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Partial Order Based Reduction in Planning: A Unifying Theory and New
Algorithms

Abstract

Partial order based reduction (POR) has recently
attracted research in planning. POR algorithms re-
duce search space by recognizing inter-changable
orders between actions and expanding only a sub-
set of all possible orders during the search. POR
has been extensively studied in model checking
and proved to be an enabling technique for reduc-
ing the search space and costs.
Recently, two POR algorithms, including the ex-
pansion core (EC) and stratified planning (SP) al-
gorithms, have been proposed. Being orthogonal
to the development of accurate heuristic functions,
these reduction methods show great potential to
improve the planning efficiency from a new per-
spective. However, it is unclear how these POR
methods relate to each other and whether there ex-
ist stronger reduction methods.
We propose a unifying theory for POR. The theory
gives a necessary and sufficient condition for two
actions to be semi-commutative, a condition that
enables POR. We interpret both EC and SP in the
theoretical framework. Further, based on the new
theory, we propose new, stronger POR algorithms.
Experimental results on various planning domains
show significant search cost reduction.

Introduction
Search is one of the most successful approaches to plan-
ning. As shown by recent work, search even with al-
most perfect heuristic guidance has some fundamental
limitations (Helmert & Röger 2008). Heuristic planners
still face scalability challenges for large-scale problems.
Recently an orthogonal way to reduce the search cost,
partial order based reduction (POR), has been studied
for planning. Two POR algorithms for planning, the ex-
pansion core (EC) algorithm (Chen & Guo 2009) and
stratified planning (SP) algorithm (Chen, Xu, & Guo
2009), have been proposed.

EC and SP both reduce the search space by expand-
ing only a subset of applicable actions at each state.
They are both completeness and optimality preserving:
a complete and/or optimal search combined with any of
them remains complete and/or optimal.

Theoretical properties for POR in planning are still
not fully investigated. In this paper, we study the
underlying mechanisms for EC and SP and interpret

them in a unifying framework. We reveal that a
semi-commutativeness relation between actions is a key
source of reduction and we give a necessary and suffi-
cient condition for determining semi-commutativeness.
We characterize the completeness and optimality pre-
serving property by the notion of representative subcat-
egory, after abstracting paths and searches to categories.
We interpret EC and SP in this framework. We then pro-
pose new POR reduction algorithms based on insights
gained from the theoretical development. Our experi-
ments show that the new POR algorithms have strong
performance. Impressively, our new algorithm can give
orders of magnitude of reduction on difficult domains
for which EC and SP failed to provide any reduction.

Basic Definitions
Classical planning can be represented in STRIPS and
SAS+ formalisms. Although EC and SP are developed
on SAS+, we develop our theory using STRIPS. For
space reasons, we give some useful notations, but do
not give full definitions of STRIPS and SAS+.

A STRIPS planning task Σ is a tuple Σ =
(F, O, I, G), where F is a set of facts, O is a set of
actions, I ⊂ F and G ⊂ F are the sets of initial facts
and goal facts, respectively. For each action o ∈ O, Po,
Ao and Do denote the set of preconditions, add effects,
and delete effects, respectively.

A SAS+ planning task Π is defined as a tuple Π =
(X, O, S, sI, sG). X = {x1, · · · , xN} is a set of multi-
valued state variables, each with an associated finite
domain Dom(xi). O is a set of actions and each action
o ∈ O is a tuple (pre(o), eff(o)), where both pre(o)
and eff(o) define some partial assignments of variables
in the form xi = vi, vi ∈ Dom(xi). sG is a partial
assignment that defines the goal. S is the set of states. A
state s ∈ S is a full assignment to all the state variables.

For a given state s and an action o, when all vari-
able assignments in pre(o) are met in state s, action o
is applicable at state s. After applying o to s, the state
variable assignment will be changed to a new state s ′
according to eff(o). We denote the resulting state of ap-
plying an applicable action o to s as s′ = apply(s, o).

There is correspondence between SAS+ and STRIPS
formalisms of a planning task. For an action o, Po,
Ao, and Do correspond to the variables assignments in
pre(o), eff(o)\pre(o), and pre(o)\eff(o), respectively.



A Unifying Theory
The theory we develop is for STRIPS tasks Σ =
(F, O, I, G). We first define some notations. The union
of two sets A and B is written as A + B. The inter-
section of A and B is written as AB. A state s is a
subset of the fact set F , and we define s = F − s to
be the complementation. In our deduction we use the
following rules.

• A(B + C) = AB + AC (distributive law)

• AB = A+B and A + B = A B (De Morgan’s laws)

Semi-Commutative Action and Path Pairs
The basic structure used in our theory is the concept
of semi-commutative action pairs. Intuitively, if for any
path, an action sequence (a, b) can be replaced by (b, a),
then a and b are semi-commutative.

Definition 1 (Valid Path) For a STRIPS task Σ and a
state s0, a sequence of actions p = (o1, . . . , on) is a
valid path if, let si = apply(si−1, oi), i = 1, . . . , n, oi

is applicable at si−1 for i = 1, . . . , n. We also say that
applying p to s results in the state sn.

Definition 2 An ordered action pair (a, b), a, b ∈ O is
a state-dependent semi-commutative action pair at state
s0 if when (a, b) is a valid path at s0, (b, a) is also a
valid path that results in the same state. We denote such
a relationship by s0 : b ⇒ a.

