Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-98-09

1998-01-01

The Playground Mediator: Visual Tool for Configuring and
Debugging Distributed Applications

T. Paul McCartney

The Mediator is a visual configuration tool for use with The Programmers' Playground
distributed programming environment. With the Mediator, one can interactively launch
distributed application modules, configured communication among the modules, observe
communication patterns, interactively control module communication, kill running modules, and
receive imported applications from a separate World Wide Web interface. This manual
describes how to use the Mediator both as a stand-alone configuration tool and as a visual
interface to the Playground Application Management System.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

McCartney, T. Paul, "The Playground Mediator: Visual Tool for Configuring and Debugging Distributed
Applications" Report Number: WUCS-98-09 (1998). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/464

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/464?utm_source=openscholarship.wustl.edu%2Fcse_research%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

The Playground Mediator: Visual Tool for Configuring
and Debugging Distributed Applications

T. Paul McCartney

WUCS5-98-09

March 1998

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Mediator
User Manual

T. Paul McCartney

Revised for Mediator v1.3.2
March 1998

Copyright (c¢) 1993-1998 by
Distributed Programming Environments Group

Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899

Abstract

The Mediator is a visual configuration tool for use with The Programmers’ Playground distributed
programming environment. With the Mediator, one can interactively launch distributed application
modules, configure communication among the modules, observe communication patterns, interactively
control module communication, kill running modules, and receive imported applications from a separate
World Wide Web interface. This manual describes how to use the Mediator both as a stand-alone
configuration tool and as a visual interface to the Playground Application Management System,

Table of Contents

1 Introduction sresnssensesasanenssassasnsnssenessesnanses BTSSR |
2 Visnal Configurationeersee e e ner e aesa S RO R E RS AR RO ES rsssenensebernsaes S
2.1 MOGQUIES ..ovitiiviiieisceecces ettt st sbs s st e ea et er et se bt et a ettt ba st et s s e et ot et sa s b s 2

How modules ppear in the MEialOr ..o eeeeeeceeeveeeeeeesereae e eetres e e srarsssssssss v ineeeneresesenenenas 3

Selecting and MOVING MOGUIES .oovceeeeeeeceeeseeereeeee e eeeeeteeee e eves s ssevsvsvsomsrar s sereesses e st as s s rarasean e 3

KHIING MOAUIES ...ttt s et s e e m e et r et bsbe b ra s e ve e oeranearen 4

REMOVIRG MOGIILS covveisiriitie et s st sestr st e st st s1b et ee b e e et ee s easesesae e ssms s s senens 4

2,2 CONNECHONS itvvsirrerreeiuesesiereriarassiessesassesnsasessasesessssssssessisnssrassrsstasasessassanesesssssnsssss sesssosessstssssane 4
MAKIRE CORRECIIONScooveneeeetierienenteiatecesss sttt see e eeseeeesessasnsnss s sasae s ssas s st ot omess s ant st sssnseanaens 4

DEleling CONRECIIONS ...coveriireeeeesesseeeess e s seean st s st e s s teese st e eanmnnnrenmeon erevmeransanns 5

2.3 CONMIGUIAON VIEW .ouecerrcieririiiieresrsseiessssesssessesbosenssesssmessnsessssssssesanssnsssssnnsssanssessassssssnnssssssss sen 5

3 Using the Application Management Systemceoeeveerenns eonnseansseerssrrsasensarrrassarens sasscsssanssannsasssnassens O
3.1 Using the Broker and LAUNCREI(S) v..ccocvciieriiesieiriiierireeesssistsssresseresmsesssssssessssssssessssasssessssssesens 6

3.2 Mediator-Broker COMMUNICAION ..cucvurvieeriernreresisieissasisicissssssinersassssresserasssssssssssssssssssassssessns 6
LAURCHING @ IMOAUIE oottt st e e s e b st e e me s st s s e s bnans 6

Customizing module Iaunch PrOPErfiEs .. ettt eeee e e se e r s nr s s ss s nsarnas e mmsnen 7

Connecting & disconnecting from {He BIOKEEviveomsssnmssessssessssssessssssssssssssssosssssesssessssnsvonnse 8

Launching and importing applications from the Web ... ovriceseeiiessessesssvevnssrsrssssinens 8

3.3 Saving & Restoring APPHCAHONS ...cccvecerrireersiernserrrrneresrssessieseasssssssesssseesssssssnsansesenssssesssas 8
Clearing the Lot MORIIOTccccciimrnr s ssrsss s eestess e ssss s ve st st easssassansa st sasssssasabasasiens 8

