Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-25

1997-01-01

Cappucino: An Extensible Planning Tool for Constraint-based ATM
Network Design

Inderjeet Singh and Jonathan S. Turner

Cappuccino is a planning tool for topological design of ATM networks. It uses a novel
constraint-based approach to ATM network design. Extensibility of the tool is a basic design
goal and the tool provides an open interface to incorporate new algorithms.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Singh, Inderjeet and Turner, Jonathan S., "Cappucino: An Extensible Planning Tool for Constraint-based
ATM Network Design" Report Number: WUCS-97-25 (1997). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/441

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/441?utm_source=openscholarship.wustl.edu%2Fcse_research%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Cappuccino: An Extensible Planning Tool for
Constraint-based ATM Network Design

Inderjeet Singh
Advisor: Jonathan 8, Turner

WUCS-97-25

May 16, 1997

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

Saint Louis, MO 63130-4899

Abstract
Cappuccino is a planning tool for topological design of ATM networks. It uses a novel constraint-based

approach to ATM network design. Extensibility of the tool is a basic design goal and the tool provides an
open interface to incorporate new algorithms

Table of Contents

ATM NEOWOTK DIESIZILieicererietiveseeresssrves i sersee e iarresestestesessn e ses reressess ntesas ersessssanssnsessesessasesssnstsnssssansesnseseressenns 7
L TRETOMIOHIONL ..ottt ie e st ra e e s e et srenresseseebesaerassassesanssseassessnsssarnrstarsarbneersesseseanns 7
2. NetwoIlt Desigi PIODIEITE. ..ot etean st e e s ran e st s et b e snme s st e e e e sabenaessbensnensos 8

2.1 Local access network design PIODIEIIL.o.ooiiuiiiieeeicee et ee et e e e e e ee e e e eeeseeennaee 8
2.2 Backbone network design probIeIN.........c..oveiiiiieie et e et e e ste e n e 8
3. Issues in ATM NEtWOTK DESIEI.......ooi e ee vttt e eaev s et ssesn s saste s sntaernssensnmneerasennnn 9
3.1 Ensuring low blocking probability........ccoiiiiiiiiceiieniriecics ittt ans e a e neennnae 9
3.2 ENSUTINE LOW QRIATS ...ciiciiiriieeieite et ccte s veesee e e e s s s ser e et e e s st et s sbe s sseene s estsesseseabeetsassseaesnesstsassseaensentenan 9
3.3 Calomlating LMK COSE....ovoveieeiceeeceee ettt cee et et et et e e s s snenses e s eesaetnstentsnrasssneneesasenternstenns 9
4, TIATFIC MOAELvviieeseeec e e et e e s e e s b st e b et e tesae st s aae st s sasbesestennbeanteaebenesrnneennatertens 9
S IDBGAL. ...t e ea e e s e ae b e b e et s raat s et benrbeatseenraar e arannenne 10

USING CAPPUCCITIO ..cueitiietieti ettt st ss ettt see e en s en et es st et e et e ae e et eses see e et ensesestesansessesssesrassnnssnnsssrssranrsesnssrrssrns 12

1. Network Design Using CapDUCCINIO ..o.viviineec oo s et emb e e s e essrssseseene e e smnensne 12

1.1 Designing NetWOIK TODOLOET.vivcviriiiicricree ettt e st et e assseebrs b e sssesns st enss et sesearnsssnresesanan 12
1.1.1 Creating Topology VISUAILY.......ccooiiiieieeeee e b s e b e e tnesra s 12

1.1.2 Automatic Creation Using AIZOrthimiscc..oivviiniiiiciciiieieie e et 14

1.1.3 Improving Topology by AdjustInitialNetwork AlZOrithmc.ccoceveeveieieierieceee e 14

1.2 Specifying Traffic COmSIIAINTS.o.viiei ittt ettt et e e e s s e et e eeaeee et e s sme e esenrbevmsensenes 14
1.2.1 Creating Constraints VISUALLYc.cceiieiieeecieieiee et tesss e e evessaesasssssssassassseseneebennn 14

1.2.2 Using ConSmaintS WITAOW......oiviiiii it e eeee e e e e ee e e e e e et eevresenmtaenreesnesaenmnerenane 15

1.2.3 Using Algorithms 10 define COnSITAINIS.ccuiiiiiiecreieinieet s st easteests s teeemessteee st e eneene 15

1.3 Choosing Routing ALFOTITIIMIS.c.oi ettt s s s e e s s s s ssasesaesenenanae 15

1.4 Dimensioling LINKS ...coiiiiiee ottt eeeaeae st eee s e tensseessereemneesmvesensaesnnassrnsasaes 13

2, USing SUPET AIZOTIHIINISoiiitiiiccecriesi et et st b et st e s b e b et s bt eas et e e b s st st e st s e artne 15
3. USINE ATBOTTHIING ..eooeiiiiit ettt sttt s e erer e s e et et s te st e e e seeanessenosertetesasenranesnas 16
L GUITEAMUITES ..ottt e et ab et et ev s s s s ee ket ess e s em et ese st eaeseetssssasemsesasensssnenssesansresesaraas 16
AT HTML Based HElp........ooouiiieeres et ce s e et ae bt s s s aabs et iee s eaessae et s e samtsmeaesn 16

4.2 LOGAI SOICRIL ...ttt ettt e et e e s es etet e ae st e s s eseesssmeeseessnesntenseneenesaneraseees 16

2.3 FIIE OPEIALIONS ...t e et et e st st bes e ss e b et s sabeab s saeesb et e bes et bbb ambebeesne e bets i6

G4 THE Ftlif MBI c..ecviecieisiecsce ettt eet e e et e e et e et e e e e vaesseeneantsemt st e s et esraenaeeee e e neneneneeaereeeenneererens 17

4.3 THE THaW MEIHL.......iecivriis i ene e e e s s ssbe st ebe et s et et tesee et amteseesmse e saeseemses s e snsesmsenasseennnns 18

4.6 Menu-options for Running AIGOrithINScceveeeesiie e ees ettt ra e st etenses 19

4.7 The Options MEIL......ccouiiiiiiici ettt e et st bt ess et eamaeseaesrnesea st eetessenresesaaens 19

4.8 The Jindow MEINL.........covuiiieie e ceiesies st e st et eta s o st et ems e eeesaeam et e amsessasseeeses et aetense st seeeannnn 20

4.9 THE HEIP MEIIL.....ctiieiii et ev e e e st bt e s et s b e b e s b st sn s sbs b sasbas b enbeseab st ena 21
410 The Built-in Java IDEcociiiiiiiiicece e et et e ete et ame e rs s saebe e e nrs e st s ssnssanseaeeserere 21
4.11 Synchronized GUI OBJECIS . ..iiiivriiie e ssree e cie s aetss e bbb ssssesesemtesseeaneeeseereaneaeesmeeesea 23

5. Differences in the Applet and AppHeation VErSIONcocoviveivieeiire ettt s s sen s 23

ExXteNNE CAOPPUCTITIO ...oiiie et e et sb e st e e e e st e st e s s ase et eba s e e s s st e et e s reaeeemeesteeeroee s et eseeeeeemeeeneene 24

B Tu Ant) (RN ded 1Vl SO PR 24
1.1 Guiding Rules and Design PrRCIPIES ..o oot ittt oo etestese s s s sae s seaeterae e amnaseeaninas 24
1.2 Applet as well @S ADPICALION. ..ot e e e res e st e retatesereesaebereeasasensasasaesrasnas 24
1.3 Transparent File HANAUIEcccovooiioieieiieeee ettt ee s se e eme e e e 25
L4 InCorporating HEID ..ottt et at st b et rbans 25
1.5 Showing HElp HITS...covoveieiiieieie ettt e eeee e et aer s eas v e v s st e enssae ot esmenaenonrennssensos 25
1.6 Handling Error ConditIOnS.coiviveeeviiis ettt ers vt e sas st eees e aeseeemeaeeeeeneeeeeenreeens 25

1.7 Transient and PersiStent PTOPEITIESc.ooiiiiiiiiii ettt e e 26

1.8 ATOrithiam REPIESEIIAION .. .cvvivrvreiverisrsriimressaesrssiasssssaassessmnessssneeaassasanssesnnseasemsesseasamsassmeaesmsesesbasans 27
1.9 Document/View/Controller APPIOaCHccvivviiiiiieciiiii st a e s e sre et e e enre s en s erneeas 27
2, PACKAEE SITUCIUTE ...ccvvieiceee it eee e st es et sesssessbessessssesrbessasrssessrs e ssassasbnesaes b easnn bt s s st erssn s re rsfpansaseamsanereneansnmnaes 27
3. Understanding the mefworf PACKAZEoooiiiiii ettt as st 28
3.1 Network Represemtation.........cviiiiviiicoririeiiiecissiesrrasre e sieeanresiesensasenseraseneseessearsessasssessnsesnesensresnarsinn 28
3. 1.1 The Class SWItCIE ...ovivvirce e s s s e s e a e e e sracern s st saanesmsacmsennesanes 28
3.1.2 The CIass LINK.......ociicieieerenore oo e e e craer e s s eas e e s e sen s mceme e e s s e nessrenaeeeenes 28
3.1.3 The Abstract Class NEtWOTKocieeiiree et rree et s eeseeeie et s e eereesneeaae 28
3.2 Constraint REPrESEIIEAHONcccoimirieiesianirenseeeeiastren s aatetraesas st ss et e e sien s s eeatntas erenrane st senrsars 29
3.2.1 The Class SetPairCONSIIAINT.c.covviecieierrieserrtarieeseesreesresineesrmtasssesreessmaesrasseansassebessesesaneesssens 29

