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End-to-End Communication Delay Analysis in
WirelessHART Networks

Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen

Abstract—WirelessHART is a new standard specifically designed for real-time and reliable communication between sensor
and actuator devices for industrial process monitoring and control applications. End-to-end communication delay analysis for
WirelessHART networks is required to determine the schedulability of real-time data flows from sensors to actuators for the
purpose of acceptance test or workload adjustment in response to network dynamics. In this paper, we map the scheduling of
real-time periodic data flows in a WirelessHART network to real-time multiprocessor scheduling. We then exploit the response
time analysis for multiprocessor scheduling and propose a novel method for the delay analysis that establishes an upper bound
of the end-to-end communication delay of each real-time flow in a WirelessHART network. Simulation studies based on both
random topologies and real network topologies of a 74-node physical wireless sensor network testbed demonstrate that our
analysis provides safe and reasonably tight upper bounds of the end-to-end delays of real-time flows, and hence enables effective
schedulability tests for WirelessHART networks.

Index Terms—Wireless sensor networks, scheduling, Real-time and embedded systems.

�

1 INTRODUCTION

Wireless Sensor-Actuator Networks (WSANs) are an
emerging communication infrastructure for monitor-
ing and control applications in process industries.
In a feedback control system where the networked
control loops are closed through a WSAN, the sen-
sor devices periodically send data to the controllers,
and the control input data are then delivered to the
actuators through the network. To maintain the sta-
bility and control performance, industrial monitoring
and control applications impose stringent end-to-end
delay requirements on data communication between
sensors and actuators [1]. Real-time communication is
critical for process monitoring and control since miss-
ing a deadline may lead to production inefficiency,
equipment destruction, and severe economic and/or
environmental threats. For example, in oil refineries,
spilling of oil tanks is avoided by monitoring and
control of level measurement in real-time. Similarly,
many parts of a plant area are equipped with safety
valves; failure in real-time monitoring and control of
these valves may lead to accidents and even serious
explosions in the plant area.

To address the challenges in industrial monitoring
and control, WirelessHART [2] has been designed
as an open WSAN standard specifically for process
industries. To meet the stringent real-time and reli-
ability requirements in harsh and unfriendly indus-
trial environments, the standard features a central-
ized network management architecture, multi-channel

• The authors are with the Department of Computer Science and Engi-
neering, Washington University in St. Louis, St. Louis, MO 63130.
E-mail: {saifullaha, yx2, lu, chen}@cse.wustl.edu

Time Division Multiple Access (TDMA), redundant
routes, avoidance of spatial reuse of channels, channel
blacklisting, and channel hopping [3]. These unique
characteristics introduce unique challenges in end-to-
end delay analysis for process monitoring and control
in WirelessHART networks.

In this paper, we address the open problem of
end-to-end delay analysis for periodic real-time flows
from sensors to actuators in a WirelessHART network.
Specifically, we focus on the delay analysis for fixed
priority scheduling where transmissions associated
with each flow are scheduled based on the fixed prior-
ity of the flow. Fixed priority scheduling is the most
commonly adopted real-time scheduling strategy in
practice, e.g., in CPU scheduling and wired real-time
networks such as Control-Area Networks (CANs).
Our objective is to derive an upper bound of the end-
to-end delay for each periodic flow. The end-to-end
delay analysis can be used to test, both at design time
and for online admission control, whether a set of real-
time flows can meet all their deadlines. Compared
to extensive testing and simulations, analytical delay
bounds are highly desirable in process monitoring
and control applications that require real-time perfor-
mance guarantees. The end-to-end delay analysis can
also be used for adjusting the workload in response
to network dynamics. For example, when a channel
is blacklisted or some routes are recalculated, end-to-
end delay analysis can be used to promptly decide
whether some flow has to be removed or some rate
has to be updated to meet deadlines.

A key insight underlying our analysis is to map the
real-time transmission scheduling in WirelessHART
networks to real-time multiprocessor scheduling. This
mapping allows us to provide a delay analysis of the
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real-time flows in WirelessHART networks by taking
an analysis approach similar to that for multiprocessor
scheduling. By incorporating the unique character-
istics of WirelessHART networks into the state-of-
the-art worst case response time analysis for multi-
processor scheduling [4], we propose a novel end-
to-end delay analysis for fixed priority transmission
scheduling in WirelessHART networks. The proposed
analysis calculates a safe and tight upper bound of the
end-to-end delay of every real-time periodic data flow
in pseudo polynomial time. Furthermore, we extend
the pseudo polynomial time analysis to a polynomial
time method that provides slightly looser bounds but
can calculate the bounds more quickly.

We evaluate our analysis through simulations based
on both random network topologies and the real net-
work topologies of a wireless sensor network testbed
consisting of 74 TelosB motes. The simulation results
show that our delay bounds are safe and reasonably
tight. The proposed analysis, hence, enables an effec-
tive schedulability test for WirelessHART networks.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related works. Section 3 presents the
WirelessHART network model. Section 4 defines the
scheduling problem. Section 5 presents the mapping
and the end-to-end delay analysis. Section 6 shows
how the delay bounds can be extended to a poly-
nomial time method. Section 7 presents evaluation
results. Section 8 concludes the paper.

2 RELATED WORKS

Real-time transmission scheduling in wireless net-
works has been widely studied in previous works [5].
However, very few of those are applicable to Wire-
lessHART networks. Scheduling based on CSMA/CA
protocols has been studied in [6]–[12]. In contrast,
WirelessHART adopts a TDMA-based protocol to
achieve predictable latency bounds. Although TDMA-
based scheduling has been studied in [13]–[15], these
works do not address multi-channel communication
or multi-path routing.

The authors in [16] propose a schedulability anal-
ysis for wireless sensor networks (WSNs) by upper
bounding the real-time capacity of the network. How-
ever, in their model, taking the advantage of TDMA
or frequency division has no effect. The schedulability
analysis for WSNs has also been pursued in [17]. But it
is designed only for data collection through a routing
tree using single channel. End-to-end delay bounds
have been derived in [18] for real-time flows in WSNs.
But this approach works only for cluster-tree model,
and is based on single channel and time division
cluster schedule. Considering the routing structure as
a tree, the worst case delay of messages has been
derived in [19] using sensor network calculus. It con-
siders traffic only from the sensor nodes to the base
station and there is no priority among the messages.

The MAC protocol proposed in [20] assigns fixed
priorities to messages and provides an upper bound
on the queuing times of messages. However, this
bound can help only to derive a necessary condition
for schedulability. Thus, the afore-mentioned existing
works are not applicable for sufficient schedulability
analysis of the fixed priority real-time flows in a
WirelessHART network that exploits the advantages
of TDMA, multi-channel, and multi-path routing.

Since the standard was ratified in September 2007,
transmission scheduling for WirelessHART networks
has been investigated in recent works. Several papers
have proposed scheduling algorithms for converge-
cast assuming simplified network models such as lin-
ear [21] and tree networks [22], [23]. For tree topology,
they further assume that the depth of the tree is no
greater than the number of channels. In contrast, we
consider arbitrary network topologies without any
constraint on route length. Moreover, we consider
bidirectional real-time flows from sensors to the gate-
way and then to actuators, whereas these works only
consider data collection at the gateway. Finally, these
works do not consider real-time flows with different
priorities and priority-based transmission scheduling,
which are the focus of this paper.

Some recent works have considered WirelessHART
networks of arbitrary topologies. These works focus
on real-time scheduling [24], [25], routing [26], and
rate selection [27] algorithms, or framework for sched-
ule modeling [28]. Thus, none of these works ad-
dresses the end-to-end delay analysis. In contrast, we
present an end-to-end delay analysis that is suitable
for any fixed priority scheduling policy. Fixed priority
scheduling is a widely adopted real-time scheduling
policy in practice for both real-time CPU scheduling
and wired real-time networks such as CANs. Instead
of devising a new real-time transmission scheduling
algorithm, the key contribution of our work is an
efficient analysis for deriving the worst case delay
bounds for real-time flows that are scheduled based
on fixed priority. Efficient delay analysis is particu-
larly useful for online admission control and adapta-
tion (e.g., when network route or topology changes)
so that the network manager is able to quickly re-
assess the schedulability of the flows.