Definition 3 An ordered action pair (a, b), a, b ∈ O is
a state-independent semi-commutative action pair (or
semi-commutative action pair for short) if (a, b) semi-
commutative at any state s ⊆ F . We denote this rela-
tionship by b ⇒ a.

Note the following. 1) Semi-commutativeness is not
a symmetric relationship. b ⇒ a does not imply a ⇒ b.
2) The order in b ⇒ a suggests that we should always
try (b, a) only during the search instead of trying both
(a, b) and (b, a).

Theorem 1 An ordered action pair (a, b), a, b ∈ O is a
state-dependent semi-commutative action pair at a state
s0 if and only if PaDb = PbDa = Pbs0Aa = AbDa =
AaDb = ∅.

Proof. First we prove the direction from left to right.
Suppose s0 : a ⇒ b, we have Pbs0 = ∅ since b is appli-
cable at s0. Hence, Pbs0Aa = ∅. Since a is applicable
at s0, and (a, b) is a valid path, we have

∅ = Pb − (s0 − Da + Aa) = Pb(s0Da + Aa)

= Pb(s0 + Da)Aa = Pbs0 Aa + PbDaAa,

which implies PbDaAa = ∅. Note that DaAa = Da,
thus we have PbDa = ∅. Similarly, since (b, a) is also
a valid path at s0, we have Pa − (s0 − Db + Ab) = ∅,
from which we can derive PaDb = ∅.

Finally, we consider the two states s1 and s2, resulted
from applying (a, b) and (b, a) to s0, respectively:

s1 = (s0 − Da + Aa) − Db + Ab

s2 = (s0 − Db + Ab) − Da + Aa.

Using A − B = AB, we get:

s1 = (s0 + Aa + Ab)(Da + Aa + Ab)(Ab + Db)

s2 = (s0 + Aa + Ab)(Db + Aa + Ab)(Aa + Da)
Let T = (s0 + Aa + Ab), we can simplify s1 to:

s1 = T (DaAb + Da Db + AaAb + AaDb + Ab + AbDb)

= TDa Db + TAaDb + TAb

= s0Da Db + AaDb + Ab

Similarly, s2 = s0Db Da + AbDa + Aa. We know
that s1 is identical to s2 if and only if s1 − s2 = ∅ and
s2 − s1 = ∅. We denote s0Db Da by K and have:

s1 − s2 = (K + AaDb + Ab)(K + AbDa + Aa)

= AbKDa = (s0 + Da + Db)AbDa

= s0AbDa + AbDa + DbAbDa = AbDa

Therefore, we can see that the necessary and sufficient
condition for s1 − s2 = ∅ is that AbDa = ∅. Symmet-
rically, s2 − s1 = ∅ if and only if AaDb = ∅.

Now we prove the second part. Suppose we have
PaDb = PbDa = Pbs0Aa = AbDa = AaDb = ∅,
assume (a, b) is a valid path at s0, we prove that (b, a)
is a valid path and leads to the same state.

Since (a, b) is a valid path at s0, we have Pbs0 Aa =
∅. Also, we have assumed that Pbs0Aa = ∅. Hence we
have Pbs0 = Pbs0Aa +Pbs0Aa = ∅ and b is applicable
at s0. Further, we know that a is applicable after the
execution of b since we have Pa − (s0 − Db + Ab) =
Pas0 Ab + PaDb = ∅ + ∅ = ∅. Thus, (b, a) is a valid
path at s0.

Last, since s1 − s2 = AbDa = ∅ and s2 − s1 =
AaDb = ∅, (a, b) and (b, a) lead to the same state. �
Corollary 1 An ordered action pair (a, b), a, b ∈ O is
a semi-commutative action pair if and only if PaDb =
PbDa = PbAa = AbDa = AaDb = ∅.

Definition 4 For a path p = (a1, · · · , an), another
path q = (b1, · · · , bn) is 1-swap away from p if there
exists i, 2 ≤ i ≤ n such that bi = ai−1, bi−1 = ai, and
aj = bj for any j, j /∈ {i − 1, i}, 1 ≤ j ≤ n.

Definition 5 (1-Swap Semi-Commutative Path Pair)
For a STRIPS planning task Σ = (F, O, I, G), for
two paths p and q that are 1-swap away, consider the
action pair (a, b) that is swapped, p and q are 1-swap
semi-commutative if b ⇒ a.

Definition 6 (Semi-Commutative Path Pair) Two
paths p and q are semi-commutative if p = q or if there
exists a sequence of paths p1 = p, p2, · · · , pk = q
such that pj−1 is 1-swap semi-commutative with pj for
j = 2, · · · , k. We denote the relation as q ⇒ p.
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Intuitively, if q ⇒ p, then q leads to the same state as
p does and contains the same set of actions. Hence, a
search can explore q only instead of both q and p with-
out sacrificing completeness or optimality. Here, we
assume the optimality metric is to minimize the total
action cost, where each action has a positive cost.

Categories of search and reduction
In the following, we use category theory to describe par-
tial order based reduction. See for example (Barr &
Wells 1990) for introduction to category theory. Cat-
egory is a relatively new alternative to set as the foun-
dational notion of mathematics, a representation upon
which logical constructions can be codified.

