
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-51

2006-01-01

CiAN: A Language and Middleware for Collaboration in Ad hoc CiAN: A Language and Middleware for Collaboration in Ad hoc

Networks Networks

Rohan Sen, Gruia-Catalin Roman, and Andrew Frank

Designing software that supports collaboration among multiple users in mobile ad hoc

networks is challenging due to the dynamic network topology and inherent unpredictability of

the environment. However, as we increasingly migrate to using mobile computing platforms,

there is a pertinent need for software that can support a wide range of collaborative activities

anywhere and at any time without relying on any external infrastructure. In this paper, we adopt

the workflow model to represent the structure of an activity that involves multiple tasks being

performed in a structured, collaborative fashion by multiple users. Using the workflow model as

a... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Sen, Rohan; Roman, Gruia-Catalin; and Frank, Andrew, "CiAN: A Language and Middleware for
Collaboration in Ad hoc Networks" Report Number: WUCSE-2006-51 (2006). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/202

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/202?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/202

CiAN: A Language and Middleware for Collaboration in Ad hoc Networks CiAN: A Language and Middleware for Collaboration in Ad hoc Networks

Rohan Sen, Gruia-Catalin Roman, and Andrew Frank

Complete Abstract: Complete Abstract:

Designing software that supports collaboration among multiple users in mobile ad hoc networks is
challenging due to the dynamic network topology and inherent unpredictability of the environment.
However, as we increasingly migrate to using mobile computing platforms, there is a pertinent need for
software that can support a wide range of collaborative activities anywhere and at any time without
relying on any external infrastructure. In this paper, we adopt the workflow model to represent the
structure of an activity that involves multiple tasks being performed in a structured, collaborative fashion
by multiple users. Using the workflow model as a base, we developed an XML based specification
language called CiAN that can be used to build workflows that can be fragmented and distributed across
the hosts of participating users so that the collaborative activity is executed in a distributed manner. The
tasks specified in the CiAN language are executed by our Java based CiAN middleware, which runs on
mobile hosts. Communication of task results between hosts occurs via a novel protocol that uses the
workflow structure to make routing decisions on data packets. Complete implementation details and an
evaluation of our approach are also presented.

https://openscholarship.wustl.edu/cse_research/202?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/202?utm_source=openscholarship.wustl.edu%2Fcse_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-51

CiAN: A Language and Middleware for Collaboration in Ad hoc Networks

Authors: Rohan Sen, Gruia-Catalin Roman, and Andrew Frank

Corresponding Author: rohan.sen@wustl.edu

Abstract: Designing software that supports collaboration among multiple users in mobile ad hoc networks is
challenging due to the dynamic network topology and inherent unpredictability of the environment. However, as
we increasingly migrate to using mobile computing platforms, there is a pertinent need for software that can
support a wide range of collaborative activities anywhere and at any time without relying on any external
infrastructure. In this paper, we adopt the workflow model to represent the structure of an activity that involves
multiple tasks being performed in a structured, collaborative fashion by multiple users. Using the workflow model
as a base, we developed an XML based specification language called CiAN that can be used to build workflows
that can be fragmented and distributed across the hosts of participating users so that the collaborative activity is
executed in a distributed manner. The tasks specified in the CiAN language are executed by our Java based
CiAN middleware, which runs on mobile hosts. Communication of task results between hosts occurs via a novel
protocol that uses the workflow structure to make routing decisions on data packets. Complete implementation
details and an evaluation of our approach are also presented.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

CiAN: A Language and Middleware for Collaboration in Ad hoc Networks

Rohan Sen, Gruia-Catalin Roman, and Andrew Frank
Washington University in St. Louis

Department of Computer Science and Engineering
Campus Box 1045, One Brookings Drive, St. Louis, MO 63130, U. S. A.

{rohan.sen, roman, dfrank}@wustl.edu

Abstract

Designing software that supports collaboration among
multiple users in mobile ad hoc networks is challenging
due to the dynamic network topology and inherent unpre-
dictability of the environment. However, as we increasingly
migrate to using mobile computing platforms, there is a
pertinent need for software that can support a wide range
of collaborative activities anywhere and at any time with-
out relying on any external infrastructure. In this paper,
we adopt the workflow model to represent the structure of
an activity that involves multiple tasks being performed in
a structured, collaborative fashion by multiple users. Us-
ing the workflow model as a base, we developed an XML-
based specification language called CiAN that can be used
to build workflows that can be fragmented and distributed
across the hosts of participating users so that the collabora-
tive activity is executed in a distributed manner. The tasks
specified in the CiAN language are executed by our Java-
based CiAN middleware, which runs on mobile hosts. Com-
munication of task results between hosts occurs via a novel
protocol that uses the workflow structure to make routing
decisions on data packets. Complete implementation de-
tails and an evaluation of our approach are also presented.

1 Introduction

In recent years, we have witnessed a growing empha-
sis on systems that are designed to facilitate collaboration.
A large number of these collaborative systems use work-
flows to define the structure of the collaborations. In sim-
ple terms, a workflow defines a group of tasks, the ordering
among those tasks, and the movement of data from one task
to another. An example of a workflow is loan processing,
which is a sequence consisting of the tasks “start”, “enter
applicant details”, “obtain loan approval”, “transfer money
to borrower”, and “finish”, where all of the tasks need to

be completed by people whose expertise matches the re-
quirement of the task. Workflow languages such as BPEL
[3], WfXML [14], and XLANG [15] are used to specify the
workflow. Workflow Management Systems (WfMSs) such
as FLOWer [1], AgentWork [8], Caramba [4], and I-Flow
[5] execute the specification, invoking software services or
notifying human users to complete tasks. Most WfMSs are
designed to execute on servers that are connected to each
other via reliable wired networks.