3 WIRELESSHART NETWORK MODEL

We consider a WirelessHART network consisting of a
set of field devices and one gateway. These devices
form a mesh network that can be modeled as a
graph G = (V,E), where V is the set of nodes (i.e.,
field devices and the gateway), and E is the set of
communication links between the nodes. A field device
is either a sensor node, an actuator or both, and
is usually connected to process or plant equipment.
The gateway connects the WirelessHART network to
the plant automation system, and provides the host
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system with access to the network devices. For any
link e = (u, v) in E, devices u ∈ V and v ∈ V
can communicate with each other. For a transmission,
denoted by

→
uv, that happens along link (u, v), device u

is designated as the sender and device v the receiver. All
network devices are able to send, receive, and route
packets.

For process monitoring and control applications,
the controllers are installed in the gateway. The sensor
devices deliver their sensor data to the controllers
at the gateway, and the control messages are then
delivered to the actuators through the network. The
unique features that make WirelessHART particularly
suitable for industrial process monitoring and control
are as follows [2], [3].

Centralized Management. The WirelessHART net-
work is managed by a centralized network manager
installed in the gateway. The network manager uses
the network topology information to determine the
routes. It creates the schedule of transmissions, and
distributes the schedules among the devices. Experi-
ences in industrial environments have shown daunt-
ing challenges in deploying large-scale WSANs. The
limit on the network size for a WSAN makes the
centralized management practical and desirable, and
enhances the reliability and real-time performance.
Large-scale networks can be organized using multiple
gateways or as hierarchical networks that connect
small WSANs through traditional resource-rich net-
works such as Ethernet and 802.11 networks.

Time Division Multiple Access (TDMA). Com-
pared to CSMA/CA mechanism, TDMA protocols can
provide predictable communication latencies making
them an attractive approach for real-time communi-
cation. In WirelessHART networks, time is synchro-
nized, and communication is TDMA-based. A time
slot is 10 ms long, and allows exactly one transmission
and its associated acknowledgement between a device
pair. For transmission between a receiver and its
senders, a time slot can be either dedicated or shared.
In a dedicated time slot, only one sender is allowed to
transmit to the receiver. In a shared slot, more than
one sender can attempt to transmit (using the same
channel) to the same receiver. Since, collisions may
occur within a shared slot, a transmission within
a shared slot may be successful only when other
senders do not need to send.

Route Diversity. To enhance the end-to-end reliability,
both upstream and downstream communications are
scheduled based on graph routing. A routing graph, a
subgraph of G, is a directed list of paths that connect
two devices. In graph routing, the routers determine a
packet’s next hop following the route designated by
the packet’s graph ID. For end-to-end communication
between a source and destination pair, the convention
is to allocate one link for each en-route device starting
from the source, followed by allocating a second

dedicated slot on the same path to handle a retrans-
mission, and then to allocate a third shared slot on
a separate path to handle another retry. Doing so for
every link and for each of its subsequent links on the
routing graph requires allocation of a huge number of
time slots for one packet since there are multiple paths
between a source and destination pair. As a result,
a huge number of allocated time slots will remain
unused since only one route will be chosen based on
the network condition. Such a wastage of bandwidth
severely degrades the real-time schedulability of pack-
ets. To address this problem, and for the sake of real-
time communication we rather assume a simplified
version of this routing. We assume that the number
of routes between every pair is a small constant
(typically 1 or 2). Again, using shared slots makes the
real-time schedulability analysis highly complicated
due to the presence of collisions. In our model, we
are concerned about collision-free schedule, and hence
only consider dedicated time slots.
Spectrum Diversity. Spectrum diversity gives the
network access to all 16 channels defined in IEEE
802.15.4 physical layer and allows per time slot chan-
nel hopping in order to avoid jamming and mitigate
interference from coexisting wireless systems. Besides,
any channel that suffers from persistent external in-
terference is blacklisted and not used. Due to difficulty
in detecting interference between nodes and the vari-
ability of interference patterns, every transmission in
a time slot happens on a different channel across the
entire network to avoid transmission failure due to
interference between concurrent transmissions. Thus,
the maximum number of concurrent transmissions
in the entire network at any slot cannot exceed the
number of available channels. This design decision
improves the reliability at the potential cost of re-
duced throughput. The potential loss in throughput is
also mitigated due to the small size of network. The
combination of spectrum and route diversity allows to
handle the challenges of network dynamics in harsh
and variable environments at the cost of redundant
transmissions and scheduling complexity.

Each device is equipped with a half-duplex omni-
directional radio transceiver and, hence, cannot both
transmit and receive in the same time slot. In addi-
tion, two transmissions that have the same intended
receiver interfere each other. Therefore, two trans-
missions

→
uv and

→
ab are conflicting and, hence, are

not scheduled in the same slot if (u = a) ∨ (u =
b)∨ (v = a)∨ (v = b). Since different nodes experience
different degrees of conflict during communication,
transmission conflicts play a major role in analyzing
the end-to-end delays in the network.

4 END-TO-END SCHEDULING PROBLEM

We consider a WirelessHART network G = (V,E)
with a set of end-to-end flows denoted by F. Each
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flow Fj ∈ F is characterized by a period Pj , a deadline
Dj where Dj ≤ Pj , and a set of one or more routes
Φj . Each φ ∈ Φj is a route from a network device
Sourcej ∈ V , called the source of Fj , to another net-
work device Destinationj ∈ V , called the destination of
Fj , through the gateway. The source and destination
are characterized to be a sensor node and an actuator,
respectively. Each flow Fj periodically generates a
packet at period Pj which originates at Sourcej and
has to be delivered to Destinationj within deadline
Dj . For flow Fj , if a packet generated at slot r is
delivered to Destinationj at slot f through a route
φ ∈ Φj , its end-to-end delay through φ is defined as
Lj(φ) = f − r + 1.

A flow Fj may need to deliver its packet through
more than one route in Φj . If the delivery through a
route fails or some link on the route is broken, the
packet can still be delivered through another route
in Φj . Therefore, in a predetermined schedule, for a
flow Fj , time slots must be reserved for transmissions
through each route in Φj for redundancy. That is, the
schedule must be created such that a flow Fj can meet
deadline through each route in Φj . Hence, for end-to-
end delay analysis purpose, through each of its routes
flow Fj is treated as an individual flow Fi with dead-
line and period equal to Fj ’s deadline and period,
respectively. That is, Fj is now considered |Φj | indi-
vidual flows, each with a single route. Therefore, from
now onward the term ‘flow’ will refer to an individual
flow through a route. We denote this set of flows by
F = {F1, F2, · · · , FN}. Thus, associated with each
flow Fi, 1 ≤ i ≤ N, are a period Pi, a deadline Di, a
source node Sourcei, a destination node Destinationi,
and a route φi from Sourcei to Destinationi. For each
flow Fi, if every transmission is repeated χ times,
then the number of transmissions required to deliver
a packet from Sourcei to Destinationi through its
route φi is Ci = length(φi) ∗ χ, where length(φi) is
the number of links on φi. Thus, Ci is the number of
time slots required by flow Fi.

Each flow Fi, 1 ≤ i ≤ N, has a fixed priority.
We assume that all flows are ordered by priorities.
Flow Fi has higher priority than flow Fj if and only
if i < j. We use hp(Fi) to denote the set of flows
whose priorities are higher than that of flow Fi. That
is, hp(Fi) = {F1, F2, · · · , Fi−1}. In practice, priorities
may be assigned based on deadlines, rates, or the
criticality of the real-time flows. Priority assignment
policies are not the focus of this paper, and our end-to-
end delay analysis can be applied to any fixed priority
assignment. In a fixed priority scheduling policy, at any
time slot, among all ready transmissions and those not
conflicting with the scheduled ones, the transmission
that belongs to the highest priority flow is scheduled
on an available channel.

