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Applications for constrained embedded systems are subject to strict runtime and resource
utilization bounds. With soft core processors, application developers can customize the
processor for their application, constrained by available hardware resources but aimed at
high application performance.

The more reconfigurable the processor is, the more options the application developers will
have for customization and hence increased potential for improving application perfor-
mance. However, such customization entails developing in-depth familiarity with all the
parameters, in order to configure them effectively. This is typically infeasible, given the
tight time-to-market pressure on the developers. Alternatively, developers could explore
all possible configurations, but being exponential, this is infeasible even given only tens of
parameters.

This thesis presents an approach based on an assumption of parameter independence, for
automatic microarchitecture customization. This approach is linear with the number of
parameter values and hence, feasible and scalable. For the dimensions that we customize,
namely application runtime and hardware resources, we formulate their costs as a con-
strained binary integer nonlinear optimization program. Though the results are not guaran-
teed to be optimal, we find they are near-optimal in practice. Our technique itself is general
and can be applied to other design-space exploration problems.
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Chapter 1

Introduction

Application performance can be improved in many ways — by having a processor that

matches the application’s requirements more closely, a compiler that generates more effi-

cient code or a better implementation of the algorithms in the application. Not only can we

improve these components individually but we can also improve their interfaces to improve

application performance, as depicted in Figure 1.1. This thesis focusses on improving the

processor to improve application runtime.

In addition to the demanding performance requirements, many embedded applications have

more constraints than general (desktop) applications along a number of other dimensions.

These dimensions include constraints on energy, power, memory and other hardware re-

sources. Conventionally, the hardware systems that host embedded applications are often

dedicated to that particular application, and need not work well onall possible applications.

As a result, there has been significant interest in the ability to build Application-Specific

Integrated Circuits (ASICs). In these custom-hardware platforms, the hardware design

matches the needs of the application closely.

ASIC (ASIC) development is often infeasible due to fabrication cost and time-to-market

considerations, prompting developers of embedded systems to consider alternatives. First,

there are many off-the-shelf processors that have been optimized for embedded applica-

tions. The challenge here is making an appropriate choice among a large number of al-

ternatives. Second, an off-the-shelf processor (processor core) can be paired with a cus-

tom logic co-processor, constructed using either ASIC orField Programmable Gate Ar-

ray (FPGA) technology. The co-processor then executes some fraction of the embedded

application [6, 12, 40, 44]. Integrating reconfigurable logic into host processors is also an



2

Compiler

Application

Architecture

Figure 1.1: Components of application performance

active area of academic research [17, 23, 38]. Third, there are a number of processors avail-

able now that can be at least partially configured at theInstruction Set Architecture (ISA)

level, such as Tensilica [52] and ARC [4]. While the systems from ARC are configurable

at fabrication time, Stretch [46] makes the Tensilica processor reconfigurable at execution

time through the use of FPGA technology on the chip.

Besides the ISA which is the external interface to which applications are coded, a pro-

cessor’smicroarchitecturecan also be configured, in an attempt to improve application

performance. Microarchitecture configuration can be done while (still) designing an ASIC

or for a soft core processor. Soft core processors are discussed in Section 1.1. Microarchi-

tecture is more internal to the processor. Examples of microarchitecture subsystems include

cache and integer unit. Examples of some parameters in these subsystems include cache

size and number of register windows. For changes in these parameters, compiler changes

are not required. In this thesis, we explore reconfiguring (customizing) the microarchitec-

ture parameters to meet the requirements of a given application more closely, in terms of

application runtime and resource constraints.

1.1 Soft Core Processors

Processor customization, both in terms of ISA and microarchitecture, is possible with soft

core processors, also called configurable cores, instantiated on reconfigurable hardware.
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These cores are basically general purpose processors with extant toolchain support (com-

pilers). Further, the soft core processors are typically highly parameterized; therefore, they

can be customized to a large extent for the specific requirements of a given application in

terms of runtime, hardware resource usage, energy consumption, and power dissipation.

Examples of soft-core processors include Xtensa from Tensilica [52], Microblaze from

Xilinx [56], ARC [4] and LEON used by European Space Agency [20].

Tensilica’s Xtensa RISC processor can be configured using Stretch Instruction Set Exten-

sion Fabric (ISEF) [46] whereby users can define extensions to the instruction set architec-

ture in their C/C++ applications. Options include 16 and 24 bit instructions; aligned load

and store of 8, 16, 32, 64, and 128 bits, unaligned load and store of up to 128 bits; variable

byte streaming I/O; and up to 32 bits variable bit streaming I/O.

MicroBlaze hardware options and configurable blocks include the following [56]: hard-

ware barrel shifter, hardware divider, machine status set and clear instructions, hardware

exception support, pattern compare instructions, floating-point unit, hardware multiplier

enable, hardware debug logic cache and cache interface, data cache, instruction cache,

instruction-side Xilinx cache link, data-side Xilinx cache link bus infrastructure, data-side

on-chip peripheral bus, instruction-side on-chip peripheral bus, data-side local memory

bus, instruction-side local memory bus, and fast simplex link (FSL). For hardware acceler-

ation, Microblaze uses a co-processor rather than user-defined instructions. The low latency

FSL can connect up to eight co-processors. For development, Xilinx offers the Embedded

Development Kit, which includes the MicroBlaze core, a library of peripheral cores and

common software platforms such as device drivers and protocol stacks.

ARC provides a graphical interface called ARChitect [4], for configuring its processor. The

tool allows application developers to configure the instruction set, interrupts, instruction

and data caches (associativity, cache locking), memory subsystem, DSP features, number

of registers, and custom condition codes. Users can also add peripherals, such as an Eth-

ernet media-access controller and 32-bit timers for real-time processing. Another option is

clock gating, a power-saving feature that shuts down parts of the processor when they are

not needed. The ARCtangent-A4 processor’s base-case instruction set includes all the fun-

damental arithmetic, logical, load/store, and branch/jump operations required for a typical

embedded application. By using the ARChitect tool, designers can select from a library
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Figure 1.2: High-level architecture of LEON soft core processor (courtesy LEON manual)

of additional instructions and features. Examples include a hardware barrel shifter and

associated instructions, and two different hardware multipliers.

LEON [31] Very High Speed Integrated Circuit (VHSIC) Hardware Description Lan-

guage(VHDL) model implements a 32-bit processor conforming to the IEEE-1754 (Scal-

able Processor ARChitecture(SPARC) V8) architecture. Despite being spelled with all

upper case, LEON is not an acronym. LEON is designed for embedded applications with

the following features on-chip: separate instruction and data caches, hardware multiplier

and divider, interrupt controller, debug support unit with trace buffer, two 24-bit timers,

two UARTs, power-down function, watchdog, 16-bit I/O port, flexible memory controller,

Ethernet MAC andPeripheral Component Interconnect(PCI) interface. These features

are shown in Figure 1.2. New modules can easily be added using the on-chipAdvanced

Microcontroller Bus Architecture (AMBA) AMBA Hi-speed Bus (AHB)/AMBA Pe-

ripheral Bus (APB) buses. The VHDL model is fully synthesizable with most synthesis

tools and can be implemented on both FPGA and ASIC. Simulation can be done with all

VHDL-87 compliant simulators. Through the model’s configuration record, parts of the

described functionality can be suppressed or modified to generate a smaller or faster im-

plementation.
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LEON is an open source soft core and therefore we use it in our experiments on application-

specific microarchitecture customization. For customizing the parameters, LEON provides

a graphical interface as well as a VHDL interface. LEON is highly configurable and is

highly parameterized. Its parameters are described in detail in Section 2.4.

1.2 Motivation

The parameters of a soft core processor can be thought of as knobs that can be turned

to select appropriate values. The idea is to turn those knobs to improve application run-

time, subject to the constraints on resources, power, energy and all other dimensions that

are being optimized. As mentioned in Section 1, in this thesis, we restrict ourselves to

customizing microarchitecture parameters. Henceforth, by parameters we refer to the mi-

croarchitecture parameters. The values of parameters that give the best tradeoff constitute

the optimal configuration.

Figure 1.3 shows the names of some knobs, cache size, a particular associativity and num-

ber of register windows. However, not all parameters affect application’s runtime equally.

Similarly, different parameters affect hardware resource utilization in varying measures.

Therefore, to obtain the optimal configuration, all parameters must be considered simul-

taneously for their effects on all the dimensions that are being optimized or constrained.

Hence, having more customizable parameters in a processor results in more options for

customization on one hand, but on the other hand, makes the simultaneous search through

them very complex.

LEON, the prototype core used in this thesis, is highly parameterized. Figure D.1 shows

that there are 8 systems in LEON and Figure 2.18 shows that there are 95 parameters across

these systems, with 246 values that are customizable. Section 2.4 describes them in detail.

The graphical interface for the 8 systems and their subsystems are shown in Appendix D.

To tune the processor parameters manually, application developers need to know the impact

of the different parameters on application runtime and other dimensions being constrained
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Figure 1.3: Tuning configurable processors

or optimized, such as hardware resource utilization, energy consumption and power dissi-

pation. However, application developers may not be deeply familiar with the entire appli-

cation. Further, they are neither architecture experts nor do they have the time to develop

such expertise, because of the typical time-to-market pressure on them.

Rather than searching for the optimal configuration manually, application developers could

search through all possible processor configurations exhaustively and simply select the best

one. There are two factors that determine the feasibility of such an approach: the number

of processor configurations to search and the time it takes to measure the dimensions that

are being optimized or constrained.

The number of processor configurations is exponential with the number of parameter val-

ues. For LEON, as we will see in Section 2.4, there are a maximum of 246 parameter

values that can be customized. This results in2246 configurations. Clearly, the number of

configurations is too large to be searched exhaustively in a feasible timeframe.

For measuring application runtime, we prefer to execute the application directly on the

processor and measure the actual runtime nonintrusively. Section 1.4 explains why this

approach is preferable. To execute application directly on the processor, we first need to

build the different processor configurations from the source VHDL. Build process com-

prises the tasks of compiling, synthesizing, building (which in turn involves checking tim-

ing specifications, and expanded design), mapping, place-and-routing (checking physical

constraints), meeting timing constraints, tracing, and finally generatingbitfile. For syn-

thesis, we use Synplify Pro from Synplicity [50] and for all other tasks, we use Xilinx

tools [55]. With all these tasks, building a LEON processor configuration takes at least 30
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minutes even on modern processors (computers). The long build time restricts the number

of configurations that can be built in a feasible amount of time.

Figure 1.4 summarizes our discussions so far and shows the need for an optimization tech-

nique that is feasible and scalable. We prefer to automate the customization process so that

application developers’ time on this is minimized.

1.3 Thesis Objectives

Soft core processors are general purpose processors instantiated on reconfigurable hard-

ware and hence reconfigurable. We seek to customize the microarchitecture of a soft core

processor to meet a given application’s requirements and constraints closely. As we saw

in Sections 1.2 and 1.4, there exists no efficient technique to do this automatically over

the space ofall relevant microarchitecture parameters. This thesis aims to fill the gap by

developing an automatic optimization technique that:

• Considers all feasible microarchitecture parameters for the application-specific cus-

tomization.

• Develops an optimization technique that is feasible and scalable.
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• Automates this technique so as to involve application developers minimally in the

customization process.

• Executes applications directly on the processor configurations to obtain actual run-

times. This involves actually building the processor configurations being considered.

• Evaluates this technique by actually customizing a well known soft core processor

for some substantive benchmarks.

1.4 Related Work

There has been significant work centered around the idea of customizing a processor for

a particular application or application set. Arnold and Corporaal [5] describe techniques

for compilation given the availability of special function units. Atasuet al. [29] describe

the design of instruction set extensions for flexible ISA systems. Choiet al. [15] exam-

ine a constrained application space in their instruction set extensions for DSP systems.

Gschwind [22] uses both scientific computations as well as Prolog programs as targets for

his instruction set extensions. Keller and Brebner [28] analyze tradeoffs between chip area

for hardware accelerators and sequential execution of software on a processor.

Guptaet al. [51] feature a compiler that supports performance-model guided inclusion or

exclusion of four functional units ofmultiply-accumulate (MAC), floating point, multi-

ported memory and pipelined vs. non-pipelined memory unit. Systems that use exhaustive

search for the exploration of the architecture parameter space are described in [36, 30, 42].

Heuristic design-space exploration for application-specific processors is another extant ap-

proach [18]. Pruning techniques are used to diminish the size of the necessary search space

to find a Pareto-optimal design solution. Pareto optimality, is a central theory in economics

with applications in game theory and engineering. An allocation of resources is Pareto

optimal when no further Pareto improvements are possible. A Pareto improvement is an

alternative allocation of resources that can make at least one of the individuals involved

better off, without making any other individual worse.

Yet another approach is to use a combination of analytic performance models and simulation-

based performance models to guide the exploration of the design search space [8]. Here,
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the specific application is in the area of sensor networks. Analytic models are used early,

when a large design space is narrowed down to a “manageable set of good designs” and

simulation-based models provide greater detail on the performance of specific candidate

designs.

The AutoTIE system [21] is a development tool from Tensilica that assists in the instruc-

tion set selection for Tensilica processors. This tool exploits profile data collected from

executions of an application on the base instruction set to guide the inclusion or exclusion

of candidate new instructions.

Some people perform analytical (hierarchical) searching of parameters in their own dimen-

sions, with some full parameter exploration to avoid local minimum, for tuning multi-level

cache for low-energy embedded systems [3].

A different approach explores design options of instruction and data caches, branch pre-

dictor, and multiplier, by dividing the search space into piece-wise linear models that are

evaluated using integer linear programming [43] .

There are two main problems with most of the approaches mentioned so far. The first prob-

lem is that many approaches consider only a few parameters for customization or consider

only a specific subsystem (such as cache) for a specific purpose (such as energy conserva-

tion). Such approaches do not scale well for the large number of parameters in a typical

soft core processor. The second problem is the way application runtime is estimated using

analytical models or measured using simulators, as described below.

Performance Measurement

Analytic models can provide the quickest estimations of application performance, and such

models are often derived directly from source code. Examples of the use of analytic mod-

els include: an approach for the analytical modeling of runtime, idealized to the extent that

cache behavior is not included [9]; and a classic paper on estimating software performance

in a codesign environment, which reports accuracy of about±20% [49]. However, for

the purpose of application performance improvement,±20% is a wide deviation. These

inaccurate predictions are due to the simplifying assumptions that are necessary to make

analysis tractable and are notoriously common when analytic models are used. Moreover,
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application models often require sophisticated knowledge of the application itself. By con-

trast, simulation and the direct execution we use are both “black box” approaches that do

not require knowledge of application implementation.

The method normally used to improve accuracy beyond modeling issimulation. Simula-

tion toolsets commonly used include: SimpleScalar [7], IMPACT [14], and SimOS [39].

Given the long runtimes associated with simulation modeling, it is common practice to

limit the simulation execution to only a single application run, not including the OS and

its associated performance impact. SimOS does support modeling of the OS, but requires

the simulation user manage the time/accuracy tradeoffs inherent in simulating such a large

complex system. In addition, simulation often suffers from uncertainty about conformance

to the underlying architecture.

Performance monitoring in a relatively non-intrusive manner using hardware mechanisms

built into the processor is an idea that is supported on a number of modern systems.

Sprunt [45] describes the specific support built into the Pentium 4 for exactly this purpose.

In an attempt to generalize the availability of these resources in a processor-independent

manner, the Performance Application Programmer Interface (PAPI) [11] has been designed

to provide a processor-independent access path to counters built into many modern proces-

sors. There are a number of practical difficulties with this approach, however, as described

in [16]. First, the specific semantics of each mechanism are often documented insufficiently

by the manufacturer, even to the point where similarly named items on different systems

have subtly different meanings. Second, there are a number of items of interest, such as

cache behavior, that can not be profiled via these mechanisms.

We avoid all the above-mentioned issues by exploiting the reconfigurable nature of FPGA

to profile an application executing directly on a soft core processor. We call this profiler

the “statistics module” [26] and this is part of our Liquid architecture platform [37]. The

statistics module uses a hardware-based, non-intrusive profiler to count the number of clock

cycles taken by the application. Because it gives accurate runtime measures, we use this

for our work here.
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1.5 Contributions

The three main contributions of work in this thesis are:

• Development of an automatic optimization technique to customize soft core proces-

sor microarchitecture per application. This involves formulating the problem as a

Binary Integer Nonlinear Program and solving for an optimal solution. To keep this

approach feasible and scalable, we assume that the microarchitecture parameters are

independent of each other.

• Evaluation of the technique, including the assumption of parameter independence,

by customizing LEON processor for some substantive applications. Specifically, the

thesis answers the following research questions:

– What is the effect of the parameter-independence assumption?

– How much improvement can we get from application-specific microarchitec-

ture customization?

– Is customization indeed application-specific?

• Development of a software controller for the Liquid architecture platform. The con-

troller provides a web-based as well as command-line interface to a hardware con-

troller that controls LEON and the execution of applications on LEON.

1.6 Thesis Outline

Chapter 2 introduces the Liquid architecture platform and its building blocks: the soft

core processor LEON, instantiated on FPGA and a software controller to control it. It

then introducesBinary Integer Nonlinear Program (BINP) and compares it with the

alternatives that were considered. Finally, the chapter describes the different benchmarks

used in our experiments.

Chapter 3 provides an overview of the optimization technique.
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Chapter 4 formulates the microarchitecture customization problem as Nonlinear Binary

Integer Programming, using LEON as an example.

Chapter 5 evaluates the optimization technique and Chapter 6 presents customization re-

sults for the different benchmarks. In addition, Chapter 6 also answers the research ques-

tions posed in Section 1.5.

Chapter 7 summarizes our results and provides the final analysis. It also contains sugges-

tions for future work in this area.
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Chapter 2

Background

2.1 Liquid Architecture Platform

Liquid architecture platform was developed with a goal of measuring and improving ap-

plication performance, by providing an easily and efficiently reconfigurable architecture,

along with software support to expedite its use. This section presents an overview of the

platform design [37]. The main components of the platform are the Liquid module, the soft

core LEON processor, memory interfaces, cross compiler, control software and statistics

module and they are briefly described below.

The Liquid architecture system was implemented as an extensible hardware module on the

Field-programmable Port Extender (FPX) platform [32, 33]. An overview of the FPX

platform is presented in Section 2.2.

Liquid Module

Figure 2.1 shows the high level architecture of the Liquid module. The module is fit within

Layered Protocol Wrappers [10], for Internet connectivity. The wrappers format incoming

and outgoing data asUser Datagram Protocol(UDP) / Internet Protocol (IP) network

packets. A Control Packet Processor (CPP) routes Internet traffic that contains LEON

specific packets (command codes) to the LEON controller (leonctrl). The different control

packet formats used by the Liquid system are presented in Appendix A. The leonctrl entity

uses these command codes to direct the LEON processor to restart and execute application

and to read and write the contents of the external memory that the LEON processor uses
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Figure 2.1: High-level architecture of Liquid system

for instruction and data storage. Finally, the Message Generator is used to send IP packets

in response to receiving a subset of the command codes such as read memory and check

LEON status.

LEON Processor

Figure 2.1 also illustrates some of the main components of the base LEON processor [20].

As can be seen in Figure 2.1, the processor has fairly sophisticated features such as in-

struction and data caches, support for the full SPARC V8 instruction set, 5-stage pipeline

and separate buses for high-speed memory access (AHB) and low-speed peripheral control

(APB).

For inclusion in the Liquid system, it was necessary to modify portions of LEON to inter-

face with the FPX platform. One such modification was to change the Boot ROM, such

that the processor begins execution of user code using the FPX platform’sStatic Random-

Access Memory(SRAM). All other components necessary to implement the interface be-

tween the processor, memory, and user were implemented outside of the base processor

system. More details on the parameterization of LEON is provided in Section 2.4.
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Memory Interface

LEON comes with memory interfaces [31] for programmable ROM, SRAM,Synchronous

Dynamic Random-Access Memory(SDRAM), and memory-mapped IO devices. LEON

uses the standard AMBA bus to connect the processor core to its peripheral devices [2].

The memory controller which comes as part of the LEON package, acts as a slave on the

AHB and accesses data from a 2 GB address space. We are currently using the SRAM for

our experiments although support for SDRAM has been partially developed. Accesses to

the 2 MByte SRAM memory are always performed on a 32-bit word. Memory reads take

4 clock cycles and memory writes can happen on on every clock cycle.

Cross Compiler

Compilers and kernels for SPARC V8 can be used with LEON since LEON is SPARC V8

compliant [20]. For initial software development, Gaisler Research distributes LECCS, a

free C/C++ cross-compiler system based ongccand the RTEMS real-time kernel. LECCS

allows cross-compilation of single or multi-threaded C and C++ applications for both

LEON. Using thegdbdebugger, it is possible to perform source-level symbolic debugging,

either on a simulator or using real target hardware.

Liquid Control Software

The web-based control software provides an interface to load compiled instructions over

the Internet into LEON’s memory. The different components of the control software system

are shown in Figure 2.2. When users submit a request from the web interface, the request

is received by a Java servlet [47] running on an Apache Tomcat server [48]. The servlet

creates UDP (IP) control packets and sends them to the Liquid module, at a specified des-

tination IP and port. It then waits for a response and handles the display of the response, or

errors, if any. The commands currently supported by control software are:

• LEON status - to check if LEON has started up

• Load program - to load a program into memory, at a specific address
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Figure 2.2: Control software toolchain

• Start LEON - to instruct LEON to execute the program that has been loaded into

memory at a given address

• Read memory - to read a specified number of bytes at a given address. This can be

used to verify the program that was loaded, or to read the results of a program which

writes results to memory

• Get statistics - to get program execution time (number of hardware clock cycles)

and other microarchitecture statistics such as cache statistics (number of cache reads,

writes, hits, misses), etc.

• Reset LEON - to reset LEON

Statistics Module

The statistics module implemented by the Liquid architecture platform is a non-intrusive,

hardware-based profiler, to profile application performance at or above the processor mi-

croarchitecture layer. The module is parameterized so that software application developers

can configure it, over the Internet, for the microarchitecture parameters and application

functions that they are interested in profiling. Address ranges of the software functions are

obtained from the software application’s map file generated during application compilation.
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Figure 2.3: FPX Platform

2.2 FPX Platform

The FPX platform was developed by Washington University’s Reconfigurable Network

Group, formerly called FPX Group [34]. The platform provides an environment where a

circuit implemented in FPGA hardware can be interfaced with SRAM, SDRAM, and high

speed network interfaces. Hardware modules on the FPX can use some or all of a large

Xilinx Virtex XCV2000E FPGA to implement a logic function [25]. By using the FPX

platform, resulting hardware modules can be rapidly implemented, deployed and tested

with live data [32].

The Liquid architecture system leverages FPX platform to evaluate customizations of the

soft core processor and to control experiments remotely over the Internet.
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2.3 FPGA

A field-programmable gate array (FPGA) is a large-scale integrated circuit that can be

“programmed” (in the “field”) even after it is manufactured. The term “gate array” refers

to the elements of gates and flip flops that make the reprogramming possible.

FPGAs, irrespective of their sizes and features, are composed of small blocks of memory

structured as programmable logic. The blocks are arranged in a grid and interconnected

using wires. The blocks consist of lookup tables (LUTs) ofn binary inputs (typically,

n = 4), one or two 1-bit registers and additional logic elements such as multiplexers.

These LUTs can implement any combinational function of their inputs. The exact structure

of the LUTs is vendor specific. In addition, specialized logic blocks may be found at the

periphery of the devices to provide programmable input and output capabilities. FPGAs

also typically incorporate on-chip memory resources implemented with blocks of static

Random Access Memory(RAM) called BlockRAM (BRAM). BRAMs are combined to

implement large on-chip memories such as cache and buffers [41, 19].
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2.4 LEON Parameterization

This section explores the reconfigurable subsystems and parameters of LEON. As shown

below, LEON is highly parameterized. LEON distribution provides a graphical user in-

terface to view and configure the parameters. The interface for configuring the different

subsystems are shown in Appendix D. The values for the parameters get set in device.vhd,

in LEON distribution. The default parameter settings in LEON distribution are presented

in Appendix B. Their descriptions below are based on LEON manual [31].

The systems available for reconfiguration in LEON are listed below. Each system is ex-

plored in detail in the following sections.

1. Processor

2. Memory controller

3. AMBA bus

4. Peripherals

5. Synthesis options

6. Clock generation options

7. Boot options

8. VHDL debugging

2.4.1 Processor System

LEON processor consists of the following subsystems:

1. Cache

2. Integer Unit

3. Floating-point Unit
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4. Memory Management Unit

5. Co-processor

6. Debug Support Unit

Cache subsystem

Figure 2.4 lists the parameters of cache subsystem. LEON uses Harvard cache architecture

in that it has separate instruction and data caches and they can be configured independently.

Cache size is parameterized in terms of number of sets and size of each set. Valid settings

for the cache set size are 1 - 64 KByte, and must be a power of 2. However, the cache size

of 64KB requires a total number of 213 BRAM which is 33% more than what is available

on our FPGA. The line size may be 4 - 8 words per line. Valid settings for the number of

sets are 1 - 4 (2 if LRR algorithm is selected). Replacement algorithm may be random,

LRR (Least Recently Replaced) or LRU (Least Recently Used).

Thedlockandilock fields enable cache locking for the data and instruction caches respec-

tively. However, application code needs to make use of these but changing application code

is beyond the scope of our customization. Thedrfastfield enables parallel logic to improve

data cache read timing, while the dwfast field improves data cache write timing. Ifdlram

is set to true, a local (on-chip) data ram will be enabled. The size of the ram will bedlram-

sizeKilo Bytes (KBytes). The 8 MSB bits of the ram start address are set indlramaddr.

However, currently, we do not usedlramon the Liquid architecture platform.

In all, there are 15 cache parameters (5 in icache and 10 in dcache) that can be customized

and the total number of their values is 53. Of these, for application-specific customization,

we consider 10 parameters (4 in icache and 6 in dcache), with 34 different values, as shown

in Figure 2.4.

Integer Unit

Figure 2.6 shows the parameters ofInteger Unit (IU). Fastjumpuses a separate branch

address adder. SettingInteger Condition Code (ICC) hold will improve timing by adding
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Values for

Parameter Range of values Default Customization
Processor

Cache

Instruction cache (icache)

nsets 1-4 1 All
Set size 1,2,4,8,16,32,64KB 4 All but 64

64KB requires 213 BRAM
(i.e.) 33% more than available

Line size 4,8 words 8 4,8
Replacement Random,LRR,LRU Random All

if LRR, nsets=2;
LRU only if nsets=2,3,or 4

Icache locking Enable/disable Disable No

Data cache (dcache)

nsets 1-4 1 All
Set size 1,2,4,8,16,32,64KB 4 All but 64

64KB requires 213 BRAM
(i.e.) 33% more than available

Line size 4,8 words 8 All
Replacement Random, LRR, LRU Random All

if LRR, nsets=2;
LRU only if nsets=2,3,or 4

Dcache locking Enable/disable Disable No
Dcache snooping Enable/disable Disable No
Fast read-data generation Enable/disable Disable Yes
Fast write-data generation Enable/disable Disable Yes
Local data RAM (LRAM) Enable/disable Disable No
If LRAM, size 1,2,4,8,16,32,64 KB 2 No
If LRAM, starting address 8bits 16#8F# N/A

Figure 2.4: Processor cache parameters

a pipeline hold cycle if a branch instruction is preceded by an icc-modifying instruction.

Similarly, fastdecodewill improve timing by adding parallel logic for register file address

generation. The pipeline can be configured to have either one or two load delay cycles

using thelddelayoption. One cycle gives higher performance (lower CPI) but may result

in slower timing in ASIC implementations.