3.2.2 The Class COnSTAINLSoiciiiiiiierieeee et iree et eere e ree et este e s smeeieseemseere e s artee st essrresbevaeseaaeeensbens 3
3.2.3 The Interface NetWOTKPIOPETIIEScvieeeeeeeee s ee e st re st e e sar s sars s essessbe e sarresaresarnesseen 30
3.3 Iterface NEBWORKIFIEW ... et ea e e et e e e e e ee et e e e e enas 30
3.4 Classes for AIGOTIthIT PATAIREIEISevciieieieiaiieieestisteees e eae et sieebse s essstess s setstsesess e basbonsasasnsssnas 31
3.4.1 The CIasS PATAIN......ccoviiiieereciererresreres e res s rereesaes e st ersresseesseesseesesssasssessenssreesnsessansenssessseens 31
3.4.2 The Class AIZOPATAINISoeiieeeeeee et ee et e e eeee e eeaeeeeeeeeeeameeeeeseeennaeeseennnsnesenneeeeen 31
3.4.3 The Class ParamsUnavailableEXCeDtOMN.o.vvi oot iisieseir i vecssscsis s sissebebass s sseesaans 32
3.4.4 The Class VIEWPTOPEITIES ..ocuirtiiriiei ittt e sia bt a s esebe et s sess b s saabsabeeebsnnenraas 32
3.5 THC ClasS NeBWOMKUIIS ..oovoivvcieeiieie e cee et st se st ev e st e e et s ateesesrme e smaseanesesaeresasesnsensenas 32
4. Writing Topology ALBOTITIIN ..ot a e se st e st e et e et aen s eeermasmnessneaneeeae 32
5. Writing Routing ALZOrithiS.......coii ettt et sts ek a et s s ssabe et s s e sassabs s be e sae e 34
5.1.1 The Class ODPAITcceiiiiiieceitieieeie e ee e e sie s esrr e e rnessbressesssrrrsbersesssresstessasssstnssbeessnsesnns 34
5.1.2 The Class ROUHNZINGD ...cveiiiiiiriio ettt ettt e e ee e et seee e e e e eteer e eaennneans 35
6. Writing Dimensioning ALBOIIRINScvvvinvinicreiicis s sesese s e s sssessssee e ssesssarsssns e ssesensessesesseeas 33
6.1.1 The Class DimensioningIngo........oc.ecioiieeeeeeeeeeee et eae e e er e r e ee e e 35
7. Writing Constraints ALGOTITIINSovvivieiiie i i ies e e seia s b e s ssss s s e siee s s ssseabsetess sasessbansasesseesssessaessasnss 35
8. Writing Super AIZOTIEIINScooiieie e a e rea e e e saessae s e resebe b sarrsesreenes 33
8.1 Understanding the general PACKAZEcccovouicoiiieecer ettt e e et eeeeee s emeese e aenaeeesetsanssaneenne s 36
8.1.1 The PropertiesHolder INIErfACEocooirie it s s e rsess s s s est et eae st e ebsenrans 36
812 THE ClASS DEBUEZ ..o eea s ereere s es et st e st senearesneenneensaneeseeeareenns 36
8.1.3 The Abstract Class FileHanadler.........ooooiiiiiiiciiieiiitc et nenee s 36
8.1.4 The Class HEIPENZINE.ccociiiciiioieeiecresie s ctine e s aessre s e sr e snssssse s sbe s e s ssaeesbaassaessannes 37
B.L3The Class COI .ottt s et ene st e et e e e e e e e s e eeeeasetesenseesameansesnanneins 37
8.1.0 The Class ObSeIVEETEACKETc.ccoivvviirrererreesieirertrsrsersveeseesessessssensanseseessssssasssssssssesnssssanes 37
8.1.7 Miscellancous UtHIY ClaSSES . ..oirveirivtiieectee et e ete et e teeteeneeentemserssaaesreanss st senssns 38
Performance Evaluation and Project STALSHCSEcve.vevviee e eesss s st sss s aresss st ess st s e st s et ese et e 39
L. Performance EVAIIATION.ocooiiiivieciee ettt et re e et e s e bt e e s s sne st s nesesanes e ssemeenns 39
1.1 Efficient Network Represenlaltion.coierrinieesceeriereireesie i eeee e ee et e st st esems e saeenaneseeesaeasasenssenen 39
1.2 AIZOTINIT ATIMALION ... iss e st e s st e sesnese st eneseaabesratane saaatrreasaanseesanssensantseson 39
1.3 Hiding BaCKSIOUNA.oiiiiiitiiiiiieiei ettt et e e e e en e m s easssenasebens st sereenesanean 39
1.4 ODSEIVADIE OBJECIS. . .vevirrerueeerntiee e ettt bt es e ebrss e sassaees et et b embebt s e s e et s seemsedeee e st eeensesanenesneeeermeene 39
1.5 Cappuccino Loading TIMIEccooceiiries it ceereris et e e bsts s st stesassnstas b ens st e ses 40
1.6 File I/O OVRT INIEITIEEc.eoiiiitieieiiereictr ettt et e e e eae et e eaesse e eenersemeaseeretsentastensensensenans 40
1.7 Storing the NetWork A5 OBJECLSccvoverieeieiieiceree et ere s ere st eersaae e e et steeaassebeeseaste s anres 40
1.8 Compilation in JAva IDE......cc.oviiii ittt et ee et ea e e e e et eenssrsrmeneeaesaesaeertesrnea 40
1.9 Optimizing the Best Star AIGOTIIITLccoiiieiciie ettt ettt e s et s e easaan s 40
2. KEY COMIIBUONS. ..o. vttt ittt ettt ese e aecaeestenssesnneseesessnsanteseseenseasanessesanoessasensensannen 40
2.1 Extensibility withouf ReCOMPHIAION. .c...iivis et ecn sttt mee e sms e aee s eneneas 41
2.2 Availability as an Applet and an APPLHCALONooooiiiiiirieeeee et see e e s et sn e 41
2.3 Document/ View/ Controller APProachl.......c.oirii oot e et eteeeeee e seeseesseeeeeeeeeaeeesanneas 41

2.4 Web based ServiCe IMOGEEoiiiiieei ittt e et e e e e e e e e e reeeeeeert e et oot 41

3. PIOJECE STALISIICS ...veuiiticiictcieictecree ittt ce et ee sttt 1 e s ee e eeee e et ee et et enseereneesesenssessaeasser et araens 41
AU FOIUIE WOTK ...ttt ettt rs et st b sttt a et esame e e e et e et e e e e eeee s emeneeesereaeeneeas 42
4.1 Adding New ALZOTITIMIISoovoiiiieieieiei ettt e ere e eee e nr et et eaereseeesaneaes 42

4.2 Cappuccing as & TIUSIEA APPIET........ccovviviiireeies ettt et e et eeeetseese e e e aseseeesenanes 42

4.3 A Configuration Tool for CapPUCCINOoooiiieee et ee et er et eese e et eeee e eneee 43

4.4 Using JAR 10 Package Class FIlES.......c.oceeoeerieeeeeee et eee e et e s s eatenssee e esemeeeee e eeeaseanans 43

4.5 Support for Adding New Cost MOGEIS..........civiirieiioe ettt et s et ee et eeeeeeen e eereses 43

4.6 A Dialog Box for Algorithin ManageImenitoooiiiioeeeee ettt e e eere e e s eeseteeseneeeeenns 44

4.7 Allowing Enumerated Types a5 PrOPErty VAIUESvcvovooveeiveeeceeeceeeeceeeevee e een e eneeneeeera 44

4.8 Providing Selection RECIANEIE.ocooiiiii i ettt et et ee ettt eee e eees 44

4.9 Numerous Performance ENDANCEINENLScoooveioeeeeeceieeeiiriitever e eeee et seeeeseeesereeraesesesseasen 44
Credits and ACKNOWIEAZINENSooiciriiieiie ettt es e s eee e s eeeesresesesesasseeeserenssasanseresens 45
APPENAIN AL RETEICIICESoveieieieiieiteeecee ettt ete e cer s 1ot as e et et reseeaeseea eetasee e s e e s e ase st s e s eeem e s e e e eeemeneenesresen 46
APPENAIN Bl GIOSSALY -..oeeveieiiciirisciriisrs e st ees st ettt st et e e es e st eee et e et eteme e e e et aeneevaessensesentesssnssessesseseasssesesessen 48
Appendix C: CappuCCinio PACKAEES ..o ieiiivirie et e e et ee e et s et ee e e e et e e et e e e e e e e esenenseesesreseseerassseren 49
L The Defanlt PACKAZE......co ettt r et e e et et an e et et ems et et et easen e eeseeeaneee 49
1.1 TIe MAIN CIASSESeeiviiveriesversrteetereere et este s ie e e b etetaeese e seeseasesees e st eeseseseseotsaneansesesneseeresesaneneenerens 49
L1 T CapPUAPDICE ..ottt ettt eb bt 1ttt en e eenaea 49