In a WirelessHART network, the complete schedule
is divided into superframes. A superframe represents
transmissions in a series of time slots that repeat

infinitely and represent the communication pattern of
a group of devices. In fixed priority scheduling, the
created schedule can be mapped to superframes as
follows. For any i and j such that 1 ≤ i < j ≤ n,
the schedule for flows F1, F2, · · · , Fi is repeated after
their hyper-period. Therefore, the schedule for flows
F1, F2, · · · , Fi can be assigned to a superframe of
length (i.e., total time slots in the superframe) equal
to their hyper-period. Similarly, the schedule for flows
Fi, Fi+1, · · · , Fj is repeated after the hyper-period of
first j flows (i.e., flows F1, F2, · · · , Fj), and hence can
be assigned to a superframe of length equal to that
hyper-period. For example, when Di = Pi, for each
Fi, using rate monotonic scheduling, flows having the
same period are assigned in the superframe of length
equal to their period.

Transmissions are scheduled using m channels. The
set of periodic flows F is called schedulable under a
scheduling algorithm A, if A is able to schedule all
transmissions in m channels such that no deadline is
missed, i.e., Li ≤ Di, ∀Fi ∈ F , with Li being the
end-to-end delay of Fi. For A, a schedulability test S is
sufficient if any set of flows deemed to be schedulable
by S is indeed schedulable by A. To determine the
schedulability of a set of flows, it is sufficient to show
that, for every flow, an upper bound of its worst
case end-to-end delay is no greater than its deadline.
Thus, given the set of real-time flows F and a global
fixed priority algorithm A, our objective is to decide
the schedulability of F based on end-to-end delay
analysis.

5 END-TO-END DELAY ANALYSIS

In this section, we present an efficient end-to-end de-
lay analysis for the real-time flows in a WirelessHART
network. An efficient end-to-end delay analysis is
particularly useful for online admission control and
adaptation to network dynamics so that the network
manager is able to quickly reassess the schedulability
of the flows (e.g., when network route or topology
changes, or some channel is blacklisted). In analyzing
the end-to-end delays, we observe two reasons that
contribute to the delay of a flow. A lower priority
flow can be delayed by higher priority flows (a) due to
channel contention (when all channels are assigned to
transmissions of higher priority flows in a time slot),
and (b) due to transmission conflicts (when a trans-
mission of the flow and a transmission of a higher
priority flow involve a common node). At first, we
analyze each delay separately. We, then, incorporate
both types of delays into our analysis and end up
with an upper bound of the end-to-end delay for
every flow. If every transmission is repeated χ times to
handle retransmission, then every time slot is simply
multiplied by χ in delay calculation. For simplicity
of presentation we use the retransmission parameter
χ = 1.
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5.1 Delay due to Channel Contention
5.1.1 Observations Between Transmission Schedul-
ing and Multiprocessor CPU Scheduling
A key insight in this work is that we can map the
multi-channel fixed priority transmission scheduling
problem for WirelessHART networks to the fixed
priority real-time CPU scheduling on a global multi-
processor platform. Towards this direction, we make
the following important observations between these
two domains.

Since spatial reuse of channels is avoided in a
WirelessHART network, each channel can accommo-
date one transmission in a time slot across the entire
network. Thus, a flow executing for one time unit on
a CPU of a multiprocessor system is equivalent to a
packet transmission on a channel which takes exactly
one time slot in a WirelessHART network. That one
flow cannot be scheduled on different processors at
the same time is similar to the fact that one flow
cannot be scheduled on different channels at the same
time. In addition, flows executing on multiprocessor
platform are considered independent while the flows
being scheduled in a WirelessHART network are also
independent. Again, execution of flows on a global
multiprocessor platform is equivalent to switching of
a packet to different channels at different time slots
due to channel hopping. Finally, completing the exe-
cution of a flow on a CPU is equivalent to completing
all transmissions of a packet from the source to the
destination of the flow.

Thus, in absence of conflicts, the worst case re-
sponse time of a flow in a multiprocessor platform is
equivalent to the upper bound of its end-to-end delay
in a WirelessHART network. Therefore, to analyze the
delay due to channel contention, we can map the
transmission scheduling in a WirelessHART network
to global multiprocessor CPU scheduling.

5.1.2 Mapping to Multiprocessor CPU Scheduling
Based on the observations discussed above, the map-
ping from multi-channel transmission scheduling in
a WirelessHART network to multiprocessor CPU
scheduling is as follows.

• Each channel is mapped to a processor. Thus, m
channels correspond to m processors.

• Each flow Fi ∈ F , is mapped to a task that exe-
cutes on multiprocessor with period Pi, deadline
Di, execution time Ci, and priority equal to the
priority of flow Fi.

While the proposed mapping allows us to poten-
tially leverage the rich body of literature on real-
time CPU scheduling, the end-to-end delay anal-
ysis for WirelessHART networks remains an open
and non-trivial problem. An important observation
is that we must consider transmission conflicts in
the delay analysis. Note that transmission conflict is
a distinguishing feature of transmission scheduling

in WirelessHART networks that does not exist in
traditional real-time CPU scheduling problems. A key
contribution of our work, therefore, is to incorporate
the delays caused by transmission conflicts into the
end-to-end delay analysis. By incorporating the delay
due to these conflicts into the multiprocessor real-
time schedulability analysis, we establish a safe upper
bound of the end-to-end delay of every flow in a
WirelessHART network.

In the proposed end-to-end delay analysis, we first
analyze the delay due to channel contention between
the flows. Whenever there is a channel contention be-
tween two flows, the lower priority flow is delayed by
the higher priority one. Based on the above mapping,
the analysis for the worst case delay that a lower pri-
ority flow experiences from the higher priority flows
due to channel contention in a WirelessHART network
is similar to that when the flows are scheduled on a
multiprocessor platform. Therefore, instead of estab-
lishing a completely new analysis for the delay due to
channel contention, the proposed mapping allows us
to exploit the results of the state-of-the-art response
time analysis for multiprocessor scheduling [4].

5.1.3 Response Time Analysis for Multiprocessor
CPU Scheduling

To make our paper self-contained, here we present the
results of the state-of-the-art response time analysis
for multiprocessor scheduling which was proposed by
Guan et al. [4]. Assuming that the flows are executed
on a multiprocessor platform, they have observed
that a flow experiences the worst case delay when
the earliest time instant after which all processors
are occupied by the higher priority flows occurs just
before its release time. Therefore, for flow Fk, a level-
k busy period is defined as the maximum continuous
time interval during which all processors are occupied
by flows of priority higher than or equal to Fk’s
priority, until Fk finishes its active instance. We use
the notation BP(k, t) to denote a level-k busy period of
t slots. Now, the delay that some higher priority flow
Fi ∈ hp(Fk) will cause to Fk depends on the workload
of all instances of Fi during a BP(k, t). Flow Fi is said
to have carry-in workload in a BP(k, t), if it has one
instance with release time earlier than the BP(k, t) and
deadline in the BP(k, t). When Fi has no carry-in, an
upper bound W nc

k (Fi, t) of its workload in a BP(k, t),
and an upper bound Inc

k (Fi, t) of the delay it can cause
to Fk are as follows.

W nc
k (Fi, t) =

⌊
t

Pi

⌋
. Ci +min(t mod Pi, Ci) (1)

Inc
k (Fi, t) = min

(
W nc

k (Fi, t), t− Ck + 1
)

(2)

When Fi has carry-in, an upper bound W ci
k (Fi, t) of its

workload in a BP(k, t), and an upper bound Ici
k (Fi, t)
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of the delay that it can cause to Fk are as follows.

