Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-83-5

1983-12-01

ADS Formal Semantics

Takayuki Kimura

Abstract Database System (ADS) is a data model developed for an enduring medical
information system where frequent changes in the conceptual schema are anticipated and
multi-level abstraction is required. The mechanism of abstraction in ADS is based on the
abstraction operator of the lamba calculus. The formal semantics of a subset of the ADS model
is presented using the denotational specification method.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Kimura, Takayuki, "ADS Formal Semantics" Report Number: WUCS-83-5 (1983). All Computer Science and
Engineering Research.

https://openscholarship.wustl.edu/cse_research/858

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/858?utm_source=openscholarship.wustl.edu%2Fcse_research%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

ADS FORMAL SEMANTICS

Takayuki Kimura

WUCS~83-5

DEPARTMENT OF COMPUTER SCIENCE
WASHINGTON UNIVERSITY
ST. LOUIS, MISSQURI 63130

December 1983






ABSTRACT

Abstract Database System (ADS) is a data model developed for
an enduring medical information system where frequent changes in the
conceptual schema are anticipated and multi-level abstraction is
required. The mechanism of abstraction in ADS is based on the
abstraction operator of the lambda calculus.

The formal semantics of a subset of the ADS model is presented

using the denotational specification method.



ADS Formal Semantics

1. Introduction

This appendix specifies the formal semantics of a subset of the ADS
data model. This specification demonstrates that the semantiecs of the
entire data model can be formally defined. The denotational
specification method has been chosen over the axiomatic and operational
methods because of its simplicity and elegance [3]. We assume that the
rea@er is familiar with both the ADS daﬁé model and the denctational
method of semantic specification.

We consider a subset of ADS that is simple to understand, yet still
contains the essential, fundamental parts of ADS. For example, because
the existential quantifier (3) can be represented by a combination of
logical negation and the universal quantifier(¥ ), only the universal
quantifier is included in the subset. Similarly, the concept of type is
not included in the subset because the typing of abstraction variables
can be represented by a combination of a conditional descriptor and a
test of a symbol's significance (i.e., whether a symbol's meaning has
been defined or not).

Section 2 defines the syntax of the ADS subset. The syntax of the
syntactic classes (deseriptors, transformers, predicates, updates and
queries) are specified. Section 3 discusses some of the key ADS
concepts., Also, the notation used to define the semantic evaluation
function 1is introduced. Section U discusses name evaluation which lies

at the very core of the semantics of ADS. Section § formally defines



semantic consistency. The relationship between intensional and
extensional descriptions is discussed. Section 6 defines update

evaluation. Finally, Section 7 defines query evaluation.

2. ADS Syntax

For the remainder of this appendix, we will use the term ADS to
mean the language system whose syntax is defined in this section and
whose semantics are defined in the following sections. We will use a
BNF-like notation to specify the syntax using "::=" for defining
synt§ctic categories and "|" for defininé an alternative construction.
Higher order functions (transformers) are represented by:

Bos t1s £y oes
where ti is the category of 1-th order transformers. Similarly, higher
order predicates are represented by:

Po, Pys Ppy eee
where Pi is the category of i-th order predicates.

Furthermore, we leave the syntactic category of names (identifiers)
undefined. The symbol "n" denotes a name from the set of arbitrary
names which inecludes the terminal symbols "N", "T", and "F".

The terminal symbols are:

+ U U ( ) / 1 A - b L4 #
E ? e

. i [ ] T F N = ==
For the sake of readability, terminal symbols are not quoted in the

syntax specification. A brief explanation of these symbols is given in
Section 3, Appendix I of this report. With the following abbreviations

for syntactice categories:



n : name,

d : descriptor,
t. : i-th order transformer, (i > 0)
P; : i-th order predicate, (1 > 0)

u : update,

q 3 query,

the syntax of ADS can be defined as follows:

(1 d 3=t | py (1>0)
(2) to s1= N | +tpty 1 dt 1 "d" 1 €én | (in)p,
ti itz boeti g 1 oPg=tis bty Ion 1 dn | (%))

ti, = Oty

(3) Pg s2= T [ F 1 /857 1 tp=tyg | (V¥nlp,
Py 2:= toeps,q | PPy by I om | #n | [ty]
Pi.q 3= Owdpy

(4) u .= bk n==d | + n:=d

(5) q t:z 2

Although the language deseribed by the above definition is only a subset
of the full ADS language, it contains enough variety so that the basic
conceptual foundation upon which the ADS model rests is exemplified in
the semantic definitions which follow. The motivation for the syntactic
categories and the semantics which follow is elaborated upon in
Reference 1. We now turn to a discussion of the fundamental concepts

required to understand the evaluation function in ADS.