However, the increasing ubiquity of mobile devices and
wireless networking has resulted in a shift away from tradi-
tional wired networks to dynamic, wireless networks. As
such, it is essential that the systems supporting collabo-
ration are also able to function in the more dynamic set-
ting of a wireless network. There have been several ef-
forts by the research community to achieve this in a no-
madic wireless setting, e.g., MoCA [11]; but there has not
been much work in designing systems for mobile ad hoc
networks (MANETs) which lack fixed infrastructure.

There is a strong motivation for developing WfMSs tar-
geted to MANETs. Such systems could be used for collab-
oration practically anywhere without the need for any ex-
ternal infrastructure. Consider, for example, a large toxic
spill that occurred in some remote area. Cleaning up the
spill requires coordination among many specialized teams
equipped with mobile devices and autonomous robots in a
structured fashion so that they do not interfere with each
other and complete tasks according to their priority. Such
an activity can be modeled as a workflow. However, it is un-
likely that the teams cleaning up the spill will have access to
a fixed network to run the workflow on a traditional WfMS.
All communication and workflow management must occur
over a MANET that is formed dynamically between the mo-
bile devices of team members and the robots, thus mandat-
ing a WfMS that can work in a MANET setting.

Unfortunately, migrating a WfMS from a wired or no-
madic setting to MANETs is not trivial. In wired systems,
the WfMS and all the services it exploits to complete tasks
can coordinate with each other at any time due to the pres-

ence of the fixed network. In a MANET, we do not have this
luxury, so the ability to communicate and coordinate with
different participants becomes much more difficult. Also,
the WfMS cannot execute on a single host because the loss
of that host compromises the collaboration among all other
hosts in the MANET. Solving these problems requires a re-
design of WfMSs at the most fundamental level.

To our knowledge, designing WfMSs targeted to
MANETs without any reliance on external resources has
never been attempted before and building such a system
from the ground up represents a significant software engi-
neering challenge. Consider the issue of specifying a work-
flow. The specification must be designed in a way that is
intuitive and human-readable, while at the same time being
machine-parseable for automated execution of the work-
flow. In addition, it should be easily fragmentable for dis-
tribution across hosts in the MANET. Given a fragmented
specification, the system must also be able to decide how
and to whom to distribute each fragment based on individ-
ual properties of hosts. Finally, a run-time system must be
available to execute each of the fragments in a distributed
and disconnected fashion, and disburse results as appropri-
ate, all in the context of a resource poor device in a dynamic
MANET. In this paper, we focus on designing the specifi-
cation and runtime system. We plan to address the problem
of distribution or allocation in the future.

Collaboration in Ad hoc Networks (CiAN) is a language
and middleware supporting collaboration in MANETs. Sec-
tion 2 covers the current state of the art. In Section 3, we
describe our conceptual model for a collaborative system
in a mobile setting. We then present our language in Sec-
tion 4 and justify our choices for language features. In Sec-
tion 5, we describe the software components in our system,
the system architecture, and its implementation in Java. We
discuss the performance of our system in Section 6 before
concluding in Section 7.

2 Background and Related Work

Describing a Workflow. Workflows are described us-
ing a workflow language that specifies a syntax and offers
constructs to specify the workflow structure and function.
The capabilities offered by the language are crucial, because
they determine the expressive power and versatility of the
workflow specification. For example, in the simplest sense,
a workflow can be modeled as a directed graph with the
nodes representing tasks, and the edges imposing an order
among the tasks. This type of specification gives us the req-
uisite structural information about the workflow, but very
little functional information related to the actual tasks. An
improvement to this technique is the use of Petri-nets [10],
a structural specification that can incorporate more func-
tional information by careful use of places and tokens. In

current generation languages such as BPEL [3], XLANG
[15], WfXML [14], and YAWL [17], the specification is in
the form of an XML document. Each language provides
its own unique syntax and constructs; e.g., in BPEL, se-
quence is used to execute tasks in order, flow for parallel
tasks, switch and pick for conditional execution, etc. In all
these cases, the language provides features that help the de-
veloper specify requirements for each task and the flow of
control through the tasks, which is an improvement over a
plain graph specification.

However, these structural constructs have a downside.
The workflow specification is not as easily partitionable as
a graph-based specification. Currently, a majority of the
WfMSs supporting the languages mentioned above execute
on powerful servers in a wired network where partitioning is
not necessary. However, in a MANET setting, where there
is no powerful central server, partitioning the workflow and
executing it in a distributed fashion is vital. Attempts have
been made to facilitate the partitioning of workflow specifi-
cation by adding special actions like DoStart, ReceiveStart,
DoEnd, and ReceiveEnd to handle the coordination among
the different pieces, described in [6]. While this work de-
scribes a method for partitioning the specification, it does
not support fully decentralized execution, and as such falls
short of our needs. Another approach is described in [2]
where the authors parse a BPEL specification, discard all
the structural constructs and use the link construct to build
a more graph-like specification. This approach is specific to
BPEL and is still fairly rigid e.g., it does not allow optional
redundant edges. In addition to the partitioning problem,
the languages have two other significant shortcomings: 1)
with the exception of YAWL, they do not support (or sup-
port only in a very non-intuitive fashion), all the basic struc-
tural and synchronzation constructs for workflows [16] as
described by van der Aalst in [18], which limits the expres-
sive power of the workflow, and 2) there is no facility to
specify mobility and network topology information, which
may be exploited in a MANET environment to improve the
chances for success.