A category is a directed graph whose vertices (called
objects) and arrows (called morphisms) satisfy certain
additional requirement. In a category, each object A
has an identity morphism 1A : A → A, and each pair
of morphisms f : A → B and g : B → C is assigned
another morphism g ◦ f : A → C as the composition
of morphisms. All the morphisms should satisfy the
identity laws (for g : A → B, g ◦ 1A = g, 1B ◦ g = g)
and associative laws (f ◦ (g ◦ h) = (f ◦ g) ◦ h).

Definition 7 (Category of Paths) For a STRIPS plan-
ning task Σ = (F, O, I, G), the category of paths pthΣ
defines the following data:

• The objects include all finite-length paths whose ele-
ments are in O;

• There is a morphism from a path p to a path q if and
only if q ⇒ p.

We see that pthΣ is indeed a category since it satisfies
the identity laws and associative laws.

A subcategory of a category C is a category S whose
objects are objects in C and whose morphisms are mor-
phisms in C with the same identities and composition
of morphisms.

Definition 8 (Representative Subcategory) For a
category C, a subcategory S of C is representative if
for each C-object B there exists a S-object AB and a
C-morphism rB : B → AB .

Definition 9 (Category of Searches) For a STRIPS
planning task Σ = (F, O, I, G), the category of
searches schΣ defines the following data:

• The objects include all subcategories of pthΣ;
• There is a morphism between A → B if and only if

B is a representative subcategory of A.

We can verify that schΣ is a category since each ob-
ject has an identity morphism and the morphisms satisfy
the identity and associative laws.

Definition 10 (Search) For a STRIPS task Σ, a search
is an object in schΣ. A search A is a goal search if every
path in A leads to a goal state from I . The optimal paths
in a goal search form an optimal search.

The above abstract definition defines a search on a
planning task as a set of paths with structures within the
set, represented by the morphisms between paths.

Definition 11 (Action-Preserving Reduction) For a
search A of a STRIPS planning task Σ = (F, O, I, G),
an action preserving reduction is another search B such
that there exists a morphism A → B in schΣ.

Intuitively, a search B is a category of paths. If there
is a morphism B → S in schΣ, then S is a represen-
tative subcategory of B. That is, for each object (path)
p in B, there exists a path q in S, such that there is a
B-morphism p → q. However, a B-morphism p → q
implies that p and q form a semi-commutative path pair,
which means that q is a valid path if p is and they lead
to the same state. Hence, a representative subcategory
of a search B represents a completeness and optimality
preserving reduction of the search.

Interpretations of POR Algorithms
In this section, we interpret two previous POR algo-
rithms, stratified planning (SP) (Chen, Xu, & Guo
2009) and expansion core (EC) (Chen & Guo 2009),
in the above theoretical framework.

Stratified planning (SP)

We summarize the key idea of the SP algorithm. A more
formal treatment of SP can be found in (Chen, Xu, &
Guo 2009). SP is based on the SAS+ formalism. For a
SAS+ planning task, for an action o ∈ O, define:

• the dependent variable set dep(o) is the set of state
variables that appear in the assignments in pre(o).

• the transition variable set trans(o) is the set of state
variables that appear in both pre(o) and eff(o).

• the affected variable set aff(o) is the set of state vari-
ables that appear in the assignments in eff(o).

Definition 12 Given a SAS+ planning task Π with state
variable set X , its causal graph (CG) is a directed
graph CG(Π) = (X, E) with X as the vertex set.
There is an edge (x, x′) ∈ E if and only if x 
= x′
and there exists an action o such that x ∈ trans(o) and
x′ ∈ dep(o), or, x ∈ aff(o) and x′ ∈ trans(o).

SP uses a stratification of the CG. A stratification
of CG(Π) = (X, E) is a partition of the set X : X =
(X1, · · · , Xk) in such a way that there exists no edge
e = (x, y) where x ∈ Xi, y ∈ Xj and i > j.

By stratification, each state variable is assigned a
level L(x), where L(x) = i if x ∈ Xi, 1 ≤ i ≤ k.
Subsequently, each action o is assigned a level L(o),
1 ≤ L(o) ≤ k. L(o) is the level of the state vari-
able(s) in trans(o). Note that all state variables in a
same trans(o) must be in the same level.
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Definition 13 (Follow-up Action) For a SAS+ task Π,
an action b is a follow-up action of a (denoted as a � b)
if aff(a) ∩ dep(b) 
= ∅ or aff(a) ∩ aff(b) 
= ∅.

The SP algorithm can be combined with standard
search algorithms, such as breadth-first search, depth
first search, and best first search (including A∗). During
the search, for each state s that is going to be expanded,
the SP algorithm examines the action a that leads to s.
Then, for each applicable action b at state S, SP makes
the following decision:

• If L(b) < L(a) and b is not a follow-up action of a,
then do not expand b (we say that b is not SP expand-
able after a). Otherwise, expand b.

Now we interpret SP in our framework. For a SAS+
task Π, consider its equivalent STRIPS task Σ. Each
search algorithm corresponds to a set of paths it ex-
plores, which corresponds to an object A in schΣ. Con-
sider the set of paths that will be examined when the
search is combined with SP. Let the SP-reduced path
set correspond to an object ASP in schΣ.