W ci
k (Fi, t) =

⌊
max(t− Ci, 0)

Pi

⌋
. Ci + Ci + μi (3)

Ici
k (Fi, t) = min

(
W ci

k (Fi, t), t− Ck + 1
)

(4)

where carry-in μi = min
(
max

(
λ − (Pi −

Ri), 0
)
, Ci − 1

)
; λ = max(t − Ci, 0) mod Pi; with

Ri being the worst case response time of Fi.
With the observation that at most m − 1 higher

priority flows can have carry-in, an upper bound
Ωk(t) of the total delay caused by all higher priority
flows to an instance of Fk during a BP(k, t) is derived
as follows.

Ωk(t) = Xk(t) +
∑

Fi∈hp(Fk)

Inc
k (Fi, t) (5)

with Xk(t) being the sum of the min(|hp(Fk)|,m− 1)
largest values of the differences Ici

k (Fi, t) − Inc
k (Fi, t)

among all Fi ∈ hp(Fk).

5.2 Delay due to Transmission Conflicts
Now we analyze the delay that a flow can experience
due to transmission conflicts. Whenever, two trans-
missions conflict, the transmission that belongs to the
lower priority flow must be delayed, no matter how
many channels are available. Since different transmis-
sions experience different degrees of conflict during
communication, these conflicts play a major role in
analyzing the end-to-end delays in the WirelessHART
network. In the following discussion, we derive an
upper bound of the delay that a lower priority flow
can experience from the higher priority ones due to
conflicts.

Two flows Fk and Fi are said to be conflicting when
a transmission of Fk conflicts with a transmission of
Fi, i.e., their transmissions involve a common node.
When Fk and Fi ∈ hp(Fk) conflict, Fk has to be
delayed due to having lower priority. Intuitively, the
amount of delay depends on how their routes inter-
sect. A transmission

→
uv of Fk is delayed at most by

χ slots by an instance of Fi, if Fi has χ transmissions
that involve node u or v. For example, in Figure 1(a),
a transmission

→
uv or

→
vw of Fk has to be delayed at

most by 2 slots by an instance of Fi. Let Q(k, i) be the
total number of Fi’s transmissions that share nodes on
Fk’s route. Since two routes can intersect arbitrarily,
in the worst case, flow Fk may conflict with each of
these Q(k, i) transmissions of Fi. As a result, Q(k, i)
represents an upper bound of the delay that Fk can
experience from an instance of Fi due to conflicts. For
example, in Figure 1(a), an instance of Fk has to be
delayed at most by 5 slots since Q(k, i) = 5.

Q(k, i) often overestimates the delay because when
there is “too much” overlap between the routes of
Fi and Fk, Fi will not necessarily cause “too much”

delay to Fk. For example, in Figure 1(b), Fk can be
delayed by an instance of Fi at most by 3 slots while
Q(k, i) = 8. To obtain a more precise upper bound of
the delay due to transmission conflicts, we introduce
the concept of a maximal common path (MCP) between
Fk and Fi defined as a path v1 → v2 → · · · → vh,
where vl �= vq for l �= q (where 1 ≤ l, q ≤ h), on Fi’s
route such that v1 → v2 → · · · → vh or vh → vh−1 →
· · · → v1 is a path on Fk’s route and it is maximal,
i.e., no such longer path contains it (Figure 1(b)). On
an MCP between Fk and Fi, denoted by Mj(k, i), Fk

can be delayed by Fi at most by 3 slots, no matter
how long the MCP is. For Mj(k, i), we define its length
δj(k, i) as the total number of Fi’s transmissions along
it. That is, for Mj(k, i) = v1 → · · · → vh, if there
exist u,w ∈ V such that u → v1 → · · · → vh → w
is also on Fi’s route, then δj(k, i) = h + 1. If only
u or only w exists, then δj(k, i) = h. If neither u
nor v does exist, then δj(k, i) = h − 1. During the
time when Fi executes these transmissions (i.e.,

−→
uv1,−→

v1v2, · · · , −→
vhw), it can cause delay to Fk at most by 3

of these transmissions. Thus, Lemma 1 establishes a
more precise upper bound Δ(k, i) of the delay that Fk

can experience from an instance of Fi.
Lemma 1: Let δ′j(k, i) denote the length of an MCP

M ′
j(k, i) between Fk and Fi ∈ hp(Fk) with length at

least 4. If there are total σ(k, i) MCPs between Fk and
Fi each with length at least 4, then

Δ(k, i) = Q(k, i)−
σ(k,i)∑
j=1

(
δ′j(k, i)− 3

)
(6)

Proof: Let an MCP M ′
j(k, i) be v1 → · · · → vh. Let

there exist u and w such that the path u → v1 → · · · →
vh → w is on Fi’s route. Now, either v1 → · · · → vh
or vh → · · · → v1 must lie on Fk’s route (Figure 1(b)).
If v1 → · · · → vh is on Fk’s route, then a transmission−→
vlvl+1, 1 ≤ l < h, of Fk on this path shares node with
at most 3 transmissions of Fi on u → v1 → · · · →
vh → w. Similarly, if vh → · · · → v1 is on Fk’s route,
then a transmission

−→
vlvl−1, 1 < l ≤ h, of Fk on this

path shares node with at most 3 transmissions of Fi

on u → v1 → · · · → vh → w. Therefore, in either case,
a transmission of Fk on M ′

j(k, i) can be delayed by
the transmissions of Fi on M ′

j(k, i) at most by 3 slots.
Again, in either case, once the delayed transmission
of Fk is scheduled, the subsequent transmissions of
Fk and Fi on M ′

j(k, i) do not conflict and can happen
in parallel. That is, for any M ′

j(k, i) with length at
least 4, at least δ′j(k, i)−3 transmissions will not cause
delay to Fk. But Q(k, i) counts every transmission of
Fi on M ′

j(k, i). Therefore, Q(k, i)−∑σ(k,i)
j=1

(
δ′j(k, i)−3

)
represents the bound Δ(k, i).

According to Lemma 1, we need to look for an
MCP only if Q(k, i) ≥ 4 and at least 4 consecutive
transmissions of Fi share nodes on Fk’s route. Again,
when δ′j(k, i) is calculated for an M ′

j(k, i), we look for
the next MCP only if Q(k, i)− δ′j(k, i) ≥ 4.
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(a) Q(k, i) = 5 and Δ(k, i) = 5
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(b) Q(k, i) = 8 but Δ(k, i) = 3

Fig. 1. An example when Fk can be delayed by Fi ∈ hp(Fk)

The number of instances of flow Fi ∈ hp(Fk) that
contribute to the delay of an instance of flow Fk

during a time interval of t slots is upper bounded by

 t
Pi
�. Hence, an upper bound of the total delay that

an instance of Fk can experience from flow Fi is⌈
t

Pi

⌉
Δ(k, i)

An upper bound of the total delay that flow Fk

can experience from all higher priority flows due to
transmission conflicts during a time interval of t slots
is denoted by Θk(t) and can thus be expressed as
follows.

Θk(t) =
∑

Fi∈hp(Fk)

⌈
t

Pi

⌉
. Δ(k, i) (7)

5.3 Tighter Bound for Delay due to Transmission
Conflicts
The upper bound derived in Equation 7 for the
transmission conflict delay experienced by a flow is
based on pessimistic assumptions that will result in
overestimate of the end-to-end delay of the flow. In
this subsection, we present how to avoid the pes-
simistic assumptions, and establish a tighter bound
on the delay of a flow that occurs due to transmission
conflict.

According to Equation 7, the upper bound Θk(t)
of the delay due to transmission conflicts in a time
interval of t slots assumes that

1) The lower priority flow Fk is delayed by every
instance of the higher priority flow Fi that is
released within the time interval of t slots, and

2) The lower priority flow Fk is delayed by Δ(k, i)
time slots by every instance of the higher prior-
ity flow Fi.