Executing a Workflow. While having a workflow lan-
guage that has sufficient features to specify a workflow that
will execute in a MANET setting is crucial, it is equally
crucial to have a system that is capable of delivering all the
features of that language in a mobile setting. The MANET
environment is distinct from the stable, wired network en-
vironment in that the network is made up of devices that
are significantly less powerful and the network topology is
dynamic and evolves rapidly over time. As such, a sim-
ple port of a system designed for a wired environment to
a MANET is likely to be unsuccessful. A WfMS designed
for the MANET setting must have three features that are not
available in systems today: 1) the architecture of the system
must support decentralized and distributed execution of the

workflow, 2) coordination constructs should be available so
that the different pieces of the workflow can communicate
with each other over the MANET, and 3) the infrastructure
should exploit non-functional information about the net-
work to mitigate failures.

Current designs for WfMSs do not completely meet
these requirements. For example, in BPEL, transfer of data
between tasks is done by centralized shared variables an ap-
proach that is not practical in a MANET. A workaround
to this was proposed in [2] which uses message passing
to distribute data in a wired setting but cannot handle the
dynamism of MANETs. MoCA [11] is better suited to
mobility due to its use of proxies. Mobile users maintain
proxies on stable wired nodes which communicate with the
MoCA directory service (DS), configuration service (CS)
and context information service (CIS) over a wired link.
These three modules coordinate the collaborations of multi-
ple mobile hosts. However, since most of the MoCA infras-
tructure resides on a wired network, only nomadic mobility
can be realistically supported as mobile hosts are dependent
on the DS, CS, and CIS for coordination. In AWA/PDA
[13], the authors adopt a mobile agent based approach based
on the GRASSHOPPER agent system. They define five
types of agents, the Workflow Agent (WA), Process Agent
(PrA), Task Agent (TA), Worklist Agent (WlA), and Per-
sonal Agent (PA). The PA is a daemon agent on a mobile
device and is not logically mobile. The rest of the agents
are logically mobile and can opportunistically move from
one host to another. For example, a TA, which coordinates a
single task can migrate to a PDA, work while disconnected,
and then report results when a connection is available to
the WA. Since all necessary components of the system are
logically mobile, this type of architecture is better suited to
mobile environments. However, the dependence on a WA
or WlA means that the hosts carrying these agents must al-
ways be within communication range. While this may be
simulated by moving the process from one host to another
this is computationally expensive and it may not be possible
to guarantee connectivity with all hosts.

WORKPAD [7] is designed to meet the challenges of
collaboration in a peer-to-peer MANET involving multiple
human users. WORKPAD works by augmenting the ba-
sic workflow specification with directives (mainly involv-
ing moving a host so that it can communicate with an-
other) so that the tasks in the workflow can hand off data
to subsequent tasks and thereby advance the execution of
the workflow. WORKPAD’s shortcoming is that it requires
at least one member of a MANET to coordinate with a cen-
tral entity that coordinates the mobile devices, manages dis-
connection, and augmentis the workflow specification with
mobility directives. This dependence means that WORK-
PAD cannot survive in ad hoc mode for an extended time.
Our work is targeted to an environment similar to that of

WORKPAD. However, our approach is different. Rather
than insert directives to move hosts from one place to an-
other, we allow hosts to move freely and use other con-
structs to ensure successful completion of workflows as de-
scribed in subsequent sections.

3 Our Perspective on Mobile Collaboration

The CiAN language and middleware are attempts to
overcome some of the restrictions of the systems described
in Section 2. In this section, we describe our computational
model and the philosophy behind our design of the CiAN
language and middleware.

Computational Model. For the purposes of this paper,
we assume that a workflow is used to coordinate the actions
of multiple human users, each of whom are equipped with a
mobile device such as a PDA. Each mobile device is carried
by the user and hence is physically mobile. However, we
assume that the user stores a schedule on the device from
which we can infer where a user will be at certain points in
time. The devices can communicate with each other using
802.11b or a similar standard when they are within com-
munication range. However, due to the user’s physical mo-
bility, such windows of communication may be transient.
During these transient windows, hosts trade non-functional
knowledge about themselves such as their mobility pattern
via a gossiping protocol as described in [12]. This knowl-
edge is stored in a local knowledge base on each host and is
made available to all components of the CiAN middleware.
Finally, hosts may have sensors attached to them, such as a
GPS receiver, which the CiAN middleware can leverage.

A task in the workflow is considered to be ready for ex-
ecution when all of its inputs are available. Since the first
task in the workflow has no inputs, it is considered to be
always ready. A task may involve an action in the physical
world by a human user or the execution of some code on the
user’s mobile device. If it is an action to be performed by
the human user, he receives a prompt on his screen when
the task is ready to be performed. He can enter any in-
formation related to the task on his PDA upon completion
of the task, e.g., reporting the temperature after taking the
reading from a sensor manually. If the task involves exe-
cution of a software service, it is handled automatically in
CiAN. Any data generated after a task is executed is passed
on to other hosts when they are in direct communication (a
form of routing, described in Section 5 consisting of multi-
ple disjointed peer-to-peer connections allows data transfer
between hosts that never meet directly).

Language Model. We based the CiAN language on the
concept of an annotated graph. Rather than using explicit
structures that specify whether tasks execute in sequence
or in parallel, we simply list the tasks in no particular or-
der. Then, treating these tasks as graph nodes, we build two

adjacency lists for each task, the input adjacency list and
the output adjacency list. If a Task A appears in Task B’s
output adjacency list, then there is an edge from Task A to
Task B (we automatically add Task A to Task B’s input ad-
jacency list if it is not in the specification). The adoption
of the graph model allows us to easily fragment a workflow
into its constituent tasks and assign individual tasks for ex-
ecution on available hosts. While the adoption of the graph
model is the most significant design feature, there are sev-
eral others that relate to mobility support which we discuss
in the next section.