Lemma 1 If an action b is not SP-expandable after a,
then b ⇒ a.

Proof. If b is not SP-expandable after a, then L(a) >
L(b) and b is not a follow-up action of a. Since b
is not a follow-up action of a, we know that aff(a) ∩
dep(b) = aff(a) ∩ aff(b) = ∅. Therefore, PbAa = ∅
and DbAa = ∅. Also, we see that PbDa = ∅ be-
cause b is applicable immediately after a is executed.
Moreover, since L(a) > L(b) implies that there is no
edge from a state variable associated with a to a state
variable associated with b, from Definition 12, we can
show that PaDb = DaAb = ∅. Thus, we proved that
PaDb = PbDa = PbAa = AbDa = AaDb = ∅. Ac-
cording to Corollary 1, we have b ⇒ a. �
Theorem 2 For any search A in schΣ, its SP-reduced
search ASP is a representative subcategory of A.

Proof. We need to show that ASP is a representative
subcategory of A. That is, for each path p in A, we
show that there is a path pSP in ASP such that there
is a morphism p → pSP in pthΣ. We prove this by
induction on n, the length of p.

The case is true when n = 1 since any action is a
follow-up action of no-op. Now we assume for any path
p with length no more than k in p, the proposition is
true. We prove the case where n = k + 1.

For a path p0 = (a1, . . . , ak+1), consider the prefix
p1 = (a1, . . . , ak). By the induction hypothesis, there
is a path p2 = (a1

1, . . . , a
1
k) such that p1 → p2 is a

morphism in pthΣ.
Now we consider a new path p1 =

(a1
1, . . . , a

1
k, ak+1). If ak+1 is SP-expandable af-

ter a1
k, then p0 → p1 is a morphism in pthΣ.

If ak+1 is not SP-expandable after a1
k, consider a new

path p2 = (a1
1, . . . , a

1
k−1, ak+1, a

1
k). From Lemma 1,

we know that ak+1 ⇒ a1
k, which implies that p2 is a

valid path leading to the same state as p1 does.
Let p3 = (a1

1, . . . , a
1
k−1, ak+1), we know that there

is a path p4 = (a2
1, . . . , a

2
k) such that p3 → p4 is a

morphism in pthΣ. Define p3 = (a2
1, . . . , a

2
k, a1

k).
Comparing p2 and p3, we know that L(ak+1) >

L(a1
k), namely, the level of the last action in p2 is

strictly larger than that in p3. We can repeat the above
process to generate p4, p5, · · · , as long as p0 → pj is
not a morphism in pthΣ.

Since we know that the level of the last action in pj is
monotonically decreasing as j increases, such a process
must stop in a finite number of iterations and yield a
path pj such that p0 → pj is a morphism in pthΣ. �

The above proof explains SP as a reduction that re-
duces each search in schΣ to a representative subcate-
gory. Hence, SP preserves completeness and optimality
since any path explored by a search can be mapped to
an equivalent path explored under SP-reduction.

Expansion core (EC) algorithm
We give a short outline of EC first. For detailed descrip-
tion of the EC algorithm, refer to (Chen & Guo 2009).

For a SAS+ task, each state variable Xi, i =
1, · · · , N is associated with a domain transition graph
(DTG) Gi, a directed graph with vertex set V (Gi) =
Dom(xi) and edge set E(Gi). An edge (vi, v

′
i) belongs

to E(Gi) if there is an action o with vi ∈ pre(o) and
v′i ∈ eff(o) in which case we say that o is associated
with the edge ei = (vi, v

′
i) (denoted as o � ei).

Definition 14 An action o is associated with a DTG Gi

(denoted as o � Gi) if o is associated with any edge in
Gi.

Definition 15 For a SAS+ task, for each DTG Gi, i =
1, . . . , N , for a vertex v ∈ V (Gi), an edge e ∈ E(Gi)
is a potential descendant edge of v (denoted as v � e)
if 1) Gi is goal-related and there exists a path from v to
the goal state in Gi that contains e; or 2) Gi is not goal-
related and e is reachable from v. A vertex w ∈ V (Gi)
is a potential descendant vertex of v (denoted as v�w)
if 1) Gi is goal-related and there exists a path from v to
the goal state in Gi that contains w; or 2) Gi is not
goal-related and w is reachable from v.

Definition 16 For a SAS+ task, given a state s =
(s1, · · · , sN ), for any 1 ≤ i, j ≤ N, i 
= j, si is a po-
tential precondition of the DTG Gj if there exist o ∈ O
and ej ∈ E(Gj) such that

sj � ej, o � ej , and si ∈ pre(o) (1)

Definition 17 Given a SAS+ state s = (s1, . . . , sN ),
for any 1 ≤ i 
= j ≤ N , si is a potential dependent of
the DTG Gj if there exist o ∈ O, ei = (si, s

′
i) ∈ E(Gi)

and wj ∈ V (Gj) such that

sj � wj , o � ej , wi ∈ pre(o)
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Definition 18 For a state s, the potential dependency
graph PDG(s) is the directed graph with DTGs as ver-
tices and there is an edge from Gi to Gj if and only if
si is a potential precondition or potential dependent of
Gj .

Definition 19 For a directed graph H , a subset C of
V (H) is a dependency closure if there do not exist v ∈
C and w ∈ V (H) − C such that (v, w) ∈ E(H).

