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Abstract—Network services often exhibit positive and
negative externalities that affect users’ adoption decisions.
One such service is “user-provided connectivity” or UPC.
The service offers an alternative to traditional infrastructure-
based communication services by allowing users to share
their “home base” connectivity with other users, thereby
increasing their access to connectivity. More users mean
more connectivity alternatives, i.e., a positive externality, but
also greater odds of having to share one’s own connectivity,
i.e., a negative externality. The tug of war between positive
and negative externalities together with the fact that they
often depend not just on how many but also which users
adopt, make it difficult to predict the service’s eventual
success. Exploring this issue is the focus of this paper,
which investigates not only when and why such services
may be viable, but also explores how pricing can be used to
effectively and practically realize them.

I. INTRODUCTION

There is no denying that we are a networked society,
and many networked goods or services exhibit strong
externalities, i.e., a change — positive or negative —
in the value of one unit of good, as more people use
those goods. For example, Metcalfe’s law [1, p.71] cap-
tures the positive effect on a network value of having
more users, while the increased congestion that arises
from the added traffic contributes a negative externality.
Externalities, and more generally the benefits derived
from goods or services, vary across users, i.e., exhibit
heterogeneity. This makes predicting the impact of exter-
nalities difficult, especially when positive and negative
forces interact. A basic question of interest is then to
determine (ahead of time) if and how offerings of goods
or services that exhibit positive and negative externalities
will succeed or fail.

The original motivation for this paper was answering
this question for a specific service, namely, user provided
connectivity or UPC. The goal of UPC is to address the
rising thirst for ubiquitous data connectivity fueled by
the fast growing number of capable and versatile mo-
bile devices. This growth has taxed the communication
infrastructure of wireless carriers to the point where it
is threatening their continued success [2]. Addressing
this issue calls for either upgrading the infrastructure;
a costly proposition, or exploring alternatives for “off-
loading” some of the traffic. WiFi off-load solutions (e.g.,
as embodied in the Hotspot2.0 initiative of the WiFi

∗ This work was supported by NSF grant CNS-0915982.

Alliance and the Next Generation Hotspot (NGH) of the
Wireless Broadband Alliance) offer a possible option, of
which FON1 demonstrated a possible realization. FON
users purchase an access router (FONERA) that they use
for their own local broadband access, but with the agree-
ment that a (small) fraction of their access bandwidth
can be made available to other FON users. In exchange,
they receive the same privilege2 when roaming, i.e., can
connect through the access points of other FON users.

Under a UPC scheme, connectivity grows “organi-
cally” as more users join the network and improve its
coverage, and the challenge is to determine if it can
reach sufficient critical mass to be viable. Consider for
example a FON-like service starting with no users. This
makes the service unattractive to users that value ubiqui-
tous connectivity highly, e.g., users that roam frequently,
because the limited coverage offers little connectivity
beyond that of a user’s “home base”. On the other hand,
sedentary users are mostly insensitive to the initial min-
imal coverage, and if the price is low enough can derive
positive utility from the service; hence join. If enough
such (sedentary) users join, coverage may increase past
a point where it becomes attractive to roaming users who
will start joining. This would then ensure rapid growth
of the service, were it not for a negative dimension to
that growth.

Specifically, as more roaming users join, they compete
for connectivity and may encounter increasingly con-
gested access points. Conversely, sedentary users end-up
having to share their home access more frequently. This
may be sufficient to convince them to drop the service
(unlike roaming users, they do not see much added
value from the better coverage). The resulting reduction
in coverage would in turn affect roaming users, who
could then also start leaving. Hence, after an initial
period of growth, the service may experience a decline.

The extent to which such behaviors arise depends on
many factors, and in particular the trade-off between
service cost and users’ sensitivity to the positive and
negative aspects of a growing user-base. Making the
service “free” would clearly maximize adoption, but
unless other revenue sources are available, e.g., ads, is

1http://www.fon.com. See also AnyFi (www.anyfinetworks.com) or
previously KeyWifi, and also more recently Comcast [3] for similarly
inspired services.

2Alternatively, they can also be offered some form of compensation.
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unlikely to allow it to be viable. Increasing the service
price could affect (lower) adoption, but may improve its
viability. More generally, service pricing offers a “control
knob” that can be used to realize a variety of objectives,
e.g., maximizing overall value or welfare, or maximizing
provider’s profit, etc. This control knob can be complex
and involve offering the service at a different price
to each user, i.e., discriminatory pricing [4], or very
basic, e.g., fixed pricing, and there is typically a trade-
off between how well objectives can be met and the
complexity of the control (pricing) used to meet them.

This paper develops a simple model that helps under-
stand how these factors interact and affect the adoption
of a UPC service and the welfare (sum of users’ utility
and provider’s profit) it creates, and how that welfare
can be efficiently distributed between users and the
service provider. To maintain analytical tractability, the
model makes a series of simplifying assumptions, many
of which may arguably not hold in practice. However,
the analysis affords insight that, as we demonstrate,
remains valid even under more general settings. Specif-
ically, the paper’s main contributions consist of
• Formulating and solving a simple model that cap-

tures key features of a UPC type of service;
• Characterizing when and how the service’s total

welfare, or value, is maximized;
• Identifying practical pricing policies that realize a

different trade-off between optimizing welfare and
distributing it between stakeholders.

• Numerically validating the robustness of the find-
ings, when relaxing the simplifying assumptions on
which the model relies.

The rest of the paper is structured as follows. Section II
presents the model we rely on to capture the properties
of a UPC service. Section III explores when and how
the service value (total welfare) is maximized. Section IV
introduces the role of pricing in realizing different goals
for the service, with subsequent sections dedicated to
specific pricing policies, i.e., usage-based (Section V),
hybrid (Section VI), and fixed-price (Section VII). Sec-
tion VIII discusses generalizations and robustness of
the findings. Related works are reviewed in Section IX,
before summarizing the paper’s findings in Section X.

II. MODEL FORMULATION

This section introduces a model that captures key as-
pects of adoption of a UPC-like service by users. We first
present the general form of the model in Section II-A.
We then introduce a series of simplifying assumptions in
Section II-B to obtain a simpler model that is analytically
tractable. Verifying that the findings afforded by this
simplified model remain valid in more general situations
calls for a two-prong approach: (1) An explicit solution
is developed that offers a qualitative understanding of
and insight into what drives the success (or failure) of
UPC systems; (2) The robustness of those findings is then

numerically tested under configurations that emulate
more general settings, i.e., where the model’s simplifying
assumptions are relaxed and errors are present in the
estimation of its parameters.

A. General form
Given the expected organic growth of a UPC service,

the interplay between the coverage it realizes and its
ability to attract more users is of primary interest. The
service coverage κ depends on the level x of adoption in
the target user population, and determines the odds that
users can obtain connectivity through the service while
roaming. Users are heterogeneous in their propensity
to roam, as captured through a variable θ, 0 ≤ θ ≤ 1.
A user’s exact θ value is private information, but its
distribution (over the user population) is known. A low
θ indicates a sedentary user while a high θ corresponds
to a user that frequently roams. Hence, θ determines a
user’s sensitivity to service coverage.

As commonly done [5], a user’s service adoption
decision is based on the utility she derives from the
service; she decides to adopt if that utility is positive.
A user’s utility is denoted as U(Θ, θ), where θ is the
roaming propensity of the user herself, and Θ identifies
the current set of adopters. The general form of U(Θ, θ)
is given in Eq. (1).

U(Θ, θ) = F(θ, κ) +G(θ, m) − p(Θ, θ) , (1)

where m is the volume of roaming traffic generatedby
the current set of adopters Θ.
F(θ, κ) reflects the overall utility of connectivity, either

at home or roaming, while G(θ, m) accounts for the
negative impact of roaming traffic. Finally, p(Θ, θ) is the
price charged to the user θ when the adopters’ set is Θ.

Note that the price p(Θ, θ) is a control parameter that
affects service adoption, i.e., it can be endogenized to
achieve specific objectives. In the paper, we explore the
use of pricing to maximize total welfare and/or profit.
Other parameters are exogenous and can be estimated,
e.g., using techniques from marketing research as dis-
cussed in [6], but not controlled.

Building on Eq. (1), users adopt the service only if
their utility is positive, and are myopic when evaluating
the utility they expect to derive from the service, i.e.,
they do not anticipate the impact of their own decision
on other users’ adoption decisions. However, adoption
levels affect coverage, and as coverage changes, so does
an individual user’s utility and, therefore, her adoption
decision.

The level of adoption x is given by

x = |Θ| ,
∫
θ∈Θ

f(θ)dθ,

where f(θ) is a density function and reflects the distribu-
tion of roaming characteristics over the user population.

In the next section, we specialize the different terms
in the utility function of Eq. (1)
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B. Assumptions and the simplified model
For analytical tractability, we make several assump-

tions regarding the form and range of the parameters of
Eq. (1) (Section VIII explores the impact of relaxing these
assumptions).

First, a user’s propensity to roam, as measured by θ,
is taken to be uniformly distributed in [0, 1], i.e.,

f(θ) = 1, 0 ≤ θ ≤ 1.

This implies that given a set of adopters Θ, the adoption
level, x is

x =

∫
θ∈Θ

dθ . (2)

Conversely, assuming that every user contributes one
unit of traffic, the volume of roaming traffic m generated
by current adopters is given by

m =

∫
θ∈Θ

θdθ . (3)

Next, we assume that the distributions of users over the
service area and their roaming patterns are uniform. A
uniform distribution of users implies that the adoption
level x also measures the availability of connectivity to
roaming users, hence κ = x. Similarly, uniform roaming
patterns mean that roaming users (and traffic) are evenly
distributed across users’ home bases, i.e., all see the same
connectivity while roaming. Therefore, we can write the
function F(θ, κ) as

F(θ, κ) = (1− θ)γ+ θ rx . (4)

The parameter γ ≥ 0 measures the utility of basic
home connectivity, while r ≥ 0 reflects the utility of
roaming connectivity.3 The latter needs to be weighed
by the "odds" that such connectivity is available, which
are proportional to the current service coverage κ = x.
Hence, rx is the (true) utility of roaming connectivity,
when the level of coverage is κ = x.

The additional factors 1−θ and θ in Eq. (4) capture the
impact of a user’s roaming characteristic in how it uses,
and therefore values, home and roaming connectivity.
Specifically, a user with roaming characteristic θ splits its
connectivity time in the proportions θ and 1−θ between
roaming and home connectivity, respectively.

Further, the impact of roaming traffic is assumed pro-
portional to its volume m, which based on the assump-
tion of uniform roaming patterns, is equally distributed
across adopters’ home bases. Specifically, the (negative)
utility associated with roaming traffic consuming re-
sources in the home base of users is proportional to
−cm , c ≥ 0. Roaming traffic affects equally the users
whose home base it uses, and the roaming users seeking
connectivity through it. Hence, all users experience the

3The range of the values of roaming connectivity is taken to be r ≥ γ,
i.e., the value of roaming connectivity is at least as high as that of home
connectivity.

same impact of the form −θcm − (1 − θ)cm = −cm, so
that G(θ, m) is4

G(m) = −cm .

Under these assumptions, a user’s utility is of the form

U(Θ, θ) = γ− cm+ θ (r x− γ) − p(Θ, θ) . (5)

In the next section, we characterize the total welfare
that can be created by a UPC service as a function of the
service parameters (exogenous and endogenous).

III. TOTAL WELFARE

In this section, we characterize the total welfare (value)
a UPC service can create for its adopters and provider.
Adopters’ welfare is through the utility they derive from
the service, while the provider’s welfare is from what
it charges adopters for the service. Using the model
introduced in the previous section, we derive analytical
conditions under which the total welfare is maximized.
As argued earlier, the benefit of such analytical solutions
is in providing insight into when and why the service
may be valuable (worth deploying). The validity of
that insight is tested under more general conditions in
Section VIII.

To compute the maximum welfare, we first obtain the
optimal set of adopters Θ∗(x) for any given adoption
level x, and then solve for the optimal x.

A. Optimal Adoption Set for Given Adoption Level
For a given adoption level x, we seek the set of

adopters Θ, |Θ| = x, that maximizes welfare.
Provider’s welfare (or profit) WP can be written as

WP(Θ) =

∫
θ∈Θ

(p(Θ, θ) − e) dθ , (6)

where p(Θ, θ) is the price charged to a user with roam-
ing characteristic θ given a set Θ of existing adopters,
and e is the per customer cost of providing the service,
e.g., as incurred from billing, customer service, or equip-
ment cost subsidies5. Conversely users’ welfare is given
by

WU(Θ) =

∫
θ∈Θ

U(Θ, θ)dθ . (7)

The service welfare, V(Θ), is the sum of these two
quantities.

V(Θ) =WU(Θ) +WP(Θ)

=

∫
θ∈Θ

(
U(Θ, θ) + p(Θ, θ) − e

)
dθ.

(8)

For notational purposes, we denote the integrand in
Eq. (8) by v(Θ, θ),

v(Θ, θ) , U(Θ, θ) + p(Θ, θ) − e ,

4The range of the coefficient of roaming traffic, c, is taken to be
0 ≤ c < r, i.e., it is lower than the max roaming utility.

5Note that this cost is ultimately born by the users, as it affects the
price the provider charges for the service.
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which can be interpreted as the individual value adopter
θ contributes to the service. Using Eq. (5) we can rewrite
Eq. (8) as

V(Θ) =

∫
θ∈Θ

(
γ+ θ (rx− γ) − cm− e

)
dθ. (9)

Characterizing optimal welfare for a given adoption
level x, calls for identifying the set Θ∗(x) of adopters of
cardinality x, |Θ∗| = x, which maximizes Eq. (9). This
is the subject of the next lemma, which is proved in
Appendix I in a more general form.

Lemma 1. For any adoption level x, maximum welfare is
always obtained with a set of adopters Θ∗(x) that exhibit
contiguous roaming characteristics. Specifically, Θ∗(x) is of
the form

Θ∗(x) =

{
Θ∗1(x) = [0, x) if x < γ

r−c ,

Θ∗2(x) = [1− x, 1] if x ≥ γ
r−c .

(10)

B. Optimal Adoption Level
From Lemma 1, we obtain the optimal welfare V∗(x) ,

V(Θ∗(x)) given any adoption level x. Following the
partition of Eq. (10) into two cases x ∈ [0, γ

r−c ) and x ∈
[ γ
r−c , 1], we consider separately the cases of V (Θ∗1(x))

and V (Θ∗2(x)).
Using Eq. (10) in Eq. (3) gives for x ∈ [0, γ

r−c ),

m(Θ∗1(x)) =

∫x
θ=0

θdθ =
x2

2
,

and therefore by Eq. (9)

V(Θ∗1(x)) =
r− c

2
x3 −

γ

2
x2 + (γ− e)x.

Similarly, for x ∈ [ γ
r−c , 1], the roaming traffic correspond-

ing to Θ∗2(x) is

m(Θ∗2(x)) =

∫1
θ=1−x

θdθ =
1

2

(
2x− x2

)
,

and therefore by Eq. (9)

V(Θ∗2(x)) = −
r− c

2
x3 + (

γ

2
+ r− c)x2 − ex.

Combining the above expressions, the optimal service
value V∗(x) , V(Θ∗(x)) for a given adoption level x is
given by

V∗(x) =

{
r−c
2
x3 − γ

2
x2 + (γ− e)x if x < γ

r−c

− r−c
2
x3 + (γ

2
+ r− c)x2 − ex if x ≥ γ

r−c ,

where Θ∗(x) and x are related by Eq. (10).
Given V∗(x), we can then solve for the value x∗

that maximizes V∗(x). The computations are mechanical
in nature and are given in Appendix B, with Fig. 1
illustrating x∗ as a function of γ and e (for r− c = 1).

The solution can be partitioned into two different
regimes based on the value of γ. When γ ≤ r − c
(corresponding to γ ≤ 1 in Fig. 1), optimal adoption is

either x∗ = 1 or x∗ = 0, depending on the service cost
e. If the service cost is low (e < γ+r−c

2
), then maximum

welfare occurs for x∗ = 1, and it is

V∗(x = 1) =
γ+ r− c

2
− e. (11)

Conversely, if the service cost is high (e ≥ γ+r−c
2

), then it
overshadows any benefit or utility the service produces
and it is impossible to create positive welfare. In this
case, the “optimal” adoption is x∗ = 0.

In contrast, when γ > r− c (corresponding to γ > 1 in
Fig. 1), intermediate values 0 < x∗ < 1 are possible (the
gradient-shaded region of Fig. 1). This is because as γ
increases, sedentary users start to derive more utility and
progressively become the dominant value contributors.
Therefore a set of (mostly) sedentary adopters can make
a large positive welfare contribution. Furthermore, be-
cause this value is negatively affected by roaming traffic,
the optimal adoption level discourages frequently roam-
ing users. Note that r − c gives a tentative measure of
the “net” importance of roaming (roaming utility factor
less roaming traffic factor), and as such the condition
γ > r−c describes a system where home connectivity has
a higher value than the overall (“net”) effect of roaming
connectivity. Such a system may arguably not be a prime
candidate for UPC services.

In summary, the main finding that emerges from the
results of this section is that when a UPC service can
generate significant positive value, that value is typically
maximized at full adoption (or close to full adoption6)
Section VIII numerically tests the validity of this finding
when the model’s assumptions are relaxed.

While this section explored the relationship between
service adoption and total welfare, and identified adop-
tion sets that maximize total welfare, the next section
focuses on how to realize such outcomes. As we shall
see, this greatly depends on the flexibility of the pricing
policy used.

IV. ROLE OF PRICING

The analysis of Section III characterizes maximum
service welfare, but does not offer a constructive method
to realize it. As shown in Eq. (5), adoption and, therefore,
welfare, depend on p(Θ, θ). Hence, maximizing welfare
calls for identifying a suitable pricing policy.

Moreover, the price p(Θ, θ) is also the parameter
that determines how welfare is divided between users
and the provider. For example, if p(Θ, θ) = e, then
the provider is only compensated for its expenses e
(its profit is WP(Θ) = 0) and the entire welfare is
realized as user’s utility, WU(Θ) = V(Θ). Conversely, if
p(Θ, θ) = v(Θ, θ)+e, then U(Θ, θ) = 0, i.e., users derive

6Specifically in more general cases where coverage “saturates” with
adoption, the maximum total welfare may predictably be realized
at slightly below full adoption. The reason is reaching full adoption
in that case would add more roaming traffic without meaningfully
improving coverage. Details are given in Appendix B.
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Fig. 1. Regions of optimal adoption for maximum system value.
Parameters are r = 1.6 and c = 0.6 (and therefore r − c = 1). The
gradient-shaded area corresponds to 0 < x∗ < 1, whereas the solid
black and white areas correspond to x∗ = 1 and x∗ = 0, respectively.

zero utility (strictly speaking, prices would be set to
ensure an infinitesimal but positive utility) and all of the
welfare is realized as provider’s profit, WP(Θ) = V(Θ).