Runtime System. The ability to fragment a workflow
specification in CiAN is not useful unless there is a runtime
system designed to execute the pieces in a distributed man-
ner. Given that most current approaches use a centralized
architecture, we chose to develop a new system rather than
extend any current system. Our runtime system is designed
to run in a completely decentralized fashion with no need
for a central coordinating entity. Each task is preceded by
an input filter which acts as a controller and marshalls the
inputs to a task from one or more hosts. The task is suc-
ceeded by an output filter which is a similar controller for
distributing the output of the task to interested hosts. Both
the input and output filters are available as part of the CiAN
middleware. They are dynamically parameterizable at the
time that a task is assigned to a host so that they are cus-
tomized to handle the task they are associated with.

Central Server

Shared
Variables

Controller

Workflow
Spec

Host A

Service

Host B

Service

DataData

Host X

ServiceIF OF

Task 1 Spec

Host G

ServiceIF OF

Task 3 Spec

Host A

ServiceIF OF

Task 2 Spec

Data Data

Figure 1. Centralized vs. filter-based archi-
tecture

In addition to marshalling the inputs, the filters can per-
form a small but powerful set of decision and synchroniza-
tion functions. By exploiting these functions, we can em-
ulate all the workflow patterns suggested by van der Aalst
[16] in a simple and intuitive way. The filters can also access
the knowledge base for non-functional information about
the network and the physical environment to make context-
aware choices during the execution of the workflow. Fi-
nally, the filters are designed to selectively wait or ignore
inputs and outputs. This allows us to build redundancies
into the workflow in a simple manner, crucial to protect-
ing against failures that are common in a MANET. Figure 1

illustrates the differences between the two models.
Filters in detail. The input and output filters are the

centerpiece of our execution model as they are the struc-
tures that allow us to distribute the workflow across mul-
tiple hosts and handle synchronization and communication
issues. Figure 2 shows a conceptual view of an input filter.
An output filter is similar, except that the edges are outgo-
ing.

Input Filter

Select Cond.

Select Cond

Select Cond

Edge from
task X

Edge from
task Y

Edge from
Task Z

Knowledge

Se
rv

ice
 In

te
rfa

ce

Knowledge
Interface

Sensor
Interface

Input A

Input B

Knowledge
Sensor

Edge

Figure 2. Detail of an input filter

As shown in the figure, each incoming link (an edge in
the conceptual workflow graph) may have multiple selec-
tion conditions. Selection conditions are groups of condi-
tions that must be met for the value transmitted along that
edge to be accepted as an input to the accompanying task.
If all the conditions that make up one of the edge’s selection
conditions are met, and the edge has some value transmit-
ted along it, then the edge is considered valid input. The
filters also define acceptance sets. These are subsets of all
incoming edges and define which edge combinations rep-
resent a valid input to the task. This is useful for building
redundancies, because an acceptance set can be built from
each redundant set of input edges. When all the edges in
any of the accept sets are valid, the task can begin execu-
tion. The output filters are similar in behavior, except that
the conditions represent whether the results are transmitted
along that edge or not, and the accept sets define subsets of
outgoing edges that are considered acceptable.

4 A Language for Mobile Collaboration

This section describes the CiAN language for collabo-
ration in MANETs. Figure 3 shows the code for one of
possibly many tasks in the workflow.

<collaboration>
<knowledge-base>

<knowledge-var>host-capabilities</knowledge-var>
<knowledge-var>motion-profile</knowledge-var>

</knowledge-base>

<sensors>
<sensor-var>location</sensor-var>
<sensor-var>time</sensor-var>

</sensors>

<task>
<task-name>Task1</task-name>

 <inputs>
<edge>

<name>InEdge1</name>
<var>InVar1</var>
<partner>Task1</partner>
<select-cond>
 <cond>
 <param>sensor:time</param>
 <comparator> = </comparator>
 <value> 12:30 </value>
 </cond>
</select-cond>

</edge>
<accept-set>

<set>
 <name>InEdge1</name>
</set>

</accept-set>
 </inputs>

<activity>
<input-vars>

<var>InVar1</var>
</input-vars>
<service>DummyService1</service>
<output-vars>

<var>OutVar1</var>
</output-vars>

</activity>

<outputs>
<edge>

<name>OutEdge1</name>
<var>OutVar1</var>
<partner>Task2</partner>

</edge>
<accept-set>

<set>
 <name>OutEdge1</name>

</set>
</accept-set>

</outputs>
</task>

</collaboration>

Figure 3. CiAN code example

A workflow specification in CiAN is delimited by the
<collaboration> tags. Within these tags, the spec-
ification is split into two elements – the header and the
body. The header declares the non-functional informa-
tion about the hosts and the network that this workflow
relies on while the body contains the actual task defini-
tions. The header itself is split into two sections delimited
by the <knowledge-base> and <sensor> tags. The
knowledge base section specifies the names of the parame-
ters found in the knowledge base of hosts that this workflow
relies on. Each of these parameter names are delimited by

<knowledge-var> tags. The sensor section specifies the
names of the various sensor parameters that the workflow
relies upon and these are delimited by <sensor-var>
tags (the sensors are assumed to be attached to the local
device). The absence of these parameter values at runtime
does not halt the execution of the workflow but could com-
promise its flexibility.