At a state s, EC method only expands actions in those
DTGs within such a dependency closure of the PDG(s)
that contains at least one DTG with an unachieved goal.

For any state s, an action a is goal-relevant if there
exists a path from s to a goal state that contains a.

Lemma 2 For a state s and a dependency closure C
of PDG(s), for any goal-relevant action a associated
with a DTG in PDG(s)\C, and any action b associated
with a DTG in C that is applicable at s, we have b ⇒ a.

Proof. Since b is applicable at s, we know Pb ⊆ s.
Since b is associated with a DTG within C, no fact in Pb

is a potential precondition of a and we have PbPa = ∅,
which leads to PbDa = ∅ since Da ⊆ Pa. On the other
hand, since DTGs in C are not a potential dependent
of those not in C, a precondition of b is not affected
by a and we have PbDa = ∅ and PbAa = ∅. Finally,
since a and b do not associate with a same DTG, we
have AbDa = AaDb = ∅. All the five conditions in
Corollary 1 are met. �

To ensure action-preserving reduction, we give a list
of conditions that is similar to the idea in stubborn
set (Valmari 1989), a well-known technique for search
space reduction in model checking.

Definition 20 (Stubborn Set) For a planning task, a
set of actions T (s) is a stubborn set at a state s if

A1 For any action b ∈ T (s) and actions b1, · · · , bk /∈
T (s), if (b1, · · · , bk, b) is a prefix of a path from s to
a goal state, then (b, b1, · · · , bk) is a valid path from
s and leads to the same state as (b1, · · · , bk, b) does.

A2 Any valid path from s to a goal state contains at least
one action in T (s).

A valid path (a1, · · · , an) is stubborn-set conform-
ing at a state s1 if ai ∈ T (si) for i = 1, · · ·n where
si+1 = apply(si, ai). For any search A in schΣ, the
stubborn-set reduced search of A, ASS , is the subset of
A that includes all stubborn-set conforming paths.

Theorem 3 For any goal search A in schΣ, there is a
morphism A → ASS in schΣ.

Proof. We sketch the main idea. The proof is essen-
tially the same as the proof to the stubborn set method
in model checking (Valmari 1989), which is based on
an induction on the length of paths. For any state s,
for each path p = (a1, · · · , an) from s to goal, accord-
ing to A2 in Definition 20, we know that there must

exist an action ai, 1 ≤ i ≤ n such that ai ∈ T (s).
Then, according to A1, we can permute p into a path
q = (ai, a1, · · · , ai−1, ai+1, · · · , an) that also reaches
the goal. Using induction, we can prove that any path p
can be permuted to a path q such that q ⇒ p and ASS

is a representative subcategory of A. �

Lemma 3 The actions that the EC algorithm expands
at any state s form a stubborn set T (s).

Proof. For a state s, let the dependency closure chosen
by EC be C ∈ PDG(s). For any action b expanded by
EC, and actions b1, · · · , bk that do not associate with a
DTG in C, if (b1, · · · , bk, b) is a prefix of a path to goal,
then we know b ⇒ bi for i = 1, · · · , k from Lemma 2.
Therefore, (b, b1, · · · , bk) is also a valid path and A1 in
Definition 20 is proved. Moreover, since C includes at
least one DTG G that with an unachieved goal, some
action in G must be used in any path to goal. Since G
is in the closure, all actions in G are expanded and A2
in Definition 20 is shown. �

From Theorem 3 and Lemma 3, we can prove that
EC is an action-preserving reduction.

Theorem 4 For any goal search A in schΣ, its EC-
reduced search AEC is a representative subcategory of
A.

We see that EC is stronger than SP in the sense that it
is an action preserving reduction for goal searches only,
not any search. By restricting the preserving-ness to
goal searches, EC does not guarantee that a non-goal
path will be mapped to a EC-conforming path, which is
a good thing that helps avoid exploring useless paths.

New POR Algorithms for Planning
From the last section, we see that, in essence, both SP
and EC detect and exploit the semi-commutativness of
actions. We have the following insights.

• Both SP and EC are based on the SAS+ formal-
ism, and utilize the notion of DTGs (state variables).
However, the use of DTGs is not essential for POR
reduction. They are used only to ensure certain con-
ditions in Theorem 1. Further, both SP and EC
give sufficient but not necessary conditions for find-
ing semi-commutative action pairs. For example, for
domains such as pipesworld where the CG has only
one strongly-connected component, SP and EC can
give no reduction, although semi-commutative action
pairs still exist in these domains.

• Both SP and EC have certain advantages. For a state
s and applicable actions a1, · · · , an, SP will expand
each of ai, i = 1, · · · , n and for each ai may prune
some actions bi if bi ⇒ ai. EC has the advantage of
not having to expand all ai. Instead, it divides actions
into those in T (s) and those not in T (s). As a cost, it
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needs to ensure that any action in T (s) must be semi-
commutative with any action not in T (s) (i.e. a clo-
sure), which may miss certain semi-commutativeness
and chance of reduction.

Based on the above two observations, we propose our
new algorithm, action closure (AC) reduction. Unlike
SP and EC, the AC algorithm does not analyze the CG
and use DTG as the basic unit of decision (whether to
be expanded or not). Instead, it treats each action as the
basic unit of decision.