To use hardware implementationmultiplier/ divider, ‘-mv8’ switch needs to be passed

to the sparc-elf-gcc, the cross compiler used by Liquid architecture platform. The hard-

ware implementations available are enumerated in Figure 2.5, along with their logic-latency

tradeoffs. The options are essentially about different data widths (number of bits) of the
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Configuration latency (clocks) Kgates

iterative 35 1,000
m16x16 + pipeline reg 5 6,500

m16x16 4 6,000
m32x8 4 5,000
m32x16 2 9,000
m32x32 1 15,000

Figure 2.5: LEON multiplier configuration tradeoffs

operands and hence different data width of the product. For instance, m32x32 multiplies

two 32 bit numbers and produces a 64 bit result. If multiplier/ divider are set to none,

software implementation will be used.

There is one parameter from the synthesis system (Section 2.4.2) that goes hand in hand

with MUL/ DIV in IU. It is the infer mult parameter. If it is false, the multipliers are im-

plemented using the module generators in multlib.vhd in LEON distribution. Ifinfer mult

is true, the synthesis tool will infer a multiplier. For FPGA implementations, best perfor-

mance is achieved when infermult is true and m16x16 is selected. ASIC implementations

(using synopsys DC) should setinfer mult to false since the provided multiplier macros in

MULTLIB are faster than the Synopsys generated equivalents. Themulpipeoption can be

used to infer pipeline registers in the m16x16 multiplier when infermult is false. This will

improve the timing of the multiplier but increase the latency from 4 to 5 clocks.

nwindowsset the number of register windows; the SPARC standard allows 2 - 32 windows,

but to be compatible with the window overflow/underflow handlers in the LECCS compiler,

8 windows need to be used. Besides, windows less than 16, other than 8, do not synthesize

with the LEON distribution we use. Therefore, only 17 options are valid in practice for us.

In addition, MAC option enables the SMAC/UMAC instructions but ISA reconfiguration

is beyond the scope of microarchitecture customization. The parameterrflowpowenables

read-enable signals to the register file write ports, thereby saving power when the register

file is not accessed. However, this option might introduce a critical path to the read-enable

ports on some register files and hence not included for customization. Settingwatchpoint

to a value between 1 - 4 will enable corresponding number of watchpoints. Setting it to 0,
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Values for

Parameter Range of values Default Customization
Processor

Integer Unit (IU)
Fast jump Enable/disable Enable Yes
ICC hold Enable/disable Enable Yes
Fast decode Enable/disable Enable Yes
Load delay 1,2clock cycles 1 Both
MAC Enable/disable Disable No
Multiplier 32x32,32x16,32x8,16x16, 16x16 32x32,32x16,

16x16+pipelineReg,iterative, 32x8,16x16
none 16x16+pipe,iter,

none
Divider radix2,none radix2 radix2,none
Reg. windows 2-32 8 8,16-32

3,5,6,7,9-15 windows do not build
Applications do not run on 2,4 windows

FPU Enable/disable Disable No
Co-processor Enable/disable Disable No
Disable RegFile when not accessedEnable/disable Disable No
Hardware watchpoints 0-4 4 No
Implementation ID 0-15 0 N/A
Version ID 0-15 0 N/A

Figure 2.6: Processor Integer Unit parameters

will disable all watch-point logic. We set it to 4 and do not consider other values during

customization.

In summary, there are 12 customizable parameters in IU, with 61 total values. Out of these,

for application-specific customization, we consider 7 parameters, totaling 35 values, as

shown in Figure 2.4.

Floating-point Unit

Figure 2.7 shows the 3 customizable parameters of (optional) FPU, with 8 different values.

Theinterfaceelement defines whether to use a serial, parallel (with IU instruction), or none

(no FPU) interface.

If FPU is enabled, three implementations can be interfaced - GRFPU core from Gaisler

Research, Meiko core from Sun Microsystems, or an incomplete, open-source core LTH
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Parameter Range of values Default value

Processor
Floating-point Unit (FPU)

Interface serial,parallel,none None
Core Gaisler,Meiko,LTH Meiko
Reg. windows 32 for serial,0 for parallel 0
Version ID 0-7 0

Figure 2.7: Processor FPU parameters (not included in our customization)

core. According to the LEON manual, LTH does not implement all SPARC V8 instructions

and is not IEEE-754 compliant. More specifically, it currently implements single- and

double-precision addition, subtraction and compare and does not implement multiplication,

division and square root. Hence, LTH is not recommended for general purpose programs.

Therefore, we do not include FPU is our customization experiments.

Memory Management Unit

Figure 2.8 shows the 6 customizable parameters of the optionalMemory Management

Unit (MMU), along with their 18 values. The MMU implements a SPARC V8 reference

MMU to support operating systems such as Linux and Solaris. The MMU can have separate

(Instruction + Data) or a commonTranslation Look-aside Buffer (TLB). The TLB is

configurable for 2 - 32 fully associative entries.

In the version of Liquid architecture platform that we use for customization, MMU is not

enabled. Further, in our experiments, we run the benchmarks directly on LEON (i.e.)

without an operating system (although Liquid architecture platform supports Linux) and

hence we do not include MMU for our customization.

Co-processor

A generic co-processor interface is provided to allow interfacing of custom (special-purpose)

co-processors. The interface allows an execution unit to operate in parallel to increase per-

formance. One coprocessor instruction can be started each cycle as long as there are no
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Parameter Range of values Default value

Processor
Memory Management Unit (MMU)

MMU Enable/disable Disable
TLB (instruction,data) Combined/split Combined
TLB replacement LRU/increment LRU
TLB instructions (or combined) entries2,4,8,16,32 8
TLB data entries 2,4,8,16,32 8
Diagnostic Enable/disable Disable Disable

Figure 2.8: Processor MMU parameters (not included in our customization)

Parameter Range of values Default value
Processor

Co-processor
Configuration Name cp none

Figure 2.9: Co-processor parameters (not included in our customization)

data dependencies. When finished, the result is written back to the co-processor register

file.

Figure 2.9 shows the one customizable parameter for naming the co-processor, when a core

is available. To use the co-processor core, application needs to use instructions for the core

and since application changes are beyond the scope of our customization, we do not include

co-processor in our customization.

Debug Support Unit

The (optional) debug support unit (DSU) allows non-intrusive debugging on target hard-

ware. The DSU allows insertion of breakpoints and watchpoints, and access to all on-chip

registers from a remote debugger. A trace buffer is provided to trace the executed instruc-

tion flow and/ or AHB bus traffic. The DSU has no impact on performance and has low area

complexity. Communication to an outside debugger (e.g. gdb) is done using a dedicated

UART (RS232) or through any AHB master device (e.g. PCI).
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Parameter Range of values Default value

Processor
Debug Support Unit (DSU)

DSU Enable/disable Disable
Trace buffer Enable/disable Disable
Mixed instruction/ AHB tracing Enable/disable Disable
Trace buffer lines 64,128,256,512,1024128

Figure 2.10: Processor DSU parameters (not included in our customization)

Figure 2.10 shows the 4 customizable parameters (and a total of 11 values) for enabling and

using DSU. We leave them disabled because Liquid architecture platform did not support

DSU at the time of our customization exercise.

2.4.2 Synthesis Options

The synthesis configuration is used to adapt the model to various synthesis tools and target

libraries. Figure 2.11 shows the customizable parameters to be 7 in number and their values

to be 14 in total.

Depending on synthesis tool and target technology, the technology dependant mega-cells

(ram, rom, pads) can either be automatically inferred or directly instantiated. When using

tools with inference capability targeting Xilinx Virtex, a choice can be made to either infer

the mega-cells automatically or to use direct instantiation. The choice is done by setting the

parametersinfer ram, infer regf andinfer rom accordingly. Therftypeoption has impact

on target technologies which are capable of providing more than one type of register file.

Infer mult selects how the multiplier is generated, for details see section 14.2 below. On

Virtex targets,clk mul andclk div are used to configure the frequency synthesizer (DCM

or CLKDLL).

We already discussedinfer mult in Section 2.4.1; we will discuss clock generation in Sec-

tion 2.4.3. We do not consider other parameters for customization.
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Values for

Parameter Range of values Default Customization
Synthesis options

Target technology Xilinx Virtex,Virtex2, Virtex No
Generic, Atmel ATC35,25,18,
UMC-FS90,0.18, TSM0.25,
Actel Prosaic,Axcel

Infer Pads Enable/disable Disable No
Infer PCI Enable/disable Disable No
Infer RAM Enable/disable Enable No
Infer Register file Enable/disable Enable No
Infer ROM Enable/disable Disable No
Infer Mult/Div Enable/disable Enable Yes
Improve RegFile write timing Enable/disable Enable Yes
Target clock Gen,Virtex CLKDLL, Gen No

Virtex2 DCM,
PCI DLL, PCT SYSCLK

Clock multiplier 1/2,1,2 1 No
Clock divider 1/2,1,2 1 No
PCI DLL Enable/disable Disable No
PCI system clock Enable/disable Disable No

Figure 2.11: Synthesis and clock generation options

2.4.3 Clock Generation

Synthesis system (Figure 2.11) provides options for technology specific clock generation

as well as clock multiply and divide factors but none of our benchmarks need customization

on this and hence we do include these options in our customization.

2.4.4 Memory Controller

The flexible memory interface provides a direct interface for PROM, memory mapped I/O

devices, static RAM (SRAM) and synchronous dynamic RAM (SDRAM). Memory areas

can be programmed to be 8-, 16- or (the default) 32-bit data width. Theramsle5field

enables the fifth (RAMSN[4]) chip select signal in the memory controller. Thesdramen

field enables SDRAM controller, whilesdinvclkcontrols the polarity of the SDRAM clock.

For the benchmarks that we consider in this study, we use SRAM. We default the other

parameters to false to reduce logic and exclude them from customization.
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Parameter Range of values Default value

Memory controller
8-bit bus Enable/disable Disable
16-bit bus Enable/disable Disable
Feedback to data bus driversEnable/disable Disable
5th RAM select Enable/disable Disable
SDRAM controller Enable/disable Disable
Invert SDRAM clock Enable/disable Disable

Figure 2.12: Memory Controller parameters (not included in our customization)

We leave SDRAM enabled but we do not compare SRAM to SDRAM in our customization

experiments because the Liquid architecture platform does not support using both SRAM

and SDRAM concurrently. Since SDRAM is slower to access, any runtime gain we ob-

tain from cache customization will only be better with using SDRAM. Figure 2.12 shows

these 4 customizable parameters; they are all of type enable/disable and therefore the total

number of their values is 8.

2.4.5 AMBA Configuration

The processor has a full implementation of AMBA Hi-speed (AHB) and AMBA Peripheral

(APB) on-chip buses. AMBA buses are the main way of adding new functional units in

LEON. The LEON model provides a flexible configuration method to add and map new

AHB/APB compliant modules.

The default AHB master is the memory controller. The number of AHB slaves and their

address range is defined through the AHB slave table in device.vhd. The AHB slaves

should be connected to theahbsi/ahbsobuses. Theindexfield in the table indicates which

bus index the slave should connect to. Ifsplit field is set to true, the AHB arbiter will

include split support and each slave must then driver the SPLIT signal.

The number of APB slaves and their address range is defined in APB bridge (apbmst.vhd in

LEON distribution). APB slaves can be added by editing the corresponding case statement

in apbmst.vhd and adding the modules in MCORE. The APB slaves are connected to the

apbi/apbobuses.
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Parameter Range of values Default value

AMBA bus
Default AMBA master integer 0
AHB split-transaction support Enable/disable Disable

Figure 2.13: AMBA parameters (not included in our customization)

Figure 2.13 shows 2 customizable parameters for AHB, with a total of 3 values. Our

benchmarks do not use any peripheral device off APB and neither do they require changes

to the parameters mentioned above and therefore we do not include these parameters in our

customization experiments.

2.4.6 Peripherals

If not enabled, the corresponding peripheral function will be suppressed, resulting in a

smaller design.

The irq2en parameter enables secondary interrupt controller. Theahbramparameter en-

ables on-chip AHB RAM.ahbrambitsdenote the number of address bits used by the RAM.

Since a 32-bit RAM is used, 8 address bits will results in a 1-KByte RAM block.

A 24-bit watchdogis provided on-chip. The watchdog is clocked by the timerprescaler.

When the watchdog reaches zero, an output signal (WDOG) is asserted. This signal can be

used to generate system reset.

Figure 2.15 shows 9 customizable parameters and a total of 23 values. None of the bench-

marks used in our experiments use any of these parameters and therefore we leave these

parameters turned off (to save logic) and not include them for customization.

2.4.7 PCI

A PCI interface supporting target-only or both target and master operation can be enabled.

The target-only interface has low complexity and can be used for debugging over the PCI
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Parameter Range of values Default value

Peripheral
Config register Enable/disable Enable
AHB status register Enable/disable Disable
Wprot Enable/disable Disable
Watchdog Enable/disable Disable
irq2en Enable/disable Disable
AHB RAM Enable/disable Disable
AHB RAM size 1,2,4,8,16,32,64 KB 4
AHB RAM bits 11 11
Ethernet Enable/disable Disable
PCI Enable/disable Disable

Figure 2.14: Peripherals parameters (not included in our customization)

bus. The full master/target interface is based on the PCI bridge from OpenCores, with an

additional AHB interface.

Thepcicorefield indicates which PCI core to use. Currently, only the OpenCores PCI core

is provided with model. If this field is set to none, PCI interface will be disabled. The

ahbmasters and ahbslaves fields indicate how many AHB master and slave interfaces the

selected core types have. Foropencores, both these fields should be set to 1. To enable

the PCI arbiter,arbiter field should be set to true. This should only be done in case the

processor acts as a system controller. The PCI vendorid, deviceid and subsystemid can be

configured through the corresponding fields.

Figure 2.15 shows the customizable parameters to be 10 in number and their values to be

15 in total. However, since our benchmarks do not use any of these parameters, we leave

them all at their default values and not include them in our customization experiments.

2.4.8 Boot Options

Apart from the standard boot procedure of booting from address 0 in the external memory,

LEON can be configured to boot from an internal prom or from the debug support unit.
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Parameter Range of values Default value

PCI
Core None, None
AHB masters a number 0
AHB slaves a number 0
Arbiter Enable/disable Disable
Fixed priority Enable/disable Disable
Priority level 4 4
PCI masters a number 4
Vendor ID a number 16#0000#
Device ID a number 16#0000#
Subsystem ID a number 16#0000#
Revision ID a number 16#00#
Class code a number 16#000000#
PME pads Enable/disable Disable
P66 pad Enable/disable Disable
PCI Read stall Enable/disable Disable

Figure 2.15: PCI parameters (not included in our customization)

Figure 2.16 shows the 7 customizable parameters. There was no reason to change the de-

fault values of these parameters or customize them per benchmark that we ran and therefore

we do not include boot options for customization.

2.4.9 VHDL Debugging

Two 8-bit UARTs are provided on-chip for communication over serial ports. The baud-rate

is individually programmable and data is sent in 8-bits frames with one stop bit. Optionally,

one parity bit can be generated and checked.

We leave debug and UART parameters enabled and disable all other debug parameters and

exclude the entire system from customization, since we do not expect reconfiguration from

this subsystem to improve application performance. Figure 2.17 shows the 11 customizable

parameters and a total of 20 values.
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Parameter Range of values Default value

Boot options
Boot from Memory, internal PROM, PROM
RAM read waitstates a number 3
RAM write waitstates a number 0
System clock (MHz) a number 25
Baud rate a number 9600
Ext baud Enable/disable Disable
PROM Addr bits a number 8

Figure 2.16: Boot options (not included in our customization)

Parameter Range of values Default value
Debug

Debug Enable/disable Enable
UART Enable/disable Enable
IU Registers Enable/disable Disable
FPU Registers Enable/disable Disable
No halt Enable/disable Disable
PC low 2
DSU Enable/disable Enable
DSU trace Enable/disable Enable
DSU mixed Enable/disable Disable
DSU DPRAM Enable/disable Disable
Trace lines 128 128

Figure 2.17: Debug options (not included in our customization)

2.5 Parameters for Application-Specific Customization

The number of customizable LEON parameters that we discussed in the above section (Sec-

tion 2.4), is recapped in Figure 2.18. In all, the total number of customizable parameters is

95 and the total number of their values is 246. Of these, we consider 16 parameters, with

a total of 62 values, for our application-specific customization experiments. This is shown

in Figure 2.18.
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Included in our Included in our
customization customization

LEON system #params #param values #params #param values

Processor
Cache 15 53 10 34
Integer Unit 12 61 7 35
Floating-point Unit 3 8 0 0
Memory Management Unit 6 18 0 0
Co-processor 1 2 0 0
Debug Support Unit 4 11 0 0

Synthesis 7 14 1 2

Clock options 4 10 0 0

Memory controller 4 8 0 0

AMBA 2 3 0 0

Peripherals 9 23 0 0

PCI 10 15 0 0

Boot 7 0 0 0

VHDL debugging 11 20 0 0

Figure 2.18: LEON parameters for application-specific customization
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2.6 Constrained Binary Integer Nonlinear Programming

Application-specific customization of soft core processor microarchitecture is achieved by

formulating the problem as a constrained BINP.

Linear Programming (LP) in general formis the problem of minimizing a linear function

subject to a finite number of equality and inequality constraints [27]. The following is a

general LP problem (or simply, linear program) withn variables,k equality constraints,

andl inequality constraints. MinimizeZ = cT x

subject to

Ax = b

A′x ≥ b′

x1 ≥ 0, x2 ≥ 0, ..., xr ≥ 0; r ≤ n

wherex ∈ Rn is the vector of decision variables to be solved for,Z|Rn− > R is the

objective function,c ∈ Rn is the constants vector of cost coefficients,A ∈ Rk×n and

A′ ∈ Rl×n are matrices of coefficients of functional constraints,b ∈ Rk andb′ ∈ Rl are

constants vectors of right-hand sides of functional constraints.x1 throughxr are restricted

to be non-negative;xr+1 throughxn are not sign constrained.k or l can be 0.Other forms

of LP include maximization and inequalities that are≤.

If the decision variables are restricted to be integers, the model becomes Integer (Linear)

Program (ILP or simply IP). In addition, if the variables are further restricted to be binary-

valued (zero or one), the model would be Binary Integer (Linear) Program (BILP or simply

BIP).

If the objective function, a constraint or both are nonlinear, then the model is aNonlin-

ear Programming (NLP) and if the variables are binary-valued, then it is Binary Integer

Nonlinear Program (BINLP).

LP problems arecontinuousover real numbers, or over non-negative reals, if all variables

are restricted to be non-negative [24]. LP problems are guaranteed to have aCorner-

Point Feasible(CPF) solution (and hence a corresponding basic feasible solution) that is

optimal for the overall problem. It is because of this guarantee that LP problems are solved

extremely efficiently.
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In contrast, IP problems arediscretebecause noninteger feasible solutions are no longer

valid and hence removed from the search space. Because of this, IP problems are no longer

guaranteed to have a CPF solution that is optimal for the overall problem. One approach

would be to solve IP problems through exhaustive enumeration—check each solution for

feasibility and if feasible, calculate the value of objective function. However, the number of

feasible solutions, though finite, could be very large, making it infeasible to do exhaustive

enumeration. For instance, in the simple case of a BIP, if there aren variables, there are2n

solutions to consider and ifn is increased by1, the number of solutions to consider doubles.

That is, the difficulty of the problem growsexponentiallywith the number of variables. To

avoid exhaustive enumeration, a popular approach with IP algorithms is to usebranch-

and-boundtechnique, which enumerates only a small fraction of the feasible solutions.

The basic concept with this technique is todivide and conquer. The dividing (branching)

is done by partitioning the set of feasible solutions into smaller and smaller subsets. The

conquering (fathoming) is done partially by bounding how good the best solution in the

subset can be and then discarding the subset if its bound indicates that it cannot possibly

contain an optimal solution for the original problem. While fathoming, to quickly evaluate

the best solution, a technique calledLP relaxationis used often. LP relaxation involves

simply dropping the integrality constraints and solving the problem as an LP problem. (If,

on the other hand, LP relaxation is used to directly solve the overall integer programming

problem, the optimal solution, if not an integer, will have to be rounded. However, rounding

the optimal solution may make it non-optimal or worse, infeasible.)

NLP algorithms are generally unable to distinguish between a local minimum and a global

minimum exceptunder the following conditions. If the objective function is convex and

the feasible region (FR) formed by the constraints is a convex set, then, a local mini-

mum is guaranteed to be a global minimum. A linear objective function is convex (as

well as concave) and the FR of an LP problem is a convex set. The FR of a NLP prob-

lem is a convex set if all the constraint equations are convex functions. A function ofn

variablesf(x1, x2, ..., xn) is a convex function if, for each pair of points on the graph of

f(x1, x2, ..., xn), the line segment joining these two points lies entirely above or on the

graph off(x1, x2, ..., xn).

For the problem of application-specific microarchitecture customization, we use a commer-

cial solver called TomlabMixed Integer Nonlinear Programming Solver (MINLP) [53].
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Tomlab is a plugin for Matlab [35] and it solves our formulation in seconds on modern

computers.

2.7 Alternative Search Techniques

Integer Programming problems grow exponentially with the number of variables and hence

is NP-hard [24]. Therefore, heuristic algorithms have been developed that are extremely

efficient for large problems but they are not guaranteed to find optimal solution.

Three prominent heuristics are tabu search, simulated annealing and genetic algorithms [24].

They all use innovative concepts to move towards an optimal solution. Tabu search explores

promising areas holding good solutions by rapidly eliminating unpromising areas classified

as tabu. Simulated annealing searches by using the analog of a physical annealing process.

The basic concept with genetic algorithms is survival of the fittest through natural evolu-

tion. These algorithms can also be applied to integer nonlinear programs that have local

optima far removed from global optima.

With heuristics, we would start with a processor configuration, which is a tuple of pa-

rameter values, perturb the configuration along a parameter and evaluate the cost. If the

cost decreases the objective function (since we are ‘minimizing’ application runtime and

hardware resource usage), then we accept this change [13] and repeat the process in this

direction.

We do not use these heuristics for two reasons. First, processor configurations are combi-

nations of a large number of parameters. As shown in Figure 2.18, LEON processor has

95 parameters with 246 values. Given such a large of dimensions, selecting a parameter

to perturb becomes a challenge by itself. Secondly, given the large number of possible

configurations, measuring costs of all or even many processor configurations is infeasible,

because it takes 30 minutes to build a single processor configuration, even on modern

computers. This is discussed in detail in Section 3.1.2.
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2.8 Benchmarks

The following applications are used in our experiments. They are executed directly on

LEON (i.e.) without an operating system. Hence, they have been modified to not use

system calls. Examples of modifications include not usingstdiobut instead using memory

for input and output and generating random numbers in the application itself. Source code

for all the applications are listed in Appendix C.

2.8.1 Benchmark I - BLASTN

Basic Local Alignment Search Tool(BLAST) [1] programs are the most widely employed

set of software tools for comparing genetic material. BLASTN (“N” fornucleotide) is a

variant of BLAST used to compare DNA sequences (lower-level than proteins).

A DNA sequence is a string of characters (bases), with each base drawn from the 4-symbol

alphabet{A,C,T,G}.

BLASTN is classically implemented as a three-stage pipeline, where each stage performs

progressively intensive work over a decreasing volume of data.

We analyze the performance of an open-address, double-hashing scheme to determine word

matches as in stage 1 of BLASTN [37]. We use a synthetically generated database and

query containing only bases from{A, C, T, G}, for our experiments. The bases were

generated within the program, using random-number generators. For the purposes of these

experiments, we used a word size (w) of 11, which is also the default value ofw used by

the flavor of BLASTN that is distributed by the National Center for Biological Information

(NCBI).

BLASTN is computation and memory-access intensive. It has approximately 163 lines of

code and its runtime on the default LEON configuration is 10.6 seconds.
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2.8.2 Benchmark II - Commbench DRR

DRR is a Deficit Round Robin fair scheduling algorithm used for bandwidth scheduling

on network links, as implemented in switches. The program kernel focusses on queue

maintenance and packet scheduling for fair resource utilization and is computationally in-

tensive [54]. DRR has approximately 117 lines of code and its runtime on the default

LEON configuration is 5 minutes.

2.8.3 Benchmark III - Commbench FRAG

FRAG is an IP packet fragmentation application. IP packets are split into multiple frag-

ments for which some header fields have to be adjusted and a header checksum computed.

The checksum computation that dominates this application is performed as part of all IP

packet application programs besides just forwarding [54]. FRAG has approximately 150

lines of code and its runtime on the default LEON configuration is 2.5 minutes.

2.8.4 Benchmark IV - BYTE Arith

Arith does simple arithmetics of addition, multiplication and division in a loop. This bench-

marks tests the processor speed for arithmetic and is not memory intensive. approximately

77 lines of code and its runtime on the default LEON configuration is 32 seconds.
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Chapter 3

Approach

The goal of this thesis is to enable application developers of constrained embedded systems

to improve performance of their application by customizing the soft core processor’s mi-

croarchitecture. The processor is customized to match the given application’s requirements

and constraints closely. To make it easier for the developers, the customization process is

automated. The developers are needed only to specify the customizable parameters of the

processor and our solution will explore the parameters, without any further involvement of

the developers.

The approach we take is to exploreall microarchitecture parameters that have a bearing on

application runtime or hardware resources that are being optimized or constrained. Sec-

ondly, for more accurate customization results, we would like to useactualmeasurements

(costs) rather than estimates. Section 1.4 points out the shortcomings of using estimates.

Accordingly, for application runtime cost, applications are executed directly on the proces-

sor. For hardware resource utilization cost, processor configurations are actually built from

the source VHDL. For all other dimensions that are being optimized or constrained such

as energy consumption, and power dissipation, we would use similar actual cost measure-

ments, although we leave this for future. Finally, despite customizingall parameters and

measuring theiractualcosts, we would like the optimization technique to befeasible and

scalable.

Arising from these goals are two challenges. First, considering all microarchitecture pa-

rameters means considering hundreds of parameter values, 246 for LEON, as shown in

Figure 2.18. Such a large number of parameter values makes the search space huge,2246

configurations for LEON. The second challenge is the long time it takes to measure the
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costs of application runtime, hardware resource utilization, energy consumption, and power

dissipation.

3.1 Cost functions

3.1.1 Application Runtime Cost

Application runtime is measured by executing the application directly on the soft core pro-

cessor (LEON) and counting the number of clock cycles the execution takes. We use the

non-intrusive and cycle-accurate hardware-based profiler available through Liquid archi-

tecture platform described in Section 2.1.

The runtimes for the different benchmarks used in our experiments range from 16 seconds

to 9 minutes. However, there could be applications with much longer execution times. We

leave it for future work to address such very long execution times; future work is discussed

in Section 7.4.

3.1.2 FPGA Resource Cost

Instantiating a soft core processor configuration on an FPGA utilizes hardware resources.

We focus on the utilization ofLookup Tables(LUTs) and BRAM, described in Section 2.3.

Other resources can be included in a similar way.

Hardware resource utilizations are measured by actually building processor configurations

from the source VHDL. Processor configurations are independent of applications executed

on them, which means, they are generated only once. Even so, each build is very time-

consuming, on the order of 30 minutes, even on modern computers.

The total LUTs and BRAM available on the Xilinx Virtex XCV2000E FPGA used in the

Liquid architecture platform are 38,400 and 160 respectively and the default LEON config-

uration utilizes 14,992 (39%) and 82 (51%). Given the difference in their magnitudes, they

are normalized as percentages and added together for a unified chip resource cost metric.
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3.1.3 Total Cost

To be compatible with chip resource cost, application runtime cost is also normalized as a

percentage and they are added together.