Saving an ApplCAtion SPecifiCalion ...t s sres s s srasr s e 8

4 Probes ..o . vessreris e et ne eSS sa st e et STt e bbb s b n et senu R s d

ARUITQIION ciroiiis ettt e v et e ces s ensas st v snsats sasnase ses st bes e sabanas sa st s bt sates srtsassenssa et emtns
Flow Control

4.1 Probe Dumper Module Interface

5 Command Line Argumentsccveeeeesees srbeserssnes s sbe b b r e na st re . R i |
6 Acknowledgmentsccerermreenrens . eeereseeesnermeseennesssreeesnsnaesen 12

1 Introduction

The Programmers’ Playground is a software library and run-time system for creating distributed
multimedia applications {1], [2]. A distributed application consists of a set of communicating mod-
ules (i.e., processes), written as C++ programs, using special data types from the Playground
library. Variables declared using these data types can be published, making information available
to external modules. The communication structure among the modules of a Playground application
is defined by a set of logical connections among published variables of the modules. Communica-
tion among modules of a distributed system occurs implicitly; when a published variable is mod:-
fied, the new value of the variable is automatically sent to its connected variables. In this way, each
module can be created independently of the modules with which it communicates,

See the Playground Veneer Reference manual [2] for more information on the Playground compo-
nent model.

This manual describes how to use a visual configuration tool called the Mediator. The Mediator is
primarily an application design tool that enables Playground distributed applications to be con-
structed using a visual interface. With the Mediator, one can interactively launch the modules of a
Playground distributed application, configure the communication among the modules dynamically
at runtime, and kill ronning modules.

The remainder of this manual is organized as follows. Section 2 describes the Mediator's basic
operations such as establishing a communication configuration. This section focuses mainly on the
Mediator as a stand-alone visual configuration tool. Section 3 discusses how to use the Mediator in
conjunction with the Playground Application Management System. Application Management
enables interactive launching of applications, launching and importing applications through a
World Wide Web interface, and making completed applications available to others on the World
Wide Web. Secction 4 discusses probes, 2 distributed debugging mechanism. Section 5 lists and
describes the Mediator’s supported command line arguments.

2 Visual Configuration

The Mediator provides a graphical user interface for viewing and configuring the modules of a
Playground distributed application. Figure 1 shows the Mediator with two active modules and a
single bidirectional connection.

PR Mediatar

File View Module Broker

[2iModules: _
EUPHORIA 3
bouncer
curserServer
encapsulator
orbiter
rvg_counter
rvg_dispatch
g sender
rvg_spatial — Module Catalog
rvg_temporal
sap_conftrol
sap_display
380 _SERSOr

Probes:
Befault £

Qbserver — Probe Cataleg
Interceptor

=i =) & _|

4]

i
Configuration Area

Figure 1: Mediator window,

The Mediator is started with the following shell command. See Section 5 for a list of supported
command line arguments.

PGmediator fon Windows: start PGmediator)

21 Modules

In the Mediator, active Playground modules are represented visvally as boxes within the Configura-
tion Area (see Pignre 1). This visual representation includes a “title bar” containing the module
name and a list of published variables. For example, Figure 2 shows a module named “Bouncer”
with three published variables.

Title Bar

Published
Variables

Figure 2: Module.

Mediator User Manual 2.1 Modules

Variables are colored according to their data type. Table 1 lists the colors associated with each
Playground data type.

Table 1: Data type colors.

Data Type Color
PGint Magenta
PGreal Cornflower Blue
PGbool Yellow
PGsiring Salmon
PGmemeoryBlock Tan
PGtuple Green
PGarray Orange
PGmapping Cyan
PGlist Sky Blue

How modules appear in the Mediator

Obviously, you would not want to see every running Playground module in the world. Instead, the
Mediator views only certain modules on which you are currently working. A running module can
be incorporated into the Mediator’s visual interface in a number of ways:

¢« The madule is started from the shell, using the Mediator’s . pginitrc file [2].
+ The module is started from the Mediator, interactively from the Module Catalog.

* The module is started from the Mediator, by loading a saved configuration (see
Section 3.3).

¢ The module is already running, and is imported into the Mediator using the
Application Management System (see Section 3.2).