Other pricing schemes are possible that distribute
welfare between users and the provider. For example,
a price of the form

p(Θ, θ) = v(Θ, θ) + e− δ

= (1− θ)γ+ θrx− cm− δ ,
(12)

which is an instance of a discriminatory pricing policy,
leaves every user with a positive utility U(Θ, θ) = δ > 0,
hence realizing the optimal adoption level7 x = 1. There-
fore, the optimal welfare V∗(1) of Eq. (11) is realized and
by using U([0, 1], θ) in Eq. (7) it follows that the users’
overall welfare is

WU([0, 1]) = δ .

This means that without affecting adoption, we can
pick any δ > 0 to freely vary WU([0, 1]) in the range
(0, V∗(1)], and accordingly by Eq. (8),

WP([0, 1]) = V
∗(1) −WU([0, 1]). (13)

In short, this policy realizes two important goals
• Optimal welfare, and
• Flexible welfare distribution.

Such a discriminatory pricing policy is, however, difficult
to implement in practice as it requires knowledge of
individual user characteristics (θ) that may not be readily
available8, and also results in a price that varies with the

7When optimal adoption is not at x = 1, optimal welfare can still be
realized by setting a high price for users who should not adopt.

8Even if the provider has full knowledge of individual user charac-
teristics θ, it may not be acceptable to charge users differently.

adoption level x. This heterogeneity across both users
and adoption levels is illustrated in Figs. 2 and 3, that
plot v(Θ, θ) as a function of θ and x.

In the following sections, we introduce pricing policies
that offer a different trade-off between realizing maxi-
mum welfare, distributing it arbitrarily, and practicality.

V. USAGE-BASED PRICING POLICY

As mentioned above, a discriminatory pricing policy
can both maximize total welfare and distribute it arbi-
trarily between users and the provider. It is, however,
difficult to implement in practice. This section proposes
a usage-based pricing scheme that mimics the behavior
of the discriminatory policy, but makes it feasible in
practice. Under a usage-based pricing scheme, users are
charged based on how often they connect at home and
while roaming. We present next the structure of usage-
based pricing, how it is able to capture key aspects
of discriminatory pricing, and also the insight that the
analysis of the pricing policy affords.

A. Pricing Structure
In a UPC service, usage has two components, home

usage denoted by zh, and roaming usage denoted by zr.
A usage-based pricing policy may assign different prices
to these two usage types. Assuming that ph and pr are
unit prices for home and roaming usage, respectively, a
user is charged

pz(zh, zr) = zh · ph + zr · pr − a, (14)

where a corresponds to fixed usage allowance that may
be given to each user, e.g., akin to the free minutes
commonly included in cellular phone plans.

Eq. (14) states what a user pays for the service as a
function of her usage. Next, we express this cost in terms
of the user and service model of Section II. This calls
for characterizing how roaming characteristics θ and the
service coverage x affect a user’s home and roaming
usages.

By definition, θ denotes a user’s propensity to roam,
i.e., how often she is roaming versus at home. However,
because a roaming user successfully connects only where
there is coverage, her “typical” roaming usage is only
zr(x, θ) = θx. Conversely, her typical home usage is
simply zh(θ) = 1 − θ (home connectivity is always
available). Replacing zh and zr in Eq. (14) by the typical
roaming and home usages zr(x, θ) and zh(θ) of a user
with roaming characteristics θ, we obtain the following
expression for what she will typically be charged for
using a UPC service with a coverage level of x

pz(x, θ) = ph(1− θ) + pr θx− a. (15)

Eq. (15) has three parameters ph, pr and a that affect
service adoption, i.e., which users derive positive utility.
Given our goal of emulating the discriminatory pricing
policy of Eq. (12) and by comparing it to Eq. (15), we
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(a) θ0 = 0 (b) θ0 = 0.4 (c) θ0 = 1

Fig. 2. System value contributed by user θ0 as a function of x. Parameters are γ = 0.8, e = 0, c = 0.6, b = 0, r = 1.6.

(a) x = 0.2 (b) x = 0.5 (c) x = 1

Fig. 3. System value contribution across users, at different adoption levels. Parameters are γ = 0.8, e = 0, c = 0.6, b = 0, r = 1.6.

choose ph = γ and pr = r, which yields the following
usage-based pricing scheme

pz(x, θ) = γ(1− θ) + rθx− a. (16)

We note that the only difference between Eq. (16) and
the discriminatory pricing of Eq. (12) is in the terms a
versus cm − δ, where the former is constant while the
latter depends on the level of roaming traffic m. As we
shall see next, this difference is minor, and the usage-
based pricing policy of Eq. (16) is capable of realizing
both maximum welfare and flexibility in how welfare is
distributed across users and the provider.

B. Maximal Service Adoption

Using Eq. (16) in Eq. (5) gives the following expression
for the utility derived by user θ from adopting the
service

U(Θ, θ) = a− cm. (17)

We next use Eq. (17) to identify the adoption equilibria
under usage-based pricing. We say a set of adopters Θ
comprises an equilibrium when

U(Θ, θ) > 0, if θ ∈ Θ, and
U(Θ, θ) ≤ 0, if θ 6∈ Θ.

Then,

Proposition 1. Under the usage-based pricing policy of
Eq. (16), full adoption, x = 1, is the unique equilibrium if
a > c/2, and is not an equilibrium if a ≤ c/2.

Proof: Recall that c ≥ 0, and note that at any adop-
tion level x (corresponding to an adopters’ set Θ such
that |Θ| = x), the roaming traffic m satisfies m ≤ 1/2.
Hence, cm ≤ c/2 and Eq. (17) yields that U(Θ, θ) ≥
a − c/2. Consequently U(Θ, θ) > 0 if a − c/2 > 0. This
is true for all values of θ and Θ, i.e., all users have
positive utility at all adoption levels. Therefore no other
equilibrium can exist, since that would mean for some
Θ̂ 6= [0, 1], and for θ 6∈ Θ̂ the utility is negative, which is
contradictory. This proves sufficiency.

On the other hand, if a ≤ c/2, then by Eq. (17) we
have U(Θ, θ) ≤ c/2 − cm. But at full adoption m = 1/2
and therefore U([0, 1], θ) ≤ 0, which means [0, 1] cannot
be an equilibrium. This completes the proof.

Proposition 1 implies that the usage-based pricing pol-
icy maximizes total welfare by realizing full adoption9,
provided the provider sets the usage allowance a higher

9Assuming that the parameters are such that total welfare is maxi-
mized at x = 1.
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than the threshold c/2. The threshold’s value c/2 is
clearly specific to the assumptions on which the model
is predicated. However, as we will see in Section VIII,
such a threshold condition is present under more general
conditions. In particular, as long as the usage allowance
a is larger than a threshold a0, full adoption is the
unique equilibrium, while if a ≤ a0, full adoption is
then not an equilibrium.

We explore next the policy’s ability to distribute wel-
fare between users and the provider.

C. Welfare Distribution

From Eq. (17), the utility of user θ at full adoption is

U([0, 1], θ) = a−
c

2
·

Combining this expression with Eq. (7) gives the overall
user welfare

WU([0, 1]) = a−
c

2
,

with provider’s profit given accordingly by Eq. (13).
This means that we can pick any a > c/2 with-

out affecting adoption, and therefore freely vary both
WU([0, 1]) and WP([0, 1]) in the full range [0, V∗(1)).

Although, as mentioned earlier, the usage-based policy
does not perfectly emulate the discriminatory policy of
Eq. (12), it coincides with it at full adoption through
the change of variables δ , a − c/2. Hence, a usage-
based pricing policy offers a practical solution to realize
optimality and flexibility (in distributing welfare).

Those benefits notwithstanding, implementing usage-
based pricing calls for monitoring (logging) usage, which
incurs a cost. In addition, some users may prefer the pre-
dictability of fixed pricing (independent of usage), even
in cases where it may be less advantageous for them [7],
i.e., result in a lower utility. This is particularly so in
the case of home-connectivity, for which fixed pricing
is often the norm. For instance, Time Warner recently
announced [8] that its customers would always retain
the option of a flat-rate monthly pricing for broadband
Internet access, with usage-based plans being optional.

For those reasons, we consider next a hybrid pricing
policy that combines fixed and usage-based pricing, and
evaluate the trade-offs it imposes.

VI. HYBRID USAGE-BASED PRICING POLICY

Consider a pricing policy that combines a fixed price
for home connectivity, and a usage-based price for con-
nectivity while roaming.

A. Pricing Structure

Using notation similar to Section V-A, let zr denote the
roaming usage of a user. The total hybrid usage-based
price that a user is charged is then

py(zr) = ph + zr · pr, (18)

where the price of home usage is fixed (independent of
usage) at ph and identical for all users10, and as before
pr is the unit usage price while roaming.

The only user-dependent term in Eq. (18) is, there-
fore, her roaming usage. Recalling the discussion of
Section V-A, the typical roaming usage zr(x, θ) of a user
with roaming profile θ when the service coverage is x is
equal to θx. Hence, the typical cost to a user with profile
θ for the service is given by

py(x, θ) = ph + pr θx, (19)

Next, we investigate if and how ph and pr can be set to
again emulate the discriminatory policy of Eq. (12), or
more importantly achieve the same outcomes, namely,
maximum welfare and flexibility in allowing distribution
of welfare across users and the provider. As per the
discussion of Section IV, the former calls for selecting
ph and pr so as to ensure full adoption, i.e., x = 1.

B. Maximal Service Adoption
Given the price structure of Eq. (19), the utility of a

user can be obtained from Eq. (5) as

U(Θ, θ) = γ− cm− ph + θ(rx− γ− xpr).

By applying the change of variables

δh = γ−
c

2
− ph and δr = r− γ− pr ,

U(Θ, θ) can be rewritten as

U(Θ, θ) =
c

2
− cm+ δh + θ(x(δr + γ) − γ). (20)

Note that δh corresponds to the net residual utility for
home connectivity at full adoption, and conversely δr is
the corresponding quantity for roaming connectivity.

The next Lemma provides conditions under which full
adoption is an equilibrium.

Lemma 2. Under the hybrid pricing of Eq. (19), full adoption,
x = 1, is an equilibrium if and only if δh > 0 and δr > −δh.

Proof: At full adoption we have Θ = [0, 1], x = 1 and
m = 1/2. Therefore the utility of Eq. (20) becomes

U([0, 1], θ) = δh + θδr.

For Θ = [0, 1] to be an equilibrium, all users must have
positive utility. This implies

δh + θδr > 0 , ∀θ ∈ [0, 1].

Since this is a linear function of θ, the inequality holds
if and only if it is satisfied for both θ = 0 and θ = 1, i.e.,
δh > 0 and δh + δr > 0.

The conditions of Lemma 2 state that full adoption,
x = 1, is possible only if the fixed price ph for home
connectivity is not too high, i.e., δh > 0 ⇒ ph < γ − c

2
,

and the roaming usage-based price pr is no higher than

10Note that the usage allowance a is now included in ph.
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Fig. 4. Utility of a user with θ = 1 as a function of coverage under
hybrid pricing for γ = 1, c = 0.7, δh = 0.05 and δr = 0.01.

the net roaming value at full adoption, r− c
2

, minus the
price ph already charged for home connectivity, i.e., δr >
−δh ⇒ pr < r−

c
2
− ph.

Unlike the conditions of Proposition 1 that ensured
positive utility for all users at all levels of coverage,
Lemma 2 does not include such guarantees. In particular,
and as illustrated in Fig. 4 for the θ = 1 user, the utility
of a user can vary from negative to positive as coverage
increases, with a cross-over value of x ≈ 0.85 in the case
of Fig. 4. The θ = 1 user, therefore, adopts only once
coverage exceeds 0.85. Hence, her adoption depends on
the adoption of enough other users (x > 0.85). In gen-
eral, and as hinted at in Fig. 3, users with low θ values
have higher utility at low coverage, and are therefore the
ones joining the service when it is first offered. As they
do, the service becomes more valuable for users with
higher θ values, whose utility may then become positive
allowing them to adopt. This progression can, however,
stall before full adoption is reached, i.e., adoption may
stop at a level x < 1. This can arise even under the
conditions of Lemma 2, as Lemma 2 does not guarantee
the uniqueness of the x = 1 equilibrium.

As shown in Appendix C, when the conditions of
Lemma 2 hold, x = 1 is the unique equilibrium if and
only if γ satisfies

γ < c+ 2δh + 2
√

(c/2+ δh)(δr + δh). (21)

This then ensures that adoption increases monotonically
until reaching full adoption. The condition of Eq. (21)
can be combined with Lemma 2 to obtain the equivalent
of Proposition 1 for the hybrid pricing policy.

Proposition 2. Under the hybrid pricing of Eq. (19), full
adoption, x=1, is the unique equilibrium if and only if

• When γ < c : δh > 0 and δr > −δh

Fig. 5. Final adoption level for the hybrid pricing policy, and iden-
tification of the boundaries demarcating the regions associated with
the conditions of Proposition 2. The straight line corresponds to
γ = c = 0.8, and the curved line captures the condition of Eq. (22).
The system’s parameters are c = 0.8, δr = 0, with γ and δh values
varying.

• When γ ≥ c : δh > 0 and δr > −δh and

δh >
γ2

4(γ+ δr − c/2)
− c/2. (22)

Proof: As a result of the two conditions δh > 0
and δr > −δh and because c ≥ 0 it follows that
2δh + 2

√
(c/2+ δh)(δr + δh) in Eq. (21) is always pos-

itive. Therefore Eq. (21) always holds if γ < c, without
further constraints on the values of δh and δr.

On the other hand, when γ ≥ c, δh and/or δr need
to be large enough to ensure that Eq. (21) is satisfied.
Specifically, algebraic manipulation of Eq. (21) in this
case yields Eq. (22).

Proposition 2 states that when x = 1 is an equilibrium
under hybrid pricing, it can coexist with other equilibria
when the value of home connectivity utility is high
enough, i.e., γ ≥ c and the condition of Eq. (22) is
not satisfied. Focusing on cases when x = 1 maximizes
total welfare, e.g., e is low enough, this means that it is
possible for the provider to set prices ph and pr (and
consequently δh and δr) for which full adoption is feasi-
ble, i.e., the conditions of Lemma 2 are satisfied, without
ever being able to reach this target. This occurs when
the provider’s choice of prices allows the emergence of
a second equilibrium x̃ < 1, where adoption stops upon
reaching it.

As Proposition 2 indicates though, it is possible to
avoid such outcomes by properly selecting prices (pa-
rameters δh and δr) to comply with Eq. (22). This is illus-
trated in Fig. 5, which plots the system’s final adoption
as γ and δh vary for the case c = 0.8 (initial adoption is
set to x = 0, and for simplicity we assume δr = 0 and
focus on the impact of varying δh). The figure confirms
(straight boundary line at γ = c = 0.8 in the figure)
that when γ < c = 0.8, any value of δh > 0 results in
full adoption. It also shows that when γ ≥ c = 0.8, the
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system only converges to full adoption when δh further
satisfies the condition of Eq. (22) (corresponding to δh
values that lie to the right of the curved boundary line
in the figure).

The conditions of Proposition 2 are clearly specific
to the assumptions on which the model is predicated.
However, we will see in Section VIII that the very same
behavior arises under more general settings; specifically,
a second, sub-optimal equilibrium (x̃ < 1) can arise
whenever the value of home connectivity exceeds a
certain threshold, and in the process prevent the system
from reaching its intended target of full adoption. In ad-
dition, overcoming this issue can again be accomplished
by adjusting prices, albeit to different values than those
of Proposition 2.

We note that the aspect of adjusting (lowering) prices
to ensure full adoption begs the question of what would
motivate the provider to do so. We explore this issue next
in the broader context of the hybrid pricing policy’s abil-
ity to distribute welfare between users and the provider.
We first explore the pricing policy’s ability to support
arbitrary welfare distribution at full adoption, including
maximizing the provider’s profit, and then focus on the
extent to which the conditions of Proposition 2 constrain
this ability, and what options are available to overcome
those limitations.

C. Welfare Distribution

As before, we focus on scenarios for which total
welfare is maximized at full adoption, i.e., combinations
that, as illustrated in Fig. 1, correspond to a low enough
cost e relative to the other system’s parameters γ, c, and
r. We explore first whether, once at full adoption (and
maximum total welfare), the hybrid pricing policy allows
an arbitrary distribution of welfare (as the usage-based
policy did), from maximum user welfare to maximum
provider profit.

Lemma 2 identifies the constraints that pricing must
satisfy to ensure that full adoption is an equilibrium, i.e.,
δh > 0 and δr > −δh. Combining Eq. (20) and Eq. (7)
gives the following expression for the users’ welfare
WU([0, 1]) at full adoption

WU([0, 1]) = δh +
δr

2
, (23)

with according to Eq. (13) and Eq. (11), the provider’s
profit given by

WP([0, 1]) =
γ+ r− c

2
− e−

(
δh +

δr

2

)
. (24)

Realizing maximum user welfare calls for choosing
prices such that WP([0, 1]) = 0, which according to
Eq. (24) implies

δh +
δr

2
=
γ+ r− c

2
− e.

This can be readily accomplished by choosing values of
δh and δr that also satisfy Lemma 2, e.g., δh = ε > 0,
and δr = γ+ r− c− 2e− 2ε > −ε, where ε is arbitrarily
small. Conversely, maximizing the provider’s profit calls
for setting prices that extract (nearly) all the value users
realize from the system, i.e., set both δh and δr equal to
arbitrarily small positive values (this again satisfies the
conditions of Lemma 2, namely, δh > 0 and δr > −δh).

Intermediate distributions of welfare are also feasible
simply by adjusting the values of δh and δr. Consider
for example a scenario where a regulator wants all users
to see the same utility value α > 0. From Eq. (20) the
utility of a user with roaming parameter θ is given by

U([0, 1], θ) = δh + θδr = α .

Eliminating the dependency on θ to ensure that all
users see the same utility requires δr = 0, which then
implies δh = α > 0 that again satisfies the conditions of
Lemma 2. Hence, we see that once at full adoption (and
assuming full adoption maximizes welfare), the hybrid
pricing policy, like the usage-based policy, is capable of
achieving any arbitrary distribution of welfare between
users and the provider. However as made explicit in
Proposition 2, reaching full adoption can, as reflected in
Eq. (22), impose additional conditions on pricing, which
may preclude some welfare distribution configurations.
In particular, maximizing the provider’s profit, which
as just discussed calls for setting both δh and δr to
arbitrarily small positive values, readily conflicts with
the conditions of Eq. (22).