3.2 Our Approach

The number of possible soft core processor configurations are exponential with the num-

ber of microarchitecture parameters as discussed in Section 1.2, resulting in a huge search

space. In addition, the time to measure the “data points” are relatively excessive. The

data points comprise hardware resource utilization cost obtained from building the proces-

sor configuration and application runtime cost obtained from executing the application on

that configuration. Building a processor configuration is relatively expensive – on the or-

der of half an hour for each configuration, even on modern computers (processors). The

application execution time can be of any length as discussed in Section 3.1.1. These two

characteristics make the problem of automatic microarchitecture customization more chal-

lenging than a traditional optimization problem. They make it infeasible to do exhaustive

enumeration of all configurations (i.e.) it is infeasible to build an exact model to search for

the best solution.

The next best approach is to build an approximate model and solve for an exact solution.

We build the model by assumingparameter independenceand restricting each parameter

to its own dimension. Though our results are no longer guaranteed to be optimal in all

cases, Section 6 demonstrates that they are near-optimal in practice. With the assumption of

parameter independence, the number of configurations islinear in the number of parameter

values,62 for the parameters in Figure 2.18. Even if the remaining parameters benefit other

applications, the total number of parameter values would still be only a few hundred in

number, which can be handled in a feasible and scalable manner by our approach.

We solve for optimal solution by formulating the model as a constrained Binary Integer

Nonlinear Problem. Although the search space is built by considering parameters in their

own dimensions, the optimization algorithm evaluates points in between. These points

represent configurations that have more than one parameter changed simultaneously. The
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solver assigns costs for these points through anapproximationof actual costs provided by

us in the model.

As discussed in Section 2.6, Integer Linear Programming is exponential with the number

of variables. Therefore, it is not guaranteed to give an optimal solution in the presence

of a large number of integer variables and in the absence of special structures that some

algorithms exploit to solve for optimal solution. With nonlinear objective function or con-

straints, if the objective function is not convex or if feasible region formed by the constraints

is notconvex, then, the optimization algorithm is no longer guaranteed to find the optimal

solution. Because of these two characteristics, the solution from our customization is not

guaranteed to be optimal. However, the resulting configuration is guaranteed to be valid

and near-optimal in practice as demonstrated in Section evaluation.

The approach to building the model is summarized as follows. We begin with the default

LEON configuration that comes out-of-the-box. We call this thebaseconfiguration. We

then perturb one parameter at a time and build the processor configuration, measuring its

chip cost. Thirdly, we execute the application on each configuration, measuring the run-

time. Finally, we formulate these costs into a BINP problem and solve for optimal solution

using the commercial solver of Tomlab MINLP. The solution obtained is the recommended

microarchitecture configuration for the given application. The characteristics of the solu-

tion are discussed in Section 2.6. Our approach itself is illustrated in Figure 3.1.
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Figure 3.1: Our heuristic for automatic application-specific microarchitecture
customization
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Chapter 4

Problem Formulation

We formulate the problem of automatic customization of soft core processor microarchitec-

ture as a Binary Integer Program. The objective of the customization is to meet the appli-

cation’s runtime requirements and hardware (FPGA) resource restrictions. The constraint

is to select avalid microarchitecture configuration thatfits in the available chip resources.

The FPGA resources considered for the customization are lookup tables (LUTs) and Block

RAM (BRAM), described in Section 3.1.2. The total number of LUTs and BRAM available

on the Xilinx Virtex XCV2000E FPGA [57] used in our Liquid architecture platform are

38,400 and 160 respectively. For the soft core processor that we use namely LEON, the rel-

evant microarchitecture subsystems for customization are instruction cache (icache), data

cache (dcache) and integer unit (IU), described in Section 2.4. We start the customization

process with default out-of-the-box LEON distribution. We call this thebaseconfiguration.

The base configuration utilizes 39% LUTs (14,992 out of 38,400) and 51% BRAM (82 out

of 160).

The %LUTs and %BRAM remaining unutilized after the base configuration are 61% and

49% and are denoted byL andB respectively, as shown in Figure 4.1. From the base con-

figuration, for the parameters included for customization, one parameter value is changed

at a time and the new processor configuration is built. With this approach, the number of

new LEON configurations reduce to 52. Each new processor configuration is denoted by

xi. For eachxi, the difference (in percentage) in LUTs and BRAM over the base config-

uration is denoted byλi andβi respectively; the difference (in percentage) in application

execution time over the time on the base configuration is denoted byρi. These symbols are

listed in Figure 4.1.
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Variable Symbol

% ∆LUTs remaining after base configuration L
% ∆BRAM remaining after base configurationB
Each new processor configuration xi

% ∆LUTs of xi λi

% ∆BRAM of xi βi

% ∆Runtime ofxi ρi

Figure 4.1: LEON reconfigurable parameters

4.1 Parameter Validity Constraints

xi represents a new processor configuration resulting from a change ina single parameter

valuefrom thebaseconfiguration.xi is binary (i.e.) it represents two integer values, which

could be simpleon or off. That implies that for parameters with more than two values,

more than onexi will be used. Therefore, for such parameters, we need to ascertain that at

most one of them is selected (turnedon) at a time. None of them may be selected because

the base configuration already includes a value for this parameter. All such constraints are

developed below.

4.1.1 Instruction Cache Parameter Validity Constraints

The four parameters in LEON’s icache that have an impact on application runtime or FPGA

resources and that can be customized without changing the application are number of cache

sets, size of each set, cache line size, and cache replacement policy.

ICache Number of sets

LEON icache isdirect-mappedby default in the base LEON configuration. However, it

can be changed to be 2, 3, or 4-way associative. We let variablesx1 throughx3 represent

these changes (i.e.)x1 represents whether 2-way associativity is used (i.e) turnedonor off.

Similarly, x2 andx3 represent whether 3-way and 4-way associativity are turned on or off
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Parameter Value Variable Runtime ChipResource

nsets 1 base 0 0
2 x1 ρ1 λ1 + β1

3 x2 ρ2 λ2 + β2

4 x3 ρ3 λ3 + β3

x1 + x2 + x3 ≤ 1

Figure 4.2: ICache formulation - variables and constraint

Parameter Value Variable Runtime ChipResource

nsets 1 base 0 0
2 x1 ρ1 λ1 + β1

3 x2 ρ2 λ2 + β2

4 x3 ρ3 λ3 + β3

x1 + x2 + x3 ≤ 1

setsize (KB) 1 x4 ρ4 λ4 + β4

2 x5 ρ5 λ5 + β5

4 base 0 0
8 x6 ρ6 λ6 + β6

16 x7 ρ7 λ7 + β7

32 x8 ρ8 λ8 + β8

x4 + ... + x8 ≤ 1

Figure 4.3: ICache formulation - variables and constraints

respectively. The variables and the validity constraint for the parameter of number of sets

is presented in Figure 4.2.

ICache Set size

ICachesetsize is 4 Kilo Bytes (KB) by default in the base LEON configuration and it can

be changed to be 1, 2, 8, 16, 32, or 64 KB. Of these, 64 KB requires a total number of

213 BRAM but this exceeds what is available on our FPGA—160. The variables for these

values and the constraint to select at most one of them is shown in Figure 4.3.
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nsets 1 base 0 0
2 x1 ρ1 λ1 + β1

3 x2 ρ2 λ2 + β2

4 x3 ρ3 λ3 + β3

x1 + x2 + x3 ≤ 1

set size (KB) 1 x4 ρ4 λ4 + β4

2 x5 ρ5 λ5 + β5

4 base 0 0
8 x6 ρ6 λ6 + β6

16 x7 ρ7 λ7 + β7

32 x8 ρ8 λ8 + β8

x4 + ... + x8 ≤ 1

line size (words) 4 x9 ρ9 λ9 + β9

8 base 0 0
No constraint needed to ensure parameter validity

Figure 4.4: ICache formulation - variables and constraints

ICache Line size

ICache line size is 8 words (8×32 bits) by default in the base LEON configuration and

it can be changed to be 4 words.x9 represents the value of 4 words. Sincex9 is binary,

having it on indicates cache line size of 4 words and having itoff indicates the default

value of 8 words. Therefore, unlike the two parameters discussed so far, for this parameter,

a constraint isnot needed here to ensure validity. This is true for all cases where there

is only one value besides the default value in the base configuration. Variables for the

parameter values are shown in Figure 4.4.

ICache Replacement policy

With multi-way set associativity, the default cache replacement policy in the base LEON

configuration israndom. Other replacement policies supported are LRR (Least Recently

Replaced) with 2-way associativity and LRU (Least Recently Used) with all multi-way
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nsets 1 base 0 0
2 x1 ρ1 λ1 + β1

3 x2 ρ2 λ2 + β2

4 x3 ρ3 λ3 + β3

x1 + x2 + x3 ≤ 1

set size (KB) 1 x4 ρ4 λ4 + β4

2 x5 ρ5 λ5 + β5

4 base 0 0
8 x6 ρ6 λ6 + β6

16 x7 ρ7 λ7 + β7

32 x8 ρ8 λ8 + β8

x4 + ... + x8 ≤ 1

line size (words) 4 x9 ρ9 λ9 + β9

8 base 0 0
No constraint needed to ensure parameter validity

replacement policy random base 0 0
LRR x10 ρ10 λ10 + β10

LRR x11 ρ11 λ11 + β11

x10 + x11 ≤ 1
x10 − x1 ≤ 0
(x1 + x2 + x3)− x11 ≥ 0

Figure 4.5: ICache formulation - variables and constraints

associativity. Because LRR and LRU are contingent on the number of cache sets, we need

an additional constraint for each. They are shown in Figure 4.5.

4.1.2 Data Cache Parameter Validity Constraints

LEON’s dcache has all the parameters of icache and two additional parameters of fast data

read and write. Figure 4.6 presents all the parameters and their constraints.
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4.1.3 Integer Unit Parameter Validity Constraints

LEON’s Integer Unit (IU) consists of the parameters of fast jump generator, ICC (Inte-

ger Condition Code) hold, fast decode generator, number of pipeline load delay cycles,

different hardware multipliers and divider, and number of register windows. Relevant to

the hardware multiplier options, is asynthesisparameter called infer multiplier. The vari-

ables for these parameter values and the constraint for their validity are similar to the cache

parameters and are presented in Figure 4.7.

4.2 FPGA Resource Constraints

Microarchitecture customization is constrained by the available FPGA (chip) resources. Of

these, we focus on the resources of LUTs and BRAM. Figure 4.1 shows the %LUTs and

%BRAM available after the base configuration as L and B. For eachxi the figure also shows

the %LUTs and %BRAM over the base configuration asλi andβi. We need to ensure that

the LUTs and BRAM used by all the configurations selected during customization fit in the

available LUTs (L) and BRAM (B).

n=52∑
i=1

λixi ≤ L and

n=52∑
i=1

βixi ≤ B

Cache size is expressed in terms of two parameters in LEONviz. number of cache sets

and size of each set. We saw that variablesx1 throughx3 represent icache sets andx4

throughx8 represent icache set size. We also saw that variablesx12 throughx14 represent

dcache sets andx15 throughx19 represent dcache set size. The constraints for icache size

and dcache size would then be:

(1 + x1 + 2x2 + 3x3)× (
8∑

i=4

βixi) and

(1 + x12 + 2x13 + 3x14)× (
19∑

i=15

βixi)



50

The FPGA resource constraints then become:

(1 + x1 + 2x2 + 3x3)× (
8∑

i=4

λixi) +

(1 + x12 + 2x13 + 3x14)× (
19∑

i=15

λixi) +

3∑
i=1

λixi +
11∑
i=9

λixi +
14∑

i=12

λixi +
52∑

i=20

λixi ≤ L

(1 + x1 + 2x2 + 3x3)× (
8∑

i=4

βixi) +

(1 + x12 + 2x13 + 3x14)× (
19∑

i=15

βixi) +

3∑
i=1

βixi +
11∑
i=9

βixi +
14∑

i=12

βixi +
52∑

i=20

βixi ≤ B

In the nonlinear constraints presented above,convexityof the equations happens to be con-

tingent on the values ofxi. Therefore, the optimization algorithm is no longer guaranteed

to find global optimum inall cases. Hence, to optimize the problem formulation, we leave

the constraint on LUTs as a linear function, since variation in LUTs utilization is very

minimal. We analyze the effect of this in Section 6.

4.3 Objective Function

4.3.1 Application Runtime Optimization

The primary objective of our microarchitecture customization is to minimize application

runtime. This is expressed as:

Minimize
n=52∑
i=1

[ρixi]

wheren is the number of processor configurations generated,ρi is the application runtime

onxi over that on the base configuration.
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4.3.2 FPGA Resources Optimization

In addition to minimizing application runtime, optionally, we can also minimize FPGA

resource usage. This is expressed as:

Minimize
n=52∑
i=1

[ρixi + (λi + βi)xi]

whereλi, βi are the %LUTs and %BRAM utilization onxi over that on the base configu-

ration.

The above equation optimizes application runtime and FPGA resources equally. To change

this, we can useweightsto combine them. This gives us the flexibility to optimize one over

the other.

Minimize
n=52∑
i=1

[w1(ρixi) + w2((λi + βi)xi)]

wherew1 andw2 are independent.

4.3.3 Power Dissipation Optimization

Optimizing for a third dimension such as power dissipation, would be a simple extension

as shown below:

Minimize
n=52∑
i=1

[w1(ρixi) + w2((λi + βi)xi) + w3(pixi)]

wherepi is the %power dissipation onxi over that on the base configuration.

4.4 Overall Problem Formulation

The overall problem formulation for customizing LEON’s microarchitecture is recapped

below.

Minimize
n=52∑
i=1

[w1(ρixi) + w2((λi + βi)xi)]

subject to
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x1 + x2 + x3 ≤ 1

x4 + ... + x8 ≤ 1

x10 + x11 ≤ 1

x10 − x1 ≤ 0

x1 + x2 + x3)− x11 ≥ 0

x12 + x13 + x14 ≤ 1

x15 + ... + x19 ≤ 1

x21 + x22 ≤ 1

x21 − x12 ≤ 0

x12 + x13 + x14)− x22 ≥ 0

x30 + ... + x46 ≤ 1

x47 + ... + x51 ≤ 1
n=52∑
i=1

λixi ≤ L

(1 + x1 + 2x2 + 3x3)× (
8∑

i=4

βixi) + (1 + x12 + 2x13 + 3x14)× (
19∑

i=15

βixi) +

3∑
i=1

βixi +
11∑
i=9

βixi +
14∑

i=12

βixi +
52∑

i=20

βixi ≤ B
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Parameter Value Variable Runtime ChipResource

nsets 1 base 0 0
2 x12 ρ12 λ12 + β12

3 x13 ρ13 λ13 + β13

4 x14 ρ14 λ14 + β14

x12 + x13 + x14 ≤ 1

set size (KB) 1 x15 ρ15 λ15 + β15

2 x16 ρ16 λ16 + β16

4 base 0 0
8 x17 ρ17 λ17 + β17

16 x18 ρ18 λ18 + β18

32 x19 ρ19 λ19 + β19

x15 + ... + x19 ≤ 1

line size (words) 4 x20 ρ20 λ20 + β20

8 base 0 0
No constraint needed to ensure parameter validity

replacement policy random base 0 0
LRR x21 ρ21 λ21 + β21

LRR x22 ρ22 λ22 + β22

x21 + x22 ≤ 1
x21 − x12 ≤ 0
(x12 + x13 + x14)− x22 ≥ 0

fast read 1 x27 ρ27 λ27 + β27

0 base 0 0
No constraint needed to ensure parameter validity

fast write 1 x52 ρ52 λ52 + β52

0 base 0 0
No constraint needed to ensure parameter validity

Figure 4.6: DCache formulation - variables and constraints
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fast jump 1 base 0 0
0 x23 ρ23 λ23 + β23

No constraint needed to ensure parameter validity

ICC hold 1 base 0 0
0 x24 ρ24 λ24 + β24

No constraint needed to ensure parameter validity

fast decode 1 base 0 0
0 x25 ρ25 λ25 + β25

No constraint needed to ensure parameter validity

load delay 1 base 0 0
2 x26 ρ26 λ26 + β26

No constraint needed to ensure parameter validity

hardware divider none base 0 0
radix2 x28 ρ28 λ28 + β28

No constraint needed to ensure parameter validity

no infer multiplier (for synthesis) 1 base 0 0
0 x29 ρ29 λ29 + β29

No constraint needed to ensure parameter validity

multiplier 16x16 0 base 0 0
16x16+pipelineReg x47 ρ47 λ47 + β47

iterative x48 ρ48 λ48 + β48

32x8 x49 ρ49 λ49 + β49

32x16 x50 ρ50 λ50 + β50

32x32 x51 ρ51 λ51 + β51

x47 + ... + x51 ≤ 1
register windows 8 base 0 0

16 x30 ρ30 λ30 + β30

17 x31 ρ31 λ31 + β31

18 x32 ρ32 λ32 + β32

19 x33 ρ33 λ33 + β33

20 x34 ρ34 λ34 + β34

21 x35 ρ35 λ35 + β35

22 x36 ρ36 λ36 + β36

23 x37 ρ37 λ37 + β37

24 x38 ρ38 λ38 + β38

25 x39 ρ39 λ39 + β39

26 x40 ρ40 λ40 + β40

27 x41 ρ41 λ41 + β41

28 x42 ρ42 λ42 + β42

29 x43 ρ43 λ43 + β43

30 x44 ρ44 λ44 + β44

31 x45 ρ45 λ45 + β45

32 x46 ρ46 λ46 + β46

x30 + ... + x46 ≤ 1

Figure 4.7: Integer Unit formulation - variables and constraints
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Chapter 5

Evaluation of the Technique

In this section we analyze the impact of our assumption of parameter independence. The

naive approach of comparing our solution to the one obtained by generating all LEON

configurations exhaustively is infeasible, as discussed in Section 3. Therefore, we take the

approach of evaluating our technique on a smallsubsystemof LEON. With this subsystem,

it now becomes feasible to generate all configurations exhaustively. Then, we run our

optimization algorithm on this subsystem and compare the solution from this to the one

from exhaustive configurations. The fact that the two solutions are close verify that our

assumption of parameter independence is acceptable.

The subsystem we chose for evaluation isdcache. We chose this subsystem because we

had manually optimized it for BLASTN application in [37]. The cache subsystem has

pronounced variations in application performance and chip resource utilization, for changes

in parameter values. As enumerated in Section 4, dcache has 7 reconfigurable parameters—

number of sets, size of each set, associativity, line size, replacement policy, fast read and

write. The number of values these parameters take are 4, 7, 4, 2, 3, 2 and 2 respectively.

The exhaustive combinations of the parameter values are 2,688 and it would take at least

56 days to generate these configurations. The excessive time required is not scalable and

therefore we consider only two parameters—number of sets and set size, which result in 28

combinations. We chose these two parameters because perturbing them affects both LUTs

and BRAM utilization, at varying degrees. The base configuration has 1 set of 4KB size.
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The optional parameters in Tomlab MINLP when left empty are computed by the tool. Such

parameters include gradient vector, Hessian matrix, Hessian pattern matrix, constraint gra-

dient, upper bound of the expected solution (used for cutting branches), constraint Jacobian,

and second part of Lagrangian function.
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5.1 Benchmark I - BLASTN

5.1.1 Analysis of Parameter Independence Assumption

Figure 5.1 shows BLASTN’s runtime and chip resource costs for theexhaustivecombi-

nations of dcache parameters of sets and set size. Optimizing for runtime, a simple sort

yields the optimal configuration of 2 sets of 16KB each (i.e.) a total of 32KB. The per-

formance gain is 3.63% over the base configuration, utilizing no additional LUTs but 39%

more BRAM than the base configuration.

We then compare this solution to the one from our optimization approach shown in Fig-

ure 5.2. Optimizing only for application runtime, the configuration we select is 1x32 =

32KB, which is the same cache size as selected by the exhaustive search although orga-

nized slightly differently. The performance gain with this configuration is 3.61%, which is

0.02% less than the optimal configuration from the exhaustive approach; LUTs utilization

is 1% less here and BRAM utilization is the same. For these evaluations, we setw1 = 100

andw2 = 0 in the objective function.

The fact that our optimization was able to achieve performance gain within 0.02% dif-

ference from the exhaustive solution and with 1% reduction in FPGA usage despite the

assumption of parameter independence, is very encouraging.

5.1.2 Analysis of Cost Approximations

BLASTN’s runtime on the base LEON configuration is 10.60 seconds. The runtime on

the exhaustive configurations (of the dcache parameters of sets and set size) range from

10.22 seconds (-3.63%) on 2x16 configuration to 10.71 seconds (+1.03%) on 1x1 configu-

ration. The linear runtime approximations performed by the optimization algorithm for the

configurations not input directly in our model are presented in Figure 5.3. The maximum

deviation of the approximation is 1.08%, in the cases of 2x16 and 1x1 configurations.

LUTs utilization on the base LEON configuration is 39%. The LUTs utilization on the

exhaustive configurations (of the dcache parameters of sets and set size) is also 39% except
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Base configuration

1 4 10.60 39 51

BLASTN: exhaustive: dcache sets,setsize

nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)
1 1 10.710 38 47
1 2 10.639 38 48
1 4 10.601 39 51
1 8 10.537 39 56
1 16 10.504 38 68
1 32 10.218 38 90
2 1 10.577 39 49
2 2 10.549 39 51
2 4 10.529 39 56
2 8 10.499 39 68
2 16 10.217 39 90
3 1 10.560 39 51
3 2 10.538 39 55
3 4 10.515 39 62
3 8 10.446 39 79
4 1 10.547 39 53
4 2 10.527 39 58
4 4 10.499 39 68
4 8 10.219 39 90

Dcache exhaustive - optimal BLASTN runtime
2 16 10.22 39 90

Figure 5.1: BLASTN on exhaustive configurations of dcache parameters of sets and
setsize

in the case of 1 set, where it is only 38%. The linear approximations performed by the op-

timization algorithm for the configurations not supplied directly in the model are presented

in Figure 5.3. The approximations of LUTs matches in the cases of 2x8, 3x8 and 4x8 and

is less by 1% in all other cases. The difference comes from the measurements obtained by

varying set size parameter while holding number of sets at 1. These measurements are 38%

each except in the case of 8KB set size when it is 39%.

BRAM utilization on the base LEON configuration is 51%. The utilization on dcache

exhaustive configurations (of parameters sets and set size) range from 47% (-4%) for 1x1
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Base configuration

1 4 10.60 39 51

BLASTN: optimizer: dcache sets,setsize (w1 = 100, w2 = 0)

nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)
2 4 10.529 39 56
3 4 10.515 39 62
4 4 10.499 39 68
1 1 10.710 38 47
1 2 10.639 38 48
1 4 10.601 39 51
1 8 10.537 39 56
1 16 10.504 38 68
1 32 10.218 38 90

Dcache optimization for BLASTN runtime;
the solution configuration is a point we provided in the model

1 32 10.218 38 90

Figure 5.2: Dcache optimization for BLASTN runtime

to 90% (+39%) for 4x8 configurations. The nonlinear approximations performed by the

optimization algorithm for the configurations not input directly in the model are presented

in Figure 5.3. The maximum deviation of the approximation is -2%, in the cases of 2x8,

3x2, 3x8, 4x2 and 4x8 configurations.

Future work can further investigate the deviations and explore more sophisticated approxi-

mations.

5.2 Benchmark II - CommBench DRR

5.2.1 Analysis of Parameter Independence Assumption

Figure 5.4 shows DRR’s runtime and chip resource costs for theexhaustivecombinations

of dcache parameters of sets and set size. Optimizing for runtime, a simple sort yields two

optimal configurations of 1x32 and 2x16 (i.e.) a total of 32KB. The performance gain is



60

12.21% over the base configuration, utilizing no additional LUTs but 39% more BRAM

than the base configuration.

We then compare this solution to the one from our optimization approach shown in Fig-

ure 5.5. Optimizing only for application runtime, the configuration we select is 2x16 =

32KB, which is one of the two configurations selected by the exhaustive approach. For

these evaluations, we setw1 = 100 andw2 = 0 in the objective function.

The solution of 2x16 configuration is a data point that we donot input directly in the

model. Therefore, it serves as a proof for our claim in Section 3.2 that the optimization

algorithm considers points not directly provided by us. The cost approximation for this

configuration as well as other data points not provided directly in our model are discussed

in Section 5.2.2. Finally, the fact that we are able tobuild this configuration proves that we

generatevalid configurations. This is in fact true for all our results.

The fact that our optimization selects the same configuration as the exhaustive approach

shows that our assumption of parameter independence is well acceptable.

5.2.2 Analysis of Cost Approximations

DRR’s runtime on the base LEON configuration is 297.98 seconds. The runtime on the

exhaustive configurations (of the dcache parameters of sets and set size) range from 261.61

seconds (-12.21%) on 2x16 to 356.50 seconds (+19.64%) on 1x1 configuration. The linear

runtime approximations performed by the optimization algorithm for the configurations

not input directly in our model are presented in Figure 5.6. The maximum deviation of the

approximation is 17.82%, in the case of 4x1 configuration.

The approximations of LUTs and BRAM utilization are application-independent and are

discussed in Section 5.1.2.
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5.3 Benchmark III - CommBench FRAG

5.3.1 Analysis of Parameter Independence Assumption

Figure 5.7 shows FRAG’s runtime and chip resource costs for theexhaustivecombinations

of dcache parameters of sets and set size. Optimizing for runtime, a simple sort yields

the optimal configuration of 1x32 = 32KB. The performance gain is 1.91% over the base

configuration, utilizing 1% less LUTs and 39% more BRAM than the base configuration.

We then compare this solution to the one from our optimization approach shown in Fig-

ure 5.8. Optimizing only for application runtime, the configuration we select is 2x16 =

32KB, which is of the same cache size selected by the exhaustive approach, but organized

slightly differently, similar to what we saw for BLASTN. The performance gain with this

configuration is 1.91% or more precisely 1.91240%, which is 0.00006% less than the gain

of 1.91246% with the exhaustive approach; the LUTs utilization is 1% more but BRAM

utilization is the same. For these evaluations, we setw1 = 100 andw2 = 0 in the objective

function.

As we discussed in Section 5.2.1, 2x16 here is again a data point that we donot input

directly in the model. The cost approximation for this configuration as well as other data

points not provided directly in our model are presented in Section 5.3.2.

The fact that our optimization was able to achieve the same performance gain, utilizing

1% more LUTs but same BRAM as the solution from the exhaustive approach once again

proves that the assumption of parameter independence is acceptable.

5.3.2 Analysis of Cost Approximations

FRAG’s runtime on the base LEON configuration is 150.75 seconds. The runtime on the

exhaustive configurations (of the dcache parameters of sets and set size) range from 147.87

seconds (−1.91%) on 1x32 to 152.04 seconds (0.85%) on 1x1 configuration. The linear

runtime approximations performed by the optimization algorithm for the configurations
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not input directly in our model are presented in Figure 5.9. The maximum deviation of the

approximation is 3.65%, in the case of 2x1 configuration.

The approximations of LUTs and BRAM utilization are application-independent and are

discussed in Section 5.1.2.

5.4 Benchmark IV - BYTE Arith

Arith is different from the applications discussed so far in that it is not memory access

intensive and hence variations in dcache configuration do not have any impact on the ap-

plication’s runtime. Figure 5.10 shows this.