Definition 21 (Action Dependency Graph) For a
STRIPS planning task, its action dependency graph
(ADG) is defined as a directed graph in which each
vertex is an action, and there is an edge from action a
to b if and only if PaDb 
= ∅ or PbDa 
= ∅ or PbAa 
= ∅
or AbDa 
= ∅ or AaDb 
= ∅.

Definition 22 (Contracted ADG) Given an ADG, its
contracted ADG (CADG) is a graph where each ver-
tex is a maximum strongly connected component (SCC)
of the ADG and there is an edge between two SCCs if
there is an edge in the ADG from a vertex in one SCC
to a vertex in another SCC.

A topological sort on the CADG generates an ordered
sequence of its vertices: (SCC1, · · · , SCCN ), where
SCC1 is the SCC with zero in-degree in the CADG. The
topological sort is not unique and we currently choose
one randomly. Given a topological sort of the CADG,
each action a is assigned a layer l(a), which is the index
of the SCC the action belongs to, i.e. a ∈ SCCl(a).

Definition 23 An action b is supported by an action a
if and only if PbAa 
= ∅.

The AC algorithm works as follows. For each state
s, let the action that leads to s be a,

B1 If Aa includes a goal fact, it expands all applicable
actions;

B2 Otherwise, it finds the minimum index M, M ≤ N ,
such that SCC1 ∪ · · · ∪ SCCM include all the appli-
cable actions that are supported by a.

Lemma 4 For any two actions a and b such that l(b) <
l(a), we have b ⇒ a.

Proof. If l(b) < l(a), there is no edge from a to b in
the ADG. Thus, PaDb = PbDa = PbAa = AbDa =
AaDb = ∅. The conditions in Corollary 1 are met. �

A path is AC-conforming if it can be possibly gener-
ated by a search with the AC algorithm. For any search
A, the AC-reduced search is the subcategory of A that
includes all AC-conforming paths as objects.

Definition 24 (Optimality Stubborn Set) For a plan-
ning task, a set of actions T (s) is an optimality stubborn
set at a state s if

O1 For any action b ∈ T (s), and actions b1, · · · , bk /∈
T (s), if (b1, · · · , bk, b) is a prefix of a path to goal,
then (b, b1, · · · , bk) is a valid path from s that leads
to the same state as (b1, · · · , bk, b).

O2 Any optimal path from s to a goal contains at least
one action in T (s).

Theorem 5 For any optimal search A in schΣ, there is
a morphism A → AOSS in schΣ, where AOSS is the
subcategory of A that conforms to optimality stubborn
sets.

Theorem 5 can be proved using a proof parallel to
that of Theorem 3.

Lemma 5 The actions that the AC algorithm expands
at any state s form an optimality stubborn set T (s).

Proof. For a state s, assume AC expands applicable
actions in T = {SCC1 ∪ · · · ∪ SCCM}. Consider any
actions b1, · · · , bk that are not in T . If (b1, · · · , bk, b) is
the prefix of an optimal path, then we know b ⇒ b i for
i = 1, · · · , k from Lemma 4. Therefore, (b, b1, · · · , bk)
is also a valid path and O1 is proved. Moreover, if no
action is used in T , since T includes all the actions sup-
ported by a, we can delete a to obtain a better plan (un-
less a adds a goal which is covered by condition B1 in
the AC algorithm). Hence, any optimal path must in-
clude at least one action in T and O2 is satisfied. �

From Theorem 5 and Lemma 5, we have shown that
AC is an action preserving reduction.

Theorem 6 For any optimal search A in schΣ, its AC-
reduced search AAC is a representative subcategory of
A.

The AC algorithm is a stubborn set method. Last,
we propose an enhanced version of the AC algorithm
that adds the idea of stratified planning. For each state
s with a leading action a, the AC+ algorithm applies
the same conditions B1 and B2 as used by AC, while
imposing one more restriction.

B3 For each applicable action b, if b ⇒ a, then it does
not expand b.

This condition B3 can be viewed as a SP style re-
duction, added to the stubborn set reduction in the AC
algorithm. The correctness of AC+ is obvious as it sim-
ply checks the semi-commutativeness of two adjacent
actions. For any path p there is a path q that conforms
to B3. Hence, any optimal search A can be reduced to
a search AAC and then to AAC+ , all action-preserving.

Theorem 7 For any optimal search A in schΣ, its AC+-
reduced search AAC+ is a representative subcategory
of A.

Experimental Results
We test on STRIPS problems in the recent International
Planning Competitions (IPCs): IPC3, IPC4, and IPC5.
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We implemented our algorithm in the Fast Downward
(FD) planner (Helmert 2006). We only modified the
state expansion part.

Table 1 shows the results of FD, SP, AC, and AC+

on the testing domains except for pipesworld and free-
cell domains, whose results are shown in Table 2. All
algorithms give the same solution quality. We see that
the performance of the original SP is consistently better
than the original FD. AC+ can significantly improve SP
in driverlog and tpp domains in terms of the numbers of
generated and expanded nodes. AC is generally better
than FD in terms of both generated and expanded nodes.