112 CappuAPPHCAION ...c.oiviviitieieet ettt e et et et st e et e e et et eeseneee s eeneanamnens 49

1.2 The Concrete File HAMAIEIS.........ocooceiieiriciiieie et e et e e en e s et enee s eeneenennens 49
12,7 ApPIetFIIeHANAICE ..ottt e ettt et s e e et e e ee e aneann 49

1.2.2 ApplicationFIIeHANAIETo.voieie ettt st et ettt reene 49

1.3 The Concrete HelP ENZINES.cviiiiiiriie et veeeee s eeeeeseeeseanenesssensene s nseessenes 49
L.3.1 APPIEtHEIPENGIDE.ovoioii ittt ettt eb et ee e ee et emen s s enenseron 49

1.3.2 ApplicationHEIPEIZINEooi ettt n e st st e et et e e e eneenen 49

1.4 The Concrete COmPILer CLASSESov.vivevieviiierieeiat st eee e eeee e eevees e et eseseeresessereasesetsereeseseneraeens 50
141 ApPIetCOmPIIET ...ttt ettt ettt et et oot en et neeeeene 50

1.4.2 AppHcationCOMPIIET.oiv ettt s neseneree e et et ee et raeeeens 50

1.5 Pre-CaACKINE CLASSES 1vvviuceieceeeeeecee ettt et e e s et e s et e en e e e e e e et emeen e ee s eennnn 50

1.6 Classes DefINiNg PrOPETHES.oeiivierieeieteeeiie ettt et sse st sn e ssstessstassessse e stesenesesseeseeeseen 50
1.0.1 ADPICIPIOPEILIES ..vvvvrieeeieieties et csivt e ie e e ee oo e et e e ene s eseme e e ee s esesereensseesneensensseeseeeeeans 50

16,2 APPICatIONPIOPEIIIES ... oottt sttt es ettt eteee e et et eseeresere s enranes 50

1.7 Concrete Classes for File DHAlOZco.vcvivieiieiiieiieecee st ev e ettt sttt snes 51
L71 APPIEtFIIEDIAIOR coverieriirrieee e e sieiit e et eese e ee e seneeseasesms e e nesesanseneresnaneaneas 51

L7.2 ApplicationFIIEDIa0E ..ottt sttt e en e 51

2. TIE GENEFAI PACKAZE ..ot ettt et e e e ee et et e e e e e s e e e e e e s e e s e e esesmsansensnranes 51
20 CIASS DIEBUG. ..ot ee e et ee e eme e s et e e e s et e et e e e e e e en e e e e e e s e e s ereenen e 51

2.2 ClASS HEIDEVEREooooviviisieeeeees ettt ettt oot et eenaee st et e s e e ane e et e e s eeteeteetanssneaneaseennan 52

2.3 Class HEIDHIEEVENL...........cccccccvvirierieriessesnsse e sassessssesiaseaess teenenssene s eeeassnsenetssseseaseeetesssevssoasnes 52

2.4 INMETEACE HEIDITINILISIENE ... icverereeeteeeeeeeeeee e eeee e v st ee et et areee e esneneean e s e et eeeeem e anaeaen 52

2.5 Interface SourceCoOdRCOMPIIEIcc..ovceueeieeieeeisiaeeecatoaeeeeeeee oo eeee s e e eee et ea e seroen 52

2.6 Class CHangeConmMaANAcoccoooweieirriee s res et e sttt b et ee e s e e eeas e 52

2.7 EXOEDHOTL ClASSES ..eeeiiiitii it eeiictie et ee e e e eeee e e e oo e v v es e s s s eeneesase st nsseeasetanseenseessentessnseseen 52

3. TIE AW PACKAZEccvoeeiieecietesc ettt ettt e e e e es e m et s et onr e seseesenenresasreens 53
3.0 CLaSS NEIWORRIIPL ..ottt e ee et eee s et et e ete et ees e s e eee e oo 53

3.2 CLASS FIEWINIO ..ottt ettt e et oottt ettt n e ne e ar e reene e 53

3.3 Cla8S COMFIZBRAINoevueevieiiiesieee oot e e ee et s e e enr e e ees e e e et e e s e seeeeem e s e s eneeean 53

4. The stk Package: A GUI TOOLKILoireriieisee ettt eeeeee e es e eoeeanereees e e eeeeseesessensenas 53
4.1 Revised versions 0f GIT CLASSESc.eceeeeee et ee et e e ee e es e eeenas 53
L L BORAET ...t e ettt e e et e e et e ettt e e e e e et et rareaneeerras 53

412 BUIIONPANELooiiii ettt et e et e et e et e ee et e e vt e s ereeent e aaamresesesaenemsmeaen s 53

4.1.3 COMMILAYOUE ...ooiiiiiiieiiceeiier ettt es s est s sae st e eae et eab st s e b e e sem e e beeeeeensene 54

A 14 ROWLAYOUL...eivsiiiiieeieeeeeieicrte e st e e et e b s s b assaeseeres sesasesssessansasaesrsessasbasaeensesareasssenns 54
4.1.5 DIaWNRECIATBIC. ..ottt ettt e e sre et e s s sae e s rassnea e e e s e beree s e eres 54

4. 1.6 EICREABOTAREvevsve ettt ce e sa b s b et ettt ste e e eme e e e e s ssems e tensessamsamsnesasamneseansseennens 54

4. 1.7 BIChedRECIANEIEoiiciieee ettt sttt s e et s e e ssasessebsansessnseenns 54

B LB BICHIE .. oee ittt st et et te et et s ereemees e ma et e e et e s st ene et s eaneaanonraesnen 54
4,19 IMAZECATIVAS L.orreiiiieiieree e es e e s e e et e st e b e s e s asasss et essatsts e st easete e esmaemnemsemteseeerneeenneesebens 54

4. 1,10 MeSSAZEDIALOZ . ..o et et e e be e s b e st et e erbeaerenes 54

4. 111 OriENIALION.eeveeeee et ettt e e s e e e e e e ete et e ee e e s e emesemseseessemsasmsaseeeeanrensensnsnnasensenns 54
102 BEPATALOT ..ottt a e ae e e e e e e se e e e e s e e ae e e st et et et s s ebeensean et e seeenssaaananeas 54
41013 QUESHONDHAIOE «..ee ettt e e eeeeeoe e v e s er e v e et e et e e e rnaraneeaeaes 55
41,14 YESNODIZIOE ... ccetirricrtrrie s v ses st st e s e eae e et e st ss b e s aas b abseabsasranbestestent bbb enneiveias 55

4.2 New Classes in S8 TOOI-KIT........c.oov et et s e st s s s e aaenatnameas 35
4. 2.1 POWEELAFOUL ...vveiiei ittt e e e e e ee e e e ee e e e e e e e e ra e aeme o taannenenenaan 53

B 22 CATCIE e et b et et ter e e st e et et s b st bbb eeab et e sntes 535
4.2.3 ExclusivelmageButtOnPanE].coooovioieeierece et s et st e seenes e senesan et e nmnne 55
4.2.4 EXCIUSIVEMETIIT ..ottt et es et ae e e et ee e s ensene et s ersnneneenann 55

4. 2.5 TMAGEBUIION ..ottt e ee e et e et e es sae e s s e sbba b et s tb e b et essssbes e se e ts st semtesesesensasaen 55
4.2,6 IMAageBUttonPANEL.......oo it s e b s et e e 33
2T SIAMISBAL .ttt et ee e ee e et et et ot et e s et et et e et e eaeeeaeeanenns 55
4.2.8 StatusBarContIOIIRT.......cvvir s v sr et e e se e et b et s bt bt eabsen bt a et e e eaeetes 55
B9 UL ot ettt et ettt e e et e meea e s e ssers st st er et e et e et e s resenn e resoneeraesanie 55

5. THE i PACKABE ..ottt st s rse sttt e et n et e s e b e st e st sa et e a et st e s s emenbemseseeeesaemnesesaens e rmnenneereon 56
ol GUIEIIHES. (ot evtitiiitiitit ettt cee s eme e et aere st semeaneseesrese see e on et artesses s asentaresaesnesenonsesessanean 56
5,11 GUIMADEAEET .. .eeee ettt ee et e ee st e e et e eeens e et e e e se et amn e e e e s e enram e et a st et e enesaanean 56
5.1.2 VIEWIRTOMERIAZETverieeirriermieeeiee e veseniesssesse s et e sescsasatsstssbasrassessabessssrsiassssssersntssssessns sasanes 56
5.1.3 TOGUIMIAIABET ..o ceoeeeeeeiceceieeeceteie et cassaas s s s sseeser b esarsras s asinssae b assre st saesbarbsssnssnr e srenrssnrntssarans 56
5.1.4 ALZOGUIMATIAZET ...oeoveeerit ettt ettt ettt e et es e e e se e nseasamaseem gt s ansnse e teamsnasseene eee 36
5.1.5 ClpDoardManagercccocrreimiirmirirrs s eeessesessessessesessessesassssensasssasssessssssssessessesssessesses 56