In a real scheduling sequence, as we present in the
next discussion, not every instance of a higher priority
flow Fi can cause delay by Δ(k, i) time slots on
Fk, thereby making the above assumptions highly
pessimistic. The delay due to transmission conflicts
plays a major role in the end-to-end delay of a flow.

Overestimate in conflict delay may result in significant
pessimism in the end-to-end delay analysis. In the rest
of this subsection, we provide critical observations to
avoid these pessimistic assumptions, and establish a
more precise bound on conflict delay, that results in
an improved schedulability test.

The pessimistic assumptions are due to the fact that
the analysis for determining Θk(t) in the previous
subsection does not exclude Fk’s transmissions that
have already been scheduled into the consideration
for calculating the future delay on Fk. In other words,
some transmissions of Fk that have already been
scheduled are still considered to be subject to delay
by Fi, which clearly should not be the case.

Since a flow is a chain of transmissions from a
source to a destination, in considering the conflict
delay caused by multiple instances of Fi on flow
Fk, we observe that at the time when a transmission
of Fk conflicts with some transmission of Fi, the
preceding transmissions on Fk are already scheduled.
These already scheduled transmissions of Fk are no
more subject to delay by the subsequent instances of
Fi. For example, in Figure 1(a) let us consider that one
instance of Fi is conflicting and causing delay on Fk’s
transmission

→
vw. This implies that Fk’s transmission

→
uv is already scheduled (since transmission

→
vw can

be ready only after transmission
→
uv is scheduled).

Hence, the next instance of Fi must not cause delay
on transmission

→
uv (since this transmission is already

scheduled). That is, in calculating Θk(t) for Fk, only
the transmissions that have not yet been scheduled
should be considered for conflict delay by the subse-
quent instances of Fi (that will be released in future
in the considered time interval). These observations
lead to Lemma 2 and Lemma 3.

Lemma 2: Let us consider any two instances of a
higher priority flow Fi such that each causes conflict
delay on a lower priority flow Fk in a time interval.
Then, there is at most one common transmission on
Fk that can be delayed by both instances.

Proof: Let these two instances of Fi be denoted
by Fi,1 and Fi,2, where Fi,1 is released before Fi,2.
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Suppose to the contrary, both of these instances cause
delay on two transmissions, say τj and τr, of the
lower priority flow Fk. Without loss of generality, we
assume that τj precedes τr on the route of flow Fk.
Fi,1 causes delay on τr because τr is ready to be sched-
uled. This implies that τj has already been scheduled.
Hence, Fi,2 which releases after Fi,1 cannot cause any
delay on τj , thereby contradicting our assumption.

Lemma 3 now determines an upper bound of the
total conflict delay caused by multiple instances of Fi

when each transmission of Fk is delayed by at most
one instance of Fi.

Lemma 3: Let p ≥ 1 instances of a higher priority
flow Fi cause conflict delay on Fk such that each
transmission of Fk is delayed by at most one instance
of Fi. Then the total delay caused on Fk by these p
instances is at most Δ(k, i).

Proof: The proof follows directly when p = 1.
Let us consider the case when p ≥ 2. Let the set of
transmissions of Fi which cause conflict delay on Fk

be denoted by Γ. When one instance Fi,1 of Fi causes
conflict delay on Fk, a subset Γ1 of Γ causes delay on
Fk. Now consider a second instance Fi,2 of Fi. For Fi,2,
another subset Γ2 of Γ causes delay on Fk. Given each
transmission of Fk is delayed by at most one instance
of Fi, subsets Γ1 and Γ2 must be disjoint. Similarly,
for any p, the subsets Γ1,Γ2, · · · ,Γp are disjoint. By
the definition of Δ(k, i), the conflict delay caused by
Γ on Fk is at most Δ(k, i). Hence, the total conflict
delay caused by all Γ1,Γ2, · · · ,Γp is at most Δ(k, i).
That is, the total conflict delay on Fk caused by p,
p ≥ 2, instances of Fi is at most Δ(k, i).

Based on Lemma 2 and Lemma 3, we can now
determine a tight upper bound of the conflict delay
caused by multiple instances of Fi on Fk in any case.
To do so, we introduce the notion of a bottleneck
transmission (of Fk with respect to Fi) which is the
transmission of Fk that may face the maximum con-
flict delay from Fi. An upper bound of the conflict
delay caused by one instance of Fi on Fk’s bottleneck
transmission is denoted by δ(k, i), and is determined
in the following way. For every transmission τ of Fk,
we count the total number of Fi’s transmissions that
share a node with τ . Then, the maximum of these
values (among all transmissions of Fk) is determined
as δ(k, i). In other words, there are at most δ(k, i)
transmissions of (one instance of) Fi such that each
of them share a node (and hence may conflict) with
the same transmission of Fk. By Lemma 2, for any
two instances of Fi, Fk has at most one transmission
on which both instances can cause delay. In the worst
case, the bottleneck transmission of Fk can be delayed
by multiple instances of Fi. Hence, the value of δ(k, i)
plays a major role in determining the delay caused by
Fi on Fk as shown in Theorem 4.

Theorem 4: In a time interval of t slots, the worst
case conflict delay caused by a higher priority flow

Fi on a lower priority flow Fk is upper bounded by

Δ(k, i) +
(⌊

t

Pi

⌋
− 1

)
.δ(k, i) + min

(
δ(k, i), t mod Pi

)

Proof: There are at most 
 t
Pi
� instances of Fi in

a time interval of t slots. If no transmission of Fk is
delayed by more than one instance of Fi, by Lemma 3,
the total delay caused on Fk by all instances of Fi is
at most Δ(k, i).

When some transmission of Fk is delayed by more
than one instance of Fi, let the total delay caused
by all instances of Fi on Fk is Δ(k, i) + Z(k, i), i.e.,
the delay is higher than Δ(k, i) by Z(k, i) time slots.
By Lemma 2, for any two instances of Fi, Fk has at
most one transmission on which both instances can
cause delay. If there is no transmission of Fk that is
delayed by both the p-th instance and the p + 1-th
instance of Fi, then no transmission of Fk is delayed
by both the p-th instance and the q-th instance of Fi,
for any q > p+1, where 1 ≤ p < 
 t

Pi
�. Thus, Z(k, i) is

maximum when for each pair of consecutive instances
(say, the p-th instance and p + 1-th instance, for each
p, 1 ≤ p < 
 t

Pi
�) of Fi, there is a transmission of

Fk that is delayed by both instances. Hence, at most

 t
Pi
� − 1 instances contribute to this additional delay

Z(k, i), each instance causing some additional delay
on a transmission. Since one instance of Fi can cause
delay on a transmission of Fk at most by δ(k, i) slots,
Z(k, i) ≤ (
 t

Pi
� − 1)δ(k, i). Since the last instance may

finish after the considered time window of t slots,
the delay caused by it is at most min(δ(k, i), t mod Pi)
slots. Taking this into consideration, Z(k, i) ≤ (� t

Pi

−

1)δ(k, i) + min(δ(k, i), t mod Pi). Thus, the total delay
caused on Fk by all instances of Fi is at most

Δ(k, i) + Z(k, i)

≤ Δ(k, i) +
(⌊

t

Pi

⌋
− 1

)
.δ(k, i) + min

(
δ(k, i), t mod Pi

)

From Theorem 4, now Θk(t) (i.e., an upper bound of
the total delay flow Fk can experience from all higher
priority flows due to transmission conflicts during a
time interval of t slots) is calculated as follows.