As described in the Playground Veneer manual, a parent module is a module that receives informa-
tion about child modules. The Mediator is a parent module, which visualizes information about its
child modules. When the Mediator is started, it writes its communication ID to a special file called
“.pginitrc” When another module is started in the shell (i.e., by simply executing the mod-
ule's binary), the module reads the ID and uses it to connect to the Mediator.

Starting modules with the Application Management System frees users from the task of starting
each module from the shell. All but the first option above require the use of the Application Man-
agement System. Assuming that you have Broker and Launcher modules running (see Section 3.1),
the Mediator’s Module Catalog (Figure 1) contains a list of modules that you can start through the
Application Management System. A module can be launched by dragging its name from the Mod-
ule Catalog to the Configuration Area.

Selecting and moving modules

A module can be selected by clicking on its title bar. Selected modules are shown in inverse colors.
Clicking in the background of the configuration area deselects all currently selected modules.

A moduie can be moved by dragging its title bar,

Mediaror User Manual 2.2 Connections

Killing modules

Selected modules can be killed by pressing the backspace or delete key or by choosing the Kill
Selected item from the Module menu. This removes the modules from the Mediator and sends a
Playground kill request to each module. Note that the implementor of a Playground module can
optionally have the module handle a kill request, refusing to actually terminate.

Removing modules

Selected modules can be removed from the Mediator, without being killed, by choosing Remove
from View from the Module menu.

2.2 Connections

The Mediator visualizes logical connections among visualized modules. Both connections initiated
by the user and by an external source (e.g., through a Veneer API connection request) are shown.
Connections to implicit Playground variables (e.2., a module’s “presentation variable™ and to mod-
ules that do not appear in the Mediator are not shown.

Making connections
Connections are formed among mocdules by dragging from “source” published variables to “desti-

nation” published variables. The following buttons are used to control connection properties:
* Left mouse button - form a unidirectional connection.
* Middle mouse button - form a bidirectional connection.
* Shift key - connection does NOT have the “send on connect” property [2].

By default, all connections are made with the “send on connect” property unless the Shift key is
held down.

As the user specifies a connection, the Mediator performs permission and type checking to deter-
mine if the variables are compatible, When the user selects a variable as a source, the Mediator
checks if the variable is a valid source (i.c., it must have “read” permission). If so, the variable is
highlighted and a proposed connection arrow appears, as in Figure 3.

Figure 3: Dragging a connection with the mouse.

As the connection arrow is dragged over variables of other modules, each variable is highlighted if
and only if it is a valid destination of the connection (i.e., the types and permissions of the source
and destination are compatible). Releasing the mouse over a compatible destination variable
causes a connection request to be sent to the endpoint modules. Pending connections are shown as
dashed airows until the connection has been approved by each module; successful connections are
shown as solid arrows (see Figure 1).

Mediator User Manual 2.3 Configuration View

Deleting connections

A connection can be deleted by clicking on it with the right mouse button. Doing this causes the
connection to be colored red and a disconnect request to be sent to the endpoint modules. Later, the
connection is actually removed,

2.3 Configuration View

The Mediator’s view of modules and connections can be zoomed in/out and panned.

* Choosing Zoom In or Zoom Out from the View menu increases/decreases
magnification by 10%.

+ Shortcut to zoom infont menu items: pressing “=" or ““” on the keyboard.

* Choosing Super Zoom In or Super Zoom Out from the View menu increases/
decreases magnification by 50%.

+ Shortcut to super zoom infout menu items: pressing “+” or “_” on the keyboard.
P P g

The visible configuration area can be panned using its right and bottom scroll bars.

3 Using the Application Management System

The Application Management System [5] is a separate tool provided with Playground that is used
to launch the modules of a distributed application and to (optionally) make the application available
to others on the World Wide Web. This chapter describes the basics of using the Application Man-
agement System as it pertains to the Mediator. More detailed nformation can be found in the
Application Management User Guide [5].

3.1 Using the Broker and Launcher(s)

The Application Management System’s Broker and Launcher are used in launching Playground
modules. The job of the Launcher is to launch modules on a particular computer or to delegate
module launching to a “sublauncher” The role of the Broker is to decide which launchers to use in
launching an application, to configure communication among launched modules (i.e., when NOT
using the Mediator), and to communicate with other system components such as the Liaison [5],
Application Daemon {51, and the Mediator.

K\\L In order to use the Application Management Systemn, you must start at least one Launcher locally
and a Broker. See the Application Management User Guide [5] for instructions and options for
starting these components.