The body of the workflow comprises one or more task
definitions, delimited by the <task> tag. The tasks can
be specified in any order regardless of their position in the
workflow. A task definition consists of a task name, delim-
ited by the <task-name> tag and unique in the scope of a
workflow and three additional sections: input, activity, and
output, delimited by the <inputs>, <activity>, and
<outputs> tag respectively. The input section defines
one or more edges, delimited by the <edge> tag. Each
edge represents a connection to another task in the workflow
and is analogous to the edge in the graph representation of
the workflow. The input section also defines one or more
accept sets, delimited by the <accept-set> tag. Each
<set> element inside is a list of names of edges and rep-
resents subsets of the input edges that are considered valid
input. For example, if a task had 6 incoming edges labelled
1 to 6, but those 6 edges were really a pair of redundant in-
puts consisting of 3 edges each, then values from the first
of the redundant pairs (edges 1 to 3) are equally valid as the
values from the second of the redundant pairs (edges 4 to 6)
and it is not necessary to wait for all the inputs. The accept
set captures this information. The outputs section is similar
to the inputs section in structure except that the edges are
outgoing rather than incoming.

The activity section specifies information about the ac-
tual service that needs to execute to complete a particular
task. This section specifies the names of the input variables
to the service, delimited by the <input-vars> tag and
the names of the variables to which the service writes its
output, delimited by the <output-vars> tag. It should
be noted here that since the input filter, service, and output
filter for a given task reside on the same host there is no
issue of consistency or overhead in using these variables.
Finally, the actual location or URI of the service is delim-
ited by the <service> tags.

Workflows specified in CiAN are flexible and context-
sensitive due to the way an edge is structured. Each edge
has a name, delimited by the <name> tag, which is unique
in the scope of a task. The <partner> tag is used to de-
fine the name of the task at the other end of the edge. For
incoming edges this is the source task, while for outgoing
edges it is the sink task. The <var> tag specifies the name
of the local variable to which the value transmitted along
the edge is written to (in the case of input edges) or read
from (in the case of output edges). These variables are the
same as those that appear as input variables and output vari-

ables in the activity section. Values transmitted along an
incoming edge are written to an input variable from where
the service reads it. The service’s output is written to an
output variable from where it is read and transmitted over
an outgoing edge.

In addition to this basic information, each edge can
specify zero or more selection conditions (denoted by the
<select-cond> tag) which consist of multiple sub-
conditions. If any one of the selection condition blocks
have all their sub-conditions (denoted by <cond>) evaluate
to true, then the value of the edge is considered acceptable
input to the task. Each condition is a three-tuple consist-
ing of a parameter name denoted by <param>, a compara-
tor, and a value. The parameter can be of four different
types: 1) knowledge:hostname:paramname, which
refers to the non-functional parameter called paramname
of a host called hostname which may be found in the
local knowledge base, 2) sensor:sensorname, which
refers to the value of a sensor called sensorname, 3)
edge:edgename, which refers to a value transmitted
along another edge whose name is edgename, and 4)
var:varname which refers to the value of a local vari-
able called varname. The comparator may be the opera-
tors {<, >, <=, >=, ==, !=}.

The graph like structure of our language helps us support
all the basic workflow patterns. If parallelism is required,
multiple output edges can fan out from a single task. If
sequential processing is desired, then only one output and
input may be used. Merges and splits can be built in similar
ways. If an XOR merge is desired, each edge can be tagged
with a selection condition with require all other input edge
values be equal to null. This way, the first edge that yields a
value is selected as input. Also, context sensitive selection
is implemented in the same way, e.g., an edge is not selected
unless the temperature sensor has a value greater than 32.

Implementation. One of the main features of the CiAN
specification is that it is easily fragmentable. To fragment
the collaboration, we developed a simple Java parser that
reads the header information for the CiAN specification. It
then parses each task and writes it along with the header in-
formation to a separate file. Since tasks are self contained
units and not embedded within structural constructs, this
process is straightforward. We developed an XML docu-
ment type definition (DTD) for the CiAN language in or-
der to build a validating CiAN parser using the Java XML
Processing API (JAXP). The resultant parser is SAX com-
patible and can convert each task definition output by the
fragmenting parser into executable java objects. It creates
input and output filters and parametrizes them using the in-
formation in the inputs and outputs section of each
task. It also uses Java reflection to create an instance of the
specified service. At this point, the task is ready for execu-
tion. Support for this is provided by the CiAN middleware,

which is described in the next section.

5 System Design

The CiAN middleware is responsible for executing
workflows specified using the CiAN language. The exe-
cution of any workflow can be divided into two distinct
phases: planning and execution. In this paper, we focus
primarily on the execution aspect but we include a brief de-
scription of the planning phase for the sake of completeness.

In CiAN, we assume that a group of people equipped
with mobile devices such as PDAs assemble at some loca-
tion to plan the activities of the day. The planning process
is executed by a pre-determined group leader and its main
goal is to examine the workflow and map each task to a
host in the network, thereby delegating the responsibility
of executing that task to that host. Such an assumption is
not unreasonable, as most group activities usually involve
some kind of leader. Figure 4 shows the system architec-
ture for the planning phase, which is executed on the team
leader’s mobile device. The external application injects the
workflow specification (which is in the CiAN language)
into the planning system by way of the Planner API.
This API layer distributes the specification to three units: 1)
the Workflow Splitter which decomposes the work-
flow into its constituent tasks as described in Section 4,
2) the Ordering Generator which numbers each task
to impose a total order among the tasks (for routing pur-
poses described later), and 3) the Allocator which de-
termines the mapping of tasks to hosts. The working of the
splitter was described in Section 4, while the Ordering
Generator implements a trivial graph traversal algo-
rithm. The Allocator uses information from the work-
flow specification (i.e., the service requirements of a task),
the capabilities, i.e., services, offered by hosts and their mo-
bility patterns found in their respective knowledge bases
to make allocation decisions. Allocation is essentially a
scheduling problem, which is in itself a vast area of study.
Due to space constraints, we do not investigate different al-
location strategies in this paper. We have implemented a
basic strategy and have left more complex options for fu-
ture study. The Task Assembler marshalls the individ-
ual task specifications, the task number, and allocation in-
formation and sends it out to the host that is allocated to
perform that particular task.