A possible approach suggested by the discussion of
Section VI-B, is for the provider to offer an introductory
pricing that satisfies the conditions of Proposition 2;
thereby enabling full adoption to be reached. The moti-
vation for the provider to do so is that once full (or nearly
full11) adoption has been reached, it can then switch to
a pricing scheme that allows it to extract a higher profit.

In the next section, we introduce a third family of
pricing policies that seeks to eliminate all dependency
on monitoring a user’s usage; therefore simplifying im-
plementation and possibly facilitating user acceptance.

VII. FIXED PRICE POLICY

This section considers a pricing policy based on a fixed
price that covers both home and roaming connectivity.

As mentioned earlier, the use of a fixed price is not
uncommon for home connectivity, but it is arguably
less so for wireless roaming access which is the other
component of the service we consider. Nevertheless, a
number of wireless carriers do offer fixed-price wireless
services [9]. Hence it is of interest to investigate the im-
pact such a pricing policy might have on their ability to
maximize profit and on the welfare the system realizes.

11See Appendix C for details on how early the service provider can
end the introductory pricing phase.
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A. Pricing Structure
Pricing is independent of usage and based on a single

parameter p,
p(Θ, θ) = p, ∀Θ, θ. (25)

We investigate if and how p can be set to realize max-
imum welfare and flexibility in distributing it across
stakeholders. As per the discussion of Section IV, the
former (typically) calls for selecting p so as to ensure
full adoption, i.e., x = 1.

B. Maximum Service Adoption
Given Eq. (5) and the price structure of Eq. (25), the

utility of user θ is

U(Θ, θ) = γ− p− cm+ θ (r x− γ) . (26)

The following Lemma then gives the condition under
which full adoption is an equilibrium. The proof is in
Appendix D.

Lemma 3. Under the fixed price policy of Eq. (25), full
adoption is an equilibrium if and only if p < γ− c/2.

Note that as was the case with Lemma 2, the condition
of Lemma 3 does not imply uniqueness of the x = 1
equilibrium. In fact, as shown in Appendix D, under
fixed pricing there may be as many as four equilibria,
spanning combinations of stable, unstable, periodic, or
chaotic equilibria. Table I summarizes possible combi-
nations, with (•) denoting stable equilibria, (◦) unstable
equilibria, (�) equilibria associated with an “orbit” that
can be either convergent, periodic, or chaotic, and (—)
the absence of equilibria.

Cases [0, γ/r) [γ/r, 1]
1 — —
2 • —
2’ � —
3 — •
3’ — �
4 •, ◦ —
5 — •, ◦
6 •, ◦ •
7 • •, ◦
8 •, ◦ •, ◦

TABLE I
EQUILIBRIA COMBINATIONS UNDER FIXED PRICING

Ensuring that x = 1 is the unique (stable) equilib-
rium, and therefore that the service always reaches full
adoption, calls for additional constraints on p beyond
those of Lemma 3. These constraints are formalized in
the next Proposition, which mirrors the conditions of
Proposition 1 for usage-based pricing. The proof is again
in Appendix D.

Proposition 3. Under the fixed price policy of Eq. (25), full
adoption, x = 1, is the unique equilibrium if and only if

p < min
(
γ− c/2, γ−

γ2

4r− 2c

)
.

The conditions of Proposition 3 ensure that total wel-
fare is maximized under a fixed price policy. Next, we
see if and how these conditions limit the policy’s ability
to distribute welfare between users and the provider.

C. Welfare Distribution
From Eq. (26), the utility of user θ at full adoption is

U([0, 1], θ) = (1− θ)γ+ θr− p− c/2 ,

which when combined with Eq. (7), gives the following
expression for user welfare

WU([0, 1]) =
γ+ r− c

2
− p ,

with Eq. (13) correspondingly giving the provider’s
profit as

WP([0, 1]) = p− e .

As before, flexibility in distributing welfare calls for
being able to vary WU([0, 1]) across the full range
(0, V∗(1)], where V∗(1) = γ+r−c

2
− e. Clearly, this cannot

be achieved without violating the conditions of Proposi-
tion 3, e.g., WU([0, 1]) = 0 calls for p = γ+r−c

2
≥ γ − c/2

(recall that r ≥ γ). Therefore the service is not capable
of realizing full adoption and maximizing the provider’s
profit (see Appendix D for a full discussion).

Under hybrid pricing, we suggested the use of intro-
ductory prices to first realize full adoption, and then per-
form the desired welfare allocation. Unfortunately, this
is not sufficient under fixed pricing, as certain welfare
allocations are incompatible with not just Proposition 3,
but also Lemma 3. In particular and as mentioned above,
WU([0, 1]) ≈ 0 calls for a price p ≥ γ− c/2 that violates
the conditions of both the Lemma and the Proposition.
Hence, after an introductory price expires, it forces a
drop in adoption below x = 1 and prevents welfare
maximization.

In other words, the simplicity of the fixed price policy
comes at a cost in terms of its ability to simultaneously
maximize and distribute welfare. The concern is that this
limitation may result in sub-optimal welfare realizations
(and lower service coverage), as the provider may be
tempted to set prices to maximize profit.

Fig. 6 helps assess the extent to which this may be a
risk. It plots as a function of c and for a combination
of parameters γ = 1, r = 2, and e = 0.3, the relative
difference in profit between a profit maximizing choice
of p and one that yields the best possible profit while
also maximizing welfare, i.e., maintaining x = 1. The
figure indicates that as long as c remains relatively small
(compared to γ and r), the incentive to deviate from a
welfare maximizing price is small. As a matter of fact,
when c is very small maximizing profit and welfare
coincide even though welfare cannot be entirely realized
as profit (this is an intrinsic limitation of the fixed-price
policy). As the negative impact of roaming traffic, c,
grows larger, it however becomes increasingly tempting
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Fig. 6. Relative profit drop from profit maximization to welfare
maximization (fixed-price policy γ = 1, r = 2 and e = 0.3).

(profitable) for the provider to deviate from a welfare
maximizing strategy and set a price that keeps adoption
low. Arguably though, such scenarios where users are
highly sensitive to the (negative) impact of roaming
traffic are inherently not conducive to the large-scale
deployment of a UPC like service.

The analysis of this section and its illustration in Fig. 6,
are clearly dependent on the specific assumptions of the
model. However, as demonstrated in Section VIII, the
findings hold even under more general conditions.

In summary, although the fixed price policy exhibits
clear limitations in its ability to jointly maximize welfare
and profit, its simplicity still makes it an attractive
candidate, at least in scenarios where users are relatively
insensitive to the negative aspects of a UPC service
(small c values). In addition and as discussed in Ap-
pendix D, setting the price to maximize profit can be
“risky,” as the optimal price is such that small errors in
parameter estimation can produce a dramatic collapse
in adoption and consequently profit12. This should make
the safer welfare maximization policy more appealing to
the service provider.

VIII. GENERALIZATIONS AND ROBUSTNESS

The user adoption model reflected in the utility func-
tion of Eq. (5) is obviously highly stylized and predicated
on various simplifying assumptions, namely,
• A user’s propensity to roam, θ, is uniformly dis-

tributed in [0, 1],
• A user’s utility is a specific linear function of cov-

erage κ and volume of roaming traffic m,
• Adoption, x, accurately measures coverage κ,
• All users see the same coverage and contribute the

same amount of traffic while roaming.
Similarly, the different pricing policies discussed in

the paper rely on these assumptions, as well as on

12In other words, the underlying optimization is inherently fragile.

an implicit knowledge (by the service provider) of the
range and values of the different system parameters.
This clearly raises valid questions regarding whether the
paper’s findings hold outside this framework.

This section, and more generally Appendix F seeks
to address this issue. It numerically investigates the
extent to which relaxations of modeling assumptions
and the introduction of estimation errors in the system’s
parameters affect the results. As expected, modifying
the paper’s assumptions produces quantitative changes
in the outcomes. However, as we show next, its main
qualitative findings remain valid.

More specifically, the investigation demonstrates the
robustness of the paper’s findings (summarized in the
next section) against a broad range of perturbations. Re-
sults are presented here only for representative scenarios,
with the full set of results available in Appendix F.

The rest of this section is structured as follows.
Section VIII-A restates the paper’s main findings for
completeness. The methodology behind the robustness
tests is outlined in Section VIII-B, while an illustrative
example is presented in Section VIII-C.

A. Main findings and insight
We briefly recall the main findings that emerged from

the results of the paper’s simple model.
• Maximum total welfare: Whenever the system is ca-

pable of generating value, this value is maximized
at full (or close to full) adoption;

• Usage-based pricing: Realizing the system’s maxi-
mum value under a usage-based pricing policy calls
for ensuring that users are offered a usage allowance
that exceeds a minimum threshold a.

• Hybrid usage-based pricing: When the value of home
connectivity is high, the hybrid pricing policy may
not achieve maximum system value (because of
the emergence of a sub-optimal equilibrium) unless
prices are sufficiently discounted (high values for
parameters δh and δr). Such discounts prevent the
service provider from maximizing profit, unless it
resorts to an introductory pricing scheme;

• Fixed pricing: Under a fixed price policy, profit and
welfare maximization strategies typically differ un-
less the penalty associated with allowing roaming
traffic (the parameter c) is small.

B. Robustness testing methodology
In testing for robustness, we consider perturbations to

the assumptions, parameters and functional expressions
of the paper’s model. Because those perturbations affect
the model’s analytical tractability, their impact is evalu-
ated by means of numerical simulations. The simulations
also consider the effect of different types of errors in the
estimation of system parameters on which the service
provider relies when designing pricing strategies. We
describe next the dimensions along which we perturb the
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(a) Total welfare: optimal adoption for
maximum system value. Compare to
Fig. 1.

(b) Usage-based pricing policy: values of us-
age allowance a for which the system goes to
full adoption.

(c) Hybrid pricing policy: final adoption level
as a function of the parameters γ and δh.
Compare to Fig. 5.

(d) Fixed price policy: relative profit drop
from profit maximization to welfare max-
imization. Compare to Fig. 6.

Fig. 7. Impact of relaxing modeling assumptions on the paper’s main findings. [1- Coverage κ is a concave function of adoption x that saturates
as x increases; 2- Users have a non-linear utility function; 3- Users’ roaming characteristics has a non-uniform distribution].

original model. Additional details can again be found in
Appendix F.

• Non-uniform roaming distributions: We consider
different probability distributions for a user’s propensity
to roam, θ. In particular, we consider distributions with
both low and high roaming modes (fewer or more users
that roam frequently).

• Modified user utility functions: The original model
assumes a specific functional expression for users’ utility
that grows linearly with coverage (x) and decreases
linearly with the volume of roaming traffic (m). We relax
the linearity assumption, and also consider two different
utility functions inspired by the models of [10].

• Coverage saturation: The original model assumes
that coverage increases linearly with service adoption.
We relax this assumption and consider a saturation effect
for coverage, i.e., coverage is now a concave function of
adoption, which captures that adequate coverage may
be realized with less than 100% adoption.

• Users heterogeneity: We consider a scenario where
users belong to two “types” with different “profiles.”
The type of a user affects that user’s utility as well as
the volume of roaming traffic she generates.

C. Robustness tests

Because of space limitations, we only report on the
outcome of one experiment that combines the first three
perturbations of the previous section, namely, a non-
uniform roaming distribution with a mode towards high
roaming values, a non-linear utility function for users13,
and coverage that increases faster than adoption, i.e.,
saturates before full adoption. We omit including differ-
ent types of users in the experiment, as this additional
perturbation typically masks the effect of the others.
Results reporting on its effect can, however, be found
in Appendix F, together with results for different utility
functions and a range of other scenarios.

Fig. 7 displays the results of the evaluation. It consists
of four sub-figures, with each sub-figure corresponding
to one of the findings summarized in Section VIII-A,
and illustrating the extent to which the corresponding
finding has been affected. As we discuss next, the figures
illustrate that while quantitative changes can be ob-

13Super-linear in a user’s sensitivity to roaming traffic m, and sub-
linear in her sensitivity to coverage x, i.e., U(Θ, θ) = γ − cm1.2 +
θ (r x0.8 − γ) − p(Θ, θ).
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served, the overall qualitative outcomes remain similar,
thereby demonstrating the robustness of the findings.
A similar conclusion held across the broader range of
scenarios found in Appendix F.

Consider first Fig. 7a that mirrors Fig. 1, namely,
plots the adoption level that maximizes total welfare
as a function of the system parameters γ and e. The
figure illustrates that, as in the original model, when the
system can generate positive value (the system cost e is
not too high), this is achieved at or near full adoption.
The wider “intermediate” area that shows welfare being
maximized slightly below full adoption is intuitive in
light of the assumption of coverage saturation for the
system, i.e., reaching full adoption adds more roaming
traffic without meaningfully improving coverage.

Fig. 7b in turn displays that under the usage-based
pricing policy, the system still exhibits the characteristic
“threshold behavior,” which had been identified in the
original model. Specifically, the pricing policy needs to
offer users a certain minimum usage allowance, a, to
successfully realize full adoption, and therefore maxi-
mum welfare. The exact value of a is clearly different
from that predicted by the original model, but the overall
behavior is still present.

Fig. 7c corresponds to Fig. 5. It shows that, as before,
when the value of home connectivity γ is large, the
hybrid pricing policy exhibits regimes where a sub-
optimal equilibrium (x̃ < 1) can arise, thereby preventing
the system from reaching full adoption. Overcoming
this issue can again be accomplished by appropriately
discounting the service prices. The discount values are
obviously different, but the mechanism is the same.

Finally, Fig. 7d parallels Fig. 6. It displays for the fixed
price policy, the gap in profit between profit maximizing
and welfare maximizing strategies. As before, the gap is
small when the parameter c is small, and grows large as
c increases.

The above results offer evidence that the findings
of the paper hold under more general settings than
those of the specific and relatively simple model used
to preserve analytical tractability. As mentioned earlier,
further evidence of this robustness can be found in Ap-
pendix F, which also investigates the impact of various
errors in the provider’s estimates for the different system
parameters.

IX. RELATED WORKS

The service adoption process this paper focuses on
exhibits both positive and negative externalities. There is
a vast literature investigating the effect of externalities,
often called network effects [11], [12], [13], but the majority
of these works focus on either positive or negative exter-
nalities separately. For example, [5] investigates the im-
pact of positive externalities on the product adoption de-
cisions of individuals. The effect of positive externalities
on the competition between technologies is considered

in [14], [15], [16], [17], [18], [19]. Conversely, the impact
of negative externalities, e.g., from congestion, has been
extensively investigated in the context of pricing for both
communication networks [20], [21], [22], [23], [24] and
transportation systems [25], [26], [27], [28].

The topic of optimal pricing for systems with both pos-
itive and negative externalities is less studied and seems
to have been first addressed in [29] that sought to opti-
mize a combination of provider’s profit and consumers’
surplus. Different pricing strategies were considered,
including flat pricing and pricing strategies that account
for the product “amount” consumed by a user, i.e., akin
to the usage-based pricing model of Section V. Other
works have been primarily conducted in the context
of the theory of clubs first formally introduced in [30]
(see [31], [32], [33] for more recent discussions). A club
has a membership that shares a common good or facility,
e.g., a swimming pool, so that increases in membership
have a positive effect (externality) by lowering the cost
share of the common good, e.g., lower maintenance costs
of the shared swimming pool. At the same time, a larger
membership also has a negative, congestion-like effect,
e.g., a more crowded swimming pool. In general, the co-
existence of positive and negative externalities implies
an optimal membership size (see also [34] for a recent
interesting investigation that contrasts the outcomes of
self-forming and managed memberships).

Club-like behaviors also manifest themselves in file-
sharing peer-to-peer (p2p) systems. In a file-sharing p2p
system, more peers increase the total resources available
to store content. However, unless enough peers are will-
ing to share their resources, more peers can also translate
into a higher load on those peers willing to serve files
to others, and/or a longer time for locating a desired
file. This has then triggered the investigation of incentive
mechanisms to ensure that enough peers share their
resources, e.g., BitTorrent “tit-for-tat” mechanism [35]
or [36] that also explores a possible application to a
wireless access system similar in principle to the one
considered in this paper.

The model of this paper differs from these earlier
works in important ways. First and foremost, it intro-
duces a model for individual adoption decisions of a
service, which allows for heterogeneity in the users’ val-
uation of the service. In particular, certain users (roaming
users) have a strong disincentive to adoption when cov-
erage/penetration is low, while others (sedentary users)
are mostly insensitive to this factor. Conversely, this
heterogeneity is also present in the negative externality
associated with an increase in service adoption. Its mag-
nitude is a function of not just the number of adopters,
but their identity as well, i.e., roaming or sedentary users.
The presence of heterogeneity in how users value the
service and how they affect its value is a key aspect of a
UPC–like service; one that influences its value and how
to price it to realize this value.
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X. CONCLUSION

The paper was motivated by the emergence of UPC
services that feature both positive and negative external-
ities, and more importantly (negative) externalities that
depend not just on the number of adopters, but also
on which users have adopted. The goal was to develop
an understanding of the conditions under which such
services may succeed and the welfare they generate.

As expected given the service’s strong positive exter-
nality, welfare is typically maximized when adoption
is maximum. More interestingly, maximum adoption
and welfare can be achieved through relatively simple
pricing policies that also afford complete flexibility in
deciding how welfare is distributed between users and
the provider of the service. Of interest is the fact that
pricing according to service usage is sufficient to cap-
ture differences in how users value the service, and
successfully realize both maximum welfare and arbitrary
welfare distribution.

Despite the relative simplicity of usage-based pricing,
it involves monitoring overhead and may face accep-
tance challenges on the part of users. This motivated the
investigation of alternate policies, which offer a different
trade-off between implementation considerations, wel-
fare maximization, and flexibility in welfare distribution.

The paper’s main contributions are in offering new
insight into the viability of UPC-like services, as well as
simple (pricing) mechanisms to facilitate their successful
and effective deployment.
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APPENDIX A
DISCRETE DYNAMICS

In this section we propose a discrete dynamic platform
and formally describe how the equilibria of the UPC
system are determined over this platform. With Eq. (5)
in place, it is possible to investigate the dynamics of
user adoption over time. We formulate a discrete-time
model that evaluates user adoption decisions at succes-
sive epochs. For simplicity14, at epoch (n+1) all users are
assumed to know the system state produced by adoption
decisions at epoch n. Users with a non-negative utility
then proceed to adopt. Specifically, the utility at epoch
(n + 1), Un+1(Θ, θ), of a user with roaming value θ is
given by

Un+1(Θ, θ) = γ− cmn + θ (r xn − γ) − p(Θ, θ) , (27)

where xn and mn are the adoption level and volume of
roaming traffic produced by adoption decisions at epoch
n.