3.2 Mediator-Broker Communication

The Mediator connecis to the Broker in order to receive information about available modules, to
send module launch requests, and to receive active modules. If the communication between the
Mediator and the Broker is successful, entries should appear in the Mediator’s “Module Catalog”
table (see Figure 1). These entries represent available modules that can be launched by the Appli-
cation Management System. To add your modules to this list, see the portion of the Application
Management System manual describing how to add modules to a “Iaunch tree.”

Launching a module

A module launch can be specified in the Mediator by dragging a module entry from the Module
Catalog and placing it within the Configuration Area. This creates a placeholder for the module, as
shown in Figure 4.

Figare 4: Module placeholder, in “Launching” and "Conneeting” stages.

If successful, a module placeholder goes through two stages: “Launching,” when it is waiting for
the Broker to launch the module, and “Connecting,” when it is waiting for information about the
module’s variables and connections. After this process is complete, the placeholder is replaced by
a visualization of the module.

If the placeholder disappears before entering the “Connecting” stage, the Application Management
System was unable to launch the module and has returned an error. If the placeholder remains for

Mediator User Manual 3.2 Medliator-Broker Communication

an extended period in the “Launching” stage, there is probably a problem with the Application
Management System itseif.

Customizing module launch properties

A number of module launch properties can be specified both before and after a module is launched.
Holding down the control key when launching a module brings up a dialog box for specifying
these properties, as shown in Figure 5. Holding down the control key and clicking on the title bar
of an existing module that has been launched throngh the Mediator will also expose this dialog box.

R T

.....

Public Name: EUPHORIA.dpe.cswustl.edu

rLocation:
@ Anywhere O Local O Preferred
O Host: | |

Retry Type:

—Performance:

Optimize:
Flops: [_Auto | MIPS:[Auto | Mem:[Auto |

Command Line Arguments:
[=urd hitpfhwww cxwistl edoraul G Ten

Figure B: Module launch properties dialog,

The “location” section is used to specify a preference to the Broker concemning where to launch the
module. The “retry type” specifies how the Broker should retry a module launch, in the event of a
launch failure.

The “performance” section is used to specify preferences concerning the module’s performance
reqnirements. This information is used to decide onto which computer the module should be
launched. For example, one may specify that a module should be placed on a computer with good
FLOPS (floating peint operations) performance with a minimal load.

The “Command Line Arguments” section is used to specify command line arguments for modules
at launch time. For example, in EUPHORIA [3], specifying the “-ur]” or “-file” options are helpful
in creating an application specification that can be launched through the World Wide Web (sce
Section 3.3).

See the Application Management Systern manual for more information on these options.

Mediator User Manual 3.3 Saving & Restoring Applications

Connecling & disconnecting from the Broker

Under most circumstances, the Mediator and the Broker connect automatically. When the Media-
tor starts, it checks your ~/ . pgdir/Broker.Active file to get the communication ID of your
Broker, if one exists. You can manually disconnect and reconnect with the Broker by choosing Dis-
connect from Broker and Connect to Broker from the Broker menu. Disconnecting also has the
effect of deleting all pending module placeholders from the Mediator view.

Launching and importing applications from the Web

As described in the Application Management System manual, complete Playground applications
can be launched or imported through the World Wide Web using an applet called the Liaison.
These modules are automatically viewed in yow Mediator, provided that your Mediator is con-
nected to the same Broker that is being used by the Liaison.

3.3 Saving & Restoring Applications

It is possible to save a configured application by choosing Save... from the File menu. Choosing
Load... from the File menu allows you to later launch modules, and restore the module positions,
pan/zoom, and the connections among the modules.

Upon loading, modules may be launched, depending on how they were started in the saved config-
uration. If a module was started externally from the Mediator (e.g., from the shell), the Mediator
assumes that it will be started externally again before or after file loading. If a module was
launched from the Mediator, the Mediator will launch the module upon loading the configuration.

Externally launched modules are identified by their module name when they connect to the Media-
tor. If multiple modules have the same name, there can potentially be problems. Starting modules
throngh the Mediator is recommended.

In order to load a configuration in which modules will be automatically launched, the Mediator
should be connected to a Broker that has the modules available.

Clearing the load monitor

The *load monitor” waits for modules and published variables that were specified in a loaded file to
appear in the Mediator. Once these appear, the Mediator is able to request connections to be made
among the modules. If there is a problem or if you wish to terminate a load that is in progress,
choose Clear Load Monitor from the File menu.