5.5 Summary of Evaluation

Evaluation results of all our benchmarks are summarized in Figure 5.11. Arith is not mem-

ory access intensive and hence does not exhibit variations in performance on different

dcache configurations. For all other applications, the total cache size selected from op-

timization match the respective cache sizes selected from exhaustive approaches. In the

cases of DRR and FRAG, the cache configurations also match.

There are other key observations. The cache configurations chosen for both DRR and

FRAG are 2x16. These arenot configurations that we input directly in the model. This

demonstrates that while we construct the search space considering parameters in their own

dimensions, the optimization algorithm considers points in between and picks a solution

that is simultaneously reconfigured in many dimensions. We then build these configurations

to measure the actual chip resource utilization and application runtime. The fact that we

are able to build the solutions proves that we generatevalid configurations. Finally, the

configurations selected for the different applications are indeed application-specific.



63

Base configuration
1 4 Dir 10.601 N/A 39 N/A 51 N/A

Cost approximations for BLASTN, on dcache exhaustive(sets,setsize)

nsets Setsz Direct/ Runtime(sec) LUTs(%) BRAM(%)
(KB) Apprxm Actual Apprxm Actual Approx Actual Approx

1 1 Dir 10.710 N/A 38 N/A 47 N/A
1 2 Dir 10.639 N/A 38 N/A 48 N/A
1 4 Dir 10.601 N/A 39 N/A 51 N/A
1 8 Dir 10.537 N/A 39 N/A 56 N/A
1 16 Dir 10.504 N/A 38 N/A 68 N/A
1 32 Dir 10.218 N/A 38 N/A 90 N/A
2 1 App 10.577 10.638 39 38 49 48
2 2 App 10.549 10.567 39 38 51 50
2 4 Dir 10.529 N/A 39 N/A 56 N/A
2 8 App 10.499 10.465 39 39 68 66
2 16 App 10.217 10.432 39 38 90 90
3 1 App 10.560 10.624 39 38 51 50
3 2 App 10.538 10.553 39 38 55 53
3 4 Dir 10.515 N/A 39 N/A 62 N/A
3 8 App 10.446 10.450 39 39 79 77
4 1 App 10.547 10.608 39 38 53 52
4 2 App 10.527 10.537 39 38 58 56
4 4 Dir 10.499 N/A 39 N/A 68 N/A
4 8 App 10.219 10.434 39 39 90 88

dcache exhaustive - optimal BLASTN runtime
2 16 App 10.217 10.432 39 38 90 90

Figure 5.3: Cost approximations for BLASTN on exhaustive configurations of dcache
parameters of sets and setsize
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Base configuration
1 4 297.98 39 51

DRR: exhaustive: dcache sets,setsize
nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)

1 1 356.50 38 47
1 2 317.07 38 48
1 4 297.98 39 51
1 8 283.66 39 56
1 16 271.60 38 68
1 32 261.61 38 90
2 1 305.39 39 49
2 2 274.52 39 51
2 4 268.33 39 56
2 8 261.91 39 68
2 16 261.61 39 90
3 1 279.43 39 51
3 2 268.89 39 55
3 4 263.35 39 62
3 8 261.61 39 79
4 1 271.77 39 53
4 2 267.28 39 58
4 4 261.66 39 68
4 8 261.61 39 90

dcache exhaustive - optimal DRR runtime
1 32 261.61 38 90
2 16 261.61 39 90

Figure 5.4: DRR on exhaustive configurations of dcache parameters of sets and setsize
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Base configuration
1 4 297.98 39 51

DRR: optimizer: dcache sets,setsize (w1 = 100, w2 = 0)
nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)

2 4 268.33 39 56
3 4 263.35 39 62
4 4 261.66 39 68
1 1 356.50 38 47
1 2 317.07 38 48
1 4 297.98 39 51
1 8 283.66 39 56
1 16 271.60 38 68
1 32 261.61 38 90

Dcache optimization for DRR runtime;
costs based on the actual build of the solution configuration

2 16 261.61 39 90

Figure 5.5: Dcache optimization for DRR runtime
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Base configuration
1 4 Dir 297.98 N/A 39 N/A 51 N/A

Cost approximations for DRR, on dcache exhaustive(sets,setsize)

nsets Setsz Direct/ Runtime(sec) LUTs(%) BRAM(%)
(KB) Apprxm Actual Apprxm Actual Approx Actual Approx

1 1 Dir 356.50 N/A 38 N/A 47 N/A
1 2 Dir 317.07 N/A 38 N/A 48 N/A
1 4 Dir 297.98 N/A 39 N/A 51 N/A
1 8 Dir 283.66 N/A 39 N/A 56 N/A
1 16 Dir 271.60 N/A 38 N/A 68 N/A
1 32 Dir 261.61 N/A 38 N/A 90 N/A
2 1 App 305.39 326.85 39 38 49 48
2 2 App 274.52 287.42 39 38 51 50
2 4 Dir 268.33 N/A 39 N/A 56 N/A
2 8 App 261.91 254.00 39 39 68 66
2 16 App 261.61 241.94 39 38 90 90
3 1 App 279.43 321.87 39 38 51 50
3 2 App 268.89 282.44 39 38 55 53
3 4 Dir 263.35 N/A 39 N/A 62 N/A
3 8 App 261.61 249.03 39 39 79 77
4 1 App 271.77 320.18 39 38 53 52
4 2 App 267.28 280.75 39 38 58 56
4 4 Dir 261.66 N/A 39 N/A 68 N/A
4 8 App 261.61 247.33 39 39 90 88

dcache exhaustive - optimal DRR runtime
2 16 App 261.61 241.94 39 38 90 90

Figure 5.6: Cost approximations for DRR on exhaustive configurations of dcache
parameters of sets and setsize
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Base configuration
1 4 150.75 39 51

FRAG: exhaustive: dcache sets,setsize
nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)

1 1 154.60 38 47
1 2 152.04 38 48
1 4 150.75 39 51
1 8 150.22 39 56
1 16 148.79 38 68
1 32 147.87 38 90
2 1 149.62 39 49
2 2 149.56 39 51
2 4 149.43 39 56
2 8 148.56 39 68
2 16 147.87 39 90
3 1 149.51 39 51
3 2 149.45 39 55
3 4 149.05 39 62
3 8 147.90 39 79
4 1 149.51 39 53
4 2 149.36 39 58
4 4 148.55 39 68
4 8 147.87 39 90

dcache exhaustive - optimal FRAG runtime
1 32 147.87 38 90

Figure 5.7: FRAG on exhaustive configurations of dcache parameters of sets and setsize
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Base configuration
1 4 150.75 39 51

FRAG: optimizer: dcache sets,setsize (w1 = 100, w2 = 0)
nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)

2 4 149.43 39 56
3 4 149.05 39 62
4 4 148.55 39 68
1 1 154.60 38 47
1 2 152.04 38 48
1 4 150.75 39 51
1 8 150.22 39 56
1 16 148.79 38 68
1 32 147.87 38 90

Dcache optimization for FRAG runtime;
costs based on the actual build of the solution configuration

2 16 147.87 39 90

Figure 5.8: Dcache optimization for FRAG runtime
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Base configuration
1 4 Dir 150.75 N/A 39 N/A 51 N/A

Cost approximations for FRAG, on dcache exhaustive(sets,setsize)

nsets Setsz Direct/ Runtime(sec) LUTs(%) BRAM(%)
(KB) Apprxm Actual Apprxm Actual Approx Actual Approx

1 1 Dir 154.60 N/A 38 N/A 47 N/A
1 2 Dir 152.04 N/A 38 N/A 48 N/A
1 4 Dir 150.75 N/A 39 N/A 51 N/A
1 8 Dir 150.22 N/A 39 N/A 56 N/A
1 16 Dir 148.79 N/A 38 N/A 68 N/A
1 32 Dir 147.87 N/A 38 N/A 90 N/A
2 1 App 149.62 153.28 39 38 49 48
2 2 App 149.56 150.71 39 38 51 50
2 4 Dir 149.43 N/A 39 N/A 56 N/A
2 8 App 148.56 148.89 39 39 68 66
2 16 App 147.87 147.47 39 38 90 90
3 1 App 149.51 152.91 39 38 51 50
3 2 App 149.45 150.34 39 38 55 53
3 4 Dir 149.05 N/A 39 N/A 62 N/A
3 8 App 147.90 148.52 39 39 79 77
4 1 App 149.51 152.40 39 38 53 52
4 2 App 149.36 149.84 39 38 58 56
4 4 Dir 148.55 N/A 39 N/A 68 N/A
4 8 App 147.87 148.02 39 39 90 88

dcache exhaustive - optimal FRAG runtime
2 16 App 147.87 147.47 39 38 90 90

Figure 5.9: Cost approximations for FRAG on exhaustive configurations of dcache
parameters of sets and setsize
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Base configuration
1 4 32.33 39 51

Arith: exhaustive: dcache sets,setsize
nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)

1 1 32.33 38 47
1 2 32.33 38 48
1 4 32.33 39 51
1 8 32.33 39 56
1 16 32.33 38 68
1 32 32.33 38 90
2 1 32.33 39 49
2 2 32.33 39 51
2 4 32.33 39 56
2 8 32.33 39 68
2 16 32.33 39 90
3 1 32.33 39 51
3 2 32.33 39 55
3 4 32.33 39 62
3 8 32.33 39 79
4 1 32.33 39 53
4 2 32.33 39 58
4 4 32.33 39 68
4 8 32.33 39 90

Dcache optimization for Arith runtime
Optimizing for runtime, any of the above configurations can be selected.

Figure 5.10: Arith on exhaustive configurations of dcache parameters of sets and setsize
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Optimizer: dcache sets,setsize (w1 = 100, w2 = 0)

Sets Setsz(KB) Time(sec) LUT% BRAM%
BLASTN

Exhaust 2 16 10.220 39 90
Optimiz 1 32 10.218 38 90

CommBench DRR
Exhaust 1 32 261.609 38 90

2 16 261.609 39 90
Optimiz 2 16 261.609 39 90

CommBench FRAG
Exhaust 1 32 147.869 38 90
Optimiz 2 16 147.869 39 90

BYTE Arith
Exhaust No effect, as application is not data intensive
Optimiz No effect, as application is not data intensive

Figure 5.11: Dcache optimization for BLASTN, DRR, FRAG, Arith runtimes
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Chapter 6

Results

The research objectives of our experiments were threefold: find out how much improve-

ment we gain from the application-specific microarchitecture customization, demonstrate

that the customization is indeed application-specific, and analyze the cost approximations

performed by the optimization algorithm. The results in Section 5 discussed all three for

a subset of dcahe parameters. This section presents results forall LEON parameters dis-

cussed in Section 4.

We begin by presenting the runtime and chip resource costs for all our benchmarks We

then present application-specific optimization results, first optimizing for application per-

formance over chip resources and thenvice versa. Finally, we build the configurations

selected by the optimization and compare the actual costs against the approximations per-

formed by the optimization algorithm.

Hardware resource utilizations of the different LEON configurations generated by assum-

ing parameter independence, along with runtimes for BLASTN, DRR, FRAG and Arith

applications (on the different processor configurations) are presented in Figures Figure 6.1,

Figure 6.3, Figure 6.5, and Figure 6.7. The figure also showsρi, λi andβi, which are

the percentage differences of runtime, LUT and BRAM utilization costs and listed in Fig-

ure 4.1. Hardware resource utilizations are application-independent.

BLASTN runtimes range from 10.12 seconds on the configuration using a 32x32 hardware

multiplier to 14.21 seconds on the configuration using aniterativehardware multiplier. The

distribution of the costs are better visualized in Figure 6.2.
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DRR runtimes range from 261.61 seconds on the configuration using a 1x32 dcache (1

set of 32 KB size) to 359.18 seconds on the configuration using aniterative hardware

multiplier. The distribution of the costs are plotted in Figure 6.4.

FRAG runtimes range from 145.02 seconds on the configuration not using ICC hold to

179.58 seconds on the configuration using a 1x1 icache (1 set of 1 KB size). The distribu-

tion of the costs are plotted in Figure 6.6.

Arith runtimes range from 30.65 seconds on the configuration using a 32x32 hardware

multiplier to 44.50 seconds on the configuration using aniterative hardware multiplier.

The distribution of the costs are plotted in Figure 6.8.
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6.1 Application Performance Optimization

We optimized for application performance over hardware resource utilization by setting

w1 = 100 andw2 = 1 in the equation in Section 4.2. For the four applications that we

ran, namely BLASTN, DRR, FRAG and Arith, Figure 6.9 presents the parameters recon-

figured from the base configuration, along with results from the actual build of the resulting

configurations. Based on the latter, runtime decrease for the four applications are 11.59%,

19.39%, 6.15% and 6.49%, over the runtimes on their respective base configurations. The

linear approximations performed by our optimization algorithm estimate the performance

improvements to be 11.77%, 39.14%, 7.67% and 6.49% for the four applications. The

range of overestimation is 0–19.75%.

The performance gains came at the expense of additional chip resources. The increase

in chip resource utilization, expressed as a tuple of LUTs and BRAM, is(0%, 39%),

(0%, 39%), (8%, 42%) and (1%,−3%) respectively. The approximations performed by

the optimization algorithm estimate LUTs and BRAM utilizations to be (-4%,36%), (-

4%,41%), (-4%,44%) and (-2%,-4%). We consistently underestimate LUTs utilization; our

estimates for BRAM are mixed, from−2% to 3%.

6.1.1 Cost Approximations

As we saw in Section 4, we simplified the cost function for LUTs to be linear while leaving

it nonlinear for BRAM. To evaluate the simplification, we also present what the nonlinear

approximations would be for LUTs in Figure 6.9. As seen there, the nonlinear approxima-

tions are slightly worse. In addition, to demonstrate howbetterthe nonlinear cost function

is over the linear for BRAM, we present the linear approximations also.

We present here cost approximations only for the solutions, as against presenting them for

all possible configurations as we did in Section 5. This is because the number of possible

configurations is exponential with the number of parameter values as discussed in Section 3

and since we are considering all reconfigurable subsystems and parameters of LEON here,

it is infeasible to enumerate all possible configurations.
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Parameter(xi) Base Runtime(sec) ρi LUTs(%) λi BRAM(%) βi

base N/A 10.60 0.00 39 0 51 0

icachesets2 1 10.60 0.00 39 0 56 5
icachesets3 1 10.60 0.00 39 0 62 11
icachesets4 1 10.60 0.00 39 0 68 17
icachesetsz1 4 10.62 0.19 39 0 47 -4
icachesetsz2 4 10.60 0.00 39 0 48 -3
icachesetsz8 4 10.60 0.00 38 -1 56 5
icachesetsz16 4 10.60 0.00 38 -1 68 17
icachesetsz32 4 10.60 0.00 39 0 90 39
icachelinesz4 8 10.60 0.00 38 -1 51 0
icachereplacelrr rand 10.60 0.00 39 0 56 5
icachereplacelru rand 10.60 0.00 40 1 56 5
dcachesets2 1 10.53 -0.68 39 0 56 5
dcachesets3 1 10.51 -0.81 39 0 62 11
dcachesets4 1 10.50 -0.97 39 0 68 17
dcachesetsz1 4 10.71 1.03 38 -1 47 -4
dcachesetsz2 4 10.64 0.36 38 -1 48 -3
dcachesetsz8 4 10.54 -0.61 39 0 56 5
dcachesetsz16 4 10.50 -0.91 38 -1 68 17
dcachesetsz32 4 10.22 -3.61 38 -1 90 39
dcachelinesz4 8 10.58 -0.20 39 0 51 0
dcachereplacelrr rand 10.53 -0.67 39 0 56 5
dcachereplacelru rand 10.52 -0.76 39 0 56 5
nofastjump yes 10.60 0.00 38 -1 51 0
noicchold yes 10.24 -3.42 39 0 51 0
nofastdecode yes 10.60 0.00 39 0 51 0
lddelay2 1 11.23 5.95 39 0 51 0
cachedrfast false 10.60 0.00 39 0 51 0
nodivider radix2 10.60 0.00 37 -2 51 0
noinfer infer 10.72 1.13 39 0 51 0
nwindows16 8 10.60 0.00 39 0 53 2
nwindows17 8 10.60 0.00 39 0 53 2
nwindows18 8 10.60 0.00 39 0 53 2
nwindows19 8 10.60 0.00 39 0 53 2
nwindows20 8 10.60 0.00 39 0 53 2
nwindows21 8 10.60 0.00 39 0 53 2
nwindows22 8 10.60 0.00 39 0 53 2
nwindows23 8 10.60 0.00 39 0 53 2
nwindows24 8 10.60 0.00 39 0 53 2
nwindows25 8 10.60 0.00 39 0 53 2
nwindows26 8 10.60 0.00 39 0 53 2
nwindows27 8 10.60 0.00 39 0 53 2
nwindows28 8 10.60 0.00 39 0 53 2
nwindows29 8 10.60 0.00 39 0 53 2
nwindows30 8 10.60 0.00 39 0 53 2
nwindows31 8 10.60 0.00 39 0 53 2
nwindows32 8 10.60 0.00 39 0 58 7
mulpipefalse true 10.60 0.00 39 0 51 0
multiplieriterative 16x16 14.21 34.04 37 -2 51 0
multiplierm32x8 16x17 10.60 0.00 39 0 51 0
multiplierm32x16 16x18 10.36 -2.27 39 0 51 0
multiplierm32x32 16x19 10.12 -4.54 40 1 51 0
cachedwfasttrue false 10.60 0.00 39 0 51 0

Figure 6.1: BLASTN runtime, chip resource costs
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Figure 6.2: Data scatter plot of FPGA resources and BLASTN runtimes

6.1.2 Comparison with Dcache Optimization

Given our assumption of parameter independence, an interesting observation is to compare

the customization in dcache to the one from optimizing only dcache in Section evaluation.

However, the weights in the objective function are slightly different–for the former,w1 =

100 andw2 = 1 and for the latterw1 = 100 andw2 = 0. Despite the minor difference

in the weights, the resulting dcache configurations are identical for all applications except

Arith. For Arith, it was 1x4 in Section evaluation but here it is 1x1. This is because of the

chip resource consideration resulting fromw2 = 1.
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Parameter(xi) Base Runtime(sec) ρi LUTs(%) λi BRAM(%) βi

base N/A 297.9786842 0.00 39 0 51 0

icachesets2 1 297.9786842 0.00 39 0 56 5
icachesets3 1 297.9786842 0.00 39 0 62 11
icachesets4 1 297.9786842 0.00 39 0 68 17
icachesetsz1 4 298.1214379 0.05 39 0 47 -4
icachesetsz2 4 297.9786847 0.00 39 0 48 -3
icachesetsz8 4 297.9786842 0.00 38 -1 56 5
icachesetsz16 4 297.9786842 0.00 38 -1 68 17
icachesetsz32 4 297.9786842 0.00 39 0 90 39
icachelinesz4 8 297.9786845 0.00 38 -1 51 0
icachereplacelrr rand 297.9786842 0.00 39 0 56 5
icachereplacelru rand 297.9786842 0.00 40 1 56 5
dcachesets2 1 268.3250568 -9.95 39 0 56 5
dcachesets3 1 263.3489335 -11.62 39 0 62 11
dcachesets4 1 261.6559325 -12.19 39 0 68 17
dcachesetsz1 4 356.5043431 19.64 38 -1 47 -4
dcachesetsz2 4 317.0707616 6.41 38 -1 48 -3
dcachesetsz8 4 283.6556616 -4.81 39 0 56 5
dcachesetsz16 4 271.5967389 -8.85 38 -1 68 17
dcachesetsz32 4 261.6085536 -12.21 38 -1 90 39
dcachelinesz4 8 288.7742601 -3.09 39 0 51 0
dcachereplacelrr rand 267.993657 -10.06 39 0 56 5
dcachereplacelru rand 268.2213798 -9.99 39 0 56 5
nofastjump yes 297.9786842 0.00 38 -1 51 0
noicchold yes 284.730941 -4.45 39 0 51 0
nofastdecode yes 297.9786842 0.00 39 0 51 0
lddelay2 1 345.0590222 15.80 39 0 51 0
cachedrfast false 297.9786842 0.00 39 0 51 0
nodivider radix2 297.9786842 0.00 37 -2 51 0
noinfer infer 300.0188886 0.68 39 0 51 0
nwindows16 8 297.9786842 0.00 39 0 53 2
nwindows17 8 297.9786842 0.00 39 0 53 2
nwindows18 8 297.9786842 0.00 39 0 53 2
nwindows19 8 297.9786842 0.00 39 0 53 2
nwindows20 8 297.9786842 0.00 39 0 53 2
nwindows21 8 297.9786842 0.00 39 0 53 2
nwindows22 8 297.9786842 0.00 39 0 53 2
nwindows23 8 297.9786842 0.00 39 0 53 2
nwindows24 8 297.9786842 0.00 39 0 53 2
nwindows25 8 297.9786842 0.00 39 0 53 2
nwindows26 8 297.9786842 0.00 39 0 53 2
nwindows27 8 297.9786842 0.00 39 0 53 2
nwindows28 8 297.9786842 0.00 39 0 53 2
nwindows29 8 297.9786842 0.00 39 0 53 2
nwindows30 8 297.9786842 0.00 39 0 53 2
nwindows31 8 297.9786842 0.00 39 0 53 2
nwindows32 8 297.9786842 0.00 39 0 58 7
mulpipefalse true 297.9786842 0.00 39 0 51 0
multiplieriterative 16x16 359.1848046 20.54 37 -2 51 0
multiplierm32x8 16x17 297.9786842 0.00 39 0 51 0
multiplierm32x16 16x18 293.8982764 -1.37 39 0 51 0
multiplierm32x32 16x19 289.8178687 -2.74 40 1 51 0
cachedwfasttrue false 297.9786842 0.00 39 0 51 0

Figure 6.3: DRR runtime, chip resource costs
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Figure 6.4: Data scatter plot of FPGA resources and DRR runtimes

6.2 FPGA Resource Optimization

We optimized for hardware resource utilization over application performance by setting

w1 = 1 andw2 = 100 in the equation in Section 4.2. Figure 6.10 shows the parame-

ters reconfigured from the base configuration, along with results from the actual build of

the resulting configurations. Based on the latter, decrease in chip resource utilization are

(2%, 3%), (2%, 3%), (3%, 3%) and(1%, 3%). The approximations performed by our opti-

mization algorithm estimate the chip resource savings to be(5%, 4%), (7%, 4%), (7%, 4%)

and(5%, 4%). We consistently overestimate the resource savings; for LUTs, the range is

3—5% and for BRAM, it is always 1%.

Similar to the cost approximations presented in the section on application runtime opti-

mization, here also, we present the nonlinear approximations for LUTs and linear approxi-

mations for BRAM in Figure 6.10. However, the parameter for number of cache sets is not



79

Parameter(xi) Base Runtime(sec) ρi LUTs(%) λi BRAM(%) βi

base N/A 150.7520498 0.00 39 0 51 0

icachesets2 1 150.7520498 0.00 39 0 56 5
icachesets3 1 150.7520498 0.00 39 0 62 11
icachesets4 1 150.7520498 0.00 39 0 68 17
icachesetsz1 4 179.5841508 19.13 39 0 47 -4
icachesetsz2 4 167.425314 11.06 39 0 48 -3
icachesetsz8 4 150.7520498 0.00 38 -1 56 5
icachesetsz16 4 150.7520498 0.00 38 -1 68 17
icachesetsz32 4 150.7520498 0.00 39 0 90 39
icachelinesz4 8 150.7520522 0.00 38 -1 51 0
icachereplacelrr rand 150.7520498 0.00 39 0 56 5
icachereplacelru rand 150.7520498 0.00 40 1 56 5
dcachesets2 1 149.4255093 -0.88 39 0 56 5
dcachesets3 1 149.0546878 -1.13 39 0 62 11
dcachesets4 1 148.5512996 -1.46 39 0 68 17
dcachesetsz1 4 154.6042898 2.56 38 -1 47 -4
dcachesetsz2 4 152.0361298 0.85 38 -1 48 -3
dcachesetsz8 4 150.2175721 -0.35 39 0 56 5
dcachesetsz16 4 148.7932656 -1.30 38 -1 68 17
dcachesetsz32 4 147.8689698 -1.91 38 -1 90 39
dcachelinesz4 8 150.1549326 -0.40 39 0 51 0
dcachereplacelrr rand 149.4908616 -0.84 39 0 56 5
dcachereplacelru rand 149.4673321 -0.85 39 0 56 5
nofastjump yes 150.7520498 0.00 38 -1 51 0
noicchold yes 145.017526 -3.80 39 0 51 0
nofastdecode yes 150.7520498 0.00 39 0 51 0
lddelay2 1 168.9770567 12.09 39 0 51 0
cachedrfast false 150.7520498 0.00 39 0 51 0
nodivider radix2 150.7520498 0.00 37 -2 51 0
noinfer infer 150.9158898 0.11 39 0 51 0
nwindows16 8 150.7520498 0.00 39 0 53 2
nwindows17 8 150.7520498 0.00 39 0 53 2
nwindows18 8 150.7520498 0.00 39 0 53 2
nwindows19 8 150.7520498 0.00 39 0 53 2
nwindows20 8 150.7520498 0.00 39 0 53 2
nwindows21 8 150.7520498 0.00 39 0 53 2
nwindows22 8 150.7520498 0.00 39 0 53 2
nwindows23 8 150.7520498 0.00 39 0 53 2
nwindows24 8 150.7520498 0.00 39 0 53 2
nwindows25 8 150.7520498 0.00 39 0 53 2
nwindows26 8 150.7520498 0.00 39 0 53 2
nwindows27 8 150.7520498 0.00 39 0 53 2
nwindows28 8 150.7520498 0.00 39 0 53 2
nwindows29 8 150.7520498 0.00 39 0 53 2
nwindows30 8 150.7520498 0.00 39 0 53 2
nwindows31 8 150.7520498 0.00 39 0 53 2
nwindows32 8 150.7520498 0.00 39 0 58 7
mulpipefalse true 150.7520498 0.00 39 0 51 0
multiplieriterative 16x16 155.6672498 3.26 37 -2 51 0
multiplierm32x8 16x17 150.7520498 0.00 39 0 51 0
multiplierm32x16 16x18 150.4243698 -0.22 39 0 51 0
multiplierm32x32 16x19 150.0966898 -0.43 40 1 51 0
cachedwfasttrue false 150.7520498 0.00 39 0 51 0

Figure 6.5: FRAG runtime, chip resource costs
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Figure 6.6: Data scatter plot of FPGA resources and FRAG runtimes

reconfigured from the base configuration for any application here and therefore, there are

no differences between the linear and nonlinear cost approximations.