Using Eq. (27) and denoting H(x) ≡ xn+1 as a function
of x ≡ xn, we can characterize the evolution of H(x) and
identify adoption equilibria. Equilibria can be interior
equilibria, i.e., correspond to x ∈ (0, 1), or boundary
equilibria, i.e., associated with x = 0 or x = 1. Interior
equilibria satisfy the equation

H(x) = x . (28)

Boundary equilibria need not satisfy Eq. (28) and instead
verify either xn = 0 ≥ xn+1 or xn = 1 ≤ xn+1.

APPENDIX B
DERIVATIONS FOR THE OPTIMAL TOTAL WELFARE

Section III-B identified the optimal total welfare for a
given adoption level x as

V∗(x) =

{
r−c
2
x3 − γ

2
x2 + (γ− e)x if x < γ

r−c

− r−c
2
x3 + (γ

2
+ r− c)x2 − ex if x ≥ γ

r−c ·

Denote the above two expressions by V∗1(x) and V∗2(x)
for x < γ

r−c and x ≥ γ
r−c , respectively (shown in Fig. 8a

as dashed line and solid line, respectively).
Finding the maximum welfare is done in two steps. We

first compute the maximum of each function V∗1(x) and
V∗2(x), and then find the global maximum by comparing
the two local maxima.

14Numerical results confirm that a more realistic, diffusion-based
adoption model produces similar results.

A. Maximum of V∗1(x)

For easy reference, we repeat the expression of V∗1(x)
here.

V∗1(x) =
r− c

2
x3 −

γ

2
x2 + (γ− e)x , x <

γ

r− c
.

It is easy to find the roots of this expression asx = 0
x =

γ
2
±
√
γ2

4
−2(γ−e)(r−c)

r−c ,

(29)

if they exist (are real numbers). Also its derivative is

∂V∗1(x)

∂x
=
3

2
(r− c)x2 − γx+ γ− e, (30)

and the two roots of ∂V
∗
1(x)
∂x

are given byx11 =
γ−
√
γ2−6(γ−e)(r−c)

3(r−c)

x12 =
γ+
√
γ2−6(γ−e)(r−c)

3(r−c) ·
(31)

In order to find the maximum total welfare in x < γ
r−c

regime, we take a step-by-step approach, with each step
expressed in a lemma.

Lemma 4. if e ≥ γ, then V∗1(x) ≤ 0 for all values of x ∈
[0, γ

r−c ].

Proof: First assume that e > γ. From Eq. (29) and
since r−c > 0, the condition e > γ guarantees that V∗1(x)
has indeed three roots, x1 < 0, x2 = 0 and x3 >

γ
r−c .

On the other hand, at x = 0 the derivative of V∗1(x) is
g−e < 0. Therefore V∗1(x) goes from 0 to negative values
for x > 0, and may not become non-negative again until
its next root at x3 > γ

r−c .
Moreover, if e = γ, then the three roots of Eq. (29) are

x1 = 0, x2 = 0, and x3 = γ
r−c . At x = 0 the second

derivative of V∗1(x) is −γ. Therefore, as before, V∗1(x)
goes from 0 to negative values for x > 0, and may not
become non-negative again until its next root at x = γ

r−c .

This lemma shows that total welfare is not positive for
x < γ

r−c if e ≥ γ. We next look at the case where e < γ.

Lemma 5. If e < γ, then the maximum of V∗1(x) over values
of x ∈ [0, γ

r−c ] happens at either x = x11 (if it is real) or
x = γ/(r− c).

Proof: If e < γ it can be easily verified that x11 > 0
and x12 < 2γ

3(r−c) < γ/(r−c) (if they are real). Since V∗1(x)
is an increasing function of x except for x11 < x < x12,
the desired result follows.

consequently, we deduce that if x11 and x12 are
imaginary, then the maximum of V∗1(x) over values of
x ∈ [0, γ

r−c ] happens at x = γ/(r − c). More precisely, if
e satisfies

f3 : e < γ−
γ2

6(r− c)
, (32)
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(a) γ = 0.8, e = 0.75, c = 0.6, b = 0, r = 1.6. In this case,
the optimal value is achieved at x = 1 (Corresponding to the
dark solid-colored region in Fig. 1).

(b) γ = 1.3, e = 1.145, c = 0.6, b = 0, r = 1.6. In this case,
the optimal value is achieved at x ≈ 0.14 (Corresponding to
the gradient-colored region in Fig. 1).

Fig. 8. System’s total value as a function of x for different sets of parameters.

then the maximum of V∗1(x) over values of x ∈ [0, γ
r−c ]

happens at x = γ/(r− c).

B. Maximum of V∗2(x)

For easy reference, we repeat the expression of V∗2(x)
here.

V∗2(x) = −
r− c

2
x3 + (

γ

2
+ r− c)x2 − ex , x ≥ γ

r− c
.

It is easy to find the roots of this expression asx = 0x =
γ
2
+r−c∓

√
(γ/2+r−c)2−2e(r−c)

r−c ,
(33)

if they exist (are real numbers). Also its derivative is

∂V∗2(x)

∂x
= −

3

2
(r− c)x2 + (γ+ 2r− 2c)x− e. (34)

We now have the following lemma.

Lemma 6. If the roots of ∂V
∗
2(x)
∂x

are imaginary, then V∗2(x)
is always negative on its domain.

Proof: If the roots are not real then the expression
for derivative always has the same sign as of its first
coefficient, −3

2
(r−c). Since r−c > 0, then the derivative

is always negative, and therefore V∗2(x) is a decreasing
function of x. On the other hand, since V∗2(x = 0) = 0,
therefore V∗2(x) < 0, ∀x ∈ [γ/(r− c), 1).

The two roots of ∂V
∗
2(x)
∂x

are given byx21 =
γ+2r−2c−

√
(γ+2r−2c)2−6e(r−c)

3(r−c)

x22 =
γ+2r−2c+

√
(γ+2r−2c)2−6e(r−c)

3(r−c) ·
(35)

By algebraic manipulation we can show that these two
roots are imaginary if and only if γ satisfies

−2(r− c) −
√
6e(r− c) < γ < −2(r− c) +

√
6e(r− c).

But the first inequality is always satisfied by positivity
of γ. Therefore the roots in Eq. (35) are imaginary if and
only if γ satisfies

γ < −2(r− c) +
√
6e(r− c),

or equivalently the roots in Eq. (35) are real if and only
if γ satisfies

f2 : γ ≥ −2(r− c) +
√
6e(r− c), (36)

which, by lemma 6 is required for positivity of V∗2(x).
Now, lets see what happens when Eq. (36) is satisfied

and therefore the roots of ∂V
∗
2(x)
∂x

are real. Since r−c > 0,
the derivative is always negative except in between its
roots. Then note that as for the smaller root, x21 > 0.
So ∂V∗

2(x)
∂x

< 0 at a neighborhood of x = 0 and therefore
V∗2(x) is decreasing until a value larger than x = 0. After
that, V∗2(x) starts increasing again until x = x22 where
it again starts to decrease and continues to decrease
indefinitely. Considering that V∗2(x = 0) = 0, we deduce
that if V∗2(x) has a positive maximum in x ∈ [γ/(r−c), 1)
then it happens at min{1, x22}. On the other hand, and
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considering that [γ/(r − c), 1) is only non-empty if
γ ≤ r − c, we can perform algebraic manipulations to
show that in its valid domain, x22 < 1 if and only if
e > γ+ (r− c)/2.

Therefore, for all values of

f1 : γ ≥ e− (r− c)/2, (37)

the maximum of V∗2(x) happens at x = 1 or x = 0, and
is the bigger of r−c+γ

2
− e or 0, respectively.

As mentioned before, we finally compare the maxima
of V∗1(x) and V∗2(x) for the common parameter ranges.
For instance, when Eq. (32) is satisfied, it can be shown
that Eq. (37) is also satisfied, and the bigger of the two
maxima happens at x = 1. Completing the steps and
using numerical comparisons when necessary, results in
Fig. 1.

APPENDIX C
DERIVATIONS FOR HYBRID USAGE-BASED POLICY

Section VI presented the hybrid usage-based pricing
policy that combines a fixed price for home connectivity,
and a usage-based price for connectivity while roaming.

Also, Lemma 2 provided conditions under which full
adoption x = 1 is an equilibrium. However, that Lemma
did not guarantee the uniqueness of x = 1 equilibrium.
Indeed, the progression of adoption levels towards x =
1 can stall before full adoption is reached. We explore
next when this arises (assuming that the conditions of
Lemma 2 hold).

A. Condition for uniqueness of x = 1 equilibrium

Consider a scenario where not all users have positive
utility when coverage is low, so that only a subset
Θ 6= [0, 1] of users initially adopt. This initial adoption
triggers other users to re-evaluate their utility U(Θ, θ),
which then determines a new set of adopters Θnew,
such that Θnew = { θ | U(Θ, θ) > 0 }. Basic algebraic
manipulation yields that Θnew comprises either all users
(if x(δr+γ)−γ ≥ 0), or users that verify θ < c/2−cm+δh

γ−x(δr+γ)

(if x(δr + γ) − γ < 0), where x and m are determined
by the (old) set of adopters Θ. This implies that for any
adoption level x, 0 ≤ x ≤ 1, the set Θ of adopters is [0, x].
Using Eq. (3), this set yields a roaming traffic of the form
m = x2

2
, which using Eq. (20) characterizes the utility of

user θ as

U(Θ, θ) =
c

2
(1− x2) + δh + θ(x(δr + γ) − γ).

Consequently, the new level of adoption xnew = |Θnew|

can be expressed as a function of the previous level x.

Letting H(x) , xnew and solving for U(Θ, θ) > 0 gives15

H(x) =

{
c/2(1−x2)+δh
γ−x(δr+γ)

if x(δr + γ) − γ < 0

1 if x(δr + γ) − γ ≥ 0·

Adoption equilibria satisfy H(x) = x, and can, therefore,
be characterized by solving this equation. It can be
shown that

Lemma 7. when the conditions of Lemma 2 hold, x = 1 is
the unique equilibrium if and only if γ satisfies

γ < c+ 2δh + 2
√
(c/2+ δh)(δr + δh).

Proof: It is easy to see that the second expression
for H(x) satisfies H(x) = x only at x = 1, and therefore
if there are any equilibria at x < 1, they must satisfy
H(x) = x for the first expression of H(x), i.e.,

H1(x) ,
c/2(1− x2) + δh
γ− x(δr + γ)

= x for x(δr + γ) − γ < 0.

We first show that if γ satisfies the condition of the
Lemma, then no such equilibria may exist at x < 1.

Basic algebraic manipulation turns the above equation
into

Q(x) , (γ+ δr − c/2) x
2 − γx+ c/2+ δh = 0,

which is a quadratic equation in x and for simplicity we
denote it byQ(x) = 0.We then compute the discriminant
for this equation as

∆x = γ2 − 4(c/2+ δh)(γ+ δr − c/2)

= γ2 − γ(2c+ 4δh) − 4(c/2+ δh)(δr − c/2),

which, in turn, is a quadratic polynomial in γ. The roots
of the discriminant are

γ1 = c+ 2δh − 2
√
(c/2+ δh)(δr + δh) and

γ2 = c+ 2δh + 2
√
(c/2+ δh)(δr + δh)

and the discriminant is negative for γ values in the range
(γ1, γ2).

Now consider one such γ value in the range (γ1, γ2),
which is arbitrarily close to γ2, i.e., γ = γ2 − ε for an
arbitrarily small ε > 0. Therefore, the coefficient of x2 in
Q(x) becomes

γ+ δr − c/2

=
(
c+ 2δh + 2

√
(c/2+ δh)(δr + δh) − ε

)
+ δr − c/2

= c/2+ (δh + δr) + δh + 2
√
(c/2+ δh)(δr + δh) − ε,

which is guaranteed to be positive if ε is chosen small
enough, e.g., ε = (δh + δr)/2. (Note that −ε is the only
negative term in this expression.) On the other hand,
by the previous discussion, ∆x is negative at γ = γ2−ε.
Therefore at γ = γ2−ε we have Q(x) > 0, ∀x (Of course,

15For notational simplicity, we omit the constraints which ensure that
like x,H(x) is lower-bounded by 0 and upper-bounded by 1.
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by ∀x we mean values of x for which H(x) = H1(x), i.e.,
those which satisfy x(δr + γ) − γ < 0).

Furthermore, the only terms in Q(x) that depend on
γ are γ(x2− x). Therefore since x2− x < 0, ∀x, it follows
that Q(x), ∀x is a decreasing function of γ. Hence for
any γ ′ ≤ (γ2 − ε) we also have Q(x) > 0, ∀x, which
means H1(x) 6= x, and it follows that x < 1 may not be
an equilibrium.

Lemma 7 then ensures that adoption increases mono-
tonically until reaching full adoption. The condition of
this Lemma was previously referred to in Eq. (21).

APPENDIX D
FIXED PRICE POLICY

The simplest pricing policy is one with a single fixed
and flat-rate price, i.e., p(Θ, θ) = p. With this pricing
policy, Eq. (27) becomes

Un+1(Θ, θ) = γ− p− cmn + θ (r xn − γ) . (38)

Since a user’s utility is a function of the adoption set Θ,
evaluating the system state calls for first characterizing
Θ. The next proposition allows us to understand the
composition of Θ.

Proposition 4. For all choices of p, γ and c, the set of
adopters is characterized by a range of θ values of the form
[0, θ̂ ] or [θ̂, 1], 0 ≤ θ̂ ≤ 1.

Proof. From Eq. (38), we have:

Un(Θ, θ) = βn−1 + θαn−1 ,

where βn−1 = γ−p−cmn−1 and αn−1 = r xn−1−γ. For
a user to have a positive utility, and therefore adopt, its θ
value must satisfy θαn−1 > −βn−1. This translates into
different conditions depending on the sign and value of
αn−1.

If αn−1 < 0, i.e., xn−1 < γ/r, θ needs to sat-
isfy θ < −βn−1/αn−1. Hence, the set of adopters
at epoch n is either empty or corresponds to users
with θ values in an interval of the form [0, θ̂n), where
θ̂n = (−βn−1/αn−1)[0,1] and we have used the notation
(x)[0,1] to denote the projection of x on the interval [0, 1].

If αn−1 > 0, i.e., xn−1 > γ/r, θ must now satisfy
θ > −βn−1/αn−1. In this scenario, the set of adopters
at epoch n is again either empty or corresponds to users
with θ values in an interval of the form (θ̂n, 1] where
θ̂n = (−βn−1/αn−1)[0,1].

Finally, if αn−1 = 0, i.e., xn−1 = γ/r, then Un(θ) =
βn−1,∀ θ ∈ [0, 1]. The set of adopters in this last case is
either the empty set (if βn−1 ≤ 0) or the entire interval
[0, 1] (if βn−1 > 0).

As a result of proposition 4, we shall capture the
adopters’ set Θn at epoch n through an adoption vec-
tor, Xn, that includes the number of adopters, xn, and

specifies their θ values through a simple binary variable.
Using Eq. (38) and denoting H(X) ≡ Xn+1 as a function
of X ≡ Xn, we want to characterize the evolution of H(X)
and identify adoption equilibria. We will drop the Θ
notation hence forth and simply denote the utility under
a flat-rate price at epoch n by Un(θ).

From the proof of Proposition 4, we derive expressions
for xn, for the three possible conditions on αn−1.

xn =


θ̂n if xn−1 < γ/r (39a)
1− θ̂n if xn−1 > γ/r (39b)
I[βn−1], if xn−1 = γ/r (39c)

As mentioned before, proposition 4 also establishes that
the adoption state at epoch n,Xn, can be represented as
a two-dimensional vector Xn = (xn, yn), where yn is
a binary variable that indicates the “type” of adoption
interval of Proposition 4. Specifically,

yn =

{
0 if adopters ∈ [0, θ̂n), i.e., xn−1 < γ/r

1 if adopters ∈ [θ̂n, 1], i.e., xn−1 ≥ γ/r
(40)

where we arbitrarily took yn to be 1 for the case where
xn−1 = γ/r. We also note that as shown in the proof of
Proposition 4, the value of yn solely depends on xn−1,
i.e., yn = 0 when xn−1 < γ/r and yn = 1 when xn−1 ≥
γ/r. In other words, the identity of adopters at epoch n
depends on the number of adopters at epoch (n− 1).

The rest of this section is devoted to characterizing
equilibria and the dynamics that lead to them. We start
with a number of preliminary results on which the
derivations rest.

A. Preliminary Results
Assume that when the service is introduced at n =

0 there are no adopters; thus x0 = 0 and m0 = 0. At
the next epoch, n = 1, the utility U1(θ) of a user with
roaming value θ is

U1(θ) = γ− p− θγ

At epoch 1 adopters consist, therefore, of users with a θ
value such that θ < (γ − p)/γ. Hence, x1 = (γ − p)/γ
when γ ≥ p, and x1 = 0 otherwise. In other words and
as stated in Proposition 5, a positive adoption requires
γ > p, i.e., the price cannot exceed the utility that users
derive from home base connectivity. This is likely to hold
in practice, e.g., the price of basic Internet connectivity
is such that many have adopted the service even in the
absence of a roaming option. Throughout the analysis
this condition is assumed to hold. Note that under this
assumption, x = 0 can not be an equilibrium.

Proposition 5. Starting from an initial state of zero adoption,
non-zero adoption is possible only if γ > p.

In the next proposition, we formally establish that
the vector Xn fully characterizes the adoption process,
namely, that mn can be computed once Xn is known.
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Proposition 6. The vector Xn = (xn, yn), together with the
parameters γ, p, r and c, are sufficient to compute a user’s
utility at epoch (n+ 1) as expressed in Eq. (38).

Proof. From Eq. (27), a user’s utility at epoch (n + 1)
depends on γ, p, r, c, xn, and mn. It therefore suffices to
show that mn can be computed based on γ, p, r, c, xn,
and yn. We consider separately the cases yn = 0 and
yn = 1.

If yn = 0, adopters are users with θ ∈ [0, θ̂n), so that
θ̂n = xn and mn is given by:

mn =

∫xn
0

θdθ =
1

2
x2n , if yn = 0 (41)

Conversely, when yn = 1 adopters are users with θ > θ̂n.
Thus θ̂n = 1− xn and mn is given by

mn =

∫1
1−xn

θdθ =
1

2
(−x2n + 2xn) , if yn = 1 (42)

This establishes that, Un+1(θ) can be computed based
on Xn and the parameters γ, p, r and c. Note that this
also ensures that Xn+1 can be computed, and therefore
the evolution of the adoption process can be tracked.