3. Preliminaries

In this section, we discuss some basic concepts and introduce the
notation used to define the semantic evaluation function. These
concepts include the ADS encoding function, ADS objects, an ADS database
and the symbolic operation of free substitution. Standard mathematical
notation (e.g., for set and function) is used in our formal definitions.
For example, "A—-B" denotes the set of all functions from A to B, and

"=z=" is synonymous with "is identical to by definition."

3.1 Encoding Function

"An ADS database is a collection of descriptors and names stored in
the form of binary trees (defined formally in the next section). An
encoding function "f" determines a unique encoded descriptor in the set
D from each descriptor from the set Desc representing all possible
descriptors in the ADS language. A similar encoding function determines
encoded names from unencodcd names. More formally,

f : Desc— D DCB

f : Name — Na NaC B

where B is the set of binary trees, the encoding form used in ADS.

For example, the Oth order transformer "N" in Section 2 is an
unencoded name. It is encoded as a binary tree, as are the other 0Oth
order transformers such as "€name" where "€" is a terminal symbol and
"name" is some unencoded name. The Oth order predicate "T" is also a
name and is also encoded as a binary tree. The deseriptor
"(hx) (x.#name=T)" which describes the set of all binary trees which are

in the extension of "name" (i.e., #name) is also stored as a binary



tree, as 1s the subdescriptor "x.#name=T".
3.2 Objects

There are four categories of objects that can be described and
named in ADS: logical values, symbols, transformations on symbols, and
conditions on symbols. ADS symbols are binary trees. A binary tree is
denoted by a sequence of ones for internal nodes and zeros for leaf
nodes where the order is a preorder traversal. The ADS objects are

denoted by the following symbols:

2 == {true, false} logical values
B == {0, 100, 10100, 11000, ... } symbols (binary trees)
@
Z == k:O(Tk U P) objects
where
TO == B, Ty,q == B =~ Ti transformations
Py == 2, Py 2= B — Py conditions

Objects result from the evaluation of names and descriptors.
3.3 Database

A database state (or simply a database) in ADS is a collection of
names and descriptors. One pair of descriptors is associated with each
name: an intensional descriptor and an extensional descriptor. An
intensional descriptor denotes what the named object can be, and the

extensional descriptor denotes what the named object is (Figure 1).



Intension Extension
Figure 1. Names and Descriptors.

Formally, a database is an association (mapping) between names and pairs
of descriptors. If we denote a database state by "m" and the set of all

possible database states bf "M", then,

M==Na—DXD database
m(n).== (m, (n), m (n)), where m € M, n ¢ Na,
and m(n) C D intensional desecriptor of n
m,(n) C D extensional deseriptor of n.

The expression (mi(n), m. (n)) is the descriptor pair associated with the
name n in database state m.

3.4 Free Substitution

An occurrence of a name is bound in a symbol (binary tree) if and
only if 1) it appears immediately after an operator ¥, \ or 1, 2) it
appears within the scope (as in lambda calculus) of the operator in the
symbol, or 3} it is quoted by ". An occurrence is free if it is not
bound. Note that there two quote symbols in ADS: single (') and double

{("). Symbols quoted with single quotes remain free. Free substitution




is the replacement of all free occurrences of a name within a symbol by
another symbol. It plays a fundamental role in the process of
descriptor evaluation. The free substitution operation is denoted by
{ }. Formally, we have

{}):D— (NaXD— D) free substitution

{d}: == { }(d)(n,a) substitution of a € D

for n € Na in d € D.

{d}g is a particular substitution applicable to any descriptor. This
view can not be represented by the other notation. The notation {d}g is
similar to the notation used in [1] and means that every free occurrence

of the name n in the descriptor d is replaced by the descriptor a.

y, Descriptor Evaluation

The evaluation of names forms the nucleus of the semantic
definition of ADS. Since the association between a name and what the
name refers to (Figure 2) is defined in terms of descriptors, the
evaluation of names also requires the evaluation of descriptors; i.e.,
a descriptor must be associated with the referenced object. The
descriptor evaluation function for the descriptor d associated with the
name n must also be a function of the current database state m because d
may be defined in terms of other names whose descriptors may change from

one database state to another.