B2 e Oy T4 21T T F O OO OO ORI 57

3.2 Common GUT COMPODEIESucviverriee e iesesnsierscresstesteesseesobserasteseessemsesesseaseessmssesseesanserseassaasssmnaerons 57
5.2.1 Menu items for AFZOTIISoioiii et et aas s 57
5.2.2 Class ConstrairESWITLAOWcciiiiiiitioiiiiiiie ettt ev et e et es e ese e tenrae e ans 57
5.2.3 FIEKIDIEDIALOR. ..o e er s et ees e e e sse s en e ne b e b e aresresenar e 37
5,24 InPUECOIHTOIIEEeiceis ettt e ettt et eeeemeeme e et e et e sseme e s eeeeeeententsaesseeseseesenas 38
5.2.5 SWIHCIINIODIAIOZ - .r vttt e et et e et s e e st e b e st et et et e saesrssessrtsantsarsssanssans 38
5.2.6 LINKINODHALOE ..vevvviviie it cee et ee et enee e eseeteet e ssasesenessssseanssnsensreensnanssnnnnanea 58
5.2.7 PropertieSDIAlOZvvciriiee v e et et a v s bean et a e bents et s e aserassanranas 58

5.3 Visual Representation of the NEEWOIKcoooiiicie e mscseese v e st sssn s ernrarseneanis 38
5.3, 1 NetWorKGUIVIEI ...ooiieie sttt st sttt et et e et eet e s e e ese et e seesmeentesneeenneeanaan 58
5.3.2 GUIVIEWCOMITOIETcooiiicir it e s cre s s e ss b s e sesee e e vsess e raesnrasraene 59
3.3.3 ABBOENCOULETeitiiiccricieitiisieeiese e e eseesseee s e eeae et e sesseesseesesesessessenseansseaneaseasenseneessessesssennesanea 59
5.3.4 GUIVISWIMATIAZE ...ec.veveees ettt eesiesessaseae e ae et ee st e beesteseeatasebetastesesesrasresssnsssesasessasesseans 59

5.4 Textual Representation of & NEEWOTKoccooiiiiiiirieie v res et sstssnrs e eresssrssbessonreresserenn 60
5.5 Class NetworkSWICITTEW ... oot ettt eeeee e e e e e e e e 61
5.6 Class NEIWOIKLIEVI@Wcooooeioeieee oo eeeseeeeea s eseeaeaer s e e s s eeeeaneeareareanesneeensen e tsneaneasneesnnneenns 61
6. TIE edifors PACKAZEov vttt a1ttt b e e st em b ebe e e e s e s en e s etee s eeaameaneseneseenenes ... 61
6.1 Integrated Development Environment for Algorithm Creation ... cvievvececccvie e 61
7. The TopologyAlgos PATKAZEciieie ettt eae et e ettt e et ene e e e eeeeen et e et s aeteeeeeenaeenneenns 62
7.1 RandomSWIICRAGECEccoveiiriseiresirtssens e ass s e e ss e ss e s asbestesssaee s sta s et b e sba s ane st eane e astsastearens 62

T2 RANAOMLIMRAGGGH .o oottt et e et s s et e et e e e e e e e et e e e e ee e e e e e amea s et ot e enaees 62

7.3 COMPIELENEIWOIEvoverveeeieseesiseeeisceise e ee et e vt e et e e st s eseanseneenteseseresseeeemseenens 62
T4 LinkComplement.........cccccoocvovvivevminioeenss e PO PTOT SR 62
1.5 DelaunayTrian@ulalion ..o s es s st seeeeseese e eeene e s 63
7.6 MIRIMUMSPAIIINGTIZE ... v ettt sttt et ee e e e e e er e s e e e et e s s eseteesensenseeseesseaeneesenessenneans 63
T SSEOF oottt ettt ettt eeen et e et ee et et eer e e e 63
T8 SeEPPIMAFYNEIWORK .. oovevivvtveee et et re e e s e e e e e e et et ettt e b b ame st et s emeeme e e e e een e 63
T.9 AGRUSIPYINOIYNEIWOFK ... evieee ettt eae s et eens et e e e aeeanereesee s sen e enseenenaras 63
8. The ConstraimtSAIZOS PACKAZE..........cco oo ettt e et ees et ettt see e eee s ees s seeeseseene s anesenes 64
8.1 The Class PairWiSEPeFCEIMEALEceeeeeeeeeeeeeeeeeeeeeeeeeeressvorsevesreres e eneeneneeesentaenseesentaseeeresesseaneneee 64
8.2 The Class LoCAIIZedcouiiieiiiiciiiiitce ettt st ss s en b 64
9. The RoutingdIg0s PACKAEEc..cocvietricriieeeetee ettt ettt e et ee oo e et eseeeraens 65
9.1 SHOFEESIPAIRROULING ...ttt st es ettt sttt st e 63
9.2 DISIFIBUIEAROUIINGc.coioiviriiiiieiriee ettt a et s et et en et et ees e ae s s e et e et erssnrsesasrastereenerentrnsenes 65
10. The DimensioningAIgos PACKAEEocovieviieieieiiecrietec s e ettt st st at st ee s een e aeenn e 65
10.1 USELIMEAFPIOZIAN ..o eiesieee st et et e e s eee e e s asea s st s st e st eenseneres e e ensenenee et asaeneseenres 65
11. The common PACKAEEcoveruiiieeeecee ettt a ettt e e eee et e eeneneeee e 66
T1.1 The Class DiSjOiESEEICINENEcccoeeeeceeeeeeece s vevioiaoreeeetanse e e senesee e enssaneseneeseseenenseesenseseesenreseee 66
11.2 The Classes ShortestPathUtils and SHOFtestPAIBINTDcoveveioeeeeeeeereeveeevieeeean oo eesneenes 66
12. The Suuperdlgos PACKABC.c..eovrieeeeccaeseee e ettt es ettt a ettt sttt e e ee et eee e eneneenenas GG
12,1 THE ClaS8 BESESIAP ...cocoeiiiiiiieeee ettt sa s e se s rh bbb st e st et e sbe st et s b aeaaas 66
12.2'The Class LOWEIrBOUNGcoceceoeriieiieee sttt ee e ea e s ev et s st st s et et n e nransresrnesseenens 67
13. The SwitchCostAIgos PACKAEEovoveeiee ettt ettt st e e een e e enenoe 67
13,1 The Class Lin@@rSWIENTDSE.c..veeieeiriitee et e e e v eeses st onees e s eesaeeeneeasaeneenenreneannanne 67
14. The LinkCoStAIZ0s PACKABE.cc.ooiieieeiietiec sttt vt ee e emeereea s aoreereeene 67
14,1 The Class LinearLitkCOSEc.cocoiiieieeeieeeee et en sttt sttt e es et ee e e 67

ATM Network Design

1. Introduction

Deployment of any communication technology raises the issue of network design. Stated in its most basic
form [Af94], the problem is to find 2 way to construct a network that meets the "desires of network users,"
and does so as cheaply as possible. Telephone networks were the first communication networks to be
widely deployed. The "desire of network users" here was to have point-to-point connectivity at a fixed date
rate and with a low probability of blocking. Narrow band ISDN networks also fall in this category. The
success of the ARPANET brought forth packet switched communication networks. Here there were no
circuits, hence blocking of connection attempts was not a consideration, Instead, packet delay was the main
source of users' dissatisfaction. Starting in the late 70's, attempts were being made to integrate voice and
data services. ATM is an emerging set of network standards that supports many kinds of services. An
ATM network is a connection oriented network, which supports multi-point and multi-rate connections.
The “desire of network users” here is to have point-to-point/ multi-point connectivity at a desired data rate
with a Iow probability of blocking and a low network delay.

Any communication network needs to address issues of reliability and fauit tolerance. Communication
networks also undergo evolution due to changing needs of end users and hence it is important to find ways
to upgrade a given network less expensively.

The optimal network design problem, even in its most simple forms, is a difficult problem to solve. Many
of the involved sub-problems have been proven to be NP-Complete [ASI96, ARSJ96] thereby precluding
development of a tool which will give the cheapest network (for a moderate number of endpoints) while
meeting the "desires of network users" in a reasonable time. A large number of heuristics are available that
work well in a limited number of cases. The network planner, therefore, has to intelligently evaluate
different heuristics and use his own expertise to design a network that meets the needs. It is also sometimes
possible to compute a lower bound on cost of the network for a given network topology and traffic
requirement. Such an estimate is often useful to determine when a particular solution is good enough.