B. Characterizing Adoption Evolution

We now turn to exploring the evolution of the adop-
tion vector Xn. Our goal is to characterize adoption
dynamics and identify eventual equilibria. As mentioned
earlier, equilibria are either solutions of

H(X) = X, (43)

or boundary points of the interval [0, 1]. The main diffi-
culty in solving Eq. (43) stems from the fact that Xn is a
two-dimensional vector. In particular, although Eqs. (41)
and (42) show that a user’s utility at epoch (n + 1) is
solely a function of xn, the choice of which equation
to use depends on yn or in other words on xn−1, i.e.,
Un+1(θ) is a function of both xn and xn−1.

As a result, exploring adoption dynamics calls for ac-
counting for adoption levels in the previous two epochs.
This is reflected in the approach we describe next.
Specifically, we consider separately the cases yn = 0
(xn−1 < γ/r) and yn = 1 (xn−1 ≥ γ/r), and corre-
spondingly introduce the notation H1(x) ≡ H(x, 0) and
H2(x) ≡ H(x, 1) to investigate the evolution of adoption
in these two scenarios. As we shall see, these two cases
will each be divided in two further sub-cases.

1) Adoption Evolution under H1(x), i.e., yn = 0: In this
scenario, Eq. (41) is used to compute Un+1(θ), which
when combined with Eq. (27) gives

Un+1(θ) = γ− p−
c

2
x2n + θ (r xn − γ) . (44)

Eq. (44) allows us to determine the adoption thresh-
old θ̂n+1 at epoch (n + 1), i.e., the θ value such that
Un+1(θ̂n+1) = 0 :

θ̂n+1 =
γ− p− c

2
x2n

γ− r xn
.

To compute the new system state Xn+1 at epoch (n +
1), we distinguish between the cases yn+1 = 0 and
yn+1 = 1, with Eq. (39) correspondingly identifying the
expression of xn+1.

When yn+1 = yn = 0, both xn and xn−1 are below
γ/r. Therefore even when xn+1 is above γ/r, the set of
adopters at epoch (n + 1) is still of the form [0, θ̂n+1).
Since both xn and xn+1 consist of the same type of
adopters, we say that adoption stays in the “home” re-
gion, and for convenience introduce the notation xn+1 ≡
H1h(x). Eq. (39a) then states that xn+1 = θ̂n+1, so that

H1h(x) =
γ− p− c

2
x2

γ− r x
. (45)

When yn+1 = 1 and yn = 0, we have xn ≥ γ/r
while xn−1 was below γ/r, and the set of adopters at
epoch (n + 1) is of the form (θ̂n+1, 1]. We denote this
configuration as xn+1 being in the “away” region, and
correspondingly introduce the notation xn+1 ≡ H1a(x).
Eq. (39b) then states that xn+1 = 1− θ̂n+1, so that

H1a(x) =
c
2
x2 − r x+ p

γ− r x
(46)

2) Adoption Evolution under H2(x), i.e., yn = 1: In this
scenario, Eq. (42) is used in equation Eq. (27), which
gives:

Un+1(θ) = γ− p−
c

2
(−x2n + 2xn) + θ(r xn − γ) . (47)

As before, from Eq. (47) we find the adoption threshold
θ̂n+1 for which Un+1(θ̂n+1) = 0. This gives:

θ̂n+1 =
γ− p− c

2
(−x2n + 2xn)

γ− r xn
.

Following the approach used for H1(x), we consider
separately the cases where yn+1 = 1 and yn+1 = 0.

When yn+1 = yn = 1, adopters at epoch (n+1) remain
characterized by a range θ > θ̂n+1, which as before we
term the home region. Similarly, we let xn+1 ≡ H2h(x),
which using Eq. (39b) gives

H2h(x) =
c
2
x2 + (r− c)x− p

r x− γ
(48)

When yn+1 = 0 and yn = 1, xn is now below γ/r while
xn−1 was above γ/r, and the set of adopters at epoch
(n + 1) is of the form [0, θ̂n+1). We again denote this
configuration as xn+1 being in the awayregion, with the
corresponding notation xn+1 ≡ H2a(x). Eq. (39a) gives

H2a(x) =
c
2
x2 − cx+ γ− p

γ− r x
(49)
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In summary, the adoption state at epoch (n+1), Xn+1,
has been characterized by considering the four possible
combinations of adoption levels in epochs (n − 1) and
n. In the next sections, these results are leveraged to
identify possible equilibria and characterize adoption
dynamics.

C. Characterizing Equilibria

This section leverages the results of Section D-B to
identify the type of equilibria to which adoption can
converge. Consistent with the discussion of the previous
section, we introduce the notation Hh(x) for the function
defined as H1h(x) in the interval [0, γ/r) and as H2h(x) in
the interval [γ/r, 1], and Ha(x) for the function defined
as H2a(x) in [0, γ/r) and as H1a(x) in [γ/r, 1].

Since any equilibria must satisfy yn+1 = yn, we can
rule out half of the combinations of the previous section.
Specifically, when yn = 0, only vectors of the form
Xn+1 = (H1h(x), 0) need to be considered. Conversely,
when yn = 1, candidate equilibria must be of the form
(H2h(x), 1). Equilibria, therefore, correspond to either
points x ∈ (0, γ/r) that verify H1h(x) = x, points
x ∈ [γ/r, 1) that verify H2h(x) = x, the point x = 0 if
H1h(0) ≤ 0, or the point x = 1 if H2h(1) ≥ 1.

We therefore explore the relative positions of the
functions H1h(x) and H2h(x) with respect to x, and
their possible intersections with x. Intersections identify
equilibria or fixed points, while the position of H1h(x)
and H2h(x) relative to x determines the “nature” of these
fixed points, i.e., stable, or unstable, or associated with
orbits either periodic or chaotic16. The derivations are
mechanical and can be found in Appendix E. We dis-
tinguish between stable fixed points (•) with monotonic
trajectories (towards the fixed point inside its attraction
region), unstable fixed points (◦) again with monotonic
trajectories (away from the fixed point), and fixed points
associated with an “orbit” (�) that can be either conver-
gent, periodic, or chaotic for different (p, l) pairs. Table I
summarizes possible combinations of equilibria in each
of the intervals [0, γ/r) and [γ/r, 1], where — denotes the
absence of fixed point in that interval.

Case 1 of Table I corresponds to a scenario where no
fixed point exists. We discuss later when and why this
arises, but adoption patterns essentially never stabilize.
Cases 2, 2 ′, 3 and 3 ′ are instances where a single fixed
point exists in either [0, γ/r) or in [γ/r, 1]. In Cases 2
and 3, the fixed point corresponds to a stable equi-
librium, while in Cases 2 ′ and 3 ′ it can be associated
with more complex trajectories that need not converge,
e.g., exhibit periodic orbits or chaotic adoption patterns.
Cases 4 and 5 correspond to a scenario with both a
stable and an unstable equilibrium in either [0, γ/r)
or in [γ/r, 1], with the adoption always converging to

16If either x = 0 or x = 1 are equilibria, they are stable equilibria.

the stable fixed point. Cases 6 and 7 exhibit different
combinations of equilibria in [0, γ/r) or in [γ/r, 1], with
one having a single stable equilibrium and the other
having both a stable and an unstable equilibrium. The
important feature of these two latter cases is the presence
of two stable equilibria, one in [0, γ/r) and the other in
[γ/r, 1]. As a result, final adoption levels can differ based
on initial adoption values, i.e., they can vary based on
the level of seeding when the service was first offered.
A similar situation is present in Case 8, where the two
ranges both have a stable and an unstable equilibrium.

In the next section, we characterize the trajectories
associated with the different combinations of Table I,
while Section D-E articulates implications for a UPC
service offering.

D. Classifying Adoption Dynamics

Table I readily identifies several possible patterns of
adoption. Specifically, adoption dynamics can be of the
form:

i) Absence of convergence to an equilibrium. This
arises in Cases 1, 2 ′, and 3 ′. In Case 1, this is indepen-
dent of the initial adoption level, as the absence of
a fixed point gives rise to chaotic adoption patterns
that never converge. The situation is more subtle in
Cases 2 ′ and 3 ′, for which a fixed point does exist.
However, even when a small region of attraction
exists around this fixed point, adoption trajectories
typically remain outside of it, and orbit around it in
either periodic or chaotic manner. Such patterns are
common in dynamical systems [37]. The derivations
that led to the identification of those trajectories as
well as an illustrative example can again be found in
Appendix E. The conditions under which they arise
are discussed in Section D-E;

ii) Convergence to a single stable equilibrium in either
[0, γ/r) or [γ/r, 1], independent of initial penetration.
This arises in Cases 2, 3, 4, and 5, where a single sta-
ble equilibrium exists in the entire adoption range.
In those cases, adoption proceeds monotonically to-
wards the equilibrium, either increasing or decreas-
ing depending on the value of the initial adoption
level. As it does not affect the final outcome, seeding
is of no benefit in these scenarios;

iii) Convergence to one of two stable equilibria in
[0, γ/r) or [γ/r, 1], dependent on initial penetration.
This arises in Cases 6, 7, and 8, where a stable
equilibrium exists in both [0, γ/r) and [γ/r, 1]. These
are instances where seeding may be of value, as it
can affect the final adoption level. In particular, a
high enough level of seeding can allow the service
to realize a much higher final adoption (in [γ/r, 1] as
opposed to [0, γ/r)). As in Case ii), trajectories are
monotonic towards the final adoption level.
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The trajectories of the three types of possible outcomes
that have been identified can be easily constructed using
a standard cobweb plot17 based on the functions Hh(x)
and Ha(x). For illustration purposes, we consider an
example associated with Case 8 from Table I, which in-
volves stable and unstable equilibria in both [0, γ/r) and
[γ/r, 1]. The shapes of the corresponding functions Hh(x)
(solid line) and Ha(x) (dash-dot line) are shown in Fig. 9,
together with three adoption trajectories associated with
different initial adoption levels.

In the first scenario, there are no initial adopters, i.e.,
x0 = 0, and adoption increases monotonically until it
reaches about 10%, the stable equilibrium in [0, γ/r). In
the second scenario, seeding has been used to create
an initial adoption level x0 ≈ 35%. As we can see,
this is not enough to prevent adoption from declining
back to 10%, the stable equilibrium in [0, γ/r). To avoid
such an outcome, seeding needs to be further increased,
as done in the third scenario where initial adoption is
set to around 46%. In this case, the adoption trajectory
enters the interval [γ/r, 1] and eventually converges to
the higher adoption equilibrium in that interval (around
85%). The trajectory also illustrates the use of the func-
tion Ha(x) when first entering [γ/r, 1] from [0, γ/r). We
note that although a high level of adoption is ultimately
realized, the associated seeding “cost” is high.

Fig. 9. Hh(x) (solid) and Ha(x) (dash-dot) for Case 8.

In the next section, we characterize how system pa-
rameters, in particular the price p, map to different equi-
libria and trajectories, and identify possible implications
for UPC service offerings.

17See http://code.google.com/p/cobweb2008/ for an illustrative
applet.

E. Interpretations
Recall that adoption trajectories and equilibria are

determined by the “shape” of the functions Hh(x) and
Ha(x) and how they intersect the line x. The shape
of those functions depends in turn on the parameters
γ, c, r, and p (see Eqs. (45) and (48)). As a result, it is
no surprise that both adoption outcomes and trajectories
are determined by values of these parameters and in
particular, for any γ and r value, associated with distinct
“regions” of the (p, c)−plane, i.e., contiguous ranges of
p and c values. Fig. 10 identifies the regions of the
(p, c)−plane that map to the ten combinations of table
I, and correspondingly Behaviors i), ii), and iii) used
earlier to classify adoption dynamics. The boundaries
of those regions are derived from constraints on the
parameters, with Table II providing the corresponding
functional expressions. Details on the derivations are
again in Appendix E.

Fig. 10. Regions of the (p, c) plane corresponding to different combi-
nations of equilibria as given by Table I. This is a sample illustration
for γ = 1 and r = 2.

Behavior i): This maps to regions 1, 2 ′ and 3 ′ of Fig. 10,
and is associated with configurations that do not yield
convergence to an adoption equilibrium.

Region 1 consists of relatively low values of p but
rather large values of c. This produces the following
dynamics: When there are few or no users in the net-
work, coverage is low and frequently-roaming users find
the service unattractive despite the low p. In contrast,
sedentary users are unaffected by the limited coverage,
so that the low p value entices them to adopt. As
they adopt, coverage improves and the service becomes
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attractive to roaming users. With more users adopting,
coverage continues improving. The associated growth
in roaming traffic, however, starts to negatively affect
sedentary users that derive little benefits from the im-
proved coverage. This leads some of them to disadopt,
which reduces coverage so that eventually roaming users
start leaving as well. Once roaming traffic has been
sufficiently reduced, the service becomes again attractive
to sedentary users, and the cycle repeats.

A similar, though more nuanced process is at work in
regions 2 ′ and 3 ′. Region 2 ′ also boasts large c values
(c ≥ r), and in the portion of that region where large
values of p are allowed, it displays similar adoption
patterns as region 1 to which it is adjacent. However,
when p is allowed to be large, the negative effect of
c never gets a chance to manifest itself. The large p
prevents enough sedentary users from adopting, and the
service never garners enough coverage to become attrac-
tive to frequently-roaming users. In this case, adoption
converges to a low value in [0, γ/r). As p decreases, the
region of attraction of the equilibrium shrinks, and non-
converging adoption patterns emerge.

The behavior in region 3 ′ is similar, albeit for an
equilibrium in [γ/r, 1]. Specifically, region 3 ′ combines
small positive p values and very large c values. The
small value of p means that many users want to adopt.
The very large c value, however, implies that only fre-
quently roaming adopters derive enough benefits from
the large coverage to compensate for the penalty of
roaming traffic. As a result, the most sedentary users
disadopt. When p is sufficiently small, this disadoption
is small enough to not affect coverage to the point where
frequently-roaming users start leaving as well. However,
as p increases, coverage may decrease enough to trigger
an exodus of frequently-roaming user, and create cyclical
patterns of adoption and disadoption as in region 1.

TABLE II
REGION BOUNDARIES.

f1 c = 2r − γ2

2(γ−p)

f2 c =
2r2(γ−p)

2rγ−γ2

f3 c =
2r2(γ−p)

γ2

f4 c = γ + r − p −
√
p2 + 2p(r − γ)

f5 c = r

Behavior ii): Regions 2 and 4 of Fig. 10 have a stable
equilibrium in [0, γ/r) to which adoption converges.
The regions correspond to relatively high p values and
relatively high values of c. The high p value is such
that few sedentary users adopt and coverage never gets
high enough to make the service attractive to frequently-
roaming users. Hence, adoption saturates at a low level
of penetration. Seeding will not help, as the rather high
c value is too much of an impact even for frequently
roaming users.

Conversely, in regions 3 and 5 of Fig. 10 adoption
converges to a single stable equilibrium in [γ/r, 1]. The
regions correspond to relatively low values of p and
comparatively low c values. The low p value initially
attracts sedentary users that are not deterred by the lim-
ited coverage, and once enough of them have adopted
frequent roamers start joining. Because the impact of
increasing roaming traffic is relatively low, few sedentary
users leave and adoption stabilizes at a high level.

Behavior iii): Regions 6, 7 and 8 of Fig. 10 exhibit a
stable equilibrium in both [0, γ/r) and [γ/r, 1]. In these
cases, adoption converges to either equilibrium as a
function of the initial adoption level (seeding). The three
regions share relatively high p values and similarly small
c values.

When initial adoption (coverage) is low, frequently-
roaming users are not interested in the service and
the high p value limits the number of sedentary users
who adopt. Hence, adoption saturates at a low level. In
contrast, if seeding has produced enough initial coverage
to attract frequent roamers, they will start adopting in
spite of the high p value. As their number grows and
coverage continues improving, some sedentary users
will also adopt because of the relatively low impact that
they incur from roaming traffic through their home base.
As a result, overall adoption eventually stabilizes at a
high level.

Fig. 11. Adoption Outcomes as a Function of p and c, when γ = 1
and r = 2

The behaviors identified in this section are illustrated
in Fig. 11 that plots the “final” adoption levels for
different (p, c) pairs starting from an initial adoption
level of x0 = 0. In scenarios where adoption does not
converge, i.e., Behavior i), the adoption level reported
in the figure was sampled at a particular iteration. The
figure clearly identifies the regions of the (p, c) plane
that correspond to chaotic or at least non-converging
adoption (regions 1, 2 ′, and 3 ′), low adoption (regions 2
and 4, as well as regions 6, 7, and 8 since x0 = 0 was
used), and regions of high adoption (regions 3 and 5).
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F. Optimal Pricing for Provider’s Profit

In a flat-price policy, all users pay the same price p.
Therefore, the provider’s profit (or welfare) Π(p) that
was introduced in section III-A as WP(Θ) becomes

Π(p) = (p− e) x. (50)

The UPC provider’s goal is to select p so as to maximize
its profit at equilibrium18, i.e., once adoption has stabi-
lized19. In other words, the provider seeks to identify p∗

such that
Π(p∗) = max

p
{Π(p)} .

Note that in Eq. (50) the service adoption level x is
itself a function of p and the exogenous parameters of
Eq. (38). Π(p) can, therefore, be expressed as a function
with p as its only variable. More precisely, because
adoption equilibria have different functional expressions
depending on whether adoption is low or high, we
also have two distinct expressions for Π(p). The first
is associated with an equilibrium in the low-adoption
region, while the second corresponds to an equilibrium
in the high-adoption region.

For the sake of analytical tractability, we keep Π as a
function of x (rather than p). This yields two expressions,
Π

(1)
L (x) and Π(1)

H (x), for the provider’s profit correspond-
ing to equilibria in [0, 1/2) (low adoption), and [1/2, 1]
(high adoption). Derivations are mechanical in nature,
and the resulting expressions are given in Eqs. (51)
and (52) for completeness.

Π
(1)
L (x) =

4− c

2
x3 − x2 + (γ− e) x (51)

Π
(1)
H (x) =

c− 4

2
x3 + (3− c) x2 (52)

+(γ− e− 1) x

Both equations are cubic polynomials in x. Differen-
tiating them yields expressions for the x values that
maximize them, i.e., x̂L and x̂H.

The next step calls for determining which of Π(1)
L (x̂L)

and Π
(1)
H (x̂H) is higher, and consequently decide how

to best price the service. The answer can change based
on the combination of exogenous parameters, e.g., the
service’s intrinsic value, γ, the impact of roaming traffic,
c, and the value of the service cost e. For instance, it
can be shown that the γ value at which high-adoption
becomes more profitable than low-adoption increases
with c. This is intuitive since a larger c means that
sedentary users are more sensitive to roaming traffic.
Hence, the service needs to be intrinsically more valuable

18This forces a price selection that ensures the existence of an
equilibrium.