Θk(t) =
∑

Fi∈hp(Fk)

(
Δ(k, i) +

(⌊
t

Pi

⌋
− 1

)
.δ(k, i) +

min
(
δ(k, i), t mod Pi

))

(8)

Since usually δ(k, i) � Δ(k, i), the above value
of Θk(t) is significantly smaller than that derived in
Equation 7. Our simulation results (in Section 7) also
demonstrate that the above bound is a significant
improvement over the bound derived in Equation 7.
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5.4 End-to-End Delay Bound
Now we consider both types of delays together to
develop an upper bound of the end-to-end delay of
every flow. For a flow, we first derive an upper bound
of its end-to-end delay assuming that it does not
conflict with any higher priority flow. We then incor-
porate its worst case delay due to conflict into this
upper bound, thereby establishing an upper bound of
its worst case end-to-end delay due to both channel
contention and transmission conflicts. This is done
for every flow in decreasing order of priority starting
with the highest priority flow as explained below.

For flow Fk, we use Rch,con
k to denote an upper

bound of the worst case end-to-end delay considering
delays both due to channel contention and due to
conflicts between flows. We use the following two
steps to estimate Rch,con

k for every flow Fk ∈ F in
decreasing order of priority starting with the highest
priority flow.

5.4.1 Step 1
First, we calculate a pseudo upper bound (i.e., not an
actual upper bound), denoted by Rch

k , of the worst
case end-to-end delay of Fk assuming that Fk is
delayed by the higher priority flows due to channel
contention only. That is, we assume that Fk does not
conflict with any higher priority flow. This calculation
is based on the upper bounds Rch,con of the worst
case end-to-end delays of the higher priority flows
which are already calculated considering both types
of delay. Based on our discussion in Subsection 5.1,
to determine Rch

k , the worst case delay that flow Fk

will experience from the higher priority flows can be
calculated using Equation 5. The amount of delay that
a higher priority flow Fi will cause to Fk depends on
Fi’s workload during a BP(k, x) (i.e., a level-k busy
period of x slots). Note that, in Equations 1 and 3,
the workload bound of Fi was derived in absence of
conflict between the flows. Now we first analyze the
workload bound of Fi ∈ hp(Fk) in the WirelessHART
network where both channel contention and transmis-
sion conflicts contributed to the worst case end-to-end
delay of Fi.

From Equation 1, if flow Fi does not have carry-
in, its workload W nc

k (Fi, x) during a BP(k, x) does not
depend on its worst case end-to-end delay. Therefore,
if flow Fi has no carry-in, its workload W nc

k (Fi, x) dur-
ing a BP(k, x) still can be calculated using Equation 1,
no matter what the worst case end-to-end delay of Fi

is. That is,

W nc
k (Fi, x) =

⌊
x

Pi

⌋
. Ci +min(x mod Pi, Ci) (9)

Now Inc
k (Fi, x) is calculated using Equation 2 and is

guaranteed to be an upper bound of the delay that
Fi ∈ hp(Fk) can cause to Fk due to channel contention.

From Equation 3, when flow Fi has carry-in, its
workload W ci

k (Fi, x) during a BP(k, x) depends on its

worst case response time Ri. Equation 3 also indicates
that W ci

k (Fi, x) is monotonically nondecreasing in Ri.
Now, in the WirelessHART network, an upper bound
of the end-to-end delay of Fi must be no less than
Ri since both channel contention and transmission
conflicts contribute to its end-to-end delay. That is,
Rch,con

i ≥ Ri. Therefore, if we replace Ri with Rch,con
i

in Equation 3, W ci
k (Fi, x) is guaranteed to be an upper

bound of Fi’s workload during a BP(k, x). Thus,

W ci
k (Fi, x) =

⌊
max(x− Ci, 0)

Pi

⌋
. Ci + Ci + μi (10)

where μi = min
(
max

(
λ − (Pi − Rch,con

i ), 0
)
, Ci − 1

)
and λ = max(x − Ci, 0) mod Pi. Similarly, Ici

k (Fi, x)
calculated using Equation 4 is guaranteed to be an
upper bound of the delay that Fi can cause to Fk due
to channel contention.

Once the bounds Inc
k (Fi, x) and Ici

k (Fi, x) of the
delay from every higher priority flow Fi ∈ hp(Fk) are
calculated, the total delay Ωk(x) that an instance of
Fk experiences from all higher priority flows during a
BP(k, x) due to channel contention is calculated using
Equation 5. Now assuming that Fk does not conflict
with any higher priority flow, an upper bound of its
end-to-end delay can be found using the same itera-
tive method that is used for multiprocessor schedul-
ing [4]. Since there are m channels, the pseudo upper
bound Rch

k of the worst case end-to-end delay of Fk

can be obtained by finding the minimal value of x
that solves Equation 11.

x =

⌊
Ωk(x)

m

⌋
+ Ck (11)

Equation 11 is solved using an iterative fixed-point
algorithm starting with x = Ck. This algorithm either
terminates at some fixed-point x∗ ≤ Dk that repre-
sents the bound Rch

k or x will exceed Dk eventually. In
the latter case, this algorithm terminates and reports
the instance as “unschedulable”.
Effect of Channel Hopping. To every transmission,
the scheduler assigns a channel offset between 0 and
m − 1 instead of an actual channel, where m is the
total number of channels. Any channel offset c (i.e.,
1, 2, · · · ,m − 1) is mapped to different channels at
different time slots s as follows.

channel = (c+ s) mod m

That is, although the physical channels used along a
link changes (hops) in every time slot, the total num-
ber m of available channels is fixed. The scheduler
only assigns a fixed channel index to a transmission
which maps to different physical channels in different
time slots, keeping the total number of available chan-
nels at m always, and scheduling each flow on at most
one channel at any time. Hence, channel hopping does
not have effect on channel contention delay.
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5.4.2 Step 2
Once the pseudo upper bound Rch

k is computed, we
incorporate the upper bound of the delay due to
conflicts into it to obtain the bound Rch,con

k . Namely,
for flow Fk, the bound Rch

k has been derived in Step 1
by assuming that Fk does not conflict with any higher
priority flow. Therefore, in this step, we take into
account that Fk may conflict with the higher priority
flows and, hence, can experience further delay from
them. An upper bound Θk(y) of the total delay that
an instance of Fk can experience due to conflicts with
the higher priority flows during a time interval of y
slots is calculated using Equation 8. Note that when
Fk conflicts with some higher priority flow it must be
delayed, no matter how many channels are available.
Therefore, we add the delay Θk(y) to the pseudo
upper bound Rch

k to derive an upper bound of Fk’s
worst case end-to-end delay. Thus, the minimal value
of y that solves the following recursive equation will
give us the bound Rch,con

k for Fk that includes both
types of delay:

y = Rch
k +Θk(y) (12)

Equation 12 is solved using an iterative fixed-point
algorithm starting with y = Rch

k . Like Step 1, this
algorithm also either terminates at some fixed-point
y∗ ≤ Dk that is considered as the bound Rch,con

k or
terminates with an “unschedulable” decision when y >
Dk. Thus, termination of the algorithm is guaranteed.

Theorem 5: For every flow Fk ∈ F , let Rch
k be the

minimal value of x that solves Equation 11 starting
with x = Ck. Let Rch,con

k be the minimal value of y
that solves Equation 12 starting with y = Rch

k . Then
Rch,con

k is an upper bound of the worst case end-to-end
delay of Fk.

Proof: Flows are ordered according to their pri-
orities as F1, F2, · · · , FN with F1 being the highest
priority flow. We use mathematical induction on pri-
ority level k, 1 ≤ k ≤ N . When k = 1, i.e., for the
highest priority flow F1, Equations 11 and 12 yield
Rch,con

1 = C1, where C1 is the number of transmissions
along F1’s route. Since no flow can delay the highest
priority flow F1, the end-to-end delay of F1 is always
C1. Hence, the upper bound calculated using Equa-
tion 12 holds for k = 1. Now let the upper bound
calculated using Equation 12 holds for flow Fk, for
any k, 1 ≤ k < N . We have to prove that the upper
bound calculated using it also holds for flow Fk+1.