Saving an Application Specification

The Application Daemon is a component of the Application Management System that is used to
make Playground applications available on the World Wide Web. In order to do this, an “applica-
tion specification™ is required. This can be generated by saving a configured application from the
Mediator using the filename new . spec. Each module in the application should have been siarted
through the Mediator (i.e., launching from the shell is not allowed).

Additionally, a join.spec file is also used by the Application Daemon for client/server applications.
See the Application Management System manual for how to generate this file.

4 Probes

To facilitate end-user debugging of Playground distributed applications, the Mediator provides a
mechanism known as a probe. A probe is an object that can be placed on a connection for the pur-
poses of monitoring and controlling its associated communication. With a probe, end-users can
observe when values are sent between modules and can slow down or control the rate that values
are delivered.

Two types of probes are currently supported by the Mediator: observer probes and interceptor
probes. An observer probe is passive and does not interfere with a connection’s communication.
An interceptor probe, as its name suggests, changes the communication structure between modules
so that it intercepts values that are sent. While this results in some degradation in performance,
interceptor probes give users the ability to interactively control the delivery of values between mod-
ules. An observer or interceptor probe is associated with a connection by dragging the appropriate
probe type from the probe catalog (Figure 1) onto a connection. A probe is shown graphically at
the midpoint of the connection as an “LED,” as shown in Figure 6.

Figure 6: A probe monitoring comnunication between modules.

Animation

When a value is sent across a connection and received at the probe, the probe blinks red (down-
stream communication) or green (upstream communication). Note that if values are constantly
being received, the probe will remain solid red or green. For interceptor probes, received values are
intercepted by the probe and are later forwarded out to the receiver module. Forwarding of a value
from a probe is shown by coloring the segment of the connection from the probe to the receiver
with the color red.

Flow Conirol

By default, an interceptor probe forwards values 1o the receiver module immediately. However, the
user may choose to block delivery or to change the delivery rate for debugging purposes. When
this occurs, the interceptor quenes received values for later delivery. From the probe’s pop-up
meny, choosing Suspend blocks the forwarding of values. Graphically, a suspended probe is
shown with an “X” over it. Choosing Set Delay sets the rate at which queuned items are delivered.

ﬁﬁ. Interceptor probes only queve a maximum of 100 values before ignoring delays or blockage.
In either of the suspended or blocked states, value delivery can be controlled interactively using the

left mouse button (see below). Values may be delivered one at a time or the entire queue of values
can be flushed, delivering all values.

Mediator User Manual 4.1 Probe Dumper Module Interface

4.1

The following buttons are used to control a probe:

* Left mouse bution - deliver the next value received (interceptor only).

¢ Left mouse butten, double click - deliver all values received (i.e., flush,
interceptor only).

* Middle mouse button - activates the pop-up menu for selecting various options.

* Right mouse button - delete the probe.

Probe Dumper Module Interface

The Mediator allows probe updates to be exported to an external module known as a probe dumper.
This feature is useful for creating external modules for debugging or visnalizing the data traffic of
an application. A module must implement the “probe dumper interface” (i.e., published variables
and behavior) that the Mediator expects in order to be used as a probe dumper (see below).

A module is designated as a probe dumper in the Mediator by selecting it and choosing Set Module
as Dumper from the Connectlon menu. All probes created afterwards will send copies of their
updates to the designated probe dumper module.

A sample probe dumper module called “PGprobeDumper” is included with the Playground distri-
bution. This module simply prints the values sent across each probe to standard output. The source
code for this module is provided in the “src/util” directory of the Playground Developer's Edition
distribution. This code can be easily modified for other purposes.

The following is a summary of how to create a custom probe dumper using the supplied example.
See the Playground Veneer Manual [2] for more information on how to implement modules.

+ Create a module including the PGpoint, ProbeDumperNew, and ProbeDumperTime
classes.

* Publish a write-only variable called “New Variable™ using the ProbeDumperNew
class.

* Medify or create a subclass of the ProbeDumperVariable class that has the same
published interface. This class will be used to receive the values that a single probe
observes along its connection. The class should implement the desired behavior for
reacting to these updates.

* Upon receipt of a new value in “New Variable,” create a variable using the
ProbeDumperVariable class (or class that implements the same interface). Seta
reactor for this object (i.e., set itself as its own reactor).