This project is an attempt to build a tool to aid network planners. The goal is to provide an integrated
design environment, called Cappuccino, in which a network planner can specify his network requirements
and then apply a rich set of heuristics to create a "good" network. Similar tools are now publicly available
(e.g., Planning workbench from Bellcore, PLANQUEST from NEC, etc.). Cappuccino differs from the
existing tools in two main respects. First, it is based on a constraint based approach to network design that
yields networks that do not block connection requests, so long as the offered traffic operates within a set of
user-specified constraints. Second, it is designed to be extensible, so that new network design heuristics can
be casily incorporated within the tool. In addition, it is being designed for use over the Internet (using the
Java programming language) making it easy for people to try it out and use it for developing network
designs.

2. Network Design Problem

The network topological design problem can be formulated as follows [BF77]:

Given

* user terminal locations

traffic requirements (source and sink capacities) of user terminals
delay requirements

reliability requirements

candidate sites for switches

link and switch cost functions

An algorithm for routing traffic for connections

Total cost of communication network, C = access link costs + backbone link costs + switch costs
The objective is to minimize C such that the traffic, delay and reliability requirements are met.

. & & @

Often, it is casier to break-up the global design problem into two parts, design of the local access network
and design of backbone network.

2.1 Local access network design problem

Given several user terminals at specified locations, we want to find a location to install a switch that
connects to all terminals and meets their traffic requirements. The combined outgoing traffic from the
terminals is called the source capacity of the switch and combined incoming traffic is called the sink
capacity of the switch,

For the local access problem, intra-network delays are often insignificant. Reliability requirements are also
usually not stringent because the failures are typically due to faulty terminals or line access cards and hence
affect only a single user.

2.2 Backbone network design problem

Given several switches at specified locations, we want to know how much capacity to install between each
pair of switches such that the resulting network meets the blocking probability requirements for a given
routing algorithm, We call this the link dimensioning problem.

End to end delays can be high due to large geographical distances and relatively large numbers of
intermediate hops. Reliability requirements are also usually more stringent because a single failure can
affect a large number of terminals directly or indirectly, Typically, the reliability of switches is high but
that of line access cards and links is Iow. Also, repair time for link faults can be high. Hence, some kinds of
fault tolerance guarantees (e.g., carrying a definite amount of traffic in the event of a single fault) are often
required.

3. Issues in ATM Network Design
3.1 Ensuring low blocking probability

The connection oriented nature of ATM requires the network planner to ensure low blocking probability for
valid connections. A valid connection is defined as a connection that is possible from the end user's point of
view, 1.€., all the endpoints involved in the connection have the required bandwidth available. It is possible
to design a network that is fully non-blocking by designing the network for the worst case traffic
distribution. However, significant cost savings can result by judiciously sharing resources if sometimes the
connections are allowed to block. Standard bodies usually specify a minimum desired blocking probability
and network planners must ensure that no valid connection in the network suffers a higher blocking
probability than the specified maximum.

3.2 Ensuring low delays

Use of larger (in number of ports) switches lowers delays because of the reduced number of hops required
to connect endpoints. Also, use of higher rate links implies a lower data transfer delay compared to that of
lower rate links. To ensure low queuing delays, links cannot be loaded to their full capacity. The usable
bandwidth of a link is often calculated by assuming a traffic arrival model and then performing queuing
analysis [Jt01] to arrive at a rough figure {e.g., 75%). All link capacities available for network design are
reduced by this factor.

3.3 Calculating link cost

When thers are several different types of links available (e.g., OC-1, OC-3, etc.), the higher capacity links
generally offer a lower cost per unit capacity than smailer capacity links. This advantage is magnified by
fragmentation [Jt01], which has a more severe impact on small capacity links, and by long distances, since
the cost of the fiber required for high capacity links differs little from that required for low capacity links,
Consequently, whenever, there is sufficient traffic available to make good use of high capacity links, it
makes sense to use them.

A linear link cost fimction is often simple to use. In this case, the cost of a link varies linearly with the
capacity required on the link. A more realistic link cost model [ARSJ96] is a step or staircase cost function.
This is obtained by calculating the optimum mix of different link types for a given capacity. Obtaining this
function is a variant of the well-known knapsack problem and hence is NP-hard. However, the presence of
only a small number of link types allows use of a dynamic programming solution.

4. Traffic Model

Generally, the desires of the network users are represented as magnitudes of traffic from a particular
network node to other nodes. These are defined as a traffic matrix, which is a table in which each row
corresponds to the traffic originating at a particular node, and each column corresponds to the traffic
received at a particular node. Generating such a table can often be difficult or even impossible. For
example, in an environment where traffic is primarily world wide web traffic, it is possible to specify the

amount of traffic a workstation receives but it is very hard to a-priori fix the source of that traffic. Most of
the available network design tools currently use this approach for traffic specification.

In our traffic model [Af94], each node has an associated source and sink capacity for the traffic. The
source capacity of a node is defined as the amount of the traffic it generates and its sink capacity is defined
as the amount of the traffic it can receive. The connection pattern of the nodes is specified in terms of
traffic constraints.

Different types of traffic constraints are possible [ASJ96, ARSI96].
1. Flat constraints: Traffic is constrained only by the source and sink capacities.

2. Hierarchical clustering constraints: Clusters of switches are defined and intra-cluster and inter-cluster
flat traffic constraints are specified.

3. Distance constraints: Amount of traffic a node sends to another node is a (decreasing) function of the
distance between the two nodes.

4. Node-set pair constraints: For any pairs of vertex sets, A and B, an upper bound on traffic flow
between them is specified. This approach is most general and can be used to represent the flat,
hierarchical and distance based constraints.

‘We are using the node-set pair constraints based approach for traffic specification in our tool. Nodes can
be grouped in sets and these sets can share nodes. The bi-directional traffic flow between pairs of these sets
specifies a node-set pair constraint. The tool will also allow convenient specification for the common cases.

5. Decaf

An initial version of Cappuccino (called Decaf) is available as a java applet at

http./rwwww.cs wustl.edu/~javagrp/network-desien-toolhtml. It was implemented by Hongzhou Ma and
this author with help from Rob Jackson and Andy Fingerhut. Decaf provides support for manual network
creation. It also allows automatic creation of some simple topologies (e.g., best star network, minimum
spanning tree, complete graph and Delaunay triangulation). The tool can also merge two different
topologies to provide a "better” topology. The tool provides support for traffic specification. The user can
specify local and remote traffic constraints. It also provides algorithms for calculating lower bounds and
for dimensioning links (based on shortest path routing) for a given topology and traffic specification.

10

—
[elHetuork Besign Tool: 3

File Edit Options HNetwork Optimize Window

Hebwork i random nelwerk

Link Cost not calculated
Ok |¢ Stop |i{Update]i Help |

[D_5_3.Chicage.New York 129.514.0,0]
[D_3_8.Mew YorkSeattle,316.363,0,0]
[D_10_9,52n Francisco,Palo Alto,61,0295,0,0]
[D_%_&.Houston, Las Vegas, 211.328,0,0]
[D_1_5.Houston,Chicage, 359,71,0,0]
{D_10¢_7.5an Francisco,L.A.,108.182,0,03
{D_1_3,Houston,New York451,398,0,0)
[D_1.2,Houston,Saint Louis,330.123,0,0]
[D..10_0,5an Francisco.San Diego,153.411,0,0]

{C_1845an Francisco}{5an Biego, Houstan,Saint Lou
{C_17.fPalo Alto}fSan Diego,Houston,Saint Louis,Ne
{C..16,fSeattle,}.{San Diego.Houston,Saint Louls, New
C_15.4LA L Housten,S5aint Louis,New YorkChicago,
fC_12.{1as Vegas.LiSan Diege.Saint Louis,Mew York(
fC_11{Chicago}iSan Dlego, Houston, Hew York Phoe
fC_104Phoenix iHouston,Saint Louis, Hew YorkChi
fC_s.{New York}iSan Diego,Houston,Szint Louis, Phe

{C_5.4Saint Louis,1{San Diege, Houston, New York Phe

i Ok |{Update] Heln |
5N Ulegs,—18.0451,290.727,0.568817
<Housten207,.519,411,028,0419272,0.
<Saint Louis.193.484.81.203,0.147001,»
<New York342.857,~30.0752,0.32502¢
<Phoenix86,2155,276.692,0,178305,0,
<Chicago,243,609,53,1326,0.339802.0.
<las Vegas,80,2206,236.591,0.354 159,
<L#,—2.00501,236.595,0.394131,0.43¢
<Seattle,27.0677,~11.0276,0.787253,0.

(%=BB,y=—2) edit tink ¥

i
Ok |:Update]: Help {

A Snapshot of Decaf

I1

Using Cappuccino

Cappuccino is a tool to design ATM networks. A user will typically set a map as the background and place
switches in different locations. He will then use the available algorithms to generate the optimum topology.

Cappuccino can also be used as a tool to do theoretical studies of the network design process. The user can
generate random networks. The extensibility aspects of Cappuccino are very useful in this regard because
the user can write algorithms to generate different kind of topologies like hexagonal, rectangular and
triangular partitioning.. Random networks with arbitrary probability distributions can also be created and
studied. The behavior of different kind of networks can be evaluated on different kind of constraints by
defining new algorithms for constraint generation.