19Note that this implicitly assumes a recurring pricing model, as is
common with most service offerings.

to allow enough of them to join and stay as roaming
traffic grows with adoption.

APPENDIX E
DERIVATIONS OF EQUILIBRIA UNDER THE FIXED PRICE

POLICY

The intersections of Hh(x) and x correspond to interior
equilibria in adoption levels, i.e., equilibria in (0, 1), and
the relative positions of Hh(x) and x at x = 0 and
x = 1 determine whether or not either are boundary
equilibria. We consider equilibria in the intervals [0, γ/r)
and [γ/r, 1] separately. During the analysis we may use
k , γ− p for notational conciseness.

A. Equilibria in [0, γ/r)

From Eq. (45), H1h(0) = k/γ > 0, given the earlier
assumption that k > 0. Therefore, the conditionH1h(0) ≤
0 is never met and x = 0 is not an equilibrium. Next, we
consider interior points, i.e., points in (0, γ/r).

From Eq. (45), H1h(x) = x yields(
−
c

2
+ r
)
x2 − γx+ k = 0 . (53)

We assume −c/2+r > 0 or 2r > c, which is a reasonable
and hardly restrictive assumption in our model; This
means that at full adoption, the most frequently roaming
user (with θ = 1) will derive more utility from the ability
to roam than be impacted by the external roaming traffic.
Under the assumption that 2r > c, Eq. (53) has (at most)
two roots given by

x =
γ±
√
∆1

2r− c

where ∆1 = γ2 + 2kc − 4kr. The inequality H1h(x) < x
holds (only) between the two roots. We distinguish three
cases:
i) ∆1 < 0 or c < 2r− γ2

2k
.

In this case, Eq. (53) does not have any roots and
H1h(x) > x holds ∀x ∈ [0, γ/r). In other words, there
are no equilibria in [0, γ/r). A sample illustration can be
seen in Fig. 10 where we have chosen γ = 1 and r = 2.
This criterion corresponds to the points in the (p, c) plane
where c < f1. The functional expressions of the different
curves are given in Table II.
ii) ∆1 = 0 or c = 2r− γ2

2k

In this case Eq. (53) holds at x = γ
2r−c = 2k/γ, so H1h(x)

and x touch once in [0, γ/r) if k < γ2

2r
. In this case, there

is only one equilibrium x1 ∈ [0, γ/r) which is easily seen
to be stable from the left and unstable from the right.
This is because Hh(x) > x when x < x1 (adoption levels
increase towards x1 in each iteration), and Hh(x) > x
when x > x1 as well (adoption levels continue increasing
once x1 is exceeded).
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iii) ∆1 > 0 or c > 2r− γ2

2k

In this case Eq. (53) has two real roots, so that H1h(x) and
x intersect twice. These two intersections may or may
not indeed be in [0, γ/r). Next, we determine conditions
for either of these intersections to lie in [0, γ/r) and
characterize the equilibria they give rise to.

1) Intersection x1s: Intersection x1s is the smaller of the
two roots of Eq. (53) and is given by:

x1s =
γ−

√
γ2 + 2kc− 4kr

2r− c
. (54)

For x1s to be an equilibrium, it must be in the interval
[0, γ/r). The earlier assumptions k > 0 and 2r > c ensure
that x1s > 0. For x1s < γ/r we need:

−γ(r− c)

r
<
√
γ2 + 2kc− 4kr

This is trivially true if r − c > 0. If on the other hand
r− c < 0, we need

γ2 c2 − (2r γ2 + 2r2k)c+ 4k r3 < 0 . (55)

The left side is a quadratic equation in c and the in-
equality holds between the two (possible) roots, which
are given by:

c =
(rγ2 + r2k)∓

√
(rγ2 − r2k)2

γ2

=
(rγ2 + r2k)∓ |rγ2 − r2k|

γ2
.

Based on the sign of rγ2 − r2k the interval between the
two roots of Eq. (55) can be specified. We have

c ∈


(
2r2k
γ2
, 2r
)

if γ2 ≥ rk(
2r, 2r

2k
γ2

)
if γ2 < rk.

But because of our previous assumption that 2r > c, the
second case above cannot happen.

This shows that when ∆1 > 0, the intersection x1s
will be an equilibrium in [0, γ/r) if either c < r or c ∈(
2r2k
γ2
, 2r
)

and k ∈ [0, γ2/r]. These criteria correspond to
(p, c) being in Regions 2 ′, 2, 4, 6, 7 and 8 of Fig. 10, again
with the functional expressions of the different curves
given in Table II.

When (p, c) is in any of the Regions 2, 4, 6, 7 or 8,
then x1s can be shown to be a stable equilibrium. This
is because x1s > Hh(x) > x (adoption increases towards
x1s in the next iteration), and x1s < Hh(x) < x (adoption
decreases towards x1s in the next iteration). On the other
hand if (p, c) is in the Region 2 ′, then x1s is an “orbital”
equilibrium. An orbital equilibrium may have a non-
empty region of attraction20, but exhibit cyclical adoption
patterns (periodic or chaotic) outside of that neighbor-
hood. Orbital behaviors arise when Hh(x) > x1s > x

20A neighborhood of x1s so that for values of x in that neighborhood,
trajectories converge to x1s.

(adoption increases beyond x1s in the next iteration), and
Hh(x) < x1s < x (adoption drops below x1s in the next
iteration). This gives rise to cyclical trajectories, which
may or may not converge to x1s depending on the slope
of H1h(x) at x = x1s and the initial distance between x
and x1s. Note also that if H1h(x) > γ/r for some x < x1s,
the next adoption level will be determined using H2a(x)
instead of H1h(x), since we have left the interval [0, γ/r).

2) Intersection x1u: Intersection x1u is the larger of the
two roots of Eq. (53) and is given by

x1u =
γ+

√
γ2 + 2kc− 4kr

2r− c
.

Again, for x1u to be an equilibrium, it must be in [0, γ/r).
Since 2r − c > 0, we have x1u > x1s > 0, and therefore
we only need to verify when the condition x1u < γ/r
holds. For this we need:√

γ2 + 2kc− 4kr <
γ(r− c)

r
.

This never holds if r−c < 0. When r−c > 0, the condition
becomes

γ2 c2 − (2r γ2 + 2r2k)c+ 4k r3 > 0 .

which is the symmetric of Eq. (55), and thus it holds
for values of c outside the roots of the corresponding
quadratic equation.

We also note that equilibrium x1u is unstable. This
is because Hh(x) < x when x < x1u (adoption levels
keep decreasing once they have dropped below x1u),
and Hh(x) > x when x > x1u (adoption levels keep
increasing once they have exceeded x1u).

To summarize, in Case iii), i.e., in the case of c > 2r−
γ2

2k
there can possibly be two equilibria in [0, γ/r). When

c > r, the root x1s is the only equilibrium in [0, γ/r) if
the condition c ∈ [2r

2k
γ2
, 2r] is also satisfied (Region 2 ′

in Fig. 10); Otherwise, no equilibrium is present in this
interval (The portion of Region 1 in Fig. 10 for which
c > f1). When c < r, both x1s and x1u can be equilibria
if c < 2r2k

γ2
(Regions 4, 8 and 6 in Fig. 10), and otherwise

x1s is the only equilibrium in [0, γ/r) (Regions 2 and 7 in
Fig. 10). Again the functional expressions of the different
curves are given in Table II.

B. Equilibria in [γ/r, 1]

For the boundary point x = 1 we use Eq. (48) and see
that:

H2h(1) =
−c
2
+ k+ r− γ

r− γ
=

−c
2
+ k

r− γ
+ 1 .

Therefore the full adoption level, x = 1, will be an
equilibrium if and only if −c/2 + k ≥ 0. We will now
consider the interior points, i.e., the points in [γ/r, 1).

From the equation H2h(x) = x we get:

−
(
r−

c

2

)
x2 + (γ+ r− c)x− p = 0. (56)
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Assuming r−c/2 > 0 as before, Eq. (56) exhibits (at most)
the two roots given by

x =
−(γ+ r− c)±

√
∆2

−(2r− c)

where

∆2 = (γ+ r− c)2 − 2p(2r− c)

= c2 − 2(γ− p+ r)c+ (γ+ r)2 − 4pr.

The inequality H2h(x) > x holds21 only between these
two (possible) roots. We again distinguish three cases:
i) ∆2 < 0
This is equivalent to

c ∈
(
−p+ γ+ r−

√
Q , −p+ γ+ r+

√
Q
)

where

Q = p2 + 2p(r− γ).

In this case, Eq. (56) does not have any roots and
H2h(x) < x holds ∀x ∈ (γ/r, 1]. In other words, there
are no equilibria in (γ/r, 1].
ii) ∆2 = 0
This is equivalent to

c = −p+ γ+ r∓
√
p2 + 2p(r− γ)

and in this case Eq. (56) holds at x = γ+r−c
2r−c . Therefore

the two curves H2h(x) and x touch once in (γ/r, 1]
if c < r. In this case, there is only one equilibrium
x2 ∈ (γ/r, 1] which is easily seen to be stable from
the right and unstable from the left. This is because
Hh(x) < x when x > x2 (adoption levels decreases
towards x1 in each iteration), but Hh(x) < x when x < x2
as well (adoption levels keep decreasing if x goes below
x1).
iii) ∆2 > 0
This is equivalent to

c 6∈
[
−p+ γ+ r−

√
Q , −p+ γ+ r+

√
Q
]

where as before

Q = p2 + 2p(r− γ).

In this case Eq. (56) has two real roots, and as a result
it is possible for H2h(x) and x to intersect twice in
[0, γ/r]. Next, we characterize the equilibria that these
two possible intersections, x2u and x2s, can give rise to.

21Note that since x ∈ [γ/r, 1], the denominator of H2h(x) is positive.

1) Intersection x2u: Intersection x2u is the smaller of
the two roots of Eq. (56) and is given by:

x2u =
γ+ r− c−

√
(γ+ r− c)2 − 2p(2r− c)

2r− c
.

In order for x2u to be an equilibrium, it must be in
the interval (γ/r, 1]. It can be easily verified (under the
assumptions already made for parameters c, γ and r)
that x2u ≤ 1 always holds if the root exists. For x2u to
be greater than γ/r we need:√

(γ+ r− c)2 − 2p(2r− c) < (r− γ)
r− c

r

For this equation to hold, it is necessary that r − c > 0.
If this is the case we then need

(2rγ−γ2)c2+(−6γr2+2γ2r+2pr2)c+4r3(γ−p) < 0 (57)

which holds between the roots of the corresponding
quadratic equation, which are given by:

c =
(3γr2 − γ2r− pr2)∓ (γr2 − γ2r+ pr2)

2rγ− γ2
.

= 2r and
2r2(p− γ)

2rγ− γ2

(58)

This implies that x2u is an equilibrium in (γ/r, 1] if
both 2r2(γ−p)

2rγ−γ2
< c < r and c < −p + γ + r −√

p2 + 2p(r− γ), where we have taken into consider-
ation the fact that when c < r the inequality c >

−p+γ+ r+
√
p2 + 2p(r− γ) cannot hold. These criteria

correspond to Regions 5, 8 and 7 in Fig. 10 with the
functional expressions of the different curves given in
Table II.

When these conditions are satisfied, x2u can be shown
to be an unstable equilibrium. This is because Hh(x) < x
when x < x2u (adoption levels keep decreasing once
they have dropped below x2u), and Hh(x) > x when
x > x2u (adoption levels keep increasing once they have
exceeded x2u).

2) Intersection x2s: Intersection x2s is the larger of the
two roots of Eq. (56) and is given by

x2s =
γ+ r− c+

√
(γ+ r− c)2 − 2p(2r− c)

2r− c
. (59)

Again, for x2s to be an equilibrium, it must be greater
than γ/r. Note that x2s < 1 is not necessary, since a x2s
value that is larger than 1 will be projected down to the
boundary point x = 1. For x2s > γ/r we need:

−(r− γ)
r− c

r
<

√
(γ+ r− c)2 − 2p(2r− c) .

This always holds if r−c > 0. When c > r, the condition
becomes

(2rγ− γ2)c2 + (−6γr2 + 2γ2r+ 2pr2)c+ 4r3(γ− p) > 0

which is the symmetric of the inequality in Eq. (57),
and thus it holds for values of c outside the roots of
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the corresponding quadratic equation. This condition
reduces to c < 2r2(γ−p)

2rγ−γ2
(Region 3 ′ in Fig. 10).

Thus x2s results in an equilibrium if (p, c) is in any of
the Regions 3, 3 ′, 5, 6, 7 and 8 of Fig. 10.

When (p, c) is in any of the Regions 3, 5, 6, 7 and 8,
then x2s can be shown to be a stable equilibrium. This
is because x2s > Hh(x) > x (adoption increases towards
x2s in the next iteration), and x2s < Hh(x) < x (adoption
decreases towards x2s in the next iteration). On the other
hand if (p, c) is in the Region 3 ′, then x2s is an “orbital”
equilibrium. An orbital equilibrium may have a non-
empty region of attraction22, but exhibit cyclical adoption
patterns (periodic or chaotic) outside of that neighbor-
hood. Orbital behaviors arise when Hh(x) > x2s > x
(adoption increases beyond x2s in the next iteration), and
Hh(x) < x2s < x (adoption drops below x2s in the next
iteration). This gives rise to cyclical trajectories, which
may or may not converge to x2s depending on the slope
of H2h(x) at x = x2s and the initial distance between x
and x2s.

To summarize, as for the equilibria in [γ/r, 1], when
c <

2r2(γ−p)
2rγ−γ2

, the root x2s is the only equilibrium in
(γ/r, 1] (Regions 3 ′, 3 and 6 in Fig. 10). When c >
2r2(γ−p)
2rγ−γ2

, both x2s and x2u equilibria will exist if the
condition c < min(r, −p+γ+r−

√
p2 + 2p(r− γ)) is also

satisfied (Regions 5, 7 and 8 in Fig. 10). Otherwise, no
equilibrium is present in (γ/r, 1] (Regions 1, 2 ′, 2 and 4
in Fig. 10)

APPENDIX F
MODEL PERTURBATIONS FOR ROBUSTNESS TESTING

Our original models make specific assumptions with
regards to the magnitude and range of various parame-
ters, functional expressions of the user utilities, and the
extent to which information is considered to be known
to the service provider. In order to gauge how much
these assumptions affect the models’ results and more
importantly findings, as well as determine how robust
the findings are to variations in those assumptions, we
consider a series of perturbations to the original models
that relax/modify one or more of those specific assump-
tions.

In this section, we describe perturbations that di-
rectly affect the parameters and functional expressions
of the models. All scenarios are investigated by means
of numerical simulations, and the results are presented
in Appendix G (See Appendix I for one example of
analytical generalization). Appendix G also evaluates the
impact of another type of perturbations, namely, that of
errors in estimates of the model’s parameters on the part
of the service provider. Overall, the results demonstrate

22A neighborhood of x2s so that for values of x in that neighborhood,
trajectories converge to x2s.

that the paper’s main findings are relatively robust to a
wide range of perturbations.

A. User propensity to roam θ

Our original models assume that users’ propensity
to roam, θ, follows a uniform distribution, i.e., it is
uniformly distributed in [0, 1]:

f(θ) = 1, 0 ≤ θ ≤ 1.

We introduce a perturbation to that assumption by con-
sidering different probability distributions for the roam-
ing variable θ. There are obviously many possible distri-
butions to choose from; we consider two representative
examples, one with a higher density of sedentary users,
and the other with a higher density of roaming users.
These two choices cover the effect of both overestimating
and underestimating roaming patterns. We present next
the details of these two distributions.

The distributions are truncated and modified versions
of an exponential distribution, and their density func-
tions are plotted in Fig. 12. The low-mode distribu-
tion with a mode at x = 0 has a density function
fLow-Mode(x; λ) = λ

1−e−λ
e−λx, 0 ≤ x ≤ 1.). Conversely

the high-mode distribution with a mode at x = 1 has a
density function fHigh-Mode(x; λ) =

λ
eλ−1

eλx, 0 ≤ x ≤ 1.).
The parameter λ is taken to be 1.5.

As mentioned earlier, Appendix G presents the results
on how these perturbations affect the paper’s findings.

B. Modified user utility functions

The original model assumes a specific functional ex-
pression for users’ utility that grows linearly with cov-
erage κ (as measured23 by x) and decreases linearly with
the volume of roaming traffic m.

We first relax the linear dependency assumption, and
then consider two different utility functions inspired
by the Web Browsing Model and the File Transfer Model
of [10]. As before, Appendix G presents the results of
this investigation.

The original utility function is stated in Eq. (5), which
we restate below for convenience.

U(Θ, θ) = γ− cm+ θ (r x− γ) − p(Θ, θ)

1) Non-linear utility function: In order to relax the lin-
ear dependency assumption, we consider the following
“perturbed” utility function:

U(Θ, θ) = γ− cm1.2 + θ (r x0.8 − γ) − p(Θ, θ) .

The non-linear terms m1.2 and x0.8 are arguably only
one of many possible types of non-linearities, but they

23As mentioned before, in Section F-D we do numerically consider
scenarios where coverage κ is not equal to x and instead saturates as
x grows).
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(a) Low-mode: Truncated exponential distribution with
parameter λ = 1.5. (high concentration of sedentary
users.)

(b) High-mode: Inverted truncated exponential distribu-
tion with parameter λ = 1.5. (high concentration of
roaming users.)

Fig. 12. Density functions and sample realizations for for non-uniform θ distributions.

offer a reasonable evaluation of the effect of non-
linearities.

Next we introduce two different utility functions in-
spired by the models of [10].

2) Upper-bounded roaming: The Web Browsing Model
from [10] considers a utility that increases with the con-
nection duration, as long as the connection duration is
not longer than an upper-bound τ (which is the duration
that a user intends to browse the web).

In the context of [10] the connection duration is the
main contributor to a user’s utility, while in our model
the roaming frequency θ determines the rate at which
a user accesses the higher-valued roaming connectivity.
Therefore the connection duration of [10] readily maps
to roaming frequency in our model.

Hence, in order to emulate the Web Browsing Model
from [10], we modify our original utility function to
upper-bound the roaming frequency of the users. In
a manner similar to Eq. (1) of [10] which includes a
term min(T, τ), we replace the roaming factor θ with
min(θ, τ).

The new utility function is then given by

U(Θ, θ) =

γ− cm+ min(θ, τ) · (r x− γ) − p[Θ, min(θ, τ)],
(60)

where 0 < τ < 1. In the numerical tests of Section G we
take τ = 0.8.