To calculate Rch,con
k+1 in Step 2, we initialize y (in

Equation 12) to Rch
k+1. Note that Rch

k+1 is computed
in Step 1 for flow Fk+1. In Step 1, Rch

k+1 is computed
considering upper bounds Rch,con

h of the worst case
end-to-end delays of all Fh with h < k + 1 which
are already computed considering both types of delay.
Equation 11 assumes that Fk+1 does not conflict with
any higher priority flow. This implies that the minimal
solution of x, i.e., Rch

k+1 is an upper bound of the worst

case end-to-end delay of Fk+1, if Fk+1 is delayed by
the higher priority flows due to channel contention
only. If Fk+1 conflicts with some higher priority flow,
then it can be further delayed by the higher priority
flows at most by

∑
Fh∈hp(Fk+1)


 y
Ph

�Δ(k + 1, h) slots
during any time interval of length y. Equation 12
adds this delay to Rch

k+1 and establishes the recursive
equation for y. Therefore, the minimal solution of y,
i.e., Rch,con

k+1 is guaranteed to be an upper bound of the
worst case end-to-end delay of Fk+1 that includes the
worst case delays both due to channel contention and
due to conflicts between flows.

The end-to-end delay analysis procedure calculates
Rch,con

i , for i = 1, 2, · · · , N (in decreasing order of
priority level), and decides the flow set to be schedu-
lable if, for every Fi ∈ F , Rch,con

i ≤ Di. According to
Equations 11 and 12, each Rch,con

i can be calculated in
pseudo polynomial time for every Fi. The correctness
of this upper bound of the worst case end-to-end
delay follows from Theorem 5.

6 POLYNOMIAL-TIME END-TO-END DELAY
ANALYSIS

The end-to-end delay analysis presented in the previ-
ous section calculates the end-to-end delay bound of
each flow in pseudo polynomial time. In this section,
we extend the analysis to a polynomial time method.
While the polynomial time method may provide com-
paratively looser bounds, it can calculate the bounds
more quickly, and hence is more suitable for online
use when time efficiency is critical.

To derive a polynomial-time analysis, we have to
calculate both the channel contention delay and the
transmission conflict delay in polynomial time. Using
the same mapping presented in Section 5 of trans-
mission scheduling in a WirelessHART network to
the global multiprocessor scheduling, we can also use
the polynomial time response time analysis for global
multiprocessor scheduling proposed in [29] to calcu-
late the channel contention delays. In particular, using
this analysis, the maximum channel contention delay,
denoted by Ωk(Dk), that a flow Fk can experience
during its lifetime from the higher priority flows can
be expressed as follows.

Ωk(Dk) =
∑

Fi∈hp(Fk)

min(Wk(i), Dk − Ck + 1) (13)

where

Wk(i) =

⌊
Dk +Di − Ci

Pi

⌋
.Ci +

min

(
Ci, Dk +Di − Ci −

⌊
Dk +Di − Ci

Pi

⌋
.Pi

)

Therefore, similar to Equation 11, Rch
k of Fk (i.e., the

worst case end-to-end delay of Fk assuming that it is



11

delayed by the higher priority flows due to channel
contention only) can be calculated as follows.

Rch
k =

⌊
Ωk(Dk)

m

⌋
+ Ck (14)

To calculate the conflict delay of Fk in polynomial
time, we can estimate the maximum delay in an
interval of Dk slots from Equation 8 as follows.

Θk(Dk) =
∑

Fi∈hp(Fk)

(
Δ(k, i) +

(⌊
Dk

Pi

⌋
− 1

)
.δ(k, i) +

min
(
δ(k, i), Dk mod Pi

))

(15)

Thus, similar to Equation 12, the worst case end-to-
end delay Rch,con

k of flow Fk considering both channel
contention delay and transmission conflict delay is
calculated as follows.

Rch,con
k = Rch

k +Θk(Dk) (16)

The above analysis indicates that it does not require
calculating the worst case end-to-end delays of the
flows in order of their priorities. Since the lower
priority flows have the higher chances of missing
deadlines, the above analysis, unlike the pseudo poly-
nomial time one, allows us to calculate the end-to-end
delays of the lower priority flows first, thereby getting
a quicker decision on the schedulability of the flows.

7 EVALUATION

We evaluate our end-to-end delay analysis through
simulations based on both random topologies and the
real topologies of a wireless sensor network testbed.
There is no baseline to compare the performance of
our analysis which, to the best of our knowledge, is
the first end-to-end delay analysis for real-time flows
in WirelessHART networks. Hence, we evaluate the
performance of our delay analysis by observing the
delays through simulations of the complete schedule
of all flows released within the hyper-period.
Metrics. We evaluate our analysis in terms of ac-
ceptance ratio and pessimism ratio. Acceptance ratio
is defined as the proportion of the number of test
cases deemed to be schedulable by the delay analysis
method to the total number of test cases. For each
flow, pessimism ratio is quantified as the proportion of
the analyzed theoretical upper bound to its maximum
end-to-end delay observed in simulation.

We implement both the pseudo polynomial time
analysis and the polynomial time analysis. In evalu-
ating the pseudo polynomial time analysis, we first
evaluate it without considering the improved con-
flict delay bound derived in Subsection 5.3. Then
we evaluate it by considering the improved conflict
delay bound derived in Subsection 5.3. This helps
us observe that the conflict delay bound derived in

Equation 8 is significantly tighter than that derived in
Equation 7. Specifically, in the figures in this section,
the analyses are marked as follows.
Analysis-PP is the pseudo polynomial time analy-
sis without considering the improved conflict delay
bound of Section 5.3. Namely, it calculates the end-to-
end delay bound using Equation 12 where the conflict
delay is calculated based on Equation 7.
Analysis-PP+ is the pseudo polynomial time analysis
by considering the tighter conflict delay bound of
Section 5.3. That is, Analysis-PP+ calculates the end-
to-end delay bound using Equation 12 where the
conflict delay is calculated based on Equation 8.
Analysis-P is the polynomial time analysis derived in
Section 6. Specifically, it calculates the delay bounds
using Equation 16.

7.1 Simulation Setup
A fraction of nodes is considered as sources and
destinations. The sets of sources and destinations are
disjoint. The reliability of a link is represented by the
packet reception ratio (PRR) along it. The node with
the highest number of neighbors is designated as the
gateway. The number of routes between every source
and destination is set to 1, and this is the most reliable
route connecting a source to a destination. Each flow
is assigned a harmonic period of the form 2a time
slots, where a > 1. The deadline of each flow is
set equal to its period. The priorities of the flows
are assigned based on deadline monotonic policy that
assigns priorities according to relative deadlines; the
flow with the shortest deadline being assigned the
highest priority. If there is a tie, then the flow with
the smallest ID is assigned the highest priority. The
algorithms have been implemented in C and the tests
have been performed on a MacBook Pro laptop.

7.2 Simulations with Testbed Topologies
Our wireless sensor network testbed is deployed in
two buildings (Bryan Hall and Jolley Hall) of Wash-
ington University in St Louis [30]. The testbed con-
sists of 74 TelosB motes each equipped with Chipcon
CC2420 radios which are compliant with the IEEE
802.15.4 standard. Note that the physical layer in
WirelessHART is also based on IEEE 802.15.4. Setting
the same transmission power at every node, every
node broadcasts 50 packets while its neighbors record
the sequence numbers of the packets they receive.
After a node completes sending its 50 packets, the
next sending node is selected in a round-robin fash-
ion. This cycle is repeated giving each node 5 rounds
to transmit 50 packets in each round. Every link with
a higher than 80% PRR is considered a reliable link
to derive the topology of the testbed. Figure 2 shows
the network topology with transmission power of -1
dBm (embedded on the floor plans of two buildings).
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Fig. 2. Testbed topology (at transmission power of -1 dBm)
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(a) Topology at -1 dBm transmission power
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(b) Topology at -3 dBm transmission power
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(c) Topology at -5 dBm transmission power

Fig. 3. Schedulability on testbed topology

We collected the topologies at 3 different transmission
power levels (-1 dBm, -3 dBm, -5 dBm).