Comparing AC against SP, we see that typically AC
generates more states but expands less, since AC is a
stubborn set style reduction which tends to expand less
nodes. Due to a deferred heuristic evaluation scheme in
FD, the number of heuristic evaluations is determined
by the number of expanded nodes. As a result, the CPU
time of AC often is less than that of SP, even if AC gen-
erates more nodes. The trucks, storage, and tpp domains
best illustrate this point. AC+ has a similar comparison
against SP and is faster than SP in most instances except
for the trucks domain.

Comparing AC+ against AC, we see that AC+ is bet-
ter in driverslog, depot, storage, and tpp=. AC+ is or-
ders of magnitude better than AC for some instances
from driverslog and depot. AC+ is faster than the orig-
inal FD in most instances except for the trucks domain.

Now we turn to the surprising results on the
pipesworld and freecell domains in Table 2. These two
domains are deemed very difficult since their CG is
densely connected and cannot be decomposed into mul-
tiple strongly connected components. Therefore, SP,
EC and AC all fail to give any reduction. Surprisingly,
AC+ can give significant reduction. In Table 1, we com-
pare FD and AC+. We did not report SP and AC since
they cannot give any reduction and their state expan-
sions are the same as FD. We see that AC+ can reduce
the number of expanded and generated nodes by orders
of magnitude for many instances such as freecell-15 and
pipesworld-12. It is encouraging that POR algorithms
can work not only for those largely decomposable do-
mains but also those domains whose state variables are
highly inter-depended.

In conclusion, we have proposed a theory to unify
various POR algorithms and explained their complete-
ness and optimality preserving properties. Based on the
new theory, we have proposed two new reduction algo-
rithms and evaluated their performance. There are still
many open problems in this direction. For example, the
use of categorical notions can be further studied. The
category theory provides a foundation for describing ab-
stract algebraic structures. For example, an important
goal of POR reduction is to find the minimum action
preserving set of paths in a search, which can be repre-
sented by the notion of the terminal object in schΣ.

Domains Fast Downward AC+

ExpandedGenerated Time ExpandedGenerated Time
free1 32 190 0.07 30 322 0.16
free2 42 262 0.06 56 108 0.58
free3 53 397 0.28 72 693 0.36
free4 116 533 0.24 108 542 0.16
free5 796 4191 1.67 1808 14858 3.44
free6 390 2825 1.68 475 4608 3.1
free7 535 3281 2.42 534 4246 3.34
free8 2379 10110 10.72 532 6818 2.79
free9 5754 53638 23.83 428 4218 2.23
free10 2052 14510 15.69 902 11410 12.88
free11 2406 9001 16.7 721 6961 11.83
free12 1362 8013 9.52 634 6396 4.21
free13 12083 77311 138.41 12849 125532 111.94
free14 4431 40529 46.83 605 7558 6.13
free15 35329 307397 463.72 2841 32298 48.39
free16 - - - 11757 146286 171.75
free17 657 4870 12.3 330 3104 7.06
pipe1 23 115 0.01 18 138 0.04
pipe2 158 709 0.02 139 870 0.06
pipe3 184 2666 0.31 70 1026 0.3
pipe4 202 2712 0.1 139 2420 0.34
pipe5 47 701 0.23 40 906 0.36
pipe6 64 930 0.13 68 1290 0.14
pipe7 358 15371 1.69 522 24219 1.38
pipe8 1781 70706 3.33 760 25576 1.64
pipe9 1373 43171 4.23 1478 64516 3.51
pipe10 476729 137940061499.7 646 25811 2.95
pipe11 303622 1493750 235.9 1706 9042 1.13
pipe12 228593 1783627 350.94 680 22778 3.01
pipe13 62797 555162 117.6 474 6265 2.19
pipe14 177670 972962 193.52 93385 452848 80.24
pipe15 260672 1306367 254.71 27651 130042 20.17
pipe18 7807 98160 46.31 6547 96915 31.16
pipe19 218224 2290321 396.64 5344 44078 34.35

Table 2: Comparison of FD and AC+ on freecell (free) and
pipesworld (pipe) domains. We show numbers of expanded
and generated nodes. ”-” means timeout after 1800s.
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Helmert, M., and Röger, G. 2008. How good is almost
perfect. In Proc. AAAI.
Helmert, M. 2006. The Fast Downward planning
system. Journal of Artificial Intelligence Research
26:191–246.
Valmari, A. 1989. Stubborn sets for reduced state
space generation. In Proceedings of the 10th Interna-
tional Conference on Applications and Theory of Petri
Nets.

7



Domains Fast Downward Stratified Planning AC AC+

Expanded Generated Time Expanded Generated Time Expanded Generated Time Expanded Generated Time
driverlog11 280 2858 0.07 215 998 0.04 254 4240 0.07 173 1842 0.06
driverlog12 1810 21582 0.11 2380 8719 0.26 1150 18808 0.22 326 3484 0.13
driverlog13 599 7155 0.18 402 2126 0.09 635 11634 0.2 324 3984 0.15
driverlog14 527 6173 0.18 370 1723 0.1 555 12568 0.21 271 3136 0.11
driverlog15 1288 18823 0.45 972 6202 0.35 2393 74680 1.23 383 5928 0.19
driverlog16 439226 8831575 105.71 192324 1400388 70.93 379769 12644130 72.91 - - -
driverlog17 9211 303992 5.44 5438 63710 4.48 3765 190376 2.57 - - -
driverlog18 13524 353873 17.2 21620 163436 24.94 38682 1704738 37.2 2867 41254 2.96