1. Network Design Using Cappuccino

Network design using Cappuccino is a four step process:

1.1 Designing Network Topology

The first step in the network design process is to decide where to place switches and links.

1.1.1 Creating Topology Visually

The graphical user interface of Cappuccino provides three modes of operation.

1. Add Switch Mode: In this mode, the user places switches at different positions by clicking on the
canvas. The first click brings up a properties dialog box (unless the relevant properties are already
present, for example, due to the use of an algorithm that required them) which asks for the default
values of the different switch parameters. All subsequent switches are created using these default
values. The values of the default parameters can be modified through the Opfions| Defauits dialog box.

2. Add Link Mode: In this mode, the user creates links by first selecting its /@il and then its head. The
first link brings up a properties dialog box (unless the relevant properties are already present) which
asks for the default values of the different link parameters. All subsequent links are created with these
default values. The value of these parameters can be modified through the Options|Default dialog box.

3. Select Mode: In this mode, the user can select different switches and links by clicking on them.
Multiple objects can be selected by simultaneously pressing and holding the ctr! key. All selected items
can be released by clicking (while not holding the cfrf key) at an empty location. The user can move a
switch by double clicking on a switch and dragging it to another location.

12

Algorithme Op

Randomgwi 'tehﬁdc‘!.et* oy l

RN

Executing Usel inearProgram ...

A Screen Snapshot of Cappuccino

In all modes, the user can right click on a switch and link to see its properties. The user can also perform
cut, copy, delete and paste of switches and links by either using the command bar buttons or the menu-
options. Keyboard accelerators for these operations are also available. The Edit menu provides various
options to operate on the topology. The user can select or unselect all switches or links through menu
options. The menu option, Edit|Background, can be used to put an image in the background of the network.
This menu option brings up a file dialog box to select the image. The View menu provides options to turn
off the display of the background image, name of the switches and links.

13

1.1.2 Automatic Creation Using Algorithms

The Cappuccino user can generate topology algorithmically. Presently, the following algorithms are
available:

1. Delaunay Triangulation: This algorithm generates the
Delaunay Triangulation topology for the network. It
deletes the links that are not required in the triangulation.

2. Minimum Spanning Tree: This algoritlun generates the
minimum spanning tree based on the Euclidean distance
between the switches. It also deletes the links that should
not be present in the minimum spanning tree.

3. Star Network: This algorithm generates a star network
rooted at the selected node. It also deletes all the links not
belonging to the star network.

4. RandomSwitchAdder/ RandomLinkAdder: These
algorithms are used to gencrate a random network.

3. CompleteNetwork/ LinkComplement: These are utility algorithms to help create a better topology.

1.1.3 Improving Topology by AdjustInitialNetwork Algorithm

The AdfustlnitialNetwork algorithm provides the facilities to iteratively improve the topologies. When this
algorithm is applied for the first time, it sets the given network to be the primary network. Subsequent
invocations use the links present in the network (at that time) to improve the primary network. All those
links are included in the primary network if they reduce the shortest path distances in the primary network
by a ratio that is specified by the user.

1.2 Specifying Traffic Constraints

In this process, the network planner places constraints on the traffic flow.

1.2.1 Creating Constraints Visually

Cappuccino allows the users to manually create new constraints. In select mode, the user can
select two sets of switches and create a set-pair constraint between them. The sets are defined
by first selecting the nodes and then clicking the appropriate button. I no switch is selected at
that time, then the set is taken to be the complement of the other set. The creation of the first
constraint brings up a dialog box asking for default traffic flow between the two sets. All
subsequent constraints use these default values. These default values can be modified through
Options|Defaults dialog box.

14

1.2.2 Using ConstraintsWindow

The user can enter constraints in text-form through the Constraints Window. In this window, the available
constraints are presented in text form and the user can add new constraints by following the syntax.
Cappuccino can parse the text to create actual constraints.

1.2.3 Using Algorithms to define Constraints

Some type of constraints are more suitable to be defined algorithmically. For example, distance based
constraints are hard to specify through GUI but simple algorithms can be used to generate these constraints
for each switch. Cappuccino provides the following algorithms for constraint generation:

1. Localized: This algorithm generates the constraints that specify the local traffic. The user can specify
the percentage of local traffic and the distance within which this traffic is constrianed. The user can
also specify the maximum and minimum number of switches to include in the local traffic.

2. PairwisePerncentage: This algorithm generates the set-pair constraints between each switch pair
depending on the proportion of their source/ sink capacities to the total source/ sink capacity for all
switches in the network.

1.3 Choosing Routing Algorithms

This process takes in a given network and its traffic requirements and constraints and generates the routing
information for each of the links. Presently, the following algorithms are present in Cappuccino:

L. Shortest Path Routing: This algorithm generates the routing information based on the assumption that
the traffic between two switches is routed along the shortest path between them,

2. Distributed Routing: This algorithm generates the routing information based on the assumption that
the traffic between two switches is routed along alternate paths, each of which carry a percentage of
traffic.

1.4 Dimensioning Links

The final step in the network design process is to decide the capacities required to be put in the links to
support the traffic requirements and meet the constraints specified for the network. In Cappuccino, the user
can select specific links (or all links) to dimension. The available algorithm uses a linear program to
generate dimensioning information for each link. This dimensioning information is used to calculate the
total cost of the network.

2. Using Super Algorithms

A super algorithm combines the above-mentioned four step process into a single step. It is either for
convenience or to represent the algorithms that do not fit into the four step process (e.g., the legacy code). It
can also be used to combine the four steps and iterate over a large number of topologies to find the best
solution. Presently, the following algorithms fall in this category:

15

1. Best Star: This algorithm finds the best star network for the switches while taking into consideration
the defined set-pair constraints. This algorithm ignores the set-pair constraints present in the networl.

3. Using Algorithms

In Cappuccino, the user invokes different algorithms in the network design process. Most algorithms
require some properties to run. On first invocation, such algorithms bring up a dialog box asking for the
values while displaying the default values. On subsequent invocations, the algorithms use the chosen
values. These properties can be modified later through the Options|Defaults menu option.

In Cappuccino, the algorithims are loaded and verified on demand. This may result in an occasional failure
in the execution of an algorithm. The user is notified of such failures and the algorithm is removed from
the choice list and the menu-bar.

4. GUI Features
4.1 HTML based Help

Cappuccino provides its help by displaying the appropriate URL in the web browser. If the browser is not
available then the URL of the help is displayed in a message box.

4.2 Log-in Screen

When the user visits the web-page of Cappuccino, he is
prompted with a log-in panel. The user is required to enter
a pre-existing user-name (with its password). A guest
account is available that requires no password. The
successful log-in results in the creation of a Cappuccino
window. The user can create multiple independent
windows by logging in many times. If the user is interested
in creating different views of the same network, then
View|New View menu-option must be used.

4.3 File Operations

Cappuccino provides facilities for loading and saving different kinds of information in files. The following
menu-options are available:

iHew Ctrl+H
; : Ctr140
1. File}New discards the loaded network and creates an empty network after ~ ;%P=" i
. e
querying the user for any unsaved changes. Save Ctrl+s
Save As
Faenet 0 Saeend
Print Cirl+P
Buit Cir |+

16

File|Open first queries the user to discard any unsaved changes and then presents the user with a file
dialog box to select a network file.

File|Save saves the current network. The user is prompted with a file dialog box, if the present
network has no associated file. '

File|Save As prompts the user with a file dialog box to select the file in
which the present network is to be saved.

File|Revert reloads the network from the file after prompting the user for discarding the unsaved
changes.

File|Print prints the current network. A dialog box is presented in which the user can select the printer
and its associated options.

File|Quit: This menu-option quits the current window (and all of its child window) after prompting the
user to save his work.

4.4 The Edit Menu

This menu is used to edit the network graphically. The following menu-options are present:

1.

Edit\Mode: This menu-option is actually a sub-menu through which g [.!

the user can select the GUI mode (one of select, add switch, and ot T 115

ac?’d link). The mode selection buttons are kept in synchronization Copy St 40

with the selected mode. Delete Ctr1+De lete
Paste Ctr1+Y

Edit]Cut: This menu-option cuts the selected items to the clipboard. Select

LI

This 1s equivalent to a copy followed by a delete. This option is also
accessible through the hot-key, efri-x.

Unselect
Clear Links

Clear Constraints

Edit|Copy: This menu-option copies the sclected items to the

. Background
clipboard. This option is also accessible through the hot-key, cfri-c.

EditiDelete: This menu-option deletes the selected items from the
network. This option is also accessible through the hot-key, ctri-d.

Edit|Paste: This menu-option pastes the clipboard contents in the

network. If the clipboard does not contain a valid representation of a network then an error dialog box
1s shown. The paste operation is done intelligently to ensure that the network does not get switches that
are already present. While pasting a link the endpoints are inserted in the network if they are not
already present. This menu-option is also accessible through the hot-key, ctri-y.

Edif)Select: This menu-option provides convenient short-cuts for selecting the whole network, or all of
its switches or links.