3) Minimum useful coverage: The File Transfer Model
from [10] considers a utility function with a threshold
behavior, i.e., it yields zero value when the connection
duration is too short to download a file. Therefore the
connection duration has to be longer than a certain
threshold to yield a positive utility.

As mentioned before, in our context, users’ utility is
directly related to the ability to connect while roaming.
Therefore, to emulate the File Transfer Model from [10],
we modify our utility function to implement a threshold
behavior based on roaming connectivity. Namely, a user
experiences zero roaming utility, unless the odds of
roaming connectivity are above a certain threshold, or
equivalently, the system’s coverage κ is above a thresh-
old κth.

The new utility function is then

U(Θ, θ) = γ− cm+ θ (r κ̂− γ) − p(Θ, θ) (61)

where κ̂ is the perceived level of coverage and is given by

κ̂ =

{
0 if x < κth,

x if x ≥ κth.

The threshold κth satisfies 0 < κth < 1. In the numerical
tests of Section G we use κth = 0.2.

C. Heterogeneous population

In the original models, users are assumed to all have
the same utility function, and share a common profile
in how much traffic they generate, including while
roaming. We relax those assumptions by considering a
scenario where users belong to two types with different
“profiles.” The type of a user, T1 or T2, affects that user’s
utility and the volume of roaming traffic she generates
as a function of her roaming parameter θ.

Users are randomly assigned a given type, so that the
user population is divided into two groups of identical
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size. The utility functions of users of type T1 and type
T2 are then given by:

U(Θ, θ) ={
γ− cm+ θ (r x− γ) − p(Θ, θ) for T1 users

1.1 γ− cm+ θ (0.9 r x− 1.1 γ) − p(Θ, θ) for T2 users.

In other words, users of type T2 exhibit a difference of
10% with type T1 users in how much more (less) they
value home (roaming) connectivity (they have a larger γ
and smaller r). Moreover, a user’s type also affects the
volume of traffic she generates while roaming, as follows

Contribution to roaming traffic =

{
θ for T1 users

θ0.7 for T2 users,

In other words, given two users of types T1 and T2
with the same roaming parameter θ, the user of type
T2 generates more roaming traffic while roaming (since
θ0.7 > θ for θ ∈ [0, 1]). As mentioned earlier, this can
account for differences induced by the type of equipment
each type of users uses (e.g., tablet vs. smartphone). The
overall roaming traffic m is then given by

m =

∫
T1

θf(θ)dθ+

∫
T2

θ0.7f(θ)dθ .

Results are again presented in Appendix G.

D. Coverage saturation

The original models assume that coverage κ increases
linearly with the level x of service adoption. In particular,
we assume that κ = x. In this section, we relax this
assumption and consider a saturation effect for coverage.
This means that while coverage initially expands in
proportion to the adoption level x, its growth slows
down (“levels off”) as x grows large. In order to cap-
ture this effect, we assume a relation between coverage
and adoption of the form κ = sin(π

2
x) (see Fig. 13).

Results illustrating how this difference in the evolution
of coverage affects the paper’s conclusions are again in
Appendix G.

APPENDIX G
NUMERICAL SIMULATIONS

Appendix F introduced a series of perturbations to
our original models. In this Appendix, we report on the
results of numerical simulations used to investigate the
impact of those perturbations. The results demonstrate
that the paper’s findings are robust with regards to those
perturbations and errors in the modelling assumptions.

Recall that the paper’s main findings belong to two
broad categories. The first is concerned with the system’s
ability to create value, i.e., the total system welfare. They
establish that when the system is capable of creating

Fig. 13. Coverage saturates as adoption x grows large.

positive value, the maximum of that value is often
realized at full adoption. The second category of findings
is concerned with realizing that potential: how to use
pricing schemes to realize the optimal adoption level and
the corresponding total welfare, as well as distribute the
total welfare between the users and the provider.

In testing the robustness of that second group of find-
ings, i.e., those regarding pricing schemes, it is important
to specify how much knowledge the provider has about
potential discrepancies between the model it is using to
determine (optimal) prices, and the actual model and its
parameters. This is because that knowledge will affect
the provider’s ability to set prices that realize its goals.
Therefore, throughout this section, when presenting re-
sults related to pricing policies, we also specify the extent
to which the provider is aware of the perturbations.

For purposes of clarity, we consider each one of the
perturbations of Appendix F in isolation, i.e., we perturb
one aspect of the model while keeping others intact, and
report on its impact on the paper’s findings. We discuss
first how different perturbations affect the paper’s main
conclusions regarding total system welfare.

A. Optimal total welfare

The paper’s main finding when it comes to total
system welfare was that total welfare (value) is usually
maximized when the adoption level is either x = 1 or
x = 0. In other words, whenever the system is capable of
generating positive value, this positive value is realized
at full adoption x = 1.

The result was obtained under the simplifying as-
sumptions of the system’s model, but in this section we
demonstrate that even under more general conditions,
i.e., when various aspects of the original model are
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perturbed,24 this finding remains valid.

G-A.(a) Original model
A plot of the optimal adoption level x for maximizing
system value was given in the paper for the original
model, and is repeated for convenience in Fig. 14a. The
figure indeed shows that for most values of parameters
γ and e, the optimal adoption level is either x = 1 or
x = 0. An optimal adoption level of x = 0 means that
the system cannot create positive value.

G-A.(b, c) Modified roaming distribution
We changed the distribution of the roaming parameter
θ as per the description of Section F-A. Under this
perturbation, Figs. 14b and 14c demonstrate that the
maximum total welfare is again mostly achieved at either
x = 1 or x = 0.

Other remarks
Figs. 14b and 14c identify the region in the γ − e plane
where a positive total welfare is possible. The regions in
the two figures are slightly different: For large values of
home connectivity utility γ, the system with more seden-
tary users (Fig. 14b) can tolerate a larger deployment cost
e while still yielding a positive value. For instance when
γ = 2, the system with more sedentary users (Fig. 14b)
allows e / 1.6, whereas the system with a large roaming
population (Fig. 14c) allows only e / 1.4. This is intuitive
as a higher population of sedentary users means more
people will enjoy the high home connectivity utility.

On the other hand, for small values of γ the roles are
reversed. The system with more roaming users (Fig. 14c)
can tolerate a larger deployment cost e while still yield-
ing a positive value. For instance when γ = 0, the system
with more sedentary users (Fig. 14b) allows e / 0.4;
however, the system with a large roaming population
(Fig. 14c) is understandably less affected by the small
home connectivity utility γ, and allows e / 0.6.

G-A.(d) Non-linear utility functions
We now consider the effect of non-linearities in users’
utility functions using the utility function introduced in
Section F-B1. The resulting optimal adoption level for
maximizing total welfare is given in Fig. 14d. It shows
that the maximum total welfare continues to be achieved
mostly at either x = 1 or x = 0.

G-A.(e) Utility function with upper-bounded roaming
We used the new utility function given in Section F-B2
with an upper-bound value of τ = 0.8. Under this new
utility function, Fig. 14e displays the optimal adoption
level x. Although the figure exhibits small differences
with Fig. 14a, it shows that the maximum total welfare
continues to be achieved mostly at either x = 1 or x = 0.

24Note that because total welfare is only concerned with the system’s
overall value and not how to realize it, the extent to which the service
provider is aware of any discrepancies between the model and the
actual system has no impact.

G-A.(c) Utility function with minimum useful coverage
We use the new utility function of Section F-B3 with
a threshold value of κth = 0.2. Under this new utility
function, Fig. 14f demonstrates that the maximum total
welfare is again mostly achieved at either x = 1 or x = 0,
in a manner very similar to Fig. 14a.

Fig. 14f is almost identical to Fig. 14a, because the
values of optimal adoption x in Fig. 14a mostly cor-
respond to a coverage level that is already above the
coverage threshold κth, and therefore are not affected
by imposing the criterion of minimum useful coverage
in Fig. 14f. Therefore the regions of Fig. 14a where the
optimal adoption is at x = 0 or x > κth are exactly
replicated in Fig. 14f. This constitutes most of the points
in the figure.

G-A.(g) Heterogeneous population
In this section, we consider the effect of a heterogeneous
user population, as per the two-type user population of
Section F-C. Recall that a user’s type affects both her
utility function and the roaming traffic she generates.
Fig. 14g reports the adoption levels associated with max-
imum welfare for such a configuration. It again shows
that the maximum total welfare is usually achieved at
either x = 1 or x = 0.

G-A.(h) Coverage saturation with adoption
The last perturbation we consider involves a scenario
where coverage saturates as the system approaches full
adoption x = 1 (as described in section F-D). The results
are shown in Fig. 14h.

Fig. 14h highlights some minor differences with the
paper’s original findings of Fig. 14a. Specifically, while
maximum total welfare is still often achieved at either
x = 1 or x = 0, an intermediate region has emerged for
which the optimal adoption level, while still high and
close to 1, is nevertheless slightly lower. The difference
is small and quite intuitive, as we explain next.

Recall the two effects of increasing adoption. On one
hand, an increase in adoption improves total welfare,
both because it improves coverage, which favorably
affects the utility of all users, and because the new
users themselves contribute to the total welfare. On the
other hand, more users means more roaming traffic,
which adversely affects all users’ utility and, therefore,
welfare. The combined contributions of these opposing
effects determines whether higher adoption increases or
decreases total welfare. When coverage saturates earlier,
new users still contribute to the system welfare, but
their impact on improving coverage is now diminished
while the negative contribution of their roaming traffic
is unchanged. Hence, it is to be expected that under a
model where coverage saturates before full adoption,
maximum welfare may be realized slightly below full
adoption as seen in the “blue” region of Fig. 14h. We
highlight this dependency in the paper, when discussing
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(a) Original model (b) Low-mode θ distribution with parameter λ =
1.5.

(c) High-mode θ distribution with parameter λ =
1.5.

(d) Non-linear utility function (e) Upper-bounded roaming (τ = 0.8) (f) Minimum useful coverage (κth = 0.2)

(g) Heterogeneous population (h) Coverage saturation with adoption

Fig. 14. Values of optimal adoption x for maximum total welfare under different perturbations. Parameters are r = 1.6 and c = 0.6 (and therefore
r − c = 1).
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the result that total welfare is typically achieved at full
adoption.

B. Usage-based pricing

Under the original model, we concluded that for the
usage-based pricing policy, full adoption x = 1 is the
unique equilibrium of the system if and only if the usage
allowance a is larger than a threshold value.

In this section we demonstrate that even under more
general conditions, i.e., when various aspects of the orig-
inal model are perturbed25, this finding remains valid.

Throughout the simulations of this section, we fix
the parameters c = 0.8, γ = 1, r = 1.6 and find the
final adoption level that the system converges to, as
the value a of usage allowance varies. By observing the
final adoption level we can determine whether x = 1
is the unique equilibrium of the system. The details of
the simulations are as follows: At each value of a, we
start the system from zero adoption. After each iteration
in the simulation, users evaluate their utility and those
with a positive utility adopt. The simulation stops once
consecutive iterations yield the same set of adopters. At
this point the final adoption level is recorded.

G-B.(a) Original model

Under the paper’s original model, full adoption x = 1
is the unique equilibrium if and only if the value of
usage allowance satisfies a > c/2 (Proposition 2). This
is illustrated in Fig. 15a which shows the values of a
for which full adoption x = 1 is the unique equilibrium
(recall that c/2 = 0.4). The figure shows that there exists
a threshold value a0 such that for a > a0, full adoption
x = 1 is the unique equilibrium of the system, and for
a < a0, full adoption is not an equilibrium.

G-B.(b, c) Modified roaming distribution

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about the
modified θ distribution and assumes the θ distribution
is still uniform.

The roaming distribution is modified as per the de-
scription of Section F-A. We see from Figs. 15b and 15c
that under the two new roaming distributions of Sec-
tion F-A (low and high mode), the outcome is similar to
that of the original model, i.e., there exists a threshold
value such that for values of a above it x = 1 is the

25 Unlike section G-A that only dealt with maximizing the system
value, this section and all subsequent ones are concerned with pricing
the service. Prices are set by the provider, and as a result the infor-
mation available to the provider about the system’s characteristics is
important. In the remainder, we therefore mention not only perturba-
tions to the original model, but also the provider’s knowledge of those
perturbations.

unique equilibrium, and for values of a below it, x = 1
is not an equilibrium.

G-B.(d) Non-linear utility function

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about the
non-linearity of the utility function and assumes the
original function is valid.

We now consider the effect of non-linearities in the
utility function, as discussed in Section F-B1. The out-
come is shown, again as a function of the usage al-
lowance a, in Fig. 15d, which exhibits a similar pattern
as Fig. 15a, i.e., there exists a threshold value such that
for values of a above it x = 1 is the unique equilibrium
of the system and for values of a below it, x = 1 is not
an equilibrium.

G-B.(e) Utility function with upper-bounded roaming

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about
the modified utility function and assumes the original
function is valid.

We use the new utility function of Section F-B2 with an
upper-bound value of τ = 0.8. We see from Fig. 15e that
under this new utility function, the outcome is similar
to that of the original model, i.e., there exists a threshold
value, albeit a different one, such that for values of a
above it x = 1 is the unique equilibrium, and for values
of a below it, x = 1 is not an equilibrium.

G-B.(f) Utility function with minimum useful coverage

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about
the modified utility function and assumes the original
function is valid.

As before, we use the new utility function of Sec-
tion F-B3 with a coverage threshold of κth = 0.2. We
see from Fig. 15f that under this new utility function, the
outcome is very similar to that of the original model, i.e.,
there exists a threshold in the values of usage allowance
a, such that for values of a above it x = 1 is the unique
equilibrium, and for values of a below it, x = 1 is not
an equilibrium.

In fact, the allowance threshold value in Fig. 15f is
identical to that of the original model in Fig. 15a. This is
because, as shown in Appendix H, the outcome of the
usage-based pricing is very robust to this change in the
utility function. Nevertheless, differences in the outcome
would naturally arise under more drastic changes, i.e., by
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(a) Original model (b) Low-mode θ distribution with parameter
λ = 1.5.

(c) High-mode θ distribution with parameter
λ = 1.5.

(d) Non-linear utility function (e) Upper-bounded roaming (τ = 0.8) (f) Minimum useful coverage (κth = 0.2)

(g) Heterogeneous population (h) Coverage saturation with adoption

Fig. 15. Usage-based pricing policy: values of usage allowance a for which full adoption x = 1 is the (unique) equilibrium of the system, under
different perturbations. Parameters are c = 0.8, γ = 1, r = 1.6.

Fig. 16. Results for more drastic changes in the minimum useful
coverage (κth = 0.6). Values of usage allowance a in the usage-based
pricing policy for which full adoption x = 1 is the (unique) equilibrium
of the system. Parameters are c = 0.8, γ = 1, r = 1.6.

considering significantly larger values for the coverage
threshold.

For instance, as the value for the coverage threshold
κth is changed to κth = 0.6 (roaming users do not
consider the system valuable until coverage exceeds
60%), differences appear in the adoption outcomes. This
is shown in Fig. 16. Nevertheless, the figure also shows
that even under this more drastic change, the overall
behavior remains consistent with that of the original
model.

G-B.(g) Heterogeneous population

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about
users of type 2 and assumes that everyone is a type 1
user.

This scenario assumes that the users’ population is
heterogeneous and split into two sub-populations of
different type, as described in Section F-C. Fig. 15g
reports the results, which are again consistent with those
of the original model, i.e., there exists a threshold value
such that for values of a above it x = 1 is the unique
equilibrium of the system and for values of a below it,
x = 1 is not an equilibrium.

G-B.(h) Coverage saturation with adoption

Provider’s knowledge of the perturbations:
The provider is not assumed to have any knowledge
of the coverage saturation (of course, in practice the
provider may be able to estimate coverage, but the
simulations do not assume such knowledge).

As with the case of optimal welfare, the last pertur-
bation we consider involves a scenario where coverage
saturates as the system approaches full adoption x = 1
(as described in section F-D). The results are shown
in Fig. 15h, and again yield a similar outcome as in
the original model, i.e., there exists a threshold value
such that for values of a above it x = 1 is the unique
equilibrium of the system and for values of a below it,
x = 1 is not an equilibrium.

We also note that unlike what happened with op-
timal welfare where optimal adoption could end-up
slightly lower than full adoption, the threshold value
is unchanged when compared to that of the original
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model. This is because the usage based pricing (by its
nature) does not require knowledge of the actual service
coverage by the provider, and is, therefore, insensitive
to errors in the coverage level.

C. Hybrid pricing tests with partial provider’s knowledge

Under the original model, we concluded that for the
hybrid pricing policy, there are values of home connec-
tivity utility γ for which the system has an equilibrium
at x < 1, which would prevent the system from reaching
full adoption, hence resulting in a sub-optimal total
welfare. The hybrid pricing policy, however, offers a way
to eliminate the lower equilibria and allow the system
to reach full adoption. This is possible by adjusting the
value of the discount parameters δh or δr (for simplicity,
we focus on adjusting δh).

In this section, we demonstrate that even under more
general conditions, i.e., when various aspects of the
original model are perturbed, the system also exhibits
regimes where a sub-optimal equilibrium (x < 1) can
arise, thereby preventing the system from reaching full
adoption. In addition, overcoming this issue can again
be accomplished by adjusting the value of δh, albeit
typically with a different discount value.

Throughout the simulations of this section, we fix the
parameters c = 0.8, δr = 0 and find the final adoption
level, denoted by x(∞), as we vary γ and δh values.
The details of the simulations are as follows: At each
point (γ, δh), we start the system from zero adoption.
After each iteration in the simulation, users evaluate
their utility and those with a positive utility adopt. The
simulation stops once consecutive iterations yield the
same set of adopters. At this point the final adoption
level is recorded.

Moreover, throughout the simulations, the price pa-
rameters of the hybrid policy are computed as:

ph = γ− cα− δh, and
pr = r− γ− δr,

where α is the estimate for overall intensity of roaming
traffic m at full adoption (for the original model we had
α = 1/2, which gives ph = γ−c/2−δh). The simulations
of this section assume that the provider can accurately
estimate the value of α. (We will further eliminate this
assumption in section G-D where we assume that the
provider has no knowledge of α.)

G-C.(a) Original model

Fig. 17a shows the final adoption level for the hybrid
pricing policy under the original model. The figure illus-
trates the presence of a region of (γ, δh) values where
the system does not go to full adoption, and shows that
by increasing the discount factor δh we can avoid that
region, hence realizing full adoption.

This can be seen from the three sample points indi-
cated by pins in Fig. 17a. Pin a indicates a point where
the system reaches full adoption. Pin b, on the other
hand, is at a point where the system converges to a lower
equilibrium and full adoption is not possible. However,
by increasing the value of δh, we move to Pin c where,
once again, the system converges to full adoption.