The savings in FPGA resources are at the expense of application performance, often a

significant loss – 30.66% for BLASTN, 16.76% for DRR, 0.43% for FRAG and 36.34%

for Arith.
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Parameter(xi) Base Runtime(sec) ρi LUTs(%) λi BRAM(%) βi

base N/A 32.33 0.00 39 0 51 0

icachesets2 1 32.33 0.00 39 0 56 5
icachesets3 1 32.33 0.00 39 0 62 11
icachesets4 1 32.33 0.00 39 0 68 17
icachesetsz1 4 32.33 0.00 39 0 47 -4
icachesetsz2 4 32.33 0.00 39 0 48 -3
icachesetsz8 4 32.33 0.00 38 -1 56 5
icachesetsz16 4 32.33 0.00 38 -1 68 17
icachesetsz32 4 32.33 0.00 39 0 90 39
icachelinesz4 8 32.33 0.00 38 -1 51 0
icachereplacelrr rand 32.33 0.00 39 0 56 5
icachereplacelru rand 32.33 0.00 40 1 56 5
dcachesets2 1 32.33 0.00 39 0 56 5
dcachesets3 1 32.33 0.00 39 0 62 11
dcachesets4 1 32.33 0.00 39 0 68 17
dcachesetsz1 4 32.33 0.00 38 -1 47 -4
dcachesetsz2 4 32.33 0.00 38 -1 48 -3
dcachesetsz8 4 32.33 0.00 39 0 56 5
dcachesetsz16 4 32.33 0.00 38 -1 68 17
dcachesetsz32 4 32.33 0.00 38 -1 90 39
dcachelinesz4 8 32.33 0.00 39 0 51 0
dcachereplacelrr rand 32.33 0.00 39 0 56 5
dcachereplacelru rand 32.33 0.00 39 0 56 5
nofastjump yes 32.33 0.00 38 -1 51 0
noicchold yes 31.91 -1.30 39 0 51 0
nofastdecode yes 32.33 0.00 39 0 51 0
lddelay2 1 35.27 9.09 39 0 51 0
cachedrfast false 32.33 0.00 39 0 51 0
nodivider radix2 Error N/A 37 -2 51 0
noinfer infer 32.75 1.30 39 0 51 0
nwindows16 8 32.33 0.00 39 0 53 2
nwindows17 8 32.33 0.00 39 0 53 2
nwindows18 8 32.33 0.00 39 0 53 2
nwindows19 8 32.33 0.00 39 0 53 2
nwindows20 8 32.33 0.00 39 0 53 2
nwindows21 8 32.33 0.00 39 0 53 2
nwindows22 8 32.33 0.00 39 0 53 2
nwindows23 8 32.33 0.00 39 0 53 2
nwindows24 8 32.33 0.00 39 0 53 2
nwindows25 8 32.33 0.00 39 0 53 2
nwindows26 8 32.33 0.00 39 0 53 2
nwindows27 8 32.33 0.00 39 0 53 2
nwindows28 8 32.33 0.00 39 0 53 2
nwindows29 8 32.33 0.00 39 0 53 2
nwindows30 8 32.33 0.00 39 0 53 2
nwindows31 8 32.33 0.00 39 0 53 2
nwindows32 8 32.33 0.00 39 0 58 7
mulpipefalse true 32.33 0.00 39 0 51 0
multiplieriterative 16x16 44.50 37.64 37 -2 51 0
multiplierm32x8 16x17 32.33 0.00 39 0 51 0
multiplierm32x16 16x18 31.49 -2.60 39 0 51 0
multiplierm32x32 16x19 30.65 -5.19 40 1 51 0
cachedwfasttrue false 32.33 0.00 39 0 51 0

Figure 6.7: Arith runtime, chip resource costs
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Figure 6.8: Data scatter plot of FPGA resources and Arith runtimes
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Application runtime optimization (w1 = 100, w2 = 1)

Param Base BLAST DRR FRAG Arith

icachsetsz 4 2 2 4 4
icachlinesz 8 4 4 4 4
dcachsets 1 1 2 2 1
dcachsetsz 4 32 16 16 1
dcachlinesz 8 4 4 4 8
dcachreplace rand LRU LRR LRU rand
fastjump on off off off off
icchold on off off off off
divider radix2 none none none radix2
multiplier 16x16 32x32 32x32 32x32 32x32

Base configuration
runtime(sec) N/A 10.60 297.98 150.75 32.33

Cost approximations by the optimizer

runtime(sec) N/A 9.35 181.35 139.20 30.23
LUTs% 39 35 35 35 37
LUTs%-nonlin 39 35 34 34 37
BRAM% 51 87 92 95 47

BRAM%-lin 51 87 75 78 47

Actual synthesis

runtime(sec) N/A 9.37 240.20 141.48 30.23
LUTs% 39 39 39 47 40
BRAM% 51 90 90 93 48

Figure 6.9: Application runtime optimization
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FPGA resource optimization (w1 = 1, w2 = 100)
* indicates sub-optimal solution

Param Base BLAST* DRR* FRAG Arith*

icachsetsz 4 2 2 4 2
icachlinesz 8 4 4 4 4
dcachsets 1 1 1 1 1
dcachsetsz 4 2 2 1 2
dcachlinesz 8 4 4 4 8
dcachreplace rand rand rand rand rand
fastjump on off off off off
icchold on off off off off
divider radix2 none none none radix2
registers 8 28* 31* 8 30*
multiplier 16x16 iter iter iter iter

Base configuration
runtime(sec) N/A 10.60 297.98 150.75 32.33

Cost approximations by the optimizer

runtime(sec) N/A 13.86 355.82 153.19 44.08
LUTs% 39 34 32 32 34
LUTs%-nonlin 39 34 32 32 34
BRAM% 51 47 47 47 47
BRAM%-lin 51 47 47 47 47

Actual synthesis

runtime(sec) N/A 13.85 347.91 151.40 44.08
LUTs% 39 37 37 36 38
BRAM% 51 48 48 48 48

Figure 6.10: FPGA resource optimization
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Chapter 7

Conclusion

Applications for constrained embedded systems are subject to strict runtime and resource

utilization bounds. With soft core processors, application developers can customize the

processor for their application, constrained by available hardware resources but aimed at

high application performance.

The more reconfigurable the processor is, the more options the application developers have

for customization and hence, increased potential for improving application performance.

However, such customization entails developing in-depth familiarity with the parameters,

in order to configure them effectively. This is typically infeasible, given the tight time-

to-market pressure on the developers. Alternatively, developers could explore all possible

configurations, but being exponential, this is infeasible even given only tens of parameters,

as we saw in Section 3.

7.1 Summary of Approach

This thesis presented a heuristic for automatic application-specific reconfiguration of a soft

core processor microarchitecture. This approach runs in time that islinear with the number

of reconfigurable parameters, with an assumption of parameter independence, to make the

approach feasible and scalable.

The approach to building the search space is summarized as follows. We begin with the

default LEON configuration. We call this thebaseconfiguration. We then perturb one

parameter at a time and build the processor configuration, measuring its chip cost. Thirdly,
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we execute the application on each configuration, measuring the runtime. Finally, we for-

mulate these costs into a Binary Integer Nonlinear Program and solve for optimal solution

using the commercial solver of Tomlab. The solution obtained is the recommended mi-

croarchitecture configuration for the given application.

7.2 Summary of Results

We optimized for application performance over chip resources by settingw1 = 100 and

w2 = 1. Figure 7.1 shows the parameters reconfigured from the base configuration, along

with results from the actual build of the solution. Based on the latter, runtime decrease for

the four applications of BLASTN, DRR, FRAG and Arith are 11.59%, 19.39%, 6.15% and

6.49%, over the runtimes on their respective base configurations. The performance gains

come at the expense of additional chip resources.

We optimized for chip resource utilization over application performance by settingw1 = 1

andw2 = 100. Figure 7.2 shows the parameters reconfigured from the base configuration,

along with results from the actual build of the solution. Based on the latter, decrease in

chip resource utilization are(2%, 3%), (2%, 3%), (3%, 3%) and(1%, 3%). The savings in

chip resources come at a loss of application performance.

For our experiments, we use SRAM memory. However, if we used DRAM instead, the

performance gains we achieve from customization will be more significant because access

to DRAM is slower.

7.3 Contributions

In this thesis we developed an automatic optimization technique for application-specific

reconfiguration of a soft core processor microarchitecture. We then evaluated the tech-

nique by customizing the open source soft core processor of LEON, for some substantive

applications of BLASTN, CommBench DRR, CommBench FRAG and BYTE Arith.
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Application runtime optimization (w1 = 100, w2 = 1)

Param Base BLAST DRR FRAG Arith

icachsetsz 4 2 2 4 4
icachlinesz 8 4 4 4 4
dcachsets 1 1 2 2 1
dcachsetsz 4 32 16 16 1
dcachlinesz 8 4 4 4 8
dcachreplace rand LRU LRR LRU rand
fastjump on off off off off
icchold on off off off off
divider radix2 none none none radix2
multiplier 16x16 32x32 32x32 32x32 32x32

Base configuration
runtime(sec) N/A 10.60 297.98 150.75 32.33

Cost approximations by the optimizer

-runtime% N/A 11.77 39.14 7.67 6.49
+LUTs% 39 -4 -4 -4 -2
+BRAM% 51 36 41 44 -4

Actual synthesis

-runtime% N/A 11.59 19.39 6.15 6.49
+LUTs% 39 0 0 8 1
+BRAM% 51 39 39 42 -3

Figure 7.1: Application runtime optimization

7.3.1 Conclusions Drawn

To evaluate the impact of our simplifying assumption of parameter independence, we gen-

erated exhaustive configurations of the parameters of dcache sets and set size and compared

its solution to our optimization solution. While the results matched for DRR and FRAG,

they differed by 0.02% for BLASTN. This evaluation did not apply to Arith because it is

not at all memory access intensive. The close match between our optimization results and

exhaustive results demonstrates that the impact of parameter independence is negligible.

These experiments simultaneously demonstrated other characteristics of our solution. The

cache configurations selected for BLASTN, DRR and FRAG were 1x32, 2x16 and 2x16
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Chip resource optimization (w1 = 1, w2 = 100)

* indicates sub-optimal solution

Param Base BLAST* DRR* FRAG Arith*

icachsetsz 4 2 2 4 2
icachlinesz 8 4 4 4 4
dcachsets 1 1 1 1 1
dcachsetsz 4 2 2 1 2
dcachlinesz 8 4 4 4 8
dcachreplace rand rand rand rand rand
fastjump on off off off off
icchold on off off off off
divider radix2 none none none radix2
registers 8 28* 31* 8 30*
multiplier 16x16 iter iter iter iter

Base configuration
runtime(sec) N/A 10.60 297.98 150.75 32.33

Cost approximations by the optimizer

+runtime% N/A 30.66 19 1.62 36.34
-LUTs% 39 5 7 7 5
-BRAM% 51 4 4 4 4

Actual synthesis

+runtime% N/A 30.66 16.76 0.43 36.34
-LUTs% 39 2 2 3 1
-BRAM% 90 3 3 3 3

Figure 7.2: Chip resource optimization

respectively. This demonstratesapplication-specificcustomization. Further, the configura-

tion of 2x16 isnota configuration that we provide directly in the model. This demonstrates

that while we construct the search space by reconfiguring parameters in their own dimen-

sions, the optimization algorithm considers points in between which are points reconfig-

uredsimultaneouslyin many dimensions. Finally, the fact that we are able to successfully

build our solutions shows that we generatevalid configurations. The same characteristics

were observed when we extended our experiments to customizeall parameters of LEON’s

microarchitecture.



89

While presenting the results of customizingall parameters of LEON’s microarchitecture,

we demonstrated that the application developers can not only optimize for application per-

formance over FPGA resource utilization but also vice versa. The time for generating the

processor configurations is in the order of hours but this is performed only once, as the

processor configurations are independent of applications being run. The time for optimiza-

tion itself is very low–on the order of seconds. Given such reasonable time requirements,

we demonstrate that our approach is indeed very feasible and scalable, even with a large

number of parameters. Further, during the customization process, application developers

were not actively involved, even though they control the performance-resource tradeoff.

Best of all, application developers were spared from having to develop familiarity with the

processor parameters or modifying their application to use our optimization technique.

7.4 Future Work

Future work can recast our nonlinear constraints so that they are convex functions for all

values ofxi. This will guarantee that the optimization algorithm finds the global optimum.

We can also analyze the cost approximations performed by the optimization algorithm and

explore more sophisticated approximations.

In this thesis, we rely on empirical performance measurements to substantiate our simpli-

fying assumption of parameter independence. This can be improved by including mea-

surements of two-parameter interactions in the form of covariance matrices, where the two

parameters will be selected from different microarchitecture subsystems. Because of our

assumption and the cost approximations resulting from it, there is potential to improve

the solution that we obtain from the first search. This is achieved by conducting a local

search near the solution obtained from the first search. An even better approach would be

not to rely on empirical performance measurements but instead rely on microarchitecture

parameter statistics such as cache hits and misses to reason parameter interactions.

As extensions to our model, we can include power and energy optimizations, runtime sam-

pling to facilitate analysis of long-running applications, running applications on an op-

erating system (running on the processor) and supporting ISA level customization. As

extensions to our benchmarking, we can include MiBench applications. For long running
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applications, we can also use “phase detection” to identify different phases and customize

architecture per phase.

By integrating our solution with LEON and other such open source soft core processors,

we can contribute back to the community. Finally, and more interestingly, we can evaluate

our technique on other configuration and feature management problems.
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Appendix A

Liquid Control Packet Formats

This appendix lists control packet formats used for the different commands supported by

the Liquid architecture platform, as described in Section 2.1.

The UDP control packet formats for starting and halting LEON (command codes x50, x54

respectively), for reading from memory (command code x60) and for writing to memory

(command code x64) are shown in Figures A.1, A.2 and A.3 respectively.



92

Figure A.1: Liquid architecture control packet format for starting, halting LEON

Figure A.2: Liquid architecture control packet format for reading from memory
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Figure A.3: Liquid architecture control packet format for writing to memory
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Appendix B

Default LEON Configuration

This appendix shows the default values for all the reconfigurable parameters in LEON.

These values are in device.vhd in the LEON distribution. This is also our “base configura-

tion”.

library IEEE;

use IEEE.std_logic_1164.all;

use work.target.all;

package device is

constant syn_config : syn_config_type := (

targettech => virtex , infer_pads => false, infer_pci => false,

infer_ram => true, infer_regf => true, infer_rom => false,

infer_mult => true, rftype => 1, targetclk => gen,

clk_mul => 1, clk_div => 1, pci_dll => false, pci_sysclk => false );

constant iu_config : iu_config_type := (

nwindows => 8, multiplier => m16x16, mulpipe => true,

divider => radix2, mac => false, fpuen => 0, cpen => false,

fastjump => true, icchold => true, lddelay => 1, fastdecode => true,

rflowpow => false, watchpoints => 4, impl => 0, version => 0);

constant fpu_config : fpu_config_type :=

(core => meiko, interface => none, fregs => 0, version => 0);

constant cache_config : cache_config_type := (

isets => 1, isetsize => 4, ilinesize => 8, ireplace => rnd, ilock => 0,

dsets => 1, dsetsize => 4, dlinesize => 8, dreplace => rnd, dlock => 0,
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dsnoop => none, drfast => false, dwfast => false, dlram => false,

dlramsize => 1, dlramaddr => 16#8F#);

constant mmu_config : mmu_config_type := (

enable => 0, itlbnum => 8, dtlbnum => 8, tlb_type => combinedtlb,

tlb_rep => replruarray, tlb_diag => false );

constant ahbrange_config : ahbslv_addr_type :=

(0,0,0,0,0,0,0,0,1,2,7,7,7,7,7,7);

constant ahb_config : ahb_config_type := ( masters => 2, defmst => 0,

split => false, testmod => false);

constant mctrl_config : mctrl_config_type := (

bus8en => false, bus16en => false, wendfb => false, ramsel5 => false,

sdramen => true, sdinvclk => false);

constant peri_config : peri_config_type := (

cfgreg => true, ahbstat => false, wprot => false, wdog => false,

irq2en => false, ahbram => false, ahbrambits => 11, ethen => false );

constant debug_config : debug_config_type := (

enable => true, uart => true,

iureg => false, fpureg => false, nohalt => false, pclow => 2,

dsuenable => false, dsutrace => false, dsumixed => false,

dsudpram => false, tracelines => 128);

constant boot_config : boot_config_type := (boot => prom, ramrws => 3,

ramwws => 0, sysclk => 25, baud => 9600, extbaud => false,

pabits => 8);

constant pci_config : pci_config_type := (

pcicore => none , ahbmasters => 0, ahbslaves => 0,

arbiter => false, fixpri => false, prilevels => 4, pcimasters => 4,

vendorid => 16#0000#, deviceid => 16#0000#, subsysid => 16#0000#,

revisionid => 16#00#, classcode =>16#000000#, pmepads => false,

p66pad => false, pcirstall => false);

constant irq2cfg : irq2type := irq2none;

end;
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Appendix C

Source Code for Benchmarks

C.1 BLASTN

/ *
This program is similar to a hashing scheme used by BLAST

It has been hardcoded to support a query of 500 strings.

The hash table is of size 5 times the query = 2048 locations.

We are modeling a query of size 11 bases, which implies a string of

22 bits.

The database is modeled as a circular buffer of length 17 bases

(17 is an arbitrarily chosen which can be changed with ease)

* /

/ *
Hashing fucntion, it is a open addressing scheme with double hashing.

The hash table stores the key (query string).

The hash table still does not store the position in query,

though it can added easily later.

* / / *
TODO

* / # define MINT 0x7fffffff # define SIZE 8 * 1024 //size of the

hash table # define NUM_QUERY 2500 # define NUM_DATABASE 1000000

// * 1024 * 1024 // 100 Mbases database # define mask 4194300 # define

mask1 (SIZE - 1) / * Function Declaration * / unsigned int

addQuery(unsigned int base1, unsigned int * currentString);

unsigned int findMatch(unsigned int base1, unsigned int

* currentString); inline unsigned int computeKey(unsigned int base,

unsigned int currentString); inline unsigned int
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computeBase(unsigned int key); inline unsigned int

computeStep(unsigned int key); unsigned int Rnd(unsigned int * u);

void fillQuery(int qNum); int coreLoop(unsigned int base, unsigned

int step, unsigned int last,

unsigned int * currentString);

unsigned int hashTable[SIZE]; // It is twice the size of the query

main () {

int index = 0, counter = 0, found = 0, matches = 0, * ans;

unsigned int currentString = 348432612, base = 0, random = 0;

//currentString above is used as a seed also

ans = (int * )0x40000004; //mem where the #matches is stored

for (index = 0; index < SIZE; index++) {

hashTable[index] = 4194304;

}

fillQuery(NUM_QUERY); //populates the hashtable

// the loop below generates random bases for the database

for (counter = 0; counter < NUM_DATABASE; counter++) {

random = Rnd(&random);

if (random <= MINT / 4) {

base = 0;

} else if (random <= MINT / 2) {

base = 1;

} else if (random <= ((MINT / 2) + (MINT / 4))){

base = 2;

} else {

base = 3;

}

found = findMatch(base, &currentString);

if (found == 1) {

matches++;

}

}

//printf ("Total number of matches found = %d\n", matches);

ans[0] = matches;

}

unsigned int addQuery(unsigned int base1, unsigned int

* currentString) {
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unsigned int base = 0, step = 0, last = 0, current = 0;

* currentString = computeKey(base1, * currentString);

base = computeBase( * currentString);

step = computeStep( * currentString);

last = (base + (SIZE - 1) * step) % SIZE;

current = base;

while (current != last) { // should be able to check all positions

if (hashTable[current] == 4194304) {

hashTable[current] = * currentString;

return 1;

} else if (hashTable[current] = * currentString) {

return 1;

} else {

current = (current + step) % SIZE;

}

}

return 0;

}

//uses open address, double hashing

unsigned int findMatch(unsigned int base1, unsigned int

* currentString) {

unsigned int base, step, last, current;

* currentString = computeKey(base1, * currentString);

base = computeBase( * currentString);

step = computeStep( * currentString);

last = (base + (SIZE - 1) * step) % SIZE;

if (coreLoop(base, step, last, currentString)) {

return 1;

} else {

return 0;

}

}

inline unsigned int computeKey(unsigned int base, unsigned int

currentString) {

currentString <<= 2;

currentString &= mask;

currentString |= base;

return currentString;

}
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inline unsigned int computeBase(unsigned int key) {

return (2634706073U * key) & mask1;

}

inline unsigned int computeStep(unsigned int key) {

return ((1013257199U * key) | 1) & mask1;

}

void fillQuery(int qNum) {

int success, index;

unsigned int currentString = 473246;

unsigned int random = 782333;

unsigned int base = 0;

for (index = 0; index < qNum; index++) {

random = Rnd(&random);

if (random <= MINT/ 4) {

base = 0;

} else if (random <= MINT / 2) {

base = 1;

} else if (random <= ((MINT / 2) + (MINT / 4))){

base = 2;

} else {

base = 3;

}

success = addQuery(base, &currentString);

if (success) {

success = 0;

} else {

}

}

}

int coreLoop(unsigned int base, unsigned int step, unsigned int

last,

unsigned int * currentString) {

while (base != last) { // should be able to check all positions

if (hashTable[base] == * currentString) {

return 1;

} else if (hashTable[base] == 4194304) {
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break;

} else {

base = (base + step) % SIZE;

}

}

return 0;

} unsigned int Rnd(unsigned int * u) {

return ((314159265 * ( * u) + 271828182) & MINT);

}

}

C.2 Commbench DRR

#define LEON #ifndef LEON #include <stdio.h> #include <stdlib.h>

#endif

#define NO_OF_QUEUES 100 //0 to 99 #define NO_OF_ELEMENTS 1000

#define QUANTUM 10 #define MAX_SIZE 125 #define MIN_SIZE 25

#define SEED 38734278 #define MINT 0x7fffffff #define

PKTS_TO_PROCESS 10000000

typedef unsigned int UINT;

struct q_head {

struct queue * queue;

struct queue ** tail;

struct q_head * next_q;

int deficit;

};

struct queue {

struct queue * next;

struct q_head * head;

int size;

};

//Global variables

UINT gRandom; UINT done = 0; UINT elemProcessed = 0; struct q_head

q[NO_OF_QUEUES]; struct queue el[NO_OF_ELEMENTS];
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//Functions used

UINT Random() {

gRandom = ((314159265 * gRandom + 271828182) & MINT);

return gRandom;

}

UINT GenQNum(void) {

return (Random() %

NO_OF_QUEUES);

}

UINT GenPktSize(void) {

return (Random() %

(MAX_SIZE - MIN_SIZE + 1) + MIN_SIZE);

}

void FillNextRequest(void) {

UINT i, qNum;

#ifndef LEON

printf ("Elements processed = %

u\n", elemProcessed);

#endif

if (elemProcessed == PKTS_TO_PROCESS) { done = 1; }

//Reset the pointers for each batch of request

for (i = 0; i < NO_OF_QUEUES; i++) {

q[i].tail = &(q[i].queue);

q[i].next_q = &(q[(i + 1) %

NO_OF_QUEUES]);

}

for (i = 0; i < NO_OF_ELEMENTS; i++) {

el[i].size = GenPktSize();

qNum = GenQNum();

* (q[qNum].tail) = &(el[i]);

q[qNum].tail = &(el[i].next);

}

elemProcessed += NO_OF_ELEMENTS;
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}

void Schedule(void) {

UINT i, toProcess = NO_OF_ELEMENTS;

struct q_head * p;

p = q;

while (toProcess > 0) {

while(p->next_q->queue == 0){ // remove inactive queues

p->next_q = p->next_q->next_q;

}

p = p->next_q;

p->deficit += QUANTUM;

while(p->queue && (p->deficit >= p->queue->size)) {

// transmit all the packets for this queue

p->deficit -= p->queue->size;

p->queue = p->queue->next;

toProcess--;

}

}

} #ifdef LEON int * ans = (int * ) 0x40000800; #endif

int main(void) {

//ReportStart(ans++);

gRandom = SEED;

while (!done) {

FillNextRequest();

Schedule();

}

//ReportSuccess(ans++);

#ifdef LEON

ans[0] = 1729;

#endif

}
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C.3 Commbench Frag

//#include <stdio.h>

//#include <stdlib.h>

#define MAX_SIZE 1536 #define MIN_SIZE 1536 #define SEED 38734278

#define MINT 0xffffffff #define PKTS_TO_PROCESS 1024000 //10240000

#define FRAGSIZE 576

typedef unsigned int UINT;

struct ip {

unsigned char ip_v_hl; / * version and header length * /

unsigned char ip_tos; / * type of service * /

unsigned short ip_len; / * total length * /

unsigned short ip_id; / * identification * /

unsigned short ip_off; / * fragment offset field * /

#define IP_RF 0x8000 / * reserved fragment flag * /

#define IP_DF 0x4000 / * dont fragment flag * /

#define IP_MF 0x2000 / * more fragments flag * /

#define IP_OFFMASK 0x1fff / * mask for fragmenting bits * /

unsigned char ip_ttl; / * time to live * /

unsigned char ip_p; / * protocol * /

unsigned short ip_sum; / * checksum * /

unsigned int ip_src, ip_dst;/ * source and dest address * /

}; #define IPBUF 1024 #define FRAGBUF 32

//Global variables

UINT gRandom; struct ip ip[IPBUF]; struct ip frag[FRAGBUF];

#define ADDCARRY(x) (x > 65535 ? x -= 65535 : x) #define REDUCE

{l_util.l = sum; sum = l_util.s[0] + l_util.s[1]; ADDCARRY(sum);}

//Functions used

UINT Random() {

gRandom = ((314159265 * gRandom + 271828182) & MINT);

return gRandom;

}

struct ip GenPkt() {
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struct ip myip;

UINT id = 0;

// remains the same for every ip packet

myip.ip_v_hl = 0x45;

myip.ip_tos = 0x10;

myip.ip_off = IP_OFFMASK & 0;

myip.ip_ttl = 255;

myip.ip_sum = 0;

//randomly generated values

myip.ip_p = Random() & 0xff;

myip.ip_src = Random() & 0xffffffff;

myip.ip_dst = Random() & 0xffffffff;

myip.ip_len = MIN_SIZE + (Random() %

(MAX_SIZE - MIN_SIZE + 1));

myip.ip_id = ++id & 0xffff;

return myip;

}

void MyMemcopy(void * dest, void * src, int len) {

UINT i;

for (i = 0; i < len; i++) {

* (char * )dest = * (char * )src;

dest++;

src++;

}

}

long InChkSum(register char * buf, register int len) {

long sum = 0;

while (len > 1) {

sum += * ((unsigned short * ) buf)++;

if (sum & 0x80000000) {

sum = (sum & 0xFFFF) + (sum >> 16);

}

len -= 2;

}



105

if (len) // if len is odd

sum += (unsigned short) * buf;

while (sum >> 16) {

sum = (sum & 0xFFFF) + (sum >> 16);

}

return ˜sum;

}

int Fragment(struct ip * ip) {

int l;

int f=0;

l = ip->ip_len;

while (l > FRAGSIZE) {

memcpy(&(frag[f]), ip, sizeof(struct ip));

frag[f].ip_len = FRAGSIZE;

frag[f].ip_off = (f * FRAGSIZE) >> 3;

frag[f].ip_sum = 0;

frag[f].ip_sum = InChkSum((char * )&(frag[f]), 20);

f++;

l-=FRAGSIZE;

}

memcpy(&(frag[f]), ip, sizeof(struct ip));

frag[f].ip_len = l;

frag[f].ip_off = (f * FRAGSIZE) >> 3;

frag[f].ip_sum = 0;

frag[f].ip_sum = InChkSum((char * )&(frag[f]), 20);

f++;

return f;

}

void FillIpBuf(void) {

UINT i;

for (i = 0; i < IPBUF; i++){

ip[i] = GenPkt();

}

} int * ans = (int * ) 0x40008000; int main(void) {

UINT toProcess = PKTS_TO_PROCESS;

UINT i, f;

gRandom = SEED;
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//ReportStart(ans++);

if (FRAGSIZE != (FRAGSIZE & 0xfffffff8)) {

//printf("fragsize must be multiple of 8!\n");

//To code in error notation

//exit(-1);

}

while (toProcess > 0) //was != 0

{

FillIpBuf(); // replaces the read method in original commbench

for (i = 0; i < IPBUF; i++) {

f = Fragment(&(ip[i]));

}

toProcess -= IPBUF;

}

//ReportSuccess(ans);

ans[0] = 1729;

}

C.4 BYTE Arith

/ *************************************************************

* The BYTE UNIX Benchmarks - Release 2

* Module: arith.c SID: 2.4 4/17/90 16:45:31

*

*************************************************************

* Bug reports, patches, comments, suggestions should be sent to:

*

* Ben Smith or Rick Grehan at BYTE Magazine

* bensmith@bixpb.UUCP rick_g@bixpb.UUCP

*

*************************************************************

* Modification Log:

* May 12, 1989 - modified empty loops to avoid nullifying

* by optimizing compilers

*
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************************************************************* /

#define arithoh #define LEON

char SCCSid[] = "@(#) @(#)arith.c:2.4 -- 4/17/90 16:45:31"; / *

* arithmetic test

*

* /

int * ans = (int * )0x40008000;

main(argc, argv) int argc; char * argv[]; {

int iter;

int i;

int result;

//ReportStart(ans++);

#ifdef LEON

ans[0] = 666;

#endif

iter = 10000;

while (iter-- > 0)

{

/ * the loop calls a function to insure that something is done * /

/ * the results of the function are thrown away. But a loop with * /

/ * unused assignments may get optimized out of existence * /

result = dumb_stuff(i);

//printf("iter:%

d result=%

d\n", iter, result);

}

//ReportSuccess(ans);

#ifdef LEON

//ans[0] = result;

ans[0] = 1729;

#endif

}

/ ************************** dumb_stuff ******************* /

dumb_stuff(i) int i; {
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int x = 0;

int y = 0;

int z = 0;

//ReportProgress(ans++);

for (i=2; i<=1050; i++) //was <=101

{

x = i;

y = (x * x)+1;

z += y/(y-1);

//(i * 2)+100;

//(i/2)+200;

}

//printf("x+y+z=%

//d\n", x+y+z);

return(x+y+z);

}
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Appendix D

LEON Parameterization

LEON, the prototype core we are using, is highly parameterized. Figure D.1 shows these

parameters organized into 8 systems viz. synthesis options, clock generation, processor,

AMBA, memory controller, peripherals, boot options and VHDL debugging. Each system

is shown in subsequent sections.