17

10.

Edit|Unselect: This menu-option provides convenient short-cuts for unselecting the whole network, or
all of its switches or links,

Edit|{Clear Links: This menu-option deletes all the links present in the network.

Edit|Clear Constraints: This menu-options deletes all the constraints associated with the current
network.

Edit|Background: This menu-option shows a file dialog box to select the background image for this
network.

4.5 The View Menu

This menu contains menu-options to change the way a network is displayed.

1.

View|New View: This menu-option is used to create multiple

. . . . Hew View Ctrl+y
views of the same network. The user can view different portions
. g . . L. Zoom In
of the same network in different windows. This menu-option is
also accessible through the hot-key, ctri-v. e
Refresh

_ : _ . = Show Background
View|Zoom In: This menu-option is used to zoom into the current | ~° #aH@rewn

network. The zooming is additive, i.e., the total viewable area is % Show Switch Names

increased by a fixed amount. This menu-option is also accessible @ Show Link Names
through the command bar buttons. 4 Animate Algorithms

View|Zoom Qut: This menu-option is used to zoom out the current

network. The total viewable area is decreased by the same amount as it was
increased in a zoom-in operation. This menu-option is also accessible through the
command bar buttons.

View|Refresh: This menu-option is used to refresh the display.

View|Show Background: This check box menu-option is used to toggle the display of the background
image. GUI operations in Cappuccino (esp. involving dragging of switches) are slow when the
background image is being displayed. Turning off show background improves the response time
significantly. This menu-option is on by default and its status is saved with the configuration
information.

View|Animate Algorithms: This menu-option is used to toggle the animation of algorithms. Animation
of an algorithm can give useful insights into its nature but it slows down the algorithm considerably.
This menu-option is off by default and its status is saved with the configuration information.

View|Show Switch Names: In a dense network, the names of switches might hide details that the user

wants to see. This menu-option allows the user to toggle the display of switch names. This menu-option
is on by default and its status is saved with the configuration information.

18

8. View|Show Link Names: Most users are not interested in knowing the names of the links. Moreover, in
a dense network, the names of links might hide important details that the user wants to see. This menu-
option allows the user to toggle the display of link names. This menu-option is off by default and its
status is saved with the configuration information.

4.6 Menu-options for Running Algorithms

These menu options provide alternate mechanisms to execute the various Ton ooy »
. : : , . =
algorithms present in Cappuccino. The Routing menu is used to select the R o
. . “ A . . 1 .
routing algorithm. The selection of a memu-option results in the execution of the P e———— _
. Imensi i &
corresponding algorithin. The choice lists of algorithms is kept in Constraints ;
. 1 s
synchronization with the corresponding menu. For example, the selection of a
. Super Rigorithms g
routing algorithm through the menu-option results in the same algorithm being

selected in the routing algorithm choice list.

Local ized o I E

RandomSwi tehRdder ;gl

§§;;%Sfar fow

iShortestPathRouting o

?UseLineaﬁProgram £y l‘

Command Bar to Execute Algorithms

4.7 The Options Menu

This menu provides facilities to change the default values and configuration information of Cappuccino.

1. Options|Default: This menu-option is used to display all the default Defaults
properties of the network, switches, links and the view. The default values :pad Aigorithm
can be changed by the user. Reload Configuration
Save Configuration

2. Options|Add Algorithm: This menu-option displays a file dialog box to
the user and the user can select the class to add. The specified class is
examined to be included in all categories of algorithms.

3. OptionsiSave Configuration: This menu-option prompts the user with a file dialog box to select a file
in which all the configuration information is saved. The configuration information includes the defaunlt
value of different algorithms, the status of various check-box menu-items {¢.g., animate algorithm,
show background, show switch names, etc.).

4. Options|Reload Configuration: This menu-option prompts the user with a file dialog box to select a
file from which all the configuration information is reloaded. The user is notified if the file is not of the

right type.

19

4.8 The Window Menu

L.

Window|Network as Text: This menu-option is used to display the textual representation of the current
network. This window keeps in synchronization with the GUI representation, i.¢., a change in the
network through the GUI (or by the algorithms) is antomatically reflected in this window. The user can
edit the network through this window. The format of the network is as follows:

// These are the dimensions (width, height) of the network.

1000.0, 1000.0

//8witches in this netwozk:

{

// each switch is represented in the following way

// <name, x, y, alpha, omega, properties>

// the properties are represented as {namel=valuel, nameZ=valueZ, ..}
<55,137.98,125.27,1.0,1.0,{}>
<$6,229.45,448.35,1.0,31.0,{}>

1

//Links in this network:

{

// EBach switch is represented as:

// <link name, tail switch name, head switch name, properties>
<lil,s2,s1,{}>
<112,s1,s2,{}>

1

//Properties in this network:

{]

Window|Switches creates a window with a scrolling list of all the switches
present in the network. The window provides menu options (which can also be
activated by double clicking in the dialog box) to display the properties of the
selected switches in a dialog box. The user can edit the properties in the
dialog box.

Network as text

Constraints
Dimensioning Info
Switches

Links

Java IIE

Window|Links creates a window with a scrolling list of all the links present in
the network. The window provides menu options (which can also be activated
by double clicking in the dialog box) to display the properties of the selected links in a dialog box. The
user can edit the properties in the dialog box.

Window|Constraints creates a window in which the constraints are presented as text. The user can edit
the constraints. The text format of the constraints is as follows:

<(switches of the first set), (switches of the second set, empty means complement of the other set),

traffic from the second set to the first set, traffic from the first set to the second set>

An example constraint is: <(sl, 52),(s3),0.5,0.2>

20

5. Window|Java IDE: This menu-option starts the built-in integrated development environment for
creating java classes.

The text views are free format, i.c., the number and position of the white spaces is not important. The // is
used to start a comment that extends till the end of the line. /* */ can be used for block comments. While
separating items, it is not important if a “,” is present or not, just any white space is enough.

4.9 The Help Menu

This menu contains menu-options for general information related to
Cappuccino project. Help|About takes the user to the Cappuccino home
page. Help|Using Cappuccino takes the user to the online user manual. -
Help|Algorithm Documentation shows the webpage corresponding to the
algorithms present in Cappuceino.

About

Using Cappuccino

Rigorithm Documentation

4.10 The Built-in Java IDE

Cappuccino comes with an in-built IDE for creating java classes. The editor is started from the
Options|Java IDE menu. JavalDE provides facilities to edit and compile java files.

21

package Jjfs_root.home.guest.examples
import java.util.*;
import COM.objectspace.jgl.#*;

import network.#

public ¢lass bes hm {
public Dimensio 2 v) throws ParamsU
return new Di 13;

Srhd e
i

The built-in Java IDE

The Java IDE provides following menu-options:

File|New: This menu-option discards the current contents after prompting the nser for any unsaved
changes. This menu-option is also accessible through the command-bar.

File|Open: This menu-option prompts the user to save any unsaved changes and then presents him with
a file dialog box to load files. This menu-option is also accessible through the command-bar.

File|Save, FilelSave As: These menu-options are used to save the current file. If the current contents

are not saved to any named file or the File|Save As option is chosen, then the user is prompted with a
file dialog box to select a file. File|Save is also accessible through the command-bar.

22

4. File|Compile : This menu-option prompts the user to save any unsaved changes and then compiles the
file. The results of compilation are shown in a message box. This menu-option is also accessible
through the command-bar (make button).

4.11 Synchronized GUI Objects

In Cappuccino, the different windows displaying the same network or constraints are kept in
synchronization. A change made in one component is propagated to the other windows that depend on the
same information.

S. Differences in the Applet and Application Version

Cappuccino is available as an applet as well as an application. The applet and application versions largely
provide the same interface to the user. However, due to certain reasons (security restrictions, availability of
the browser, etc.), the two versions are different in some key respects. The following differences exist in the
two versions:

1. The java security restrictions do not allow untrusted applets to do any local file i/o. Hence, the applet
version of the Cappuccino creates a virtual file system for the users on the server, Different accounts
are created which have associated user name, password and home directories. The web-page presents a
login window, through which a user can login. The login process creates a Cappuccino window that
uses the associated home directory for all the file i/o.

2. Inthe applet version, the user can create multiple independent Cappuccinoe windows by logging in
multiple times. In the application version, the user needs to re-run Cappuccino to get multiple windows.
However, multiple views of the same network can be created in both versions.

3. Inthe applet version, the cut and paste operations through the menu-options do not access the system
clipboard. However, the windows that display the text (e.g., Network as text, constraints window, etc.)
can access the system clipboard. The application version has full access to the system clipboard.

4. In the applet version, the help is displayed in a separate frame in the same browser in which the applet
is running. In the application version, the help is displayed by connecting to an already running browser
(Netscape). If a browser is not already running then a new browser is started. If the browser does not
exist then the help URL is displayed in a message box.

5. Inthe applet version, the compilation of the algorithm is done on the server. Moreover, the algorithm
writer needs to define his class in a package that starts with jf5_root home.user _name.directory. In the
application version, the compilation is done locally and the user is free to define his algorithm in any
package.