Objects
Intension Extension
Figure 2. Deseriptor Evaluation.
We denote the evaluation function by "[ 1". Then,
[ J:D~ (M- 2) descriptor evaluation
[d]m == [ 1{d)(m) the me+ning of d € D in database

state m ¢ M,
The evaluation function is a partial function on D. We will use the
following notational convention:
[d} == iff [ ] is undefined on d € D under m ¢ M.
That is, the evaluation of descriptor d in database state m is empty if
and only if the evaluation of d is undefined in database state m.

Below is a recursive definition of the evaluation function [ ]
based on the syntactic structure of descriptors as defined in (1), (2)
and (3) in Section 2. Bear in mind that all arguments to the evaluation
function are encoded symbols (binary trees). However, in order to

simplify the notation, the unencoded fForm of the symbols are used in the



definitions. For example, to be precise, in (1) the symbol N should be

written as f(N). In the definitions below, tO’ Pgs d and n are

syntactic categories.

' = ' denotes the identity on binary trees.

(1)
(2)
(3)
%)
(5)
(6
0
(8)
(9)
(10)
(11)
(12)
(13)
(1)
(15)
(16)
(17)

[N)] ==

[+abl == 1[allb] a,b e to
['x'] == x xed
[nxn] == X xEd
[@xﬂm == my (x) X En

[(1y)p) == x such that [Oy)pl(x) = true,

xeB,pe;h,yan

[T) == true

[F] == false

[azb] == true if ({a] = [b)) else false ab et
[/x7) == (Ix] £ 9) xed

[(vy)pl == (vx € B)i Ow)pl(x)
[Ow)bl(x) == l{b}g] where [a) = >
[a.x) == Ix]({[a])

A LA

[#xﬂm == [me(x)]m

[ [a] ]m == [[a]m]m

ed
a, lal,

fa — b; e¢] == [b] if [al] = true acg po,
== [e] if {a] = false b,c £ d
== p otherwise.

Several clarifications are in order at this point.



1)  The distinction of name usage in (5), (14) and (15) is as follows.

In (5), the evaluation of "@n" is the intensional descriptor of the
name n in the current database state. In (14), the evaluation of
the name n is the object described by the intensional descriptor
and depends on the current database state. In (15), the evaluation
of "#n" is an object described by the extensional desecriptor of the
name n.
2) Note that in (6), "x" may not be unique, therefore [ ] must be

considered as a multivalued function. The iota operator (1) peans

“"some value of x such that." Similarly in (12), "a" may not be

unigue,

5. Semantic Consistency

The fundamental law of semantic consistency in ADS states that the
extension of each name in a database must be consistent with its
intension. If a name denotes a transformation, the extensional
transformation must be a partial function of the intensional
transformation. The symbols in the evaluation of the extension must be
a subset of the symbols in the evaluation of the intension. If a name
denotes a condition, the symbols satisfying the extensional condition
must be a subset of the symbols satisfying the intensional condition.
By definition, a database state 1s a consistent (legal) state if every
extension of a name is consistent with the intension of the name. If a
name has only an intension and therefore no extension, the name has no
direct effect on the legality of the database state. The above informal

discussion on database consistency is exemplified below by the predicate

10



Cons on M.

explained

Part A

Part B

The predicate contains two parts (4 and B) which are

below.

Cons 3

Cons{m

r'

M -2
} == {(¥n eNa)(me(n) P =>
(Vk>0)
( (mi(n) £ tk =>

(Vx ¢ BX)(Vy ¢ B)

(y = [me(n)!m(x) =
y = [mi(n)lm(x) »
A (mi(n) € Py =>
(vx e BX)

([me(n)]m(x) =D

[m (n)1,(x) 1))

where f£{x} == f{x1)(x2)...(xk) when X == (x1,x2,...,xk) ¢ BX. Note

that

1) Consistency is defined only for a name with a defined extension

(m_(n) £ 2).

2) If the intension of n iIs a kth order transformer, any symbol y in

the evaluated extension of n must also be in the evaluated

intension of n (part A above).