truck6 339 5071 0.07 339 2506 0.09 256 6414 0.08 296 5454 0.23
truck7 38532 165934 2.23 38532 81317 2.43 39782 180080 1.13 220179 1194652 7.28
truck8 1966 11558 0.37 1970 5749 0.2 537 7578 0.25 123793 770216 6.01
truck9 236058 2023106 17.29 236058 1002496 28.34 19809 102328 1.9 2584060 15899640 241.84
truck10 325002 3064955 29.82 325002 1519147 47.03 215737 1039650 16.58 468971 2091052 33.98
truck11 99902 1542311 10.45 99902 766989 16.85 77034 449580 6.5 422792 2518740 35.2
depot1 23 91 0.01 18 28 0 44 392 0 - - -
depot2 65 485 0.02 84 173 0.01 85 1022 0.05 - - -
depot3 6121 48336 1.19 819 2097 0.17 7277 75322 1.62 1762 11454 0.19
depot4 9291 78046 2.64 10366 25840 2.92 8004 87924 1.94 4786 30894 0.76
depot5 343364 2884118 103.36 30538 72874 13.98 22871 241254 6.29 14401 93618 4.07
depot7 28204 261112 3.83 40997 109669 8.45 18740 217698 2.83 8000 55848 0.85
depot8 162784 1674483 55.54 108157 349662 45.67 569532 8150860 137.4 33672 290238 7.9
depot9 - - - 165286 572968 226.26 192483 2877660 138.3 28454 216286 19.7
depot10 51542 726134 14.06 35314 121058 13.78 31735 552866 6.79 482 5162 0.18
depot11 215106 3316774 198.47 119489 456139 135.1 205746 3677638 122.57 1577 18828 1.23
depot13 257 4045 0.14 179 730 0.17 265 5480 0.46 5943 62406 2.23
depot14 - - - - - - 274978 2832700 217.26 - - -
depot15 - - - - - - 46357 478958 106.83 - - -
depot16 - - - 393419 2176390 257.24 653345 15021200 249.81 65774 667106 21.28
storage1 4 7 0 - - - 4 14 0 4 14 0
storage2 4 9 0 4 3 0 4 18 0 4 18 0
storage3 4 11 0 4 5 0 4 22 0.01 4 22 0.02
storage4 32 85 0.02 35 34 0 32 170 0.02 32 170 0.02
storage5 20 94 0.01 21 43 0.02 20 188 0.03 19 130 0.02
storage6 31 176 0.04 30 75 0.02 31 352 0.04 31 260 0.05
storage7 235 634 0.02 240 248 0.04 233 1250 0.05 227 1216 0.05
storage8 95 480 0.07 90 200 0.04 109 1064 0.08 189 1108 0.09
storage9 93 744 0.04 91 355 0.04 93 1488 0.1 159 1342 0.12
storage10 1521 4364 0.23 1372 1479 0.2 1494 8620 0.18 1516 8700 0.18
storage11 297 1774 0.18 326 893 0.1 293 3566 0.1 2066 11398 0.68
storage12 1496 11550 0.77 357 1511 0.15 1323 20094 0.55 1752 10583 0.31
storage13 4930 17046 1.31 5697 7565 1.01 5414 37662 0.71 8160 55656 1.33
storage14 2668 18730 1.11 2459 8029 0.71 2837 39492 0.86 1263 8164 0.55
storage15 325 2673 0.36 355 1267 0.2 308 5048 0.38 2583 20806 0.52
storage16 276 3385 0.64 273 1591 0.27 289 1542 0.23 259 2974 0.34

tpp1 6 8 0 6 3 0 6 16 0 6 16 0
tpp2 9 17 0 9 6 0 11 34 0 11 34 0
tpp3 12 29 0 12 12 0 16 54 0 16 54 0
tpp4 15 44 0 15 18 0 19 72 0 22 78 0
tpp5 22 92 0 22 33 0 88 452 0 122 454 0.01
tpp6 664 3641 0.06 617 1229 0.04 261 1882 0.03 94 444 0.02
tpp7 1591 9403 0.17 2199 5840 0.14 1250 8394 0.03 431 2410 0.04
tpp8 4685 37683 0.29 4181 13904 0.31 932 6670 0.07 486 2642 0.05
tpp9 3630 25924 0.59 4044 9734 0.39 1675 13262 0.18 1177 7460 0.04
tpp10 12242 110251 1.66 9634 32313 1.07 6685 63868 0.22 2339 14382 0.27
tpp11 13148 126912 2.08 24193 95847 3.82 5973 51660 1.11 1621 9614 0.26
tpp12 36690 364082 4.48 23754 71293 3.51 18366 154012 1.41 5195 47802 0.87
tpp13 24066 295068 4.35 32150 156888 8.34 26175 412436 3.44 16375 292526 2.07
tpp14 68494 894865 14.74 52963 209880 19.1 42991 643584 6.61 16982 175226 2.23
tpp15 37145 477808 8.71 54522 252323 20.85 28275 403406 4.54 16506 171188 2.23

Table 1: Comparison of several algorithms. We give number of generated nodes, number of expanded nodes, and CPU time in
seconds. ”-” means timeout after 300 seconds.
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