G-C.(b, c) Modified roaming distribution

Provider’s knowledge of the perturbations:
The simulations assume that the provider can accu-
rately estimate α (the intensity of roaming traffic m
at full adoption). We relax this in section G-D. Other
than that, the provider does not have any knowledge
about the modified θ distribution.

The roaming distribution is modified as per the de-
scription of Section F-A. We see from Figs. 17b and 17c
that adoption outcomes are similar to those of the orig-
inal model, i.e., the system exhibits regimes where the
final adoption is at a sub-optimal level x < 1, and that
full adoption can be realized by adjusting the value of
δh.

As expected, the level of discount δh required to
realize full adoption is different in Fig. 17b and Fig. 17c,
as the exact amount depends on the exact specifications
of the system. However, the overall behavior is similar.

G-C.(d) Non-linear utility function

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about the
non-linearity of the utility function and assumes the
original function is valid.

We now consider the effect of non-linearities in the
utility function as introduced in section F-B1. The final
adoption level is given in Fig. 17d, which again yields a
similar outcome, i.e., the system exhibits regimes where
the final adoption is at a sub-optimal level x < 1, but
full adoption can be realized by adjusting the value of
the discount δh.

G-C.(e) Utility function with upper-bounded roaming

Provider’s knowledge of the perturbations:
The simulations assume that the provider can accu-
rately estimate α (the intensity of roaming traffic m
at full adoption). We relax this in section G-D. Other
than that, the provider does not have any knowledge
about the new utility function.

We use the new utility function of Section F-B2 with
an upper-bound value of τ = 0.8. We see from Fig. 17e
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(a) Original model. (b) Low-mode θ distribution with parameter λ =
1.5.

(c) High-mode θ distribution with parameter λ =
1.5.

(d) Non-linear utility function (e) Upper-bounded roaming (τ = 0.8) (f) Minimum useful coverage (κth = 0.2)

(g) Heterogeneous population (h) Coverage saturation with adoption

Fig. 17. Final adoption level for the hybrid pricing policy under different perturbations. Parameters are c = 0.8, δr = 0, with γ and δh values
varying.

that adoption outcomes under this new utility function
are very similar to those of the original model, i.e., the
system exhibits regimes where the final adoption is at a
sub-optimal level x < 1, and that full adoption can be
realized by adjusting the value of δh.

Note that, as mentioned above, the exact values of
discount δh required to realize full adoption in Fig. 17e,
are very close to that of the original model (Fig. 17a).
However, greater differences would obviously arise un-
der more drastic changes, i.e., by considering a signifi-
cantly smaller upper-bound value τ.

For instance, as the value for the upper-bound τ of
Section F-B2 is changed to τ = 0.15 (no user roams more
than 15% of the time), greater differences arise. This is
shown in Fig. 18. Nevertheless, the figure also shows
that even under this more drastic change, the overall
behavior remains consistent with that of the original

Fig. 18. Result for more drastic changes in the utility function with
upper-bounded roaming (τ = 0.15). Compare to Fig. 17e.

model.

G-C.(f) Utility function with minimum useful coverage
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Fig. 19. Result for more drastic changes in the utility function with
minimum useful coverage κth = 0.4. Compare to Fig. 17f.

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about the
new utility function.

We use the new utility function of Section F-B3 with
a threshold value of κth = 0.2. We see from Fig. 17f
that adoption outcomes under this new utility function
are very similar to those of the original model, i.e., the
system exhibits regimes where the final adoption is at a
sub-optimal level x < 1, and that full adoption can be
realized by adjusting the value of δh.

Note that, as mentioned above, the exact values of dis-
count δh required to realize full adoption in Fig. 17f, are
very close to that of the original model (Fig. 17a). How-
ever, as seen earlier, greater differences would obviously
arise under more drastic changes, i.e., by considering a
significantly larger threshold value κth.

For instance, as the value for the threshold κth of
Section F-B3 is changed to κth = 0.4 (roaming users do
not consider the system valuable until coverage exceeds
40%), greater differences arise. This is shown in Fig. 19.
Nevertheless, the figure also shows that even under
this more drastic change, the overall behavior remains
consistent26 with that of the original model.

G-C.(g) Heterogeneous population

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about the
users of type T2 and assumes that everyone is a user of
type T1. But the simulations assume that the provider
can accurately estimate α (the intensity of roaming
trafficm at full adoption). We relax this in section G-D.

In this section, we consider the effect of a heteroge-
neous user population, as per the two-type user popu-

26 The yellow stripes in Fig. 19 correspond to points where the
system does not converge to an equilibrium. However, we still have
the previous behavior, i.e., as δh increases, full adoption becomes the
unique equilibrium of the system.

lation of Section F-C. The results are shown in Fig. 17g.
We see that again the system exhibits regimes where the
final adoption is at a sub-optimal level x < 1, but that
we can still realize full adoption by adjusting the value
of the discount δh.

There are, however, unavoidable differences between
Fig. 17g and Fig. 17a. Notably, we now need a positive
discount (δh ' 0.18) to reach full adoption at all γ
values. This is because the provider is totally unaware
of the existence of the type T2 users, which introduces
relatively big errors in the pricing policy. As a result
and because we need to compensate for those large
errors, reaching full adoption now requires a bigger
discount factor δh than before. In general, the larger
the errors in the assumptions used to set prices, the
bigger the discount “margin” required to compensate for
them. Nevertheless, the structure of the system remains
unchanged.

G-C.(h) Coverage saturation with adoption

Provider’s knowledge of the perturbations:
The provider is not assumed to have any knowledge
of the coverage saturation (of course, in practice they
can measure the coverage if they want to, but our
simulations do not assume that knowledge).

As before, we consider a scenario where coverage
saturates as the system approaches full adoption x = 1
(see Section F-D). The results for this scenario are shown
in Fig. 17h that displays a somewhat different structure
from the other figures, namely, the system appears to
always reach full adoption even with a discount of
δh = 0. This is, however, not surprising given that at
any adoption level the coverage is higher than in the
original model (the saturating coverage function has a
concave shape). As a result of this higher coverage, more
users find the service useful, and hence adopt, eventually
resulting in full adoption.

Nonetheless, the paper’s analysis can help us under-
stand this result as well. For instance, consider the case
of zero discounts, i.e., δh = δr = 0. The utility function
for each user becomes

U(Θ, θ) = c (α−m) + θγ(κ− 1).

As before, α is the estimate for the roaming traffic m at
full adoption, so that α −m is non-negative. Similarly,
because coverage κ is less than or equal to 1, it follows
that (κ−1) is negative (or 0). Because coverage saturates
earlier, the term θγ(κ− 1) is greater than in the original
model, hence enticing more roaming users to adopt,
therefore facilitating reaching full adoption27.

27Obviously, a scenario where coverage proceeds more slowly as
adoption increases, i.e., a convex rather than concave coverage func-
tion, would have the opposite effect.
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Same as Fig. 17a

(a) Original model (b) Low-mode θ distribution with parameter λ =
1.5.

(c) High-mode θ distribution with parameter λ =
1.5.

Same as Fig. 17d

(d) Non-linear utility function (e) Upper-bounded roaming (τ = 0.8)

Same as Fig. 17f

(f) Minimum useful coverage (κth = 0.2)

(g) Heterogeneous population

Same as Fig. 17h

(h) Coverage saturation with adoption

Fig. 20. Final adoption level for the hybrid pricing policy (the provider does not know m at full adoption) under different perturbations.
Parameters are c = 0.8, δr = 0, with γ and δh values varying.

D. Hybrid pricing tests with zero provider’s knowledge

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about any
of the perturbations in this section.

This section presents simulations similar to those of
the previous section, with the difference that we as-
sume that the provider has no knowledge of the system’s
parameters. Specifically, we relax the assumption that
the provider can accurately estimate the actual level of
roaming traffic m generated at full adoption. The results
are given in Fig. 20 that parallels Fig. 17.

Note that Figures. 20d, 20f and 20h are identical to
their counterparts in Fig. 17. The reason is that the
perturbations associated with the scenarios of those three
figures do not alter the value of m at full adoption.
Hence, the provider still estimates the correct value for
m. The same does not hold for the other scenarios and
Figures (b), (c), (e) and (g) differ from their counterparts
in Fig. 17. However, in spite of those differences, they ex-
hibit similar overall behaviors, i.e., they display regimes
where a sub-optimal equilibrium x < 1 arises, but full
adoption can still be realized by adjusting the value of
the discount δh.

The differences between Fig. 20 and Fig. 17 are not
surprising, as the perturbations now result in more
severe errors in the pricing policy, due to the complete
lack of insight by the provider about the system. These
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(a) Original model (b) Low-mode θ distribution with parameter λ =
1.5.

(c) High-mode θ distribution with parameter λ =
1.5.

(d) Non-linear utility function (e) Upper-bounded roaming (τ = 0.8) (f) Minimum useful coverage (κth = 0.2)

(g) Heterogeneous population (h) Coverage saturation with adoption

Fig. 21. Relative profit drop from profit maximization to welfare maximization (fixed-price policy γ = 1, r = 2 and e = 0.3).
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larger errors work in favor of full adoption in (b) and (e),
and against it in (c) and (g). As expected, differences in
errors result in different necessary discount values, even
if the overall pattern and structure are preserved.

E. Fixed price policy

Provider’s knowledge of the perturbations:
The provider does not have any knowledge about any
of the perturbations in this section.

Under the original model and the fixed price policy,
a profit maximizing strategy would often differ from a
welfare maximizing one. In the paper, we quantified this
gap by comparing the overall profit under both types of
strategies. The gap was small when the parameter c was
small, but grew large as c increased.

In this section, we demonstrate that even under more
general conditions, i.e., when various aspects of the
original model are perturbed, this finding remains valid.

Throughout the simulations of this section, we fix the
parameters γ = 1, r = 2 and e = 0.3 and consider a range
of c values. The details of the simulations are as follows:
At each point, we iterate over different values of p to
find the price p∗ that maximizes the provider’s profit
with no constraint, as well as the price p̂ that maximizes
provider’s profit with the constraint that the total welfare
is also maximized. We denote the corresponding values
of maximum profit by W∗P and ŴP, respectively. We then
compute the relative profit drop from profit maximiza-
tion to welfare maximization as

Profit difference =
W∗P − ŴP
W∗P

× 100%.

Fig. 21 compares the resulting profit drops for both
the original model and the seven different perturbations
introduced in Appendix F. The figure illustrates that the
overall behavior is similar across all scenarios, i.e., there
is no profit difference for small values of c, but the gap
increases rapidly as c increases beyond some moderate
threshold value.

APPENDIX H
USAGE-BASED PRICING AND UTILITY FUNCTIONS WITH

MINIMUM USEFUL COVERAGE

In this section we analyze user adoption under the
usage-based pricing policy and the utility function with
minimum useful coverage rule.

Putting the usage-based price function of Eq. (16) into
the utility function of Eq. (61), the utility for user θ is
found as

U(Θ, θ) =

{
a− cm− rθx if x < κth,

a− cm if x ≥ κth.
(62)

In order to analyze the adoption dynamics in this case,
we assume that at each “decision time", only the most
"eager" of the users adopts (or disadopts) the service.
Such a “diffusion-like" adoption mechanism prevents
artifacts such as sudden oscillation in the adoption level
for the current case.

We first note that by Eq. (62), at any adoption level x,
the users with smaller roaming frequency θ have higher
utility. Therefore, the adoption interval is always of the
form [0, x], and consequently m = x2/2. Therefore the
utility function of Eq. (62) becomes

U(Θ, θ) =

{
a− c x

2

2
− rθx if x < κth,

a− c x
2

2
if x ≥ κth.

(63)

We want to find the conditions under which full adop-
tion x = 1 is the unique equilibrium and the adoption
levels eventually reach this equilibrium. Now assume
that adoption levels are initially at x = 0. Because of the
low adoption level, user utilities are given by the first
expression in Eq. (63). As adoption levels increase, we
want to consistently have the user with θ = x+ see a
positive utility, hence adopt the service. The worst case
happens for the user with θ = κ−th, who at the time of
her decision sees a utility of

U(x ≈ κth, θ = κth) = a− (c/2)κth − rκth

= a− κth(c/2+ r).

Therefore we obtain the extra condition a > κth(c/2+r)
for x = 1 to be a unique equilibrium. Consequently, we
get a modified form of proposition 1.

Proposition 7. Under the usage-based pricing policy of
Eq. (16), and a utility function with minimum useful coverage
rule given in Eq. (61), full adoption, x = 1, is the unique
equilibrium if a > max{c/2, κth(c/2 + r)}, and is not an
equilibrium if a ≤ c/2.

Note that if the threshold κth is such that c/2 ≥
κth(c/2 + r), then the system’s adoption behavior is
the same as the original model. On the other hand, If
c/2 < κth(c/2 + r), then for c/2 < a < κth(c/2 + r), full
adoption x = 1 is an equilibrium but not unique.

APPENDIX I
CONTIGUITY OF THE OPTIMAL ADOPTION SET

In this section we provide analytical proof for a more
general form of Lemma 1. Namely, in a setting where
the users’ propensity to roam, θ, has a general arbitrary
distribution f(θ) in [0, 1].

Under a general distribution, the adoption level x, the
roaming traffic m and the total welfare V(Θ) should be
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computed based on their general expressions, as follows.

x(Θ) =

∫
θ∈Θ

f(θ)dθ, (64)

m(Θ) =

∫
θ∈Θ

θ f(θ)dθ , (65)

V(Θ) =

∫
θ∈Θ

v(Θ, θ) f(θ)dθ. (66)

The next Lemma then gives the generalization of
Lemma 1.

Generalization of Lemma 1. Under an arbitrary roaming
distribution with density f(θ) and for any adoption level x,
maximum welfare is always obtained with a set of adopters
Θ∗(x) that exhibit contiguous roaming characteristics. Specif-
ically, Θ∗(x) is of the form

Θ∗(x) =

{
Θ∗1(x) = [0, x) if x < γ

r−c ,

Θ∗2(x) = [1− x, 1] if x ≥ γ
r−c .

(67)

Proof: For any given adoption level x, consider an
arbitrary realization Θold of adopters such that |Θold| = x.
Now take any two intervals N1 and N2 from [0, 1] such
that

N1 = [θ1, θ1 + ε1), N1 ∩ Θold = ∅,
N2 = [θ2, θ2 + ε2), N2 ⊂ Θold

where θ2 > θ1, ε1 > 0 and ε2 is selected such that

x(N1) = x(N2) , ε, (68)

x(·) being the coverage generated by a particular set as
defined by Eq. (64). The above conditions mean that
everyone in N1 is a non-adopter and everyone in N2
is an adopter, and the population of these two sets is
the same, taken to be ε. Construct a new set of adopters
by having everyone in N1 adopt and everyone in N2
disadopt,

Θnew = (Θold ∪N1)\N2,

where \ indicates the set difference operation. We inves-
tigate next the change ∆ in welfare when the adopers’
set changes from Θold to Θnew, i.e.,

∆ , V(Θnew) − V(Θold). (69)

Using Eq. (66) and splitting the bounds of the integral,
we can write

V(Θold) =

∫
Θold

v(Θold, θ) f(θ)dθ

=

∫
Θold\N2

v(Θold, θ) f(θ)dθ

+

∫
N2

v(Θold, θ) f(θ)dθ,

(70)

and similarly

V(Θnew) =

∫
Θnew

v(Θnew, θ) f(θ)dθ

=

∫
Θnew\N1

v(Θnew, θ) f(θ)dθ

+

∫
N1

v(Θnew, θ) f(θ)dθ,

(71)

Note that

Θold\N2 = Θ
new\N1 = Θ

old ∩Θnew,

and therefore we can use Eq. (70) and Eq. (71) in Eq. (69)
to get

∆ = ∆1 + ∆2, where

∆1 ,
∫
Θnew∩Θold

(
v(Θnew, θ) − v(Θold, θ)

)
f(θ)dθ,

∆2 ,
∫
N1

v(Θnew, θ) f(θ)dθ−

∫
N2

v(Θold, θ) f(θ)dθ.

Moreover, from Eq. (9) we have

v(Θold, θ) = γ+ θ (rxold − γ) − cmold − e,

where xold and mold are the adoption level and the vol-
ume of roaming traffic corresponding to Θold. Similarly,

v(Θnew, θ) = γ+ θ (rxnew − γ) − cmnew − e,

with xnew and mnew defined respective to Θnew. Note that
as a result of the condition in Eq. (68), we have xold =
xnew = x. Therefore

∆1 = −

∫
Θnew∩Θold

c
(
mnew −mold

)
f(θ)dθ

= −c
(
mnew −mold

) ∫
Θnew∩Θold

f(θ)dθ

= −c (m(N1) −m(N2)) (x− ε)

and

∆2 =(γ− cmnew − e)

∫
N1

f(θ)dθ+ (rx− γ)

∫
N1

θ f(θ)dθ

− (γ− cmold − e)

∫
N2

f(θ)dθ− (rx− γ)

∫
N2

θ f(θ)dθ

=(γ− cmnew − e)ε+ (rx− γ)m(N1)

− (γ− cmold − e)ε− (rx− γ)m(N2)

= − εc (m(N1) −m(N2)) + (rx− γ) (m(N1) −m(N2)) ,

Where m(·) is as given by Eq. (65). Thus, we compute ∆
as

∆ =− cx (m(N1) −m(N2))

+ (rx− γ)(m(N1) −m(N2))

=(m(N2) −m(N1))(cx− rx+ γ).

(72)
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We also have

m(N2) =

∫θ2+ε2
θ2

θ f(θ)dθ

> θ2

∫θ2+ε2
θ2

f(θ)dθ = θ2

∫θ1+ε1
θ1

f(θ)dθ

> (θ1 + ε1)

∫θ1+ε1
θ1

f(θ)dθ

>

∫θ1+ε1
θ1

θ f(θ)dθ = m(N1),

where θ2 > θ1 + ε1 holds since by construction N1 and
N2 are mutually exclusive.

Consequently m(N2) − m(N1) > 0, and Eq. (72)

indicates that ∆ > 0 if and only if x < γ
r−c . But a

∆ > 0 (positivity independent of the specific choices of
N1 and N2) means that welfare always increases if an
interval of high-θ users leave and a same-size interval
of low-θ users join. Repeating this for multiple intervals
of suitable sizes will create a contiguous set of adopters
in [0, x) that generates more welfare than any other set.
Similarly, the case of ∆ ≤ 0 creates28 a contiguous set of
adopters in the other end of [0, 1] interval, i.e., [1− x, 1].

The generalization of Lemma 1 characterizes the struc-
ture of optimal adoption set for any given x and estab-
lishes that is a contiguous set of adopters.

28 When ∆ = 0, this optimal contiguous Θ is not the only optimum.
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