3) If the intension of n is a kth order predicate, any evaluated

extension of n which is true must alsc be true when the intensional

definition of n is evaluated (part B above}. Note that if the

evaluated extension of n is false, we do not care what its

11



intensional evaluation is.

6. Update Evaluation

The initial database state m0 € M has no intension and no extension,
i.e., (¥Vne Na)(mi(n) = m,(n) = 8). A user enters new information into
the database; i.e., updates the database, by modifying the intension or
the extension of a name. The update operation transforms one consistent
database state into another. We denote the update evaluation functicn
by "E", the database state before update by m, the database state after
updape by m' and the intensional definition of n after the update by
mi(n). Below, "<==>" means "if and only if by definition".

(1) E : update ~ (Cons™'(T) — Cons~H(T)) update evaluation

(2) E(l— n::d)(m)

m' == mi(n)=d

(3) E(F n:=d)}(m)

m' <{==> mi(n)fﬂ A mé(n):univ(d,m)

where

1) Cons—1(T) is a consistent database; that is,

Cons'1(T) == {meM| Cons(m) =T }

2) d'=zuniv(d,m) is a universal deseriptor for d satisfying the
following condition: (¥m' € Cons'1(T))([d]m = [d']m,); that is, 4'
is a descriptor which contains no names.

In order for a descriptor to be universal, 1t must be independent
of the database state m. This can not be true so long as there are
names in the descriptor because the names are not evaluated until the
time of usage, a time when the database state may have changed. The
existence of such a universal descriptor is guaranteed by the following

theorem which can be proved by induction on the number of update

12



cperations required to reach the consistent database state m from the
initial state:

(¥Wd £D)(W¥m € Cons~(T))(3d' €D)(vn' sCons"’(T))([d}m = 1d'1,).
With the fixed-point operator, it is possible to write descriptors, even
recursive ones, without the use of names. Appendix III of this report
shows how the fixed-point operator can be expressed in ADS.

In (1) above, E is defined to be a function which evaluates to a
new consistent database gilven an update statement and a consistent
database. (2) states that the intensional definition of a name (n==d)
results in a new database state m' if and only if a name had no
intensional definition prior to the update but has one after the update
(defined by the update statement). (3) states that the extensional
definition of a name (n:=d) must result in a new database state m' if
and only if the name already had an intensional definition prio- to the
update and the new state is consistent with the intensional definition

of n, a definition whose application can depend on the database state at

the time of definition.

e Query Evaluation

An ADS database management system always responds to a user query
by generating a set of symbols. Information stored in the database can
be retrieved by a descriptor specifying a set of symbols. There are two
ways of specifying a set of symbols through a descriptor: either by a
transformer or by a predicate. When a query is made through a
transformer, the range of the function will be generated. When a query

is made through a predicate, the subset of the domain values that

13



satisfy the predicate will be generated. The ordering of set element
generation is unspecified. We denote the query evaluation function by

the same "E" as for the update evaluation function.

E : query — (M — il BK) query evaluation function
k=0

EC 2, Ym) == { It J(x) | x € BX} k>0

EC? )m) == { x e BX I Ip ()} k> 0

Note that a 0-th order transformer will generate a singleton set,
and a higher order transformer will generate a set of symbols. A& first
order predicate will generate a set of symbols, and a higher order
predicate will generate a set of symbol sequences. If the set specified
by a query is infinite, the database management system will not

terminate.

8. Conclusion

The ADS data model nas a simple definition: the formal -definition
of a subset containing all of the fundamental concepts has been given in
this report. A formal definition of the entire ADS model would entail
no more conceptual difficulty; rather it would be a straightforward
extension of the approach taken here (although the task might be
tedious). Yet, it is a powerful model with capabilities for

abstraction, consistency checking, and unstratified control.

14



References

[1] Church, A., Introduction to Mathematical Logic, Volume 1 Princeton
University Press, 1956,

(2] Kimura, T. D., W. D. Gillett and J. R. Cox, Jr., "A Design of a
Data Model Based on Abstraction of Symbols,"” To be published in The
Computer Journal.

(31 Stoy, J., Denotational Semantics: The Scott- Strachey Approach to
Programming Language Theory, MIT Press, 1979.

15



	ADS Formal Semantics
	Recommended Citation

	tmp.1465324928.pdf.TAaWn