+ Call the “Comnect” method of “New Variable” to connect from the sender module
variable to the newly created ProbeDumperVariable.

* React to each change to each created ProbeDumperVariable.

.10 -

Mediator User Manual 5 Command Line Arguments

5 Command Line Arguments

Optional command linc arguments allow users to customize the execution of the Mediator.

Table 2: Optional command line arguments.

argument default description
-buffer 580x400 Size of offscreen buffer, used for screen updates.
-colorDelta 200 Maximum color approximation distance in RGB space.
-display no default X windows display name [4].
file no default Saved configuration to load upon startup.
-InvalidAreas 3 Number of invalid rectangles maintained,
-pollDuration 50 Event polling time before drawing, in msecs.
-poliSleep 10 Sleep time while polling for events, in msecs.
snowspecial | I5e | Ko e e e e o

For example, to start the Mediator with specific display and a small buffer:

PGmediator —display kite.cs.wustl.edu:0.0 -buffer 200x200

Double Buffering

Double buffering is used for smooth, flicker free, graphics rendering. This means that a resource
called a “pixmap” must be allocated to buffer intermediate drawing results. The size of the pixmap
is determined by the ~buffer argument. Setting this value to a large size can result in more effi-
cient drawing. Unfortunately, Iarge pixmaps use a lot of memory; setting this value too large can
cause the Mediator not to start due to lack of memory, giving an X-windows error.

Color Allocation

Invalidation

Workstations that have a limited number of colors (e.g., 8 bit depth or 256 simultaneous colors) can
have problems managing how colors are allocated. The Mediator controls how color is allocated,
and can approximate a requested color to an already allocated color. Color approximation degree is
set by the ~coloxDelta option. Color delta is the maximum distance in RGB space in which two
colors can be considered equivalent. Setting this value lower will tend to match the requested val-
ues more exactly (e.g., setting color delta to 0 disables color approximation).

Multiple “invalid areas™ can be maintained for the Mediator window. These areas determine which
portions of the window need to be redrawn when the appearance of window items change. Having
more invalid areas is likely to make drawing more efficient if the buffer is small or many sparsely
positioned, disconnected graphics items change sporadically. However, on a workstation with fast
graphics capabilities, fewer invalid areas may result in more efficient drawing.

11 -

Mediator User Manual 6 Acknowledgments

Event Loop

6 Acknowledgments

s s

The Mediator’s event loop is timed according to the -pollSleep and —pollDuration argu-
ments. Before drawing is performed in an iteration of the event loop, the system first polls for
events and updates from the Playground environment. The polling time is determined by poll dura-
tion. This allows the system to gather many changes to draw simultaneously, rather than drawing
each change separately. The duration effectively determines the maximum “frames per second”
update rate of the drawing. The default setting allows for at most 20 updates per second; setting
this value higher can result in more efficient, but “jumpier”, drawing. During the polling loop, the
Mediator repeatedly sleeps for a period of time (determined by loop delay) to wait for new events
and to give other processes a chance to run. Setting this value lower can result in faster drawing.
However, this can cause the Mediator to monopolize the workstation’s CPU.

This research was supported in part by National Science Foundation grants CCR-91-10029, CCR-94-
12711, and ARPA contract DABT63-95-C-0083.

References

(1]

(4]
(5]

Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D. Anderson, and Ram Sethuraman. The Program-
mers’ Playgroand: IA0 Abstraction for User-Configurable Distributed Applications, TEEE Transactions on Software Engi-
neering, 21(9):735-746, September 1995.

Kenneth J. Goldman, Joe Hoffert, T, Pau McCartney, Jerome Plun, Tedd Rodgers. Building Interactive Distributed Applica-
tions in C+-+ with The Programmers’ Playground. Washington Unjversity Department of Computer Science technical report

WUCS-97-14.

T. Paul McCartney, Kenneth J. Goldman. EUPHORIA Reference Manual. Washington University Department of Computer
Science WUCS-97-13, February 1997,

Robert W, Scheifler, James Gettys. X Window System, Third Edition. Digital Press, 1992.

William M. Shapiro, T. Paul McCartney, B.F. Berkley Shands. The Programmers’ Playground Application Management Sys-
tem User Guide. Washington University Department of Compater Science WUCS-97-32, August 1997,

S12-

	The Playground Mediator: Visual Tool for Configuring and Debugging Distributed Applications
	Recommended Citation

	tmp.1439928365.pdf.ODPeY

