the call graph, e.g., the depth at each position of each
nested call chain.

avail_threads_reactor1 >= c1_s1_upcall_height and
b_conn_c1_s1[id] == 1

eh1_upcall[id]!
avail_threads_reactor1--,
b_conn_c1_s1[id]:=0

avail_threads_reactor1>=s2_s3_upcall_height and
b_conn_s2_s3[id] == 1

eh3_upcall[id]!
avail_threads_reactor1--,
b_conn_s2_s3[id]:=0

eh1_upcall_return[id]?
avail_threads_reactor1++

eh3_upcall_return[id]?
avail_threads_reactor1++

something_ready_reactor1[id]?

something_ready_reactor1[id]?

avail_threads_reactor1==0 or
(b_conn_c1_s1[id] == 0 and 
 b_conn_s2_s3[id] == 0) or
(b_conn_c1_s1[id] == 1 and 
 avail_threads_reactor1<c1_s1_upcall_height) or
(b_conn_s2_s3[id] == 1 and 
avail_threads_reactor1<s2_s3_upcall_height)

eh1_upcall_return[id]?
avail_threads_reactor1++

eh3_upcall_return[id]?
avail_threads_reactor1++

Figure 15. BASIC-P Reactor Model for Example 4

Figure 15 shows a reactor model that implements the BASIC-
P protocol from that work [11]. We use a parameterized reactor
model in which we can define the threadpool size. Whenever a
request comes in to the reactor, the protocol is used to evaluate
whether or not it is safe to allocate a thread to process the incom-
ing request, based on information about the call graph previously
provided to the protocol.

Using the complete model built using the multithreaded re-
actor model in Figure 15, we verified three things: (1) there
is no deadlock with a single client and �>" threads in Reac-
tor1; (2) without a deadlock avoidance protocol there is a dead-
lock when 2 clients try to make the same call sequence even if
there are 2 threads in Reactor1; (3) when we then introduce the
BASIC-P protocol, we prevent deadlock but introduce blocking
delays which in turn need to be modeled to check for deadline
misses. For example, with the BASIC-P protocol, Client2 could
be blocked because Reactor1 reserves 2 threads for the call se-
quence initiated by Client1 to be able to complete.
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Summary: The examples presented in this section motivate
the need for detailed modeling of low-level middleware mecha-
nisms, and evaluation of those models through model checking
tools. Pursuing alternative formal techniques like the deadlock
avoidance protocols described for Example 4 appears promising
to reduce the state space that must be explored by model check-
ing, and yet each such approach is likely to introduce further
nuances that must be modeled. Therefore, these examples sup-
port our contention made in Section 2 that modeling and analysis
should be done as an integral part of the system design and en-
gineering process. As we note in Section 5, significant further
work is needed to make this vision a reality in the DRE middle-
ware domain, but the work presented in this paper motivates the
suitability and viability of that approach.

4 Related Work

In this section we describe related work in four main ar-
eas: model-integrated computing, model-driven middleware,
customizable middleware, and fine-grain middleware building
blocks. Our work presented in this paper complements and ex-
tends the related work in each of these areas.

Model-integrated computing: The Generic Modeling Envi-
ronment [12] is a configurable toolkit for domain-specific mod-
eling, which has been applied to middleware. Ptolemy II [13]
is a modeling environment for embedded systems that provides
a rich set of computation models. Our research complements
these efforts, by providing fine-grained middleware mechanism
models much as Giotto models for real-time embedded control
systems [14] were integrated within Ptolemy II.

Model-driven middleware: CADENA [15] is an integrated
GUI environment for building and modeling CORBA Compo-
nent Model (CCM) [16] systems. The CoSMIC [17] toolset sup-
ports integrated model-driven component assembly, deployment
and configuration. The low-level formal models we are devel-
oping, combined with the middleware mechanisms our models
represent, can be integrated with these toolsets to provide fine-
grained model checking and software synthesis capabilities over
a common and reusable software base.

Customizable middleware: MicroQoSCORBA [18] reduces
middleware footprint by generating customized instantiations of
middleware for deeply embedded systems. Ubiquitous CORBA
projects such as the CORBA specialization [19] of the minimal
Universally Interoperable Core (UIC) [20] focus on metapro-
gramming of middleware. Zen [21] is a RT-Java [22] based real-
time ORB and is also a highly customizable. Our work supple-
ments these efforts with formal models of fine grained mecha-
nisms that can be used, e.g., in code generation.

Fine-grain middleware building blocks: Our work so far has
focused on mechanisms in ACE. Our techniques are applicable
to other environments where abstractions like the Selectors in
Java NIO [23] are similar to the reactor and event handler models
we have already developed. Moreover, our approach also applies
to other less similar environments, e.g., to model and analyze the
fundamental building blocks provided by TinyOS [24], which
we plan to pursue as future work.

5 Conclusions and Future Work

Modeling and verification can play important roles in uncov-
ering design errors from a very early stage in the development
of distributed real-time systems. There is significant ongoing
research that applies model-driven techniques to develop high-
quality middleware. While current approaches for modeling
middleware focus largely on easing the task of assembling, de-
ploying and configuring middleware and middleware-based ap-
plications, a more formal basis for correct middleware construc-
tion and configuration in the context of individual applications
is needed. Our approach, presented in Section 2, is designed to
address that need.

The examples presented in Section 3 illustrate a variety of
ways in which evaluating safety and liveness properties can be
complicated by different combinations of middleware mecha-
nisms. In practice, the range of complicating factors is much
larger than even these examples show, which motivates both
our development of reusable mechanism-level models and our
composition-based model-checking approach to analysis of en-
tire systems. For example, different applications will naturally
exhibit (1) different dependency topologies between event han-
dlers; (2) various strategies for concurrency, scheduling, event
demultiplexing, and other crucial mechanisms; (3) alternative
strategies for handlers relinquishing control, such as the Wait-
OnConnection and WaitOnReactor; and (4) multiple additional
on-line protocols, e.g., for deadlock avoidance or security autho-
rization. Furthermore, the constraints each application places on
timing and other properties will alter the criteria by which sys-
tem safety and liveness are evaluated.

The goal of our research is to address the difficulty of evaluat-
ing such a complex middleware environment, while preserving
both rigor in analysis and tractability in applying our approach to
real world systems. To meet that goal our future work will be to
develop a growing set of robust, modular, and composable mod-
els of middleware building blocks, and integrating those models
within model-integrated computing toolsets such as those de-
scribed in Section 4. We will also continue our work on for-
mally verified efficient protocols [11], along with the other opti-
mizations described in Section 2 to reduce the burden of model
checking.

There are a variety of model-checking tools that use different
notations and formalisms. We have used the IF Toolset [25] and
UPPAAL [10] to develop, simulate and verify timed automata
models. We prototyped the models presented in Section 3 us-
ing the UPPAAL model checker for the purpose of illustrating
a range of middleware models appropriate for different scenar-
ios. However, in working toward our goal to develop a robust set
of models that can model dynamic actions that are common in
real-world middleware, the IF Toolset seems to fit our modeling
requirements better than UPPAAL. UPPAAL uses a rendezvous
model for communication between automata. The IF Toolset
supports (1) dynamic composition capabilities that are useful for
modeling run-time actions of the middleware like creating new
event handlers and registering them with a reactor; (2) an asyn-
chronous form of communication between automata that is well
suited to modeling distributed middleware; (3) messages with
parameters; (4) abstract data types; and (5) embedded C/C++
code integrated with the model.
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