D.1 LEON Synthesis options

Figure D.2 shows the user interface for synthesis options. The parameters are described in

Section 2.4.2.

Figure D.1: LEON configuration
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Figure D.2: LEON configuration - Synthesis options

D.2 LEON Clock Generation options

Figure D.3 shows the user interface synthesis options. The parameters are described in

Section 2.4.3.

D.3 LEON Processor system

Figure D.4 shows the user interface for processor configuration. The parameters are de-

scribed in Section 2.4.1.



111

Figure D.3: LEON configuration - Clock generation

D.3.1 Processor Integer Unit

Figure D.5 shows the user interface for processor IU configuration. The parameters are

described in Section 2.4.1.

D.3.2 Processor Floating-point Unit

Figure D.6 shows the user interface for processor FPU configuration. The parameters are

described in Section 2.4.1.

D.3.3 Co-processor

Figure D.7 shows the user interface for co-processor configuration. The parameters are

described in Section 2.4.1.
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Figure D.4: LEON configuration - Processor system

D.3.4 Processor Cache

Figure 2.4 shows the user interface for processor cache configuration. The parameters are

described in Section 2.4.1.

D.3.5 Processor Memory Management Unit

Figure 2.4 shows the user interface for processor MMU configuration. The parameters are

described in Section 2.4.1.
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Figure D.5: LEON configuration - Processor Integer Unit

D.3.6 Processor Debug Support Unit

Figure 2.4 shows the user interface for processor DSU configuration. The parameters are

described in Section 2.4.1.

D.4 LEON AMBA bus

Figure D.11 shows the user interface for AMBA bus configuration. The parameters are

described in Section 2.4.5.
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Figure D.6: LEON configuration - Processor Floating-point Unit

Figure D.7: LEON configuration - Co-processor

D.5 LEON Memory Controller

Figure D.4 shows the user interface for configuring LEON memory controller. The param-

eters are described in Section 2.4.4.

D.6 LEON Peripherals

Figure D.4 shows the user interface for configuring LEON peripherals. The parameters are

described in Section 2.4.6.
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D.7 LEON Ethernet Interface

Figure D.4 shows the user interface for configuring LEON ethernet interface. The parame-

ters are described in Section 2.4.6.

D.8 LEON PCI

Figure D.4 shows the user interface for configuring LEON PCI. The parameters are de-

scribed in Section 2.4.7.

D.9 LEON Boot options

Figure D.4 shows the user interface for configuring LEON boot options. The parameters

are described in Section 2.4.8.

D.10 LEON VHDL Debugging

Figure D.4 shows the user interface for configuring LEON VHDL debug options. The

parameters are described in Section 2.4.9.
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Figure D.8: LEON configuration - Processor Cache
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Figure D.9: LEON configuration - Processor Memory Management Unit

Figure D.10: LEON configuration - Processor Debug Support Unit
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Figure D.11: LEON configuration - AMBA bus

Figure D.12: LEON configuration - Memory Controller
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Figure D.13: LEON configuration - Peripherals

Figure D.14: LEON configuration - Ethernet Interface
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Figure D.15: LEON configuration - PCI
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Figure D.16: LEON configuration - Boot options

Figure D.17: LEON configuration - VHDL Debugging
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Appendix E

Script to Generate Processor

Configurations

E.1 genbitIU.pl

“genbitIU.pl” is a custom perl script that builds LEON Integer Unit (IU) configurations.

The script is highly parameterized such that, we can build any one configuration or all of

them, in one invocation. gebitCache.pl is similar and builds cache configurations. The

script is invoked as follows:

perl genbitIU.pl 2>&1|tee -a genbitIU_out_oct14_05.txt

The source code for the script itself is listed below.

#! /usr/bin/perl

require "genbit.pl";

$subsys = "iu"; $leon_vhdl_path = "../aqua/vhdl/leon/";

$syn_rad_path = "../aqua/syn/rad-xcve2000-64MB/"; $syn_path =

"../aqua/syn/"; $sim_path = "../aqua/sim/"; $apache_path =

"/usr/local/apache/htdocs/"; $bitfile_destination =

$apache_path."documents/"; $outfile = "config2.out";

$makefile_path = "../aqua/";
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@iu_bin_params=("fastjump","icchold","fastdecode","multiplier",

"multiplier","multiplier","multiplier","multiplier",

"mulpipe","divider","lddelay");

@iu_bin_base=("true","true","true","m16x16","m16x16","m16x16",

"m16x16","m16x16","true","radix2","1");

@iu_bin_values=("false","false","false","none","iterative","m32x8",

"m32x16","m32x32","false","none","2");

@do_bin_params=(0,0,0,0,0,0,0,0,1,0,0);

#since there are many values for nwindows, its easier to handle it

#explicitly $nwindows_lo=2; $nwindows_hi=32;

$do_windows = 0; $do_nomult_nomac = 0; $do_nomult_mac = 0;

$do_noinfermult = 0;

if ( (@ARGV[0] eq "") ) {

p("\ndefault args: $binFileName(BLASTN) & map.\n".

" To change, rerun as: perl config.pl options");

print " 7 = endingSetsize (<=64)\n";

} else {

$binFileName = @ARGV[0];

p("args: $binFileName $mapFileName $genBit $whichCache".

" $setsize $asso $endSetsize $endAsso..\n");

}

$starttime = time(); print "starttime = ".$starttime."\n";

$retValue = shellcall("cp $leon_vhdl_path"."device_min.vhd

$leon_vhdl_path"."device_$subsys".".vhd", 0); #IUbase $retValue =

shellcall("rm $leon_vhdl_path"."device.vhd", 0); #to not end up

reusing erroneously from previous run

print "generating bit files..\n";

$indx = 1; $nparams = 0; #just initializing

########### handle all binary’s here ################

$loopindx = 0;

$nparams = @iu_bin_params; #array length

print "nparms=$nparams..\n";

while ($loopindx < $nparams) #since index starts from 0
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{

print "loopindx=$loopindx..\n";

if ($do_bin_params[$loopindx] == 1) #=if element at index is true

{

$param = $iu_bin_params[$loopindx];

$base = $iu_bin_base[$loopindx];

$value = $iu_bin_values[$loopindx];

print "$indx. changing $param from $base to $value \n";

$retValue = shellcall("sed ’s/".$param." => ".$base."/".

$param." => ".$value."/g’ $leon_vhdl_path"."device_".

$subsys.".vhd > $leon_vhdl_path"."device.vhd", 0);

buildbit("".$subsys.$param.$value);

}

$loopindx = $loopindx + 1;

$indx += 1;

}

########### nwindows=2-32 ################

if ($do_windows == 1)

{

$loopindx = $nwindows_lo;

$nparams=$nwindows_hi;

print "nparms=$nparams..\n";

while ($loopindx <= $nparams) #since index starts from 0

{

$param = "nwindows";

print "$indx. configuring $param..\n";

$retValue = shellcall("sed ’s/".$param." => [0-9] * /".$param.

" => $loopindx/g’ $leon_vhdl_path"."device_".$subsys.

".vhd > $leon_vhdl_path"."device.vhd", 0);

buildbit("".$bitnamePrefix.$param.$loopindx);

$loopindx = $loopindx + 1;

$indx += 1;

}

}
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#called from below, for exhaustive; not used.

sub config

{

$bitnamePrefix = shift; #my

print "bitnamePrefix=$bitnamePrefix..\n";

########### mult,div off, mac=f ################

if ($do_nomult_nomac == 1)

{

$param = "multiplier";

print "$indx. configuring $param"."=false, mac=f..\n";

$retValue = shellcall("sed ’s/multiplier => m16x16/".

"multiplier => none/g’ $leon_vhdl_path"."device_".

$subsys.".vhd > $leon_vhdl_path"."device_tmp.vhd", 0);

$retValue = shellcall("sed ’s/divider => radix2/".

"divider => none/g’ $leon_vhdl_path".

"device_tmp.vhd > $leon_vhdl_path"."device.vhd", 0);

buildbit("".$bitnamePrefix."nomultdiv");

}

$indx += 1;

}

config("");

if ($do_noinfermult == 1)

#if ($do_noinfer) #tmp

{

$retValue = shellcall("sed ’s/infer_mult => true/".

"infer_mult => false/g’".

" $leon_vhdl_path"."device_".$subsys.".vhd > $leon_vhdl_path".

"device_tmp.vhd", 0);

$retValue = shellcall("cp $leon_vhdl_path"."device_tmp.vhd".

" $leon_vhdl_path"."device_".$subsys.".vhd", 0);

$retValue = shellcall("cp $leon_vhdl_path"."device_tmp.vhd".

" $leon_vhdl_path"."device.vhd", 0);
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buildbit("noinfermult"); #renamed noinfer to noinfermult

config("noinfermult_");

$retValue = shellcall("sed ’s/infer_mult => false/".

"infer_mult => true/g’".

" $leon_vhdl_path"."device_".$subsys.".vhd > $leon_vhdl_path".

"device_tmp.vhd", 0);

$retValue = shellcall("cp $leon_vhdl_path".

"device_tmp.vhd $leon_vhdl_path"."device_".$subsys.".vhd", 0);

}

###### common to all ###### $endtime = time(); print "endtime =

".$endtime."\n";

print "total time = ".($endtime - $starttime)."\n";

E.2 genbit.pl

“genbit.pl” is a custom perl script that contains function definitions used by other perl

scripts implemented to build LEON configurations.

#!/usr/bin/perl

use warnings;

$genBit = 1;

$runApp = "1"; #i = run the app

$leon_vhdl_path = "../aqua/vhdl/leon/";

$syn_rad_path = "../aqua/syn/rad-xcve2000-64MB/";

$syn_path = "../aqua/syn/";
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$sim_path = "../aqua/sim/";

$apache_path = "/usr/local/apache/htdocs/";

$bitfile_destination = $apache_path."documents/";

$makefile_path = "../aqua/";

$outfile = "config2.out";

#!/usr/bin/perl

use warnings;

$genBit = 1; $runApp = "1"; #i = run the app $leon_vhdl_path =

"../aqua/vhdl/leon/"; $syn_rad_path =

"../aqua/syn/rad-xcve2000-64MB/"; $syn_path = "../aqua/syn/";

$sim_path = "../aqua/sim/"; $apache_path =

"/usr/local/apache/htdocs/"; $bitfile_destination =

$apache_path."documents/"; $makefile_path = "../aqua/"; $outfile =

"config2.out";

######## if a function is not predeclared, use () while calling it

$sysstring = "";

sub shellcall {

my $command = shift;

my $expectedRetVal = shift;

$sysstring = $sysstring.$command."<br>";

p ("".$command);

my $sysresult = system($command);

if ($expectedRetVal != null && $expectedRetVal ne "" &&

$sysresult != $expectedRetVal) {

print " ** Failed with result=".$sysresult." when expected was".

" $expectedRetVal. exit..\n";

exit (1); #die();
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}

return $sysresult;

}

sub p {

print("$_[0]\n");

}

sub d {

#print("$_[0]\n");

}

$get_chipAbsolutes = "false";

sub buildbit

{

$bitnameIn = shift;

d ("buildbit.bitnameIn=$bitnameIn..\n");

$newFileName = "".$bitnameIn;

$newBitFileNameNoXtn = "lq2_".$newFileName;

$newBitFileName = $newBitFileNameNoXtn.".bit";

p ("newBitFileName=$newBitFileName ..\n");

$retValue = shellcall("cp $leon_vhdl_path"."device.vhd device2_".

$newFileName.".vhd", 0);

if ($genBit == -1) {

shellcall("cp $syn_rad_path"."liquid_sp.bit $syn_rad_path".

"liquid.bit", 0);

} elsif ($genBit == 0) {

shellcall("cp $syn_rad_path".$newBitFileName." ".

$syn_rad_path."liquid.bit", 0);

} else {

shellcall("make");

#check for errors as xilinx tools don’t quit on error and

#neither is there a cmd line arg to make them quit

$ret = system("grep error $sim_path"."compileoutput.txt");

if ($ret == 0) {
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p ("Modelsim compiler produced errors and so returning..\n");

return -1;

}

$ret = system("grep \"exited with errors\" $syn_path".

"synoutput.txt");

if ($ret == 0) {

p ("Synplicity compiler exited with errors;".

"and so returning..\n");

return -1;

}

}

#check for errors as xilinx tools don’t quit on error and neither

#is there a cmd line arg to make them quit

$ret = system("grep OVERMAPPED $syn_rad_path"."mapoutput.txt");

#chk specific errors. 1=no matches

if ($ret == 0) {

return -1;

}

##### from synplicity mapoutput.txt, extract fpga being used

$luts = mygrep("Total Number 4 input LUTs:", "".

$syn_rad_path."mapoutput.txt", "grepluts.txt", 11);

p ("luts is $luts");

$bram = mygrep("Number of Block RAMs:", "".$syn_rad_path.

"mapoutput.txt", "grepbram.txt", 18);

if ($bram == 0 || $bram == "") {

$bram = mygrep("Number of Block RAMs:", "".$syn_rad_path.

"mapoutput.txt", "grepbram.txt", 19);

if ($bram == 0 || $bram == "") {

$bram = mygrep("Number of Block RAMs:", "".

$syn_rad_path."mapoutput.txt", "grepbram.txt", 17);

}

}

p ("bram is $bram");

if ($get_chipAbsolutes) {

$gates = mygrep_absolutes("Total equivalent gate count for ".
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"design:, ".$syn_rad_path."mapoutput.txt", "grepgates.txt", 7);

p ("gates is $gates");

}

$retValue = shellcall("cp $syn_rad_path"."liquid.bit $syn_rad_path".

$newBitFileName, 0);

#don’t use the prev one if the curr build fails..

$retValue = shellcall("rm $syn_rad_path"."liquid.bit", 0);

$retValue = shellcall("cp $syn_rad_path".$newBitFileName.

" $bitfile_destination".".", 0);

$retValue = shellcall("cp $syn_rad_path".$newBitFileName." .", 0);

$retValue = shellcall("cp $syn_rad_path"."mapoutput.txt mapout2_".

$newBitFileNameNoXtn.".txt", 0);

########## get current time

open(DATEPROC, "date|"); #open (the stdout of date) for reading

@datearray = <DATEPROC>;

$date = $datearray[0];

#write bitfilename, $luts, $brams to file conf.data

$totalClk = 0;

print "opening file $outfile for writing \n$newBitFileNameNoXtn ".

"\t$gates \t$luts \t$bram \t$totalClk \t$date.\n";

open(OUTFILE, ">>$outfile") || die "could not open file".

" $outfile for writing";

print OUTFILE "$newBitFileNameNoXtn \t$luts \t$bram \t$date";

close(OUTFILE);

}

# for chip usage as percent wordToSearchFor, fileToSearchIn,

#fileToWriteTheResultTo, indexToRead

sub mygrep

{

d("$_[0] $_[1]|tee $_[2]\n");
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$retValue = shellcall ("grep \"$_[0]\" $_[1]|tee $_[2]");

#shellcall ("grep \"$_[0]\" $_[1]>$_[2]");

$searchfile = $_[2];

d("opening file $searchfile for reading..\n");

open(INFILE, "$searchfile") || die "could not open file".

" $searchfile for reading";

#d("reading file into an array..\n");

@lines = <INFILE>;

close(INFILE);

$maxlines = scalar @lines;

d("maxlines is $maxlines..\n");

$line = $lines[0]; #chomp

d("line is $line\n");

@words = split(/ /, $line);

$maxwords = scalar @words;

d("maxwords is $maxwords..\n");

$percentWord = @words[$maxwords-1]; #the last element of the array

d("percentWord is $percentWord..\n");

@x = split(/%/, $percentWord); #a second way of tokenizing

$maxx = scalar @x;

d("maxx is $maxx..\n");

#for($linenum = 0; $linenum <$maxx ; $linenum++) {

# d("x[$linenum]=@x[linenum]\n");

#}

$percent = @x[0]; #the last element of the array

p("$_[2] is $percent percent..");

return $percent;

}
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# wordToSearchFor, fileToSearchIn, fileToWriteTheResultTo,

#indexToRead

sub mygrep_absolutes

{

d("$_[0] $_[1]|tee $_[2] $_[3]\n");

$infile = $_[2];

$index = $_[3];

$retValue = shellcall ("grep \"$_[0]\" $_[1]|tee $_[2]");

#remove the comma’s in numbers

$retValue = shellcall("sed ’s/,//g’ $infile > $infile.x", 0);

$retValue = shellcall("mv $infile.x $infile");

#$retValue = shellcall("sed ’s/ //g’ $infile > $infile.x", 0);

#$retValue = shellcall("mv $infile.x $infile");

d("opening file $infile for reading..\n");

open(INFILE, "$infile") || die "could not open file".

" $infile for reading";

#d("reading file into an array..\n");

@lines = <INFILE>; #shud be just one line??

close(INFILE);

$maxlines = scalar @lines;

d("maxlines is $maxlines..\n");

$line = $lines[0]; #chomp

d("line is $line\n");

@words = split(/ /, $line);

$maxwords = scalar @words;

d("maxwords is $maxwords..\n");

for($i = 0; $i <$maxwords ; $i++) {

p("words[$i]=$words[$i]");

}

$numb = $words[$index]; #sorry for hardcoding

d("numb is $numb..\n");

#$percentWord = @words[$maxwords-1]; #the last element of the array
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#d("percentWord is $percentWord..\n");

#@x = split(/%/, $percentWord); #a second way of tokenizing

#$maxx = scalar @x;

#d("maxx is $maxx..\n");

##for($linenum = 0; $linenum <$maxx ; $linenum++) {

## d("x[$linenum]=@x[linenum]\n");

##}

#$percent = @x[0]; #last element of the array is % #was [5] oct30

#p("$_[2] is $percent percent..");

return $numb;

}

#simply pass in the mapoutfile and this sub will parse the lut,

#bram usage as percents

sub grep1

{

$infile = shift;

p ("infile = $infile");

##### from synplicity mapoutput.txt, extract fpga being used

$luts = mygrep("Total Number 4 input LUTs:", "$infile",

"grepluts.txt"); #, 11

p ("luts is $luts");

$bram = mygrep("Number of Block RAMs:", "$infile",

"grepbram.txt", 18);

if ($bram == 0 || $bram == "") {

$bram = mygrep("Number of Block RAMs:", "$infile",

"grepbram.txt", 19);

if ($bram == 0 || $bram == "") {

$bram = mygrep("Number of Block RAMs:", "$infile",

"grepbram.txt", 17);

}

}

p ("bram is $bram");

#write bitfilename, $slices, $brams percents to file

print "opening file $outfile for writing \n".

" $infile \t $luts \t $bram..\n";
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open(OUTFILE, ">>$outfile") || die "could not open file".

" $outfile for writing";

print OUTFILE "$infile \t $luts \t $bram\n";

close(OUTFILE);

}

sub print_header

{

print "-----------------------------------------------\n";

print "Purpose: Automatically optimize LEON micro-arch\n";

print " for a given application. \n";

print "-----------------------------------------------\n";

print "-- Shobana Padmanabhan --\n";

print "-- Liquid Architecture Group --\n";

print "-- Washington University, St. Louis --\n";

print "-----------------------------------------------\n";

}

# not used currently

sub do_logic_counts

{

##### from synplicity mapoutput.txt, extract fpga being used

$luts = mygrep("Total Number 4 input LUTs:", "".

$syn_rad_path."mapoutput.txt", "grepluts.txt", 11);

p ("luts is $luts");

$bram = mygrep("Number of Block RAMs:", "".

$syn_rad_path."mapoutput.txt", "grepbram.txt", 18);

if ($bram == 0 || $bram == "") {

$bram = mygrep("Number of Block RAMs:", "".

$syn_rad_path."mapoutput.txt", "grepbram.txt", 19);

if ($bram == 0 || $bram == "") {

$bram = mygrep("Number of Block RAMs:", "".

$syn_rad_path."mapoutput.txt", "grepbram.txt", 17);

}

}

p ("bram is $bram");

$gates = mygrep("Total equivalent gate count for design:", "".
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$syn_rad_path."mapoutput.txt", "grepgates.txt", 7);

p ("gates is $gates");

}

$perlExpectsLastVarToBeTrue = "true"; #could also be 1
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Appendix F

Script to Execute Applications on

Processor Configurations

F.1 runbit.pl

“runbit.pl” is a custom perl script to execute applications on LEON configurations.

#! /usr/bin/perl

$binpath = "/usr/local/apache/htdocs/fpxControl/test/tmp_bin/";

$mappath = "/usr/local/apache/htdocs/fpxControl/test/tmp_map/";

$binFileName = ""; #no bin extension; set below, in a loop

$mapFileName = "";

$filesToRun = "bitfiles.txt"; $nRuns = 3; $srvr = "aqua2";

@binaries=("blast2_mv8","drr2_mv8","frag2_mv8","arith2_mv8");

@do_binaries=(0,1,0,0);

###################### begin #################################

$starttime = time(); print "starttime = ".$starttime."\n";

##################### loop thru the binaries to be run $loopindx =

0; $nparams = @binaries; #array length print

"nparams=$nparams..\n";

while ($loopindx < $nparams) #since index starts from 0 {
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print "\nloopindx=$loopindx..\n";

if ($do_binaries[$loopindx]) #=if element at index is true;

works if its an int

{

$binFileName = $binaries[$loopindx];

$mapFileName = $binFileName.".map";

d ("running $binFileName..\n");

d ("opening file filelist.in for reading..\n");

#open(TEXTSIZE_FILE, "bitfiles.txt") || die "could not open

file filelist.in for reading";

open(TEXTSIZE_FILE, $filesToRun) || die "could not open file

filelist.in for reading";

@list = <TEXTSIZE_FILE>;

close(TEXTSIZE_FILE);

d ("files to run: @list ..\n");

d ("read line= @list[0]..\n"); #was line[0]

$listlength = scalar @list;

$i=0;

while ($i < $listlength)

{

$infile = $list[$i];

chomp($infile);

d ("nextfile after chomp=$infile");

out, we don’t need this anymore

runit($infile);

++$i;

}

}

#be sure to increment loop outside any if conditions

$loopindx = $loopindx + 1;

}

sub runit {

$newBitFileName = shift;

d ("bitfile = $newBitFileName");

p ("----------------------------\n");
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$retValue = shellcall("perl auto_run.pl $newBitFileName

$binFileName $nRuns $srvr");

d ("retVal after run = $retValue");

}

###### common to all ###### $endtime = time(); print "endtime =

".$endtime."\n"; print "total time = ".($endtime -

$starttime)."\n";

F.2 auto run.pl

“runbit.pl” is a custom perl script to execute applications on LEON configurations.

#!/usr/bin/perl

# includes Justin’s rewrites

# Includes for CGI/Time Access use CGI; use strict; use

Time::localtime; use HTTP::Request::Common qw(POST); require

LWP::UserAgent;

# Never Buffer My Output, Punk $| = 1;

# Hard Coded Paths, Can Change These You Wish (User Directory,

Etc...) # These Also Affect What the ’Help’ Specifies my

$source_path=

"/usr/local/apache/htdocs/fpxControl/test/benchmarks/"; my

$server_path= "/usr/local/apache/htdocs/fpxControl/test/runs/";

# Check to See if Valid Parameters were Passed, If Not Then Exit

if ($#ARGV < 3) {

print "Syntax : auto_run.pl [bit_file] [src_file] [runs] [srvr]\n";

print " * bit_file : Bit File Located on [srvr] in ".

"/usr/local/apache/htdocs/documents/\n";

print " * src_file : Src Files (bin/map) on [srvr] in ".

"/usr/local/apache/htdocs/fpxControl/test/benchmarks/\n";
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print " * runs : Total Number of Simulations to Run [Integer]\n";

print " * srvr : Server on Which to Run the Simulation ".

"[aqua, aqua2, etc...]\n\n";

print "Note : Results are Saved to [src_file]_results.txt\n";

print " Remember to Reserve the Hardware Prior to

Running to Ensure Safe Operation\n";

exit;

}

# Necessary Variables and Constants my $query = new CGI;

# Used to Access Query Information my $user_agent =

LWP::UserAgent->new; # Used to Generate ’POST’ Requests my

$request; # Misc. Variable for CGI Requests my

$response; # " my $content; # "

my $target; # " my $results; # "

my $start_time = time(); # Used for Time-Tracking Tasks

my $end_time; # "

my $start_str = ‘date‘; # Used to Time-Tracking Tasks as

Strings my $end_str; # "

my $counter = 0; # Used for Tracking Runs

my $bit_file = $ARGV[0]; # Argument 0 is Always Bit/Map

File to Load my $source_file= $ARGV[1]; # Argument 1 is

Always Program to Run my $total_runs = $ARGV[2]; # Argument

2 is Always Total Runs my $srvr = $ARGV[3]; #

Argument 3 is Always Target Server

my $start_addr; # Used for Address Tracking of

Target Program my $load_addr = "40000000"; # " my

$read_addr = "40000004"; # initialized here but reset

below before actual use my $end_addr; # "

my $output_file; # Per-Run Result Files (’wgetted’

From Target Server) my @run_results; # Clock Counts

for Each Run

my @file_input; # Used for Reading Input for Files
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on Target Server

my $program = $source_file . ’.bin’; # Input Binary File in

Raw Format my $map_file = $source_file . ’.map’; # Mapfile

Associate with Input Binary File

my $random = int( rand(100)) + 10000; # a random number

between 100 and 1100

my $output_file2 = "mem".$random.".txt"; # Per-Run Mem Result

Files (’wgetted’ From Target Server) my @mem_results;

# Mem Result for Each Run my @file_input2; # Used for

Reading Input for Files on Target Server

# Print Opening Messages to Console

print "----------------------------\n"; print "Started At:

$start_str"; #print "Started At: $start_time\n"; print "Bit File

: $bit_file\n"; print "Program : $program\n"; print "Total Runs:

$total_runs\n";

# Print Opening Messages to Output File $output_file =

$source_file . "_results.txt"; open (OUTPUT_FILE,

">>$output_file");

#print OUTPUT_FILE "Started At: $start_str";

##print OUTPUT_FILE "Started At: $start_time\n";

#print OUTPUT_FILE "Bit File : $bit_file\n";

#print OUTPUT_FILE "Program : $program\n";

#print OUTPUT_FILE "Total Runs: $total_runs\n\n";

print OUTPUT_FILE "\n$bit_file\t";

print OUTPUT_FILE "$program\t";

close(OUTPUT_FILE);

# Setup Statistics Module $target = "http://" . $srvr .

".arl.wustl.edu/fpxControl/test/statselect_mod.cgi"; $request =

(POST $target,

[ "arg0" => $source_path . $program, "arg1" => $source_path

. $map_file,

"arg2" => $load_addr, "arg3" => $server_path . "text_size_"

. $source_file]);
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$results = $user_agent->request($request); $content =

$results->content;

# Get the File Generated by the Stats Analysis System and Read it

In system("wget -q http://" . $srvr .