Once the planning phase has concluded, execution can
begin almost immediately. When the Task Assembler
transmits the task information to a host, it is received by the
Communication Module, which handles all incoming
and outgoing communication to a host. When the task in-
formation arrives, the Communication Module passes
it to the Workflow Router, which in turn passes it to
the Dispatcher. The Dispatcher parses the task

Communication Module

Task Specification Assembler

Ordering Generator Workflow Splitter Allocator

Planner API

Knowledge Base

External Injecting Application

Figure 4. CiAN planning architecture

specification and creates a Task Manager for the task.
The Task Manager contains the input and output filters
which are parametrized according to the information in the
specification received. The Task Manager also has ac-
cess to the knowledge base to evaluate selection conditions
for input or output edges. Finally, it creates subscriptions
for each of its inputs, which is a request for data generated
by its preceding tasks (we will cover subscriptions later in
this section). At this point a task is waiting on its inputs
before it can start executing.

The first task in any workflow by definition does not have
any inputs, and hence can start executing immediately. The
Task Manager invokes the service and waits for the ser-
vice to write its output to its output variables. It then exe-
cutes the output filter to determine if a valid output was gen-
erated. If so, it creates a data message that it transmits (via
its Dispatcher and Workflow Router) to the host(s)
that are responsible for performing the task(s) immediately
following the first task. These tasks wait on their inputs and
execute once all the inputs are available. Execution contin-

Communication Module

Ho
st

Ha

nd
le

r

Ho
st

Ha

nd
le

r

Host Handler Manager

Service

Dispatcher

Service

TaskMgr

KB

TaskMgr

KB

Workflow Router

Figure 5. CiAN runtime system architecture

ues until the last task in the workflow is executed.
Thus far, we have glossed over an important aspect

of our work, which is the fact that this system has to
execute in a MANET. The Communication Module
on each host transmits a beacon periodically. When the
Communication Module on another host receives such
a beacon, it passes it to its Host Handler Manager
which creates a Host Handler for that host. The Host
Handler tries to establish a direct connection between the
hosts. Thus, as long as the hosts are in communication
range, the Host Handler acts like the proxy of the re-
mote host on the local host and handles communication be-
tween them.

Since direct communication is the most reliable form of
communication in a MANET, all information in CiAN is
transmitted when two hosts are directly connected. Thus,
when the Host Handler establishes a connection, it syn-
chronizes the knowledge base of the two hosts using the
time of acquisition of any knowledge as a tie breaker. It also
sends to and receives data or subscription messages from
the other host as appropriate. All data and subscription mes-
sages received are passed to the Workflow Router. If
a data message is intended for the local host, it is passed to
the Dispatcher, which in turn passes it to the appropri-
ate Task Manager, which places the value on the correct
edge in the input filter.

The remaining piece of our system is the policy for trans-
mitting the data or subscription messages from one host
to another. The simplest policy is to simply address the
messages by its destination host and use a MANET rout-
ing protocol to deliver the message. However, this has two
drawbacks: 1) MANET routes do not last often and are ex-
pensive to maintain, and 2) it strongly associates a task to
the host, which is not desirable if a task were to ever get
re-allocated to a different host (a feature not currently sup-
ported in CiAN but part of our future plans). Our approach
is a store and forward approach based on a routing policy
we have developed. When each host receives a task spec, it
assigns a number to itself that is the same as the number of
the task. If multiple tasks are assigned, then it chooses the
lowest numbered task. Subscriptions (generated by tasks to
solicit inputs) have the number of the subscribing task, and
the number of the task whose input is desired. Similarly,
when a task finishes execution, the data is labelled with the
generating task number and the number of the task(s) that
should receive the data. The messages are routed using one
of the following three schemes:

• Scheme 1: Data is routed to any host that has a number
between the generating task number and the target task
number or has no number in a strictly increasing fash-
ion. Subscriptions are routed similarly but in a strictly
decreasing function. Routing to a host with no number
is considered neither a decrease nor an increase.

• Scheme 2: Data can be routed to any host that has a
number between the starting task number and the tar-
get task number in a strictly increasing order. Sub-
scriptions are routed to hosts between the target task
number and the ending task number. Routing to hosts
without a number is also permitted.

• Scheme 3: This scheme is identical to Scheme 1
with one exception. Data and subscriptions can be
routed outside the permissible range but this triggers
a counter. If the data or subscription moves to a host
in range (as defined by Scheme 1) before the counter
expires, the counter is reset, otherwise the data or sub-
scription is destroyed.

Scheme 1 generates the lowest number of messages in the
network but is restrictive in the sense that the number of
hosts that a message can be routed to is much smaller than
the total number of hosts collaborating. Scheme 2 increases
the permissible range but generates additional messages.
Scheme 3 maintains the low range of Scheme 1 but al-
lows limited transgressions which represents the most fa-
vorable tradeoff between number of messages and num-
ber of hosts to which the message can be routed. Data
and subscriptions are transmitted from host to host using
the Host Handlers during periods of direct connectiv-
ity. The Host Handlers pass these messages to the
Workflow Router, which determines if any of the sub-
scriptions it is aware of matches any data that it is aware of.
If a match is generated, then the data is sent to the subscrib-
ing host using the AODV routing protocol [9].