We generate different number of flows by randomly
selecting the sources and destinations considering the
topologies. The periods of the flows are randomly
generated in the range 25∼10 time slots. We generate
100 test cases and simulate them on topologies at
different transmission power levels. The acceptance
ratios under Analysis-PP, Analysis-PP+, and Analysis-
P are shown in Figure 3 as interpreted below. Every
test case is simulated by scheduling all the instances
of the flows released within their hyper-period. In the
figure, “Simulation” denotes the fraction of test cases
that have no deadline misses in the simulations. This
fraction indicates an upper bound of acceptance ratio
for any delay analysis method.

Figure 3(a) shows the acceptance ratios of our delay
analysis methods using the topology with transmis-
sion power of -1 dBm. According to the figure, when
the number of flows is less than 25, Analysis-PP+ has
an acceptance ratio of 1.0, which means that all tests
cases that are indeed schedulable are also determined
as schedulable by our analysis. When the number
of flows is 30, the value of “Simulation” is 0.99
meaning that 99% test cases are indeed schedulable,
while the acceptance ratio of Analysis-PP+ is 0.93.

Thus, approximately 94% of schedulable cases are
deemed schedulable by Analysis-PP+ which indicates
that the analysis is highly efficient. After that, the
acceptance ratios of our analysis decreases with the
increase in the total number of flows. However, the
difference between its acceptance ratio and the value
of “Simulation” always remains strictly less than 0.25.

Besides Analysis-PP+, Figure 3(a) also plots the ac-
ceptance ratios under Analysis-PP and Analysis-P. As
the figure indicates, the acceptance ratio of Analysis-
PP+ is always a lot higher than that of Analysis-
PP when the number of flows is greater than 15.
For example, for 30 flows where 95% test cases are
actually schedulable (as tested through simulations),
Analysis-PP+ can determine 71% test cases as schedu-
lable while Analysis-PP determines only 53% test
cases as schedulable. This happens because the delay
bounds calculated in Analysis-PP+ are significantly
tighter than those calculated in Analysis-PP. Analysis-
P which determines looser (compared to Analysis-
PP+) delay bounds but calculates the bounds in poly-
nomial time is highly competitive against Analysis-PP.
Specifically, except the case when the number of flows
is 35, the acceptance ratio of Analysis-P is always no
less than that of Analysis-PP. This happens because
Analysis-P determines the conflict delay based on the
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improvement made in Equation 8 (by extending it to
a polynomial time method).
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Fig. 4. Schedulability on random topology

Figure 3(b) shows the similar results for the topol-
ogy with transmission power of -3 dBm. The figure
indicates that when the number of flows is no greater
than 20, the value of “Simulation” is larger than the
acceptance ratio of Analysis-PP+ at most by 0.16. Af-
ter that, the difference between the acceptance ratio of
Analysis-PP+ and the value of “Simulation” increases,
but always remains less than 0.38. The acceptance
ratio of Analysis-PP+ is always higher than that of
Analysis-PP, and Analysis-P is also highly competitive
against Analysis-PP. For example, for 30 flows in
this topology, the acceptance ratios of our Analysis-
PP+, Analysis-PP, and Analysis-P are 0.59, 0.40, and
0.43, respectively. For the topology with transmission
power of -5dBm, Figure 3(c) also shows that Analysis-
PP+ is a highly effective delay analysis method.

These results demonstrate that the improved analy-
sis (derived in Subsection 5.3) of transmission conflict
delay is highly effective in reducing the pessimism of
the analysis. It also shows that the polynomial-time
analysis is reasonably tight when compared against
the original pseudo polynomial time analysis (i.e.,
without considering the tighter conflict delay bound).

7.3 Simulations with Random Topologies
We test the scalability of our algorithms on random
topologies of larger number of nodes. Given the num-
ber of nodes and edge-density, we generate random
networks. A network with N nodes and ρ% edge-
density has a total of (N(N − 1) ∗ ρ)/(2 ∗ 100) bidi-
rectional edges. The edges are chosen randomly and
assigned PRR randomly in the range [0.80, 1.0]. Then
we generate different number of flows in 400-node
networks of 40% edge-density. For every different
number of flows, we generate 100 test cases. The
periods of the flows are considered harmonic and are
randomly generated in the range 26∼12 time slots.

The acceptance ratios of our analyses in 400-node
network are shown in Figure 4. According to the
figure, the acceptance ratio of Analysis-PP+ is equal
to the value of “Simulation” as long as the number
of flows is no greater than 60. As the number of
flows increases, the difference between the acceptance
ratios of Analysis-PP+ and the value of “Simulation”

increases but always remains less than 0.33. The figure
also indicates that the acceptance ratio of Analysis-
PP+ is always higher than that of Analysis-PP, and
Analysis-P is highly competitive against Analysis-
PP. For example, for 100 flows in this topology, the
acceptance ratios of our Analysis-PP+, Analysis-PP,
and Analysis-P are 0.33, 0.17, and 0.15, respectively.

Among 100 test cases, each consisting of 70 flows in
the 400-node network, we randomly select 8 test cases
that are schedulable under all 3 analyses, and Figure 5
plots the pessimism ratios in Analysis-PP, Analysis-
PP+, and Analysis-P. Figures 5(a) and 5(b) indicate
that the 75th percentile of the pessimism ratios is less
than 2.0 in all 8 test cases under Analysis-PP+, while
those under Analysis-PP are greater than 2 for test
case 3 and 6. Figures 5(a) and 5(c) indicate that the
statistics in pessimism ratios under Analysis-PP and
Analysis-P do not vary a lot. The pessimism ratios
indicate that the end-to-end delay bounds calculated
in Analysis-PP+ are overestimated by a factor of at
most 2 in most cases. They also indicate that that the
end-to-end delay bounds calculated in Analysis-PP+
are smaller than those calculated in Analysis-PP since
the latter uses a pessimistic bound of conflict delay.

The results indicate that our analysis is effective
even for very large networks with large number of
flows. The pessimism ratios under different sized
networks indicate that our estimated bounds are rea-
sonably tight. In every setup, we have observed that
the acceptance ratios of our analysis are close to those
of simulation which indicates that not many schedu-
lable cases are rejected by our analysis. All test cases
accepted by our analysis meet their deadlines in the
simulations which demonstrates that the estimated
bounds are safe. The results demonstrate that our
analysis can be used as an acceptance test for real-
time flows under various network configurations.

8 CONCLUSION
An efficient end-to-end delay analysis is required,
both at design time and for online admission control,
to decide the schedulability of real-time data flows
in a WirelessHART network. Compared to extensive
testing and simulations, analytical delay bounds are
highly desirable in process monitoring and control
applications that require real-time performance guar-
antees. A delay analysis can also be used for adjusting
workload in response to network dynamics.

In this paper, we have mapped the transmission
scheduling of real-time data flows between sensors
and actuators in a WirelessHART network to real-time
multiprocessor scheduling. Based on the mapping, we
have presented a pseudo polynomial time end-to-end
delay analysis to determine the schedulability of real-
time data flows in WirelessHART networks. Further-
more, we have extended the analysis to a polynomial
time method that can be used to compute a looser de-
lay bound more efficiently. Simulation studies based
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Fig. 5. Pessimism ratio

on both random topologies and real network topolo-
gies of a 74-node physical wireless sensor network
testbed demonstrate that our analysis provides safe
and reasonably tight upper bounds of the end-to-end
delays of real-time flows, and hence enables effective
schedulability tests for WirelessHART networks.
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