".arl.wustl.edu/fpxControl/test/runs/text_size_$source_file");

open(TEXTSIZE_FILE, "text_size_$source_file") || die "Whoops, No

File!\n";

@file_input = <TEXTSIZE_FILE>;

close(TEXTSIZE_FILE);

# First Line of File Always Contains Addresses We Need @file_input

= split(/ /,$file_input[0]); $start_addr = @file_input[0];

$end_addr = @file_input[1];

# Print Out Addresses Harvested From statselect CGI Script print

"Start Addr: $start_addr\n"; print "End Addr : $end_addr\n";

# Run Through the Loop Until Complete while ($counter <

$total_runs) {

# Run Indicator

print "Run # : " . ($counter + 1) . "\n";

# ID Each Run According to the Value of ’counter’

$output_file = "statoutTotal".$counter."_".$source_file.".txt";

#print("output_file requested=$output_file\n");

#$output_file2 = "memResult".$counter."_".$source_file.".txt";

# Remotely Run the Simulation

$target = "http://" . $srvr .

".arl.wustl.edu/fpxControl/test/control_mod.cgi";

$request = (POST $target,

[ "arg0" => $bit_file, "arg1" => $source_path . $program,

"arg2" => $read_addr, "arg3" => $load_addr,

"arg4" => $start_addr,

"arg5" => $end_addr, "arg6" => $server_path . $output_file,

"arg7" => $server_path . $output_file2]);

#print "issuing request next = $request\n";

$results = $user_agent->request($request);

#print "reading results next = $results\n";

$content = $results->content;
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#print "content = $content\n";

# Grab the Results of the Simulation

system("wget -q http://" . $srvr .

".arl.wustl.edu/fpxControl/test/runs/$output_file");

system("wget -q http://" . $srvr .

".arl.wustl.edu/fpxControl/test/runs/$output_file2");

# Read in Data to Analyze Simulation Results

#print("output_file recd=$output_file\n");

open(STAT_FILE, $output_file);

@file_input = <STAT_FILE>;

close(STAT_FILE);

# We Want the Total Clocks In the Run

#print("file_input[0]=$file_input[0]\n");

$run_results[$counter] = $file_input[0];

print "Total Clks: $run_results[$counter]\n";

my $ret = -1;

# next, read in the result read written to memory,

#by the application just run

if ($source_file eq "blast2_mv8") {

$ret = verify_hash_leon_coreLoop_32K_HT();

} elsif ($source_file eq "drr2_mv8") {

$ret = verify_default();

} elsif ($source_file eq "frag2_mv8") {

$ret = verify_default();

} elsif ($source_file eq "arith2_mv8") {

$ret = verify_default();

} else {

print (" *** can’t verify $source_file".".bin’s output ** \n");

}

# record the result for future references

$mem_results[$counter] = $ret;
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# Increment the Run Counter

$counter = $counter + 1;

}

# Concatenate Run Results to a Single Output File print

"$total_runs Runs Completed, Writing Results\n"; $output_file =

$source_file . "_results.txt";

open(OUTFILE, ">>$output_file");

foreach $counter (@run_results)

{

print OUTFILE "$counter\t";

}

foreach $counter (@mem_results)

{

print OUTFILE "$counter\t";

}

# Print Timing Information to the File

$end_time = time();

$end_str = ‘date‘;

print OUTFILE "$end_str";

#print OUTFILE "\nEnd Time : $end_str";

#print OUTFILE "Total Time: " . ($end_time - $start_time)

#. " Seconds\n\n";

print "End Time : $end_str";

print "Total Time: " . ($end_time - $start_time) . " Seconds\n\n";

close(OUTFILE);

sub verify_hash_leon_coreLoop_32K_HT {

my $expected = 508;

my $mem = "40000800";

my $retVal = parse_mem($mem);

print "Result from mem: $retVal\n";

if ($retVal != $expected)

{
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print "!!INVALID result from memory. expected=$expected;".

" recd=$retVal\n";

}

return $retVal;

}

sub verify_default {

my $expected = 1729;

my $mem = "40000800";

my $retVal = parse_mem($mem);

print "Result from mem: $retVal\n\n";

if ($retVal != $expected)

{

print "!!INVALID result from memory. expected=$expected;".

" recd=$retVal\n";

}

return $retVal;

}

sub parse_mem {

my $infile = "mem7.txt";

my $readAdr = shift; #40000004;

print "readAdr=$readAdr\n";

#shellcall ("sed ’s/tr>//g’ mem.txt > mem2.txt", 0);

shellcall ("sed ’s/tr>//g’ $output_file2 > mem2.txt", 0);

shellcall ("sed ’s/td>//g’ mem2.txt > mem3.txt", 0);

shellcall ("sed ’s/<//g’ mem3.txt > mem4.txt", 0);

shellcall ("sed ’s/>//g’ mem4.txt > mem5.txt", 0);

shellcall ("sed ’s/br//g’ mem5.txt > mem6.txt", 0);

shellcall ("sed ’s/$readAdr//g’ mem6.txt > mem7.txt", 0);

shellcall ("rm -f mem2.txt mem3.txt mem4.txt mem5.txt".

" mem6.txt", 0);

#print "opening file $infile for reading..\n";

open(INFILE, "$infile") || die

"could not open file $infile for reading";

#d "reading file into an array..\n";
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my @lines = <INFILE>; #shud be just one line??

close(INFILE);

my $maxlines = scalar @lines;

#print "maxlines is $maxlines..\n";

my $line = $lines[0]; #chomp

#print "line is $line\n";

my @words = split(/\//, $line);

my $maxwords = scalar @words;

#print "maxwords is $maxwords..\n";

#my $i = 0;

#for($i = 0; $i <$maxwords ; $i++) {

# print "words[$i]=$words[$i]\n";

#}

my $result = $words[1];

#print "result = $result..\n";

#so that we don’t end up reusing from prev runs..

#shellcall ("rm -f mem.txt mem7.txt", 0);

shellcall ("rm -f $output_file2 mem7.txt", 0);

#, 0 doesn’t work as rm fails when no permission/ over NFS

shellcall ("rm -f $server_path"."$output_file2");

return $result;

}

# Remove Temporary Files shellcall ("rm -f statout * ", 0);

shellcall ("rm -f text_size * ", 0);

# Print out a "Semi-Informative" Footer print "Total Run Time: " .

($end_time - $start_time) . " Seconds\n";

# End Now! exit;
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F.3 config mod.pl

“runbit.pl” is a custom perl script to execute applications on LEON configurations.

#!/usr/bin/perl

use CGI; require

"/usr/local/apache/htdocs/fpxControl/test/htmleon.pl";

#use Thread; #use Thread qw(async);

sub p {

print("$_[0]\n");

} sub d {

#print("$_[0]\n");

}

my $query = new CGI;

# [jthiel] Modified for Calling Via Post Methods my $bitFile

= $query->param(’arg0’); my $cProg = $query->param(’arg1’); my

$readAddress = $query->param(’arg2’); my $optionalLoad =

$query->param(’arg3’); my $startAdr = $query->param(’arg4’);

my $endAdr = $query->param(’arg5’); my $statTotalfile =

$query->param(’arg6’); my $memResultfile = $query->param(’arg7’);

# [jthiel] Apache Doth Command It print "Content-type:

text/html\n\n";

#my $bitFile = @ARGV[0]; #my $cProg = @ARGV[1]; #my $readAddress =

@ARGV[2]; #my $optionalLoad = @ARGV[3]; #my $startAdr = @ARGV[4];

#my $endAdr = @ARGV[5]; #$statTotalfile = @ARGV[6];

#my $readSize = 0x01; #0x0A; my $readSize = "01"; #0x0A;

#my $mapFile = $query ->param(’mapFile’); #my $numMethods = $query

->param(’numMethods’); #my $numSignals = $query

->param(’numSignals’);

print ("bit=$bitFile cPrg=$cProg readAdr=$readAddress
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load=$optionalLoad readSz=$readSize strtAdr=$startAdr end=$endAdr

memResfile=$memResultfile");

system "chmod a+wrx $cProg"; #FIX IT

#Now we have to store the k ranges given to us by statselect.cgi

#@range_array_startpt= (); #we

could combine these into one #@range_array_endpt= ();

my $temp; my $arrayCounter = 0;

###################### Begin Simulation

### #Obtain Lock on syncFile ### #print "<font color=red>

Obtaining Lock </font><br>"; #use Fcntl qw(:flock); #my $file =

’syncFile’; #open (S, ">$file"); #flock (S, LOCK_EX) or die "flock

failed";

#print "Lock Obtained <br><hr>";

### #Proceed to Simulation ###

p "/usr/local/apache/cgi-bin/./basic_send 0.0 c $bitFile";

load_bitfile($bitFile);

print "<font color=red>Resetting</font><br>"; reset_leon(1);

print "<font color=red>Checking Status</font><br>";

check_status();

print "<font color=red> Loading Program </font><br>";

load_binary($cProg, $optionalLoad);

#print "<font color=red> Configuring Stats Module </font><br>";

configure_counter(".text", 0, $startAdr, $endAdr);

$srvr="aqua"; #yes, hardcoded for now; was aqua2 $statfile =

"statout.".$srvr;
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w_start_leon($optionalLoad, $statfile); #, 1

### #Start the Listener (The Java Program that Collects and

Processes the UDP Packets) ### p "stat_report\n"; #$statfile =

"statout.txt"; $statfile = "statout.".$srvr;

stat_report($statfile, $statTotalfile); p "stat_report done..\n";

###### read mem to ensure that the program finished ok

#sorry, doesn’t work #w_read_mem($readAddress, $readSize,

$memResultfile); #system($memResultfile);

#only explicitly calling java udp works system("java udp 60

40000800 01 | tee $memResultfile");

sub beginsWith {

$str = shift;

$sub = shift;

#print("len=".length($sub)."\n");

return ( substr($str, 0, length($sub ) ) eq $sub );

}

### #Unlock syncFile (also unlocks on script termination) ###

#flock FILE, LOCK_UN;

###################################### End of File
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Appendix G

Software Controller

The following is a Java program that sends and receives UDP control packets from hard-

ware.

G.1 UdpServlet.java

import java.io. * ; import java.util.Enumeration; import

java.util.Hashtable; import javax.servlet. * ; import

javax.servlet.http. * ;

public class UdpServlet extends HttpServlet {

public void doGet

(HttpServletRequest request, HttpServletResponse response)

throws IOException

{

performAction(request, response);

}

private void performAction

(HttpServletRequest request, HttpServletResponse response)

{

Debug.emptyLine();

Debug.verbose("servlet received request");

Ack ack = null;

HttpSession session = null;

long startTime = System.currentTimeMillis();
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//String dirName = "c:\\temp";

String dirName = "/usr/tmp";

Hashtable ht = new Hashtable();

PrintWriter out = null;

try {

//set response to no caching

response.setHeader("Pragma", "no-cache");

response.setHeader("Cache-Control", "no-cache");

//set DateHeader automatically converts

//seconds to the right date format

response.setDateHeader("Expires", 0);

//Get the HTTP session and the sessionContext

//object on that session.

session = request.getSession(true);

response.setContentType("text/plain");

out = response.getWriter();

File file = null;

try {

// Use an advanced form of the constructor

//that specifies a character

// encoding of the request (not of the file contents)

//and a file rename policy.

MultipartRequest multi = new MultipartRequest(

request, dirName, 10 * 1024 * 1024,"ISO-8859-1",

new DefaultFileRenamePolicy());

out.println("PARAMS:");

Enumeration params = multi.getParameterNames();

while (params.hasMoreElements()) {

String name = (String)params.nextElement();

String value = multi.getParameter(name);

if (value != null) {

ht.put(name, value);

}

out.println(name + "=" + value);
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}

out.println();

out.println("FILES:");

Enumeration files = multi.getFileNames();

//this handles only one file currently

while (files.hasMoreElements()) {

String name = (String)files.nextElement();

String filename = multi.getFilesystemName(name);

if (filename != null) {

ht.put("file_name", filename);

}

String originalFilename = multi.getOriginalFileName(name);

String type = multi.getContentType(name);

file = multi.getFile(name);

if (file != null) {

ht.put("file", file);

}

//Debug.print("file: " + file);

out.println("name: " + name);

out.println("filename: " + filename);

out.println("originalFilename: " + originalFilename);

out.println("type: " + type);

if (file != null) {

out.println("f.toString(): " + file.toString());

out.println("f.getName(): " + file.getName());

out.println("f.exists(): " + file.exists());

out.println("f.length(): " + file.length());

}

out.println();

}

}

catch (IOException lEx) {

lEx.printStackTrace();

this.getServletContext().log(lEx,



152

"error reading or saving file");

}

ack = invokeAction(ht);

if (ack.specialMsg != null &&

!ack.specialMsg.equalsIgnoreCase("null") ) {

out.println(ack.specialMsg);

}

out.println(processAck(ack.ackAscii));

out.println("Response from hardware in ASCII:");

out.println(ack.ackAscii);

out.println("Response from hardware in HEX:");

out.println(ack.ackHex);

} catch (Exception e) {

//e.printStackTrace();

if (out != null) out.println(e.getMessage());

} finally {

long stopTime = System.currentTimeMillis();

}

}

protected Ack invokeAction(Hashtable ht) throws Exception

{

Ack ack = null;

String payload = null;

File file = null;

String className = this.getClass().getName();

String methodName = "invokeAction()";

String prefix = className + "." + methodName + ".";

String RESET = "54";

String CHECK_STATUS = "44";

String WRITE = "64"; // = load pgm

String START_PGM = "50"; // = start leon

String READ = "60";

String STAT = "40";

if (ht == null || ht.size() <= 0) {

Debug.print("servlet.invokeAction(): empty param values

- shouldn’t have happened");
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throw new RuntimeException("Invalid parameters.

Please retry your request");

}

//IP header

String destIP = (String)ht.get("dest_ip");

int destPort = new Integer(

(String)ht.get("dest_port") ).intValue();

String srcIP = (String)ht.get("src_ip");

int srcPort = new Integer(

(String)ht.get("src_port") ).intValue();

//payload

String opcode = (String)ht.get("opcode");

String memAddr = (String)ht.get("mem_addr");

String readLength = (String)ht.get("read_length");

String program = (String)ht.get("program");

Object fileObj = ht.get("file");

if(fileObj != null) file = (File)fileObj;

String endMemAddr = null;

Debug.verbose(prefix + "params recd: destIP= " + destIP +

" destPort=" + destPort + " srcIP=" + srcIP + " srcPort=" +

srcPort + " opcode= " + opcode + " memAdr=" + memAddr +

" leng=" + readLength + " pgm=" + program + " file=" + file);

payload = opcode;

if ( ! StringHelper.isEmpty(opcode) )

{

if (opcode.equals(READ) ) {

if ( StringHelper.isEmpty(readLength) ) {

throw new RuntimeException(prefix +

"read length can’t be empty for read");

}

payload += readLength;

payload += "0000"; //don’t cares; needn’t be done here

if ( StringHelper.isEmpty(memAddr) ) {

throw new RuntimeException(prefix +



154

"memory addr can’t be empty for read");

payload += memAddr;

} else if (opcode.equals(WRITE) ) {

payload += "000001"; //seq #

if ( StringHelper.isEmpty(memAddr) ){

throw new RuntimeException(prefix +

"memory addr can’t be empty for write");

payload += memAddr;

// for backward compatibility

if ( !StringHelper.isEmpty(program) ) {

payload += program;

}

} else if (opcode.equals(START_PGM) ) {

payload += "000000"; //seq number

if ( StringHelper.isEmpty(memAddr) ) {

throw new RuntimeException(prefix +

"memory addr can’t be empty for start leon");

payload += memAddr;

} else if (opcode.equals(STAT) ) {

payload += "000000";

endMemAddr = (String)ht.get("end_mem_addr");

if ( StringHelper.isEmpty(memAddr) ) {

throw new RuntimeException(prefix +

"starting memory addr can’t be empty for statistics");

if ( StringHelper.isEmpty(endMemAddr) ) {

throw new RuntimeException(prefix +

"ending memory addr can’t be empty for statistics");

payload += memAddr + endMemAddr;

}

Debug.all(prefix + "payload at the end of read switch-case: "

+ payload);

}

try {

UdpClient sender = new UdpClient();

ack = sender.sendPacket(
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srcIP, srcPort, destIP, destPort, payload, file, memAddr);

if (opcode.equals(READ) ) {

if (ack != null) {

ack.specialMsg = "Data read from memory appears under"+

" the section \"Response from "+

"hardware\" \n--------------------------------------";

}

}

} catch (Exception e) {

//e.printStackTrace();

throw e;

}

return ack;

}

private String processAck(String ack)

{

String contactInfo = "contact Liquid Arch FPX group at 935-4658";

String result = "";

if (ack.startsWith("AK54") ) {

result = "Request to reset Leon was received"+

" by hardware successfully";

} else if (ack.startsWith("DONE") ) {

result = "Leon was started successfully";

} else if (ack.startsWith("AK64") ) {

result = "Program was loaded successfully"; //414b3634

} else if (ack.startsWith("WR04") ) {

result = "Program was loaded successfully";

} else if (ack.startsWith("AK50") || ack.startsWith("DATA")) {

result = "Program was started successfully"; //414b3530

} else if (ack.startsWith("RD04") ) {

result = "Program was started successfully";

} else if (ack.startsWith("RS01") || ack.startsWith("RS04") ) {

result = "Internal error resetting Leon. Should never happen; "

+ contactInfo + " or try again later";

} else if (ack.startsWith("ST01") || ack.startsWith("ST02")

|| ack.startsWith("ST03") ) {

result = "Leon Internal error starting the program. " +

"Check back the status after a few seconds and if " +

"you still see this message, reset Leon and retry the " +
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"request and if that doesn’t help either, " + contactInfo;

} else if (ack.startsWith("ST04") ) {

result = "Leon waiting for program to finish - could be " +

"because the program is computation intensive and "+

"so check back the status in a few seconds."+

" If it looks unreasonably long, " +

"reset Leon and retry the request and if that doesn’t help either, "

+ contactInfo;

} else if (ack.startsWith("WR01") || ack.startsWith("WR03") ) {

result = "Leon waiting to write program. Check back the status"+

" in a few seconds and if you still this message,"+

" reset Leon and retry the request and if that doesn’t"+

" help either, " + contactInfo;

} else if (ack.startsWith("WR02") ) {

result = "Leon still loading program - could be because the " +

"program is long and so check back the status in "+

"a few seconds. If it looks unreasonably long, reset "+

"Leon and retry the request " +

"and if that doesn’t help either, " + contactInfo;

} else if (ack.startsWith("RD01") ) {

result = "Leon waiting to read memory. "+

"Check back the status in a "+

"few seconds and if you still this message, "+

"reset Leon and retry "+

"the request and if that doesn’t help either, " + contactInfo;

} else if (ack.startsWith("RD02") || ack.startsWith("RD03") ) {

result = "Leon still reading data from memory - "+

"could be because "+

"a lot of data was requested and so check back "+

"the status in a "+

"few seconds. If it looks unreasonably long, "+

"reset Leon and retry "+

"the request and if that doesn’t help either, " + contactInfo;

} else if (ack.startsWith("RD03") ) {

result = "Leon waiting to send the data read - "+

"could be because a "+

"lot of data was requested and so check back the "+

"status in a "+

"few seconds. If it looks unreasonably long, "+

"reset Leon and retry "+

"the request and if that doesn’t help either, "
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+ contactInfo;

} else if (ack.startsWith("ERRq") ) {

result = "Write aborted; " + contactInfo;

} else if (ack.startsWith("DOWN") ) {

result = "LEON crashed; retry the request or if the problem"+

" persists, " + contactInfo;

}

if ( !StringHelper.isEmpty(result) ) {

result += "\n--------------------------------------";

}

return result;

}

/ *
private void displayPage()

{

try {

// The servlet engine is responsible for showing the page

HttpServletResponse response =

(HttpServletResponse) actionRequest.getHttpResponse();

HttpServletRequest request = actionRequest.getHttpRequest();

RequestDispatcher rd = actionRequest.

getActionResources().getServletContext().

getRequestDispatcher(aJspName);

rd.forward(request, response);

}

catch (Exception e) {

throw new ActionException("DisplayAction.displayPage()"+

" - Unable to display java server page, page name: " +

aJspName, e);

}

}

* /

}
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G.2 UdpClient.java

import java.io. * ; import java.net. * ; import

java.net.DatagramPacket; import java.net.DatagramSocket; import

java.lang.System; import java.lang.Integer;

public class UdpClient {

public static final int MAX_PAYLOAD_SIZE = 1000;

public static final int MAX_SOCKET_RECEIVE_TIME = 10000;//millisec

private String className = this.getClass().getName();

protected static BufferedReader in = null;

private DatagramSocket socket = null;

public UdpClient()

{

}

public Ack sendPacket

(String srcIP, int srcPort, String destIP, int destPort,

String hdr, File file, String memAddr) throws Exception

{

String methodName = "sendPkt()";

String prefix = className + "." + methodName + ".";

Ack ack = null;

InetAddress address = null;

Debug.verbose(prefix + "recd hdr="+hdr+" hdr.leng="+

hdr.length()+" file="+file+" srcIP="+srcIP+" srcPort="+

srcPort+" destIP="+destIP+" destPort="+

destPort+" memAdr="+memAddr);

try {

if(socket == null) {

Debug.print(prefix + "getting a new socket");

socket = new DatagramSocket(srcPort);

}
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} catch(BindException e) {

Debug.print(prefix + e.toString());

e.printStackTrace();

//Debug.print(prefix +" retrying");

}

// send request

address = InetAddress.getByName(destIP);

Debug.all(prefix + "addr: " + address);

try {

int hdrLeng = hdr.length();

if (hdrLeng == 8) {

hdr += "00000000";

}

Debug.all(prefix + "hdrLeng=" + hdrLeng);

int tmpFileLeng = 0;

if(file != null) {

tmpFileLeng = (int)(file.length());

if (tmpFileLeng < 0) tmpFileLeng = 0;

}

Debug.verbose(prefix + "file.leng: " + tmpFileLeng);

byte[] bytes = new byte[hdrLeng/2 + tmpFileLeng];

Debug.all(prefix + "bytesArr.leng: " + bytes.length);

byte a = 0;

byte b = 0;

int j = 0;

for (int byteIndex=0; byteIndex < hdrLeng &&

byteIndex < hdrLeng-1 &&

j < hdrLeng; byteIndex++, j++) {

a = (byte)(new Integer(

Integer.parseInt("" + hdr.charAt(byteIndex),16)).

byteValue() << 4);

b = new Integer(

Integer.parseInt("" + hdr.charAt(byteIndex+1),16)).

byteValue();

bytes[j]= (byte)(a ˆ b);



160

//Debug.all("a: " + a + " b: " + b +

//" byte["+byteIndex+"]: " + bytes[byteIndex]);

//Debug.all("bytes["+j+"]: " + bytes[j]);

byteIndex++;

}

Debug.all(prefix + "j=" + j + " hdrLeng=" + hdrLeng);

byte[] hdrBytes = new byte[hdrLeng/2]; //feb 27

System.arraycopy(bytes, 0, hdrBytes, 0, hdrLeng/2 );

Debug.all(prefix + "hdrBytes.leng=" + hdrBytes.length);

Debug.all(hdrBytes, 16, false);

int fileStartIndex = j;

byte[] fileBytes = new byte[tmpFileLeng]; //feb 26

if (file != null) {

FileInputStream fis = new FileInputStream(file);

int i = fis.read();

//fis.read(fileBytes); //try this - feb 26

while (i >= 0) {

bytes[j] = (byte)i;

Debug.all("bytes["+j+"]: " + bytes[j]);

j++;

i = fis.read();

}

Debug.all(prefix + "bytes.Leng=" +

bytes.length + " just created:");

Debug.all(bytes, 10, false);

Double aDouble = new Double(

Math.ceil( (bytes.length-8)/4.0 ) );

bytes[1] = aDouble.byteValue();

System.arraycopy(bytes, fileStartIndex,

fileBytes, 0, tmpFileLeng ); //feb 26

Debug.all(prefix + "fileBytes.leng="

+ fileBytes.length + " just created:");

Debug.all(fileBytes, 10, false);

}

Debug.verbose(prefix + "calling sliceNdiceNsend()");
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ack = sliceNdiceNsend(socket, address, destPort,

hdrBytes, fileBytes, memAddr);

} catch(InterruptedIOException e) {

throw e;

} catch(Exception e) {

Debug.print(prefix + e.toString() );

e.printStackTrace();

}

socket.close();

return ack;

}

private Ack sliceNdiceNsend(DatagramSocket socket,

InetAddress address, int destPort,

byte hdrBytes[], byte fileBytes[], String memAddr)

throws Exception

{

String methodName = "sliceNdiceNsend()";

String prefix = className + "." + methodName + ".";

Ack ack = null;

StringBuffer ackBuf = new StringBuffer();

DatagramPacket packet = null;

byte[] pktBytes;

int seqNum = 0;

Debug.all(prefix + "hdrBYTES.leng=" + hdrBytes.length

+ " " + new String(hdrBytes) );

Debug.all(hdrBytes, 10, false);

//if there is no file, just send the hdr

//handle this also in the loop

if(fileBytes.length <= 0)

{

packet = new DatagramPacket(hdrBytes,

hdrBytes.length, address, destPort);

Debug.print("\nsending the request (in HEX): ");

Debug.all(hdrBytes, 10, false);
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socket.send(packet);

Debug.verbose(prefix + "calling receiveAck()");

return receiveAck(socket);

}

int start = 0, end = -1, pktByteCount = 0;

boolean firstTime = true;

Double dLeng = null;

String tmpSeqNumStr = null;

int pktSize = 0;

while(pktByteCount+1 < (fileBytes.length))

{

//calcualte the range of file bytes (max=1000)

//to copy in this iteration; remember,

//we’ll add the hdr bytes before the file bytes

if(fileBytes.length - (end+1) <= MAX_PAYLOAD_SIZE)

{

end += (fileBytes.length)-start-1;

pktSize = (fileBytes.length)-start;

} else {

end += MAX_PAYLOAD_SIZE;

pktSize = MAX_PAYLOAD_SIZE;

}

Debug.all(prefix + "start=" + start + " end="