Implementation. A prototype of the CiAN middle-
ware has been implemented in Java. We used the Java
XML Processing API (JAXP) to build the various parsers
that parse the workflow specification and convert it to Java
objects, assign numbers to tasks, and allocate them to
hosts. The remainder of the system was built using J2SE
5.0. The CommunicationModule is used for basic
communication in the network. It can be customized to
work with any external communication middleware. The
CommunicationModule uses a beaconing mechanism
that multicasts the IP address and port for each host in
the network. When a host receives a beacon from another
host, it notifiers the HostHandlerMgr which creates a
HostHandler for the host. It then attempts to create a socket
connection to that host using the IP address and port ob-
tained from the beacon. If a connection is established, the
hosts synchronize their KnowledgeBases and exchange
data and subscription. If both hosts have a parameter in their
KnowledgeBase, the time of acquisition of the knowl-
edge is used to decide which value prevails. Fresher knowl-
edge is preferred to older knowledge.

The KnowledgeBase is modeled as a Hashtable
indexed by host IP address. This points to another

Figure 6. CiAN running on ultramobile PC

Hashtable which is indexed by parameter name, e.g., lo-
cation, and points to the value of that parameter. Hence we
can get the value of any parameter by host name and pa-
rameter name. This ties in with the <knowledge-var>
tags on the workflow specification which are in the form
hostname:paramname. The various schemes for routing
can be implemented in the WorkflowRouter. We
provide a DefaultWorkflowRouter that implements
Scheme 1 above. Other schemes can be implemented by
extending and overriding the appropriate methods in the
WorkflowRouter.

The TaskManagers for each task run in separate
threads and have synchronized access to the Dispatcher.
The latter initializes the service using Java reflection. The
name of the service is assumed to be the class that needs
to be initialized. Inputs are passed in as a hashtable that
maps variable names to objects that represent their values.
The service returns a similar hashtable as output. Any ser-
vice that is invoked must extend the CiANService class
so that the appropriate hook methods are available. Figure
6 shows work in progress of the CiAN middleware execut-
ing a service on an ultramobile PC. It should be noted that
our current implementation is an initial prototype. We are
working on developing the next version of our system in
which we expect to use existing Web services and related
technologies in our middleware, e.g., SOAP for inter-host
communication. We also plan to add support for invoking
Web services from within CiAN, which will make CiAN an
extremely versatile collaboration tool.

6 Evaluation

In the previous section, we showed that the CiAN mid-
dleware can execute on ultramobile PCs. In this section,
we discuss the performance of the three schemes that we
use for routing data between hosts. We simulated the three
protocols in the NS2 network simulator. The simulations

Overhead as a Function of Hosts

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40

Hosts

O
v
e
rh

e
a
d

 (
s)

Random Waypoint, Scheme 1 Random Waypoint, Scheme 2 Random Waypoint, Scheme 3
Random Walk, Scheme 1 Random Walk, Scheme 2 Random Walk, Scheme 3

Figure 7. Experiment 3 results

were performed in a 200m x 200m space which represents
the size of a large outdoor work area. The transmission
range of the mobile devices was set to 25m using the 2-ray
ground propagation model and the 802.11b MAC layer was
used. Though the range of 802.11b can be higher than 25m,
we chose to use a conservative figure since our experience
with actual devices showed this to be the most reasonable
range in the physical world. The experiments were per-
formed with the hosts moving as per both the random walk
and the random waypoint mobility model. In both cases,
hosts moved with a uniform speed of 1.7 m/s which is close
to human walking speed. In the random walk model, the
hosts moved for a random amount of time between 1 minute
and 5 minutes. In random waypoint, the host moved until
it reached a waypoint. When the hosts paused, they did so
randomly in the 1 minute to 5 minute range when ostensibly
they were performing some task.

We randomly generated workflows for our tests. We gen-
erated a matrix in the range 5x5 to 60x60. The rows and
colums of the matrix represented tasks. Using only the cells
above the diagonal (to make the resultant graph directed),
we marked cells randomly to create an edge between those
task pairs. The number of edges chosen was half the total
possible number of edges. We then manually added a sin-
gle source and sink. The tasks were then reordered to ensure
they were in increasing order of position in the workflow.

The first experiment performed measured the overhead
for executing the workflow while varying the number of
hosts. By overhead, we mean the time that was spent trans-
mitting data from one host to another or time that was spent
waiting for inputs. As expected, the overhead dropped con-
siderably with increased number of hosts. This is because
more hosts equates to more routing options which results in
faster data delivery. The results are shown in Figure 7. Each
data point is an average of 30 runs with each run represent-
ing a different workflow. The overhead time for executing
a workflow, while fairly large for small numbers of hosts

Overhead as a Function of Tasks

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45

Tasks

O
v
e
rh

e
a
d

 (
s)

Random Waypoint, Scheme 1 Random Waypoint, Scheme 2 Random Waypoint, Scheme 3
Random Walk, Scheme 1 Random Walk, Scheme 2 Random Walk, Scheme 3

Figure 8. Experiment 3 results

was still significantly less than the time spent actually per-
forming the tasks in the workflow and as such, considered
acceptable. Also as expected, Scheme 3, which is the most
flexible performed better than the others. The kink in the
trend for Scheme 2 in random walk was due to tasks being
assigned to hosts in a small region, which allowed prompt
communication and thereby lower overhead of execution.

In the second experiment, shown in Figure 8, we mea-
sured the effect of an increase in the number of task in the
workflow on overhead. While overhead steadily increased
for increasing number of tasks, the per task overhead re-
mained fairly static when the number of tasks was below
30. However, above this number, the overhead per task rose
noticeably. This is attributed to the fact that we ran this ex-
periment by keeping the number of hosts fixed at 30. When
the number of tasks exceeded 30, some hosts had multiple
tasks assigned to them and since we allowed only one task
to execute at a time, we found that tasks that were ready in
terms of having all their input were waiting for another task
on the same host to finish, thereby increasing the overhead.