+ end + " file.leng=" + fileBytes.length

+ " pktSize=" + pktSize);

////////// 1. prepare the hdr bytes

dLeng = new Double(Math.ceil((pktSize)/4.0));

tmpSeqNumStr = "";

++seqNum;

if(seqNum < 0x100) {

tmpSeqNumStr = StringHelper.toHex(0);

}

int nextMemAddr = 0;

if (firstTime) {
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nextMemAddr = Integer.parseInt(memAddr,16);

} else {

nextMemAddr = Integer.parseInt(memAddr,16)

+start;

}

Debug.all(prefix + "nextMemAdr=" + nextMemAddr

+ " inHex=" + StringHelper.toHex(nextMemAddr));

String hdr = "64" + StringHelper.toHex(dLeng.intValue())

+ tmpSeqNumStr + StringHelper.toHex(seqNum)

+ StringHelper.toHex(nextMemAddr);

Debug.all(prefix + "hdr b4 bytezing: " + hdr);

byte a = 0;

byte b = 0;

int j = 0;

Debug.all(prefix + "creating hdr bytes for hdr "

+ hdr + " of leng " + hdr.length() );

for (int i=0; i < hdr.length() && i < hdr.length()-1

&& j < hdr.length(); i++, j++) {

Debug.all(prefix + "hdr.charAt("+i+"): "

+ hdr.charAt(i) + " next: " + hdr.charAt(i+1));

a = (byte)(new Integer(

Integer.parseInt(""+

hdr.charAt(i),16)).byteValue() << 4);

b = new Integer(

Integer.parseInt(""+

hdr.charAt(i+1), 16)).byteValue();

hdrBytes[j]= (byte)(aˆb);

//if (seqNum < 12) {

Debug.all("hdrBytes["+j+"]: " +

StringHelper.toHex(hdrBytes[j]) );

//}

i++;

}

Debug.verbose(prefix + "modified hdrBytes:");

Debug.all(hdrBytes, 10, false);

/////////// 2. prepare the file bytes

Debug.all(prefix + "fileBytes:");

Debug.all(fileBytes, 10, false);
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// 3. finally, prepare the pkt bytes = hdr + file

pktBytes = new byte[pktSize + hdrBytes.length];

System.arraycopy(hdrBytes,0,pktBytes,0,hdrBytes.length);

Debug.all(fileBytes, 10, false);

Debug.verbose(prefix + "hdrBytes.leng=" + hdrBytes.length

+ " pktBytes.leng=" + pktBytes.length + " fileBytes.leng="

+ fileBytes.length + " start=" + start + " end=" + end);

Debug.all(hdrBytes, 10, false);

System.arraycopy(fileBytes, start, pktBytes,

hdrBytes.length, pktSize );

packet = new DatagramPacket(pktBytes, pktBytes.length,

address, destPort);

Debug.print("\nsending the request (in HEX): ");

Debug.all(pktBytes, 10, false);

socket.send(packet);

Debug.print("\nwaiting for an ACK");

ack = receiveAck(socket);

pktByteCount += pktSize; //sp

Debug.verbose(prefix + "pktByteCount=" + pktByteCount +

" fileBytes.leng=" + fileBytes.length);

start = end + 1;

firstTime = false;

}

Debug.verbose("end of sliceAndDlice()");

return ack;

}

protected Ack receiveAck(DatagramSocket socket)

throws InterruptedIOException

{

String methodName = "receiveAck()";

String prefix = className + "." + methodName + ".";
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DatagramPacket packet = null;

StringBuffer ackBuf = new StringBuffer();

Ack ack = new Ack();

try {

byte[] buf = new byte[256];

// receive request

packet = new DatagramPacket(buf, buf.length);

socket.setSoTimeout(MAX_SOCKET_RECEIVE_TIME);

socket.receive(packet);

Debug.print("\n=============");

byte[] bytes2 = packet.getData();

ack.ackAscii = new String(bytes2);

Debug.print("response from hardware in ascii: "

+ ack.ackAscii );

Debug.print("response from hardware in HEX: ");

for (int i=0; i < bytes2.length; i++) {

ackBuf.append( StringHelper.getString(bytes2[i], 16) );

}

ack.ackHex = ackBuf.toString();

Debug.print(ack.ackHex);

Debug.print("--------");

} catch (InterruptedIOException e) {

throw new InterruptedIOException(

"No response from hardware."+

" Please retry your request");

} catch (IOException e) {

Debug.print(prefix + e.toString());

e.printStackTrace();

}

return ack;

}

}
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G.3 UdpServer.java

This java class emulates hardware.

public static void main(String[] args) throws IOException {

String mode = "ack"; //others are echo

if (args.length > 0) {

if (args[0].equals("ack") || args[0].equals("echo") ) {

mode = args[0];

}

}

new UdpServerThread(mode).start();

}

G.4 UdpServerThread.java

import java.io. * ; import java.net. * ; import java.util. * ;

public class UdpServerThread extends Thread {

protected DatagramSocket socket = null;

protected BufferedReader in = null;

protected String _mode = "ack";

public UdpServerThread(String mode) throws IOException

{

this(_mode, "UdpServerThread");

}

public UdpServerThread(String mode, String name) throws IOException

{

super(name);

_mode = mode;

socket = new DatagramSocket(4446);

print("server ready");

}

public void run()
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{

int nPktRecd = 0;

byte[] buf = new byte[2560];

DatagramPacket pktForSending = null;

DatagramPacket pktRecd = new DatagramPacket(buf, buf.length);

byte[] payload;

InetAddress address = null;

int port = 0;

while(true)

{

try {

// receive request

socket.receive(pktRecd);

nPktRecd++;

print("server recd: " + nPktRecd);

payload = pktRecd.getData();

// send the response to the client at "address" and "port"

//from where we recd the pkt

if (_mode.equals("ack")) {

ackBuf = do_ack();

} else if (_mode.equals("echo")) {

ackBuf = do_echo(pktRecd);

}

pktForSending = new DatagramPacket(ackBuf,ackBuf.length);

pktForSending.setAddress(pktRecd.getAddress());

pktForSending.setPort(pktRecd.getPort());

socket.send(pktForSending);

} catch (IOException e) {

e.printStackTrace();

}

} //end of while

}
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DatagramPacket do_echo(DatagramPacket pktRecd)

{

byte[] ackBuf = new byte[4];

ackBuf = "AK64".getBytes();

DatagramPacket pktForSending = new

DatagramPacket(ackBuf, ackBuf.length);

return pktForSending;

}

byte[] do_ack()

{

byte[] ackBuf = new byte[4];

ackBuf = "AK64".getBytes();

DatagramPacket pktForSending = new

DatagramPacket(ackBuf, ackBuf.length);

return pktForSending;

}

private static void print(String str)

{

System.out.println(str);

}

}

G.5 Ack.java

public class Ack {

public String ackAscii = "";

public String ackHex;

public String specialMsg;

}

G.6 Debug.java

public class Debug {

public static final int INFO = 1;
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public static final int DEBUG = 2;

public static final int VERBOSE = 3;

public static final int ALL = 4;

static int debug_level = 1;

public static void print(String str)

{

System.out.println(str);

}

public static void info(String str)

{

if(debug_level >= INFO) {

System.out.println(str);

}

}

public static void debug(String str)

{

if(debug_level >= DEBUG) {

System.out.println(str);

}

}

public static void verbose(String str)

{

if(debug_level >= VERBOSE) {

System.out.println(str);

}

}

public static void all(String str)

{

if(debug_level >= ALL) {

System.out.println(str);

}

}

public static void emptyLine()

{
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System.out.println();

}

public static void print(

byte bytes[], int radix, boolean displayAs2digits)

{

for (int x=0; x < bytes.length; x++) {

System.out.print(

StringHelper.getString(bytes[x],

radix, displayAs2digits) );

}

//prevent subsequent prints on the same line

Debug.emptyLine();

}

public static void oneByOne(

byte bytes[], int radix, boolean displayAs2digits)

{

for (int x=0; x < bytes.length; x++) {

System.out.print( x + "=" +

StringHelper.getString(bytes[x],

radix, displayAs2digits) + " ");

}

}

public static void debug(

byte bytes[], int radix, boolean displayAs2digits)

{

if(debug_level >= DEBUG) {

print(bytes, radix, displayAs2digits);

}

}

public static void verbose(

byte bytes[], int radix, boolean displayAs2digits)

{

if(debug_level >= VERBOSE) {

print(bytes, radix, displayAs2digits);

}

}

public static void all(

byte bytes[], int radix, boolean displayAs2digits)
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{

if(debug_level >= ALL) {

print(bytes, radix, displayAs2digits);

}

}

}

G.7 StringHelper.java

public class StringHelper {

public static String getString(

byte aByte, int radix)

{

String tmp = null;

tmp = Integer.toHexString(aByte);

if (tmp != null && tmp.length() == 1)

{

tmp = "0" + tmp;

}

if (tmp != null && tmp.length() > 2)

{

int len = tmp.length();

tmp = tmp.substring(len-2);

}

return tmp;

}

public static String toHex(int tmp)

{

String className = StringHelper.class.getName();

String methodName = "toHext(int)";

String prefix = className + "." + methodName + ".";

String zero = Integer.toHexString( Integer.parseInt("0", 16) );

String twoZeros = zero + zero;



172

if (tmp == 0) {

return twoZeros;

}

String str = Integer.toHexString(tmp);

//if (str.length() == 1) {

if (str.length() == 1 || str.length() == 3) //mar 10

{

str = zero + str;

}

Debug.all(prefix + str);

return str;

}

public static String getString(

byte aByte, int radix, boolean fixLeng)

{

if(fixLeng) {

throw new RuntimeException("if u want the leng to be fixed,"+

" call the regular getString(byte, int)");

}

String tmp = null;

tmp = Integer.toHexString(aByte);

if (tmp != null && tmp.length() > 2)

{

int len = tmp.length();

tmp = tmp.substring(len-2);

}

return tmp;

}

/ **

* currrently not being used but toHex(int) was copied from this

* /

/ * public static String toHex(String tmp)

{

String className = StringHelper.class.getName();

String methodName = "toHext(str)";
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String prefix = className + "." + methodName + ".";

String zero = Integer.toHexString( Integer.parseInt("0", 16) );

String twoZeros = zero + zero;

if (tmp == null) {

return twoZeros;

}

String str = Integer.toHexString( Integer.parseInt(tmp, 16) );

if (str.length() == 1) {

str = zero + str;

}

Debug.verbose(prefix + str);

return str;

} * /

public static boolean isEmpty(String s)

{

return (s == null || s.length() <= 0);

}

public static boolean isEmpty(String s, int lengthToCheckFor)

{

return (s == null || s.length() <= lengthToCheckFor);

}

/ * NOT TESTTED; from internet

private static String byteToHex(byte b)

{

// Returns hex String representation of byte b

char hexDigit[] = {’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,’8’, ’9’,

’a’, ’b’, ’c’, ’d’, ’e’, ’f’};

char[] array = { hexDigit[(b >> 4) & 0x0f], hexDigit[b & 0x0f] };

return new String(array);

} // end of method byteToHex

* /

/ * NOT TESTED; from internet

static public String charToHex(char c)

{
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// Returns hex String representation of char c

byte hi = (byte) (c >>> 8);

byte lo = (byte) (c & 0xff);

return byteToHex(hi) + byteToHex(lo);

}

* /

}



175

Appendix H

Tomlab scripts

H.1 main.m

Name = ’Cost function weights w1 = w2 = 1’;

%BinVars just need to be non-zero, for them to be bin’s

BinVars_all = [1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

49 50 51 52];

BinVars_dcache = [1 2 3 4 5 6 7 8];

% No priorities given

VarWeight = [ ];

% the linear objective function is defined in objfun.m

% coeffs of linear constraints

% 1. luts 2. only one dcach-sets 3. only one dcach-setsize

% 16, 17: if lrr, nsets=2; for icache & dcache.

% 18, 19: if lru, nsets=2,3,or4; again, for icache and dcache

A_all = [0 0 0 0 0 -1 -1 0

-1 0 1 0 0 0 -1 -1

0 -1 -1 0 0 0 -1 0

0 0 0 -2 0 0 0 0
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -2

0 0 1 0;...

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0;...

-1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

1 1 1 0 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0;...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 ...

];

A_dcache = [ 0 0 0 -1 -1 0 -1 -1; 1 1 1 0 0 0 0 0 ; 0 0

0 1 1 1 1 1 ];

% RHS of the linear constraints

% lower bounds are zero because none need to be selected.

% this is b/c base confgn isn’t included.

b_L_dcache = [-inf 0 0 ]’; %-500 is hand calculated

b_U_dcache = [61 1 1 ]’;

b_L_all = [-inf 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1 -1 0 0 0 0]’;

b_U_all = [61 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 1 1 1 1]’;

% BinVars = BinVars_all;

% A = A_all;

% b_L = b_L_all;

% b_U = b_U_all;

BinVars = BinVars_dcache; A = A_dcache; b_L = b_L_dcache; b_U =

b_U_dcache;

% bounds of the one nonlinear constraint defined in confun.m for BRAM

c_L = [0]; c_U = [49];

% decn vars are bin’s

x_0 = zeros( length(BinVars), 1 );

%x_0 = [-1 -1 -1 -100 -100 -100 -100 -100]’;

x_L = zeros( length(BinVars), 1 ); x_U = ones( length(BinVars), 1
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);

g = []; %gradient vector

H = []; %Hessian matrix

%All elements in Hessian are nonzero. if all 0, spalloc(5,5,0)

HessPattern = [];

% constraint gradient. 0 indicates 0s in constraint Jacobian

ConsPattern = [];

fIP = []; % An upper bound on the IP value wanted; to cut branches.

xIP = []; % x-values giving the fIP value

dc = []; %constraint Jacobian mN x n

d2c = []; %second part of Lagrangian function

f_opt = []; %opt function value, if known

x_opt = []; %x-values corresponding to f_opt

% Generate the problem structure using the TOMLAB Quick format

Prob = minlpAssign(@objfun, g, ’objfun_H’, HessPattern, ...

x_L, x_U, Name, x_0, ...

BinVars, VarWeight, fIP, xIP, ...

A, b_L, b_U, ’confun’, dc, d2c, ConsPattern, ...

c_L, c_U, ...

x_L, x_U, ...

f_opt, x_opt);

%Prob.DUNDEE.optPar(20) = 1;

Prob.P = 33; % Needed in minlpQG_xxx files

%Prob.LargeScale = 1;

Solver = {’minlpBB’,’oqnlp’,’glcFast’};

for i=1:1

Result = tomRun(Solver{i},Prob,2);

end

%checkDerivs(Prob, Result.x_k)

Result2 = tomRun(’filterSQP’,Prob,2);
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H.2 objfun.m

function f = objfun(x,Prob)

w_100_1 = [100 1]; w_1_100 = [1 100];

L_all = [0 0 0 0 0 -1 -1 0

-1 0 1 0 0 0 -1 -1

0 -1 -1 0 0 0 -1 0

0 0 0 -2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -2

0 0 1 0];

b_all = [5 11 17 -4 -3 5 17 39

0 5 5 5 11 17 -4 -3

5 17 39 0 5 5 0 0

0 0 0 0 0 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 7 0 0

0 0 0 0];

L_all_arith = [0 0 0 0 0 -1 -1

0 -1 0 1 0 0 0 -1

-1 0 -1 -1 0 0 0 -1

0 0 0 0 80 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -2

0 0 1 0];

b_all_arith = [5 11 17 -4 -3 5 17

9 0 5 5 5 11 17 -4

-3 5 17 39 0 5 5 0

0 0 0 0 80 0 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 7 0

0 0 0 0 0];

L_dcache = [0 0 0 -1 -1 0 -1 -1]; b_dcache = [5 11

17 -4 -3 5 17 39];

L_icache = L_dcache; b_icache = b_dcache;



181

r_all_blast = [0 0 0 0.186306783 4.15048E-06

0 0 0 -4.90511E-06 0 0

-0.679644632 -0.813927779 -0.96554824 1.028720067

0.358113296 -0.609421892 -0.912860527 -3.611279413

-0.199577003 -0.672483166 -0.761805664 0

-3.416724492 0 5.948311029 0 0 1.1347807

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

34.04337722 0 -2.269557626 -4.539115252 0];

r_dcache_blast = [-0.679644632 -0.813927779 -0.96554824

1.028720067

0.358113296 -0.609421892 -0.912860527 -3.611279413];

r_all_drr = [0 0 0 0.047907346 1.61085E-07 0 0

0 1.0739E-07 0 0 -9.951593511 -11.62155299

-12.18971477 19.64088775 6.4071957 -4.806727246

-8.853635082 -12.20561489 -3.088953864 -10.06280944

-9.986386939 0 -4.445869434 0 15.79990129

0 0 0.684681324 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 20.54043582 0 -1.36936230

-2.73872460 0];

r_dcache_drr = [-9.951593511 -11.62155299 -12.18971477

19.64088775

6.4071957 -4.806727246 -8.853635082 -12.20561489];

r_all_frag = [0 0 0 19.12551172 11.06005803 0 0

0 1.53895E-06 0 0 -0.879948605 -1.125929685

-1.459847612 2.555348338 0.851782779 -0.354540957

-1.299341669 -1.912464874 -0.396092312 -0.836597765

-0.852205832 0 -3.803944163 0 12.08939242 0

0 0.108681773 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 3.260453178 0 -0.217363545

-0.43472709 0];

r_dcache_frag = [-0.879948605 -1.125929685 -1.459847612

2.555348338

0.851782779 -0.354540957 -1.299341669 -1.912464874];

r_all_arith = [0 0 0 1.36086E-06 0 0 0

0 -2.84544E-06 0 0 0 0 0 0
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0 0 0 0 0 0 0 0

-1.300242768 0 9.089327768 0 70 1.297768471

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

37.63528567 0 -2.595536943 -5.191073885 0];

r_dcache_arith = [0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00];

P=Prob.P;

%%%%%%%%%%%%%%% blast

if Prob.P == 1 w = w_100_1; r = r_all_blast; L = L_all; b = b_all;

elseif Prob.P == 2 w = w_1_100; r = r_all_blast; L = L_all; b =

b_all; elseif Prob.P == 3 w = w_100_1; r = r_dcache_blast; L =

L_dcache; b = b_dcache; elseif Prob.P == 4 w = w_1_100; r =

r_dcache_blast; L = L_dcache; b = b_dcache; elseif Prob.P == 5 w =

w_100_1; r = r_icache_blast; L = L_icache; b = b_icache; elseif

Prob.P == 6 w = w_1_100; r = r_icache_blast; L = L_icache; b =

b_icache;

%%%%%%%%%%%%%%% drr

elseif Prob.P == 11 w = w_100_1; r = r_all_drr; L = L_all; b =

b_all; elseif Prob.P == 12 w = w_1_100; r = r_all_drr; L = L_all;

b = b_all; elseif Prob.P == 13 w = w_100_1; r = r_dcache_drr; L =

L_dcache; b = b_dcache; elseif Prob.P == 14 w = w_1_100; r =

r_dcache_drr; L = L_dcache; b = b_dcache; elseif Prob.P == 15 w =

w_100_1; r = r_icache_drr; L = L_icache; b = b_icache; elseif

Prob.P == 16 w = w_1_100; r = r_icache_drr; L = L_icache; b =

b_icache;

%%%%%%%%%%%%%%% frag

elseif Prob.P == 21 w = w_100_1; r = r_all_frag; L = L_all; b =

b_all; elseif Prob.P == 22 w = w_1_100; r = r_all_frag; L = L_all;

b = b_all; elseif Prob.P == 23 w = w_100_1; r = r_dcache_frag; L =

L_dcache; b = b_dcache; elseif Prob.P == 24 w = w_1_100; r =

r_dcache_frag; L = L_dcache; b = b_dcache; elseif Prob.P == 25 w =

w_1_100; r = r_icache_frag; L = L_icache; b = b_icache; elseif

Prob.P == 26 w = w_1_100; r = r_icache_frag; L = L_icache; b =

b_icache;
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%%%%%%%%%%%%%%% arith

elseif Prob.P == 31 w = w_100_1; r = r_all_arith; L = L_all_arith;

b = b_all_arith; elseif Prob.P == 32 w = w_1_100; r = r_all_arith;

L = L_all_arith; b = b_all_arith; elseif Prob.P == 33 w = w_100_1;

r = r_dcache_arith; L = L_dcache; b = b_dcache; elseif Prob.P ==

34 w = w_1_100; r = r_dcache_arith; L = L_dcache; b = b_dcache;

elseif Prob.P == 35 w = w_1_100; r = r_icache_arith; L = L_icache;

b = b_icache; elseif Prob.P == 36 w = w_1_100; r = r_icache_arith;

L = L_icache; b = b_icache; end

if Prob.P==3 || Prob.P==5 || Prob.P==13 || Prob.P==15 ||

Prob.P==23 ||

Prob.P==25 || Prob.P==33 || Prob.P==35

cost = r;

f = cost * x;

else

cost = w(1) * r+w(2) * L+w(2) * b;

f = cost * x;

end

H.3 confun.m

function [c, ceq] = confun(x,Prob)

% Nonlinear inequality constraints

% BRAM usage happen to be the same for i and d cache currently

%note matlab expects <= 0 BUT tomlab expects <= 49

if Prob.P==1 || Prob.P==2 || Prob.P==11 || Prob.P==12 ||

Prob.P==21 ||

Prob.P==22 || Prob.P==31 || Prob.P==32

c =

[(1+1 * x(1)+2 * x(2)+3 * x(3)) * (-4 * x(4)-3 * x(5)+5 * x(6)+17 * x(7)+39 * x(8))+
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2+(5 * x(1)+11 * x(2)+17 * x(3))+...

(1+1 * x(12)+2 * x(13)+3 * x(14)) * (-4 * x(15)-3 * x(16)+5 * x(17)+17 * x(18)+

39* x(19))+2+(5 * x(12)+11 * x(13)+17 * x(14))+...

0* x(9)+5 * x(10)+5 * x(11)+0 * x(20)+5 * x(21)+5 * x(22)+0 * x(23)+0 * x(24)+

0* x(25)+...

0* x(26)+0 * x(27)+0 * x(28)+0 * x(29)+2 * x(30)+2 * x(31)+...

2* x(32)+2 * x(33)+2 * x(34)+2 * x(35)+2 * x(36)+2 * x(37)+2 * x(38)+2 * x(39)+

2* x(40)+...

2* x(41)+2 * x(42)+2 * x(43)+2 * x(44)+2 * x(45)+7 * x(46)];

else c =

[(1+1 * x(1)+2 * x(2)+3 * x(3)) * (-4 * x(4)-3 * x(5)+5 * x(6)+17 * x(7)+39 * x(8))+

2+(5 * x(1)+11 * x(2)+17 * x(3))]; %-49

end

ceq = [];

H.4 dc.m

Useful for debugging.

function dc = minlpQG_dc(x, Prob)

dc = [ ... -8 * x(4)-6 * x(5)+10 * x(6)+34 * x(7)+78 * x(8)+5

-12 * x(4)-9 * x(5)+15 * x(6)+51 * x(7)+117 * x(8)+11 ...

-16 * x(4)-12 * x(5)+20 * x(6)+68 * x(7)+156 * x(8)+17

-4-8 * x(1)-12 * x(2)-16 * x(3) ... -3-6 * x(1)-9 * x(2)-12 * x(3)

5+10 * x(1)+15 * x(2)+20 * x(3) ... 17+34 * x(1)+51 * x(2)+68 * x(3)

39+78 * x(1)+117 * x(2)+156 * x(3)];

H.5 d2c.m

Useful for debugging.

% lam’ * d2c(x)
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%

% in

%

% L(x,lam) = f(x) - lam’ * c(x)

% d2L(x,lam) = d2f(x) - lam’ * d2c(x) = H(x) - lam’ * d2c(x)

%

% function d2c=minlpQG_d2c(x, lam, Prob)

function d2c=nlcon_d2c(x, lam, Prob) d2c =

spalloc(length(x),length(x),1); d2c(1,4) = lam(1) * (-20); d2c(1,5)

= lam(1) * (-15); d2c(1,6) = lam(1) * 25; d2c(1,7) = lam(1) * 85;

d2c(2,4) = lam(1) * (-44); d2c(2,5) = lam(1) * (-33); d2c(2,6) =

lam(1) * 55; d2c(2,7) = lam(1) * 187; d2c(4,1) = lam(1) * (-20);

d2c(4,2) = lam(1) * (-44); d2c(5,1) = lam(1) * (-15); d2c(5,2) =

lam(1) * (-33); d2c(6,1) = lam(1) * 25; d2c(6,2) = lam(1) * 55; d2c(7,1)

= lam(1) * 85; d2c(7,2) = lam(1) * 187;

H.6 objfun g

Useful for debugging. objfung is the same as the cost function in objfun.m.

H.7 objfun H.m

Useful for debugging.

function H = objfun\_H(x, Prob)

H = sparse(Prob.N, Prob.N);

H.8 GenerateHessian.java

import java.io. * ;



186

public class TestHessian {

public static void main(String s[])

{

int[] a = {5,11,17,-4,-3,5,17,39};

Hessian h = new Hessian();

h.hess(a, "hess.txt");

}

}

class Hessian {

public void hess(int[] a, String writetoFileName)

{

int len = a.length;

int[][] hessian = new int[len][len];

int i = 0;

int j = 0;

for (i=0; i<len; i++)

{

for (j=0; j<len; j++)

{

hessian[i][j] = 0;

}

}

for (i=0; i<2; i++)

{

for (j=3; j<7; j++)

{

hessian[i][j] = a[i] * a[j];

hessian[j][i] = hessian[i][j];

}

}

/ *
for (i=10; i<12; i++)

{

for (j=13; j<17; j++)

{
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hessian[i][j] = a[i] * a[j];

hessian[j][i] = hessian[i][j];

}

}

* /

persist(hessian, writetoFileName, len);

d2c(hessian, "d2c.txt", len);

}

public void persist(

int[][] hessian, String writetoFileName, int len)

{

//FileInputStream in = null;

//FileOutputStream out = null;

int i = 0;

int j = 0;

try {

//String inFileName = baseFileName;

//File inFile = new File(inFileName);

//String outFileName = inFileName + "Hex";

//File outFile = new File(writetoFileName);

//in = new FileInputStream(inFile);

//out = new FileOutputStream(outFile);

BufferedWriter writer = new BufferedWriter(

new FileWriter(writetoFileName));

for (i=0; i<len; i++)

{

for (j=0; j<len; j++)

{

//out.write(hessian[i][j] + ’\t’);

writer.write(hessian[i][j] + "\t");

}

//out.write(’\n’);

writer.write("\n");

}

//out.close();
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//in.close();

writer.close();

} catch(java.io.IOException e) {

System.out.println("IOEXCEPTION: " + e.toString());

//Object[] messageArguments = {messages.getString("file")};

}

}

public void d2c(

int[][] hessian, String writetoFileName, int len)

{

int i = 0;

int j = 0;

try {

BufferedWriter writer = new BufferedWriter(

new FileWriter(writetoFileName));

writer.write("function d2c=nlcon_d2c(x, lam, Prob)\n");

writer.write("d2c = spalloc(length(x),length(x),1);\n");

for (i=0; i<len; i++)

{

for (j=0; j<len; j++)

{

if (hessian[i][j] != 0) {

writer.write("d2c(" + (i+1) + "," + (j+1) +

") = lam(1) * " + hessian[i][j] + ";\n");

}

}

}

writer.close();

} catch(java.io.IOException e) {

System.out.println("IOEXCEPTION2: " + e.toString());

}

}

}
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