Performance of Routing Scheme 3

0

2000

4000

6000

8000

10000

12000

0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8

N

S
e
co

n
d

s

Execution - Walk - 15 Tasks Overhead - Walk - 15 Tasks
Execution - Waypoint - 15 Tasks Overhead - Waypoint - 15 Tasks
Execution - Walk - 60 Tasks Overhead - Walk - 60 Tasks
Execution - Waypoint - 60 Tasks Overhead - Waypoint - 60 Tasks

Figure 9. Experiment 3 results

In the final experiment, we studied Scheme 3 in more de-
tail. We ran trials to measure the overhead for a low number
of tasks (15) and a high number of tasks (60) in both mobil-
ity models when the counter for exceeding the permissible
range was varied. Each data point was an average of 20
runs using different workflows. We found that changing the
counter value reduced the overhead but not by a significant
amount. Given that higher counter values result in higher
network traffic, keeping the counter low is desirable and we
can do this without much performance penalty.

Our results indicate that our routing protocol based on
the task numbers has reasonable performance and a level of
overhead that is not a hindrance to the progression of a col-
laboration. Most significantly, in our trials, higher than 95%
of workflows completed successfully despite numerous dis-
connections and interruptions. The small number that did
fail were due to aberrant mobility patterns of one or two
hosts that isolated themselves from the rest of the network
and did not communicate with their peers, thereby prevent-
ing the progress of the workflow. While these results are
encouraging, we will focus on optimizing the protocol for
reduced network traffic in future work.

7 Conclusion

When WfMSs are ported to a MANET setting, most of
the assumptions of stability made by current WfMSs are
no longer valid making these systems ill-equipped to func-
tion in a MANET. In this paper, we addressed the problem
of developing a WfMS for a MANET from the ground up.
We started by developing the CiAN language, which allows
specification of workflows in a less rigid fashion and in-
corporates mobility information into the workflow specifi-
cation. To support the CiAN language, we built a middle-
ware that executes workflows written in CiAN. This mid-
dleware is designed to execute workflows in a completely
decentralized fashion, relying on non-functional knowledge
to make decisions. We also developed a protocol for mov-
ing the result of a task from one host to another by exploit-
ing transient communication opportunities among hosts in
the MANET. In the future, we plan to study algorithms to
determine how tasks get allocated to hosts, which involves
work in matching algorithms, as well as strategies such as
an auction-based or a marketplace-based strategy, improv-
ing the routing protocol for sending data from one host to
another, standardizing our middleware using Web services
standards, etc. The effort presented in this paper represents
an initial foundation upon which we can build more sophis-
ticated features and protocols.

References

[1] P. Athena. Flower user manual, 2001.

[2] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decen-
tralized orchestration of composite web services. In Proc. of
the 13th Intl. World Wide Web Conference, pages 134–143,
2004.

[3] W. Committee. Web services business pro-
cess execution language v2.0. http://www.oasis-
open.org/committees/download.php/18714/wsbpel-
specification-draft-May17.htm, May 2006.

[4] S. Dustdar. Caramba - a process-aware collaboration sys-
tem supporting ad hoc and collaborative processes in virtual
teams. Distributed and Parallel Databases, 15:45–66, 2004.

[5] Fujitsu. i-flow developers guide, 1999.
[6] A. Maurino and S. Modafferi. Partitioning rules for orches-

trating mobile information systems. Personal and Ubiqui-
tous Computing, 9(5):291–300, September 2005.

[7] M. Mecella, T. Catarci, M. Angelaccio, B. Buttarazzi,
A. Krek, and S. Dustdar. Workpad: an adaptive peer-to-peer
software infrastructure for supporting collaborative work of
human operators in emergency/disaster scenarios. In Proc.
of the IEEE Intl. Symposium on Collaborative Technologies
and Systems, May 2006.

[8] R. Muller, U. Greiner, and E. Rahm. Agentwork: A
workflow system supporting rule-based workflow adapta-
tion. Data and Knowledge Engineering, 2004.

[9] C. E. Perkins and E. M. Royer. Ad hoc on-demand dis-
tance vector routing. In Proc. of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, pages 90–100,
1999.

[10] J. L. Peterson. Petri Net Theory and the Modeling of Sys-
tems. Prentice-Hall, 1981.

[11] V. Sacramento, M. Endler, H. K. Rubinsztejn, L. dos
S. Lima, K. Goncalves, and G. A. Bueno. An architecture
supporting the development of collaborative applications for
mobile users. In Proceedings of WETICE ’04, pages 109–
114, 2004.

[12] R. Sen, R. Handorean, G.-C. Roman, and G. Hackmann.
Knowledge driven interactions with services across ad hoc
networks. In Proc. of the 2nd Intl. Conference on Service
Oriented Computing, pages 222–231, 2004.

[13] H. Stormer and K. Knorr. Pda- and agent-based execution
of workflow tasks. In Proceedings of Informatik 2001, pages
968–973, 2001.

[14] K. D. Swenson, S. Pradhan, and M. D. Gilger. Wfxml
2.0: Xml based protocol for run-time integration of process
engines. http://www.wfmc.org/standards/docs/WfXML20-
200410c.pdf, October 2004.

[15] S. Thatte. Xlang: Web services for business process de-
sign. http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm, 2001.

[16] W. M. P. van der Aalst. Workflow patterns. Distributed and
Parallel Databases, 14:5–51, 2003.

[17] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl:
Yet another workflow language. Information Systems,
30(4):245–275, 2005.

[18] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M.
ter Hofstede. Pattern based analysis of bpel4ws. Technical
Report FIT-TR-2002-04, Queensland Univ. of Technology,
2002.

	CiAN: A Language and Middleware for Collaboration in Ad hoc Networks
	Recommended Citation
	CiAN: A Language and Middleware for Collaboration in Ad hoc Networks

	tmp.1418149444.pdf.769tU