23

Extending Cappuccino

This chapter describes the packages and classes that an algorithm writer needs to understand. Hyper-linked
reference documentation for these packages (generated using javadoc) is available at
hittp:/~www.cs.wustl.edu/~inder/cappu/docs/api/packages. html,

1. Software Architecture
1.1 Guiding Rules and Design Principles

The following design principles were followed in Cappuccino:

1. Main emphasis in Cappuccino is on a loosely coupled design. Different functionalities in Cappuccino
are implemented as separate packages. The public interface of a package exposes the abstraction of
the services provided by that package while hiding the internal implementation details.

2. Software in which redundancy in code is present is very hard to maintain. In Cappuccino, the stress is
on reducing the number of lines of code. This has an added advantage of a smaller footprint that has its
own merits for java because it is a network oriented language. Reusability of the design and
components [GHIV93] is a basic design goal in Cappuccino. Cappuccino provides general solutions
for a help system, transparent file handling, etc,

3. Any extensible design is necessarily flexible. Cappuccino exploits the runtime linking capabilities of
Java to provide the flexibility to plug-in arbitrary IDEs, adding new algorithms, and choosing alternate
implementation classes for representing networks.

4. Cappuccino tries to achieve efficiency without sacrificing a good design. It uses efficient data
structures provided by the JGL library for representing networks. Its design allows the algorithm
writers to directly use efficient JGL algorithms for sorting, and searching directly on the network. The
class Network exposes sufficient operations (like indexed access to switch and link arrays) to obviate
the need for unnecessary data copying.

1.2 Applet as well as Application

Cappuccino is available both as a java applet and a java application. Applet and application models differ
in four basic ways, viz., file handling, showing help, compilation and clipboard management. For
maximum code reuse, these operations are abstracted out as java interfaces. The rest of the Cappuccino
code uses these abstract interfaces for these activities, The concrete classes for these interfaces differ for
the applet and the application versions. The applet class (Cappudpplet) and the application class
(CappuApplication) instantiate relevant classes and plug them in.

24

1.3 Transparent File Handling

Java applets face greater security restrictions than java applications. In the present sandbox model, all
applets are forbidden to access the local file system. In Cappuccino, file i/o is done on the local disk and for
the applet version, file i/o is done on the server. File i/o is done through the general mechanisms provided
through the FileHandler class that is implemented as an abstract singleton [GHIV95]. The concrete file i/o
mechanisms are implemented by AppletFileHandler and ApplicationFileHandler classes.

1.4 Incorporating Help

Cappuccino provides its help support as HTML pages. Different components provide their help
information in different URLs, URL tagging is used to keep information related to multiple events in a
single HTML file. The best way to view an HTML based help is through a web browser. The applet
version of Cappuccino has an advantage in this regard because it is already running inside a browser and
hence can display help information in a separate frame in the browser. The standalone version of
Cappuccino starts a browser, of the user’s choice, the first time help is requested.

The HelpEngine is the abstraction for handling help in Cappuccino. The AppletHelpEngine and
ApplicationHelpEngine provide concrete implementations for applet and application scenarios respectively.
The HelpEngine is a singleton and all help requests must be channeled through it. Each entity that needs to
provide help for itself obtains the URL for its help information through a configuration file. This approach
allows the flexibility of changing the URL without affecting Cappuccino code. Although the singleton
abstraction of HelpEngine looks similar to the FileHandler abstraction, yet they are technically different.
The fundamental difference between HelpEngine and FileHandler is that the help activity can be
asynchronous (i.¢., the application can proceed without waiting for it to complete) whereas the file
operations are synchronous because typically the application needs to know the result of the operation.

1.5 Showing Help Hints

Contemporary GUI systems provide useful hints and tips to the user depending on his available choice of
actions. Often, there are different ways to show a hint, for example in a status bar or as a tool tip next to a
GUI button. The architecture of Cappuccino provides the necessary flexibility to show hints in different
ways by using an event driven approach. Different components generate their hint tips and provide
interfaces to register listeners (HelpHintListener) for this purpose. Presently, in Cappuccino all hint tips
are shown in the status bar.

1.6 Handling Error Conditions

Any big software system must expect and handle occurrence of error conditions. Cappuccino encounters
three types of errors:

1. Errors due to software bugs: Different classes in Cappuccino take a pessimistic approach while
accepting parameters in their public methods. Invalid parameters are handled either by using a default
parameter (if it is possible to do s0) or by aborting the method or the program.

25

2. Errors due to improper configuration and setup. Cappuccino provides a lot of flexibility in choosing
representation classes for different entities. This raises the possibility of an invalid specification for a
representation class. This is handled by either choosing the default representation (if one exists) or by

terminating the program.

3. Errors due to invalid user actions and inputs. Cappuccino tries to minimize such errors by making
invalid actions impossible (e.g., by graying out a menu option that is not valid).

In handling any type of error, it is desirable to give some form of feedback to the user. However, the
feedback contents are often different for different types of users. Cappuccine defines three different levels

of feedback:

1. Feedback for Network Planners: The network planners receive information about invalid actions and
mputs. The also are notified of presence of the invalid algorithms.

2. Feedback for Administrators: Administrators are notified of configuration errors resulting from the
choice of invalid representation classes.

3. Feedback for Programmers: Programmers are notified of software bugs.

The Debug class decides the error handling policy. It defines different methods for handling different types
of error conditions, Warnings are generated for non-fatal errors.

1.7 Transient and Persistent Properties

Cappuccino is designed to incorporate new algorithms without any modifications to the internal network
representation and other code. A static representation for the network, in which the data structures for
network, links and switches are predefined, is bound to fail because different algorithms often need
different kind of information for the same network. For example, an algorithm for calculating the minimum
spanning tree needs to know the weight of each link, whereas, an algorithm to generate a random network
needs to know the number of nodes and links to create.

One approach to handle this problem could be to guess all possible algorithms that might ever need to be
incorporated in Cappuccino and define fields corresponding to all of them. This approach has a few serious
drawbacks:

1. Anticipating all such parameters is not easy.
2. All such fields will be visible to all the algorithims. This is not a good software practice (OO concepts
call for maximum data hiding). For example, in the example given above, a person who is writing

minimum spanning tree algorithm, will be confused to see the number of nodes and links to create.

3. Many such fields might need suitable initializations even by those algorithms that do not deal with
them. This might be inconvenient and error prone for the algorithm writer, apart from having
performance implications.

26

Cappuccino uses a novel approach to handle this problem. It defines the notion of properties, which are
name-value pairs, In Cappuccino, the representation of a switch, link or a network allows addition of new
properties (by different algorithms) at run-time. Different algorithms store their parameters as properties.
There can be two kind of properties, transient and persistent. As the name suggests, the transient
properties do not last from session to session and are meant for the exclusive use of a single algorithm. The
persistent properties are associated permanently with an object and can be shared by different algorithms.
These are used by the different algorithms to refer to the same parameters, for example, link weight 1s
required by all algorithms that generate a minimum spanning tree.

1.8 Algorithm Representation

Algorithms in Cappuccino are implemented as function objects. A function object implements a specific
java interface that defines a method execute() in which the algorithm does its work.

Each of these set of algorithms are kept in hashtables that are indexed by the function names. An algorithm
is loaded (and verified to be of the right type) the first time it is invoked in the tool (unless it is cached).

1.9 Document/View/Controller Approach

Cappuccino uses the Document/View/Controller approach [MNB97] for GUI Design. This approach is
useful for reducing coupling between different software components for large GUI projects. In this
approach, a representation of an object is separated from its display and the display is further separated
from the mechanisms to modify it. For example, in Cappuccino, the physical representation (called the
document) of a network (implemented by the class nefwork. Network) provides abstract services that a
network should provide. A network can have different graphical representations called views, e.g., visual
representation, network as text, ctc. Each view is responsible for displaying the network in its own
particular way. The modifications to a view (e.g., by user interactions) are handled by its controller that
propagates the changes not to the view but directly to the document. Each view /istens to the changes in
the document, Cappuccino uses the push model of change propagation meaning that each change in the
document is pushed to the views and the views need not go back to the document to know what exactly
changed.

2. Package Structure

Cappuccino consists of seventeen packages and some bootstrapping classes. Bootstrapping code configures
Cappuccino to work either in applet or application mode. The gui package presents the graphical user
interface to the user and drives the system. The network package contains definitions for switch, link,
network and constraints. It also contains interface definitions for different type of algorithms. Algorithms of
different types are present in their own packages. The config package provides some configuration
information that is used by bootstrapping code, gui and network packages. The general package contains
some general purpose utility classes. The stk package provides the GUI toolkit used to develop the
graphical user interface of Cappuccino.

27

3. Understanding the nefwork Package

This is the most important package an algorithm writer needs to understand to write algorithms effectively.
It consists of classes that define the network, constraints, algorithms and their parameters.

3.1 Network Representation

This section describes the network representation as it is seen by an algorithm writer. The network consists
of switches, links and network. The class Switch, Link, and Network are observable objects and they push
their changes to the observers. Extensibility in the data structure is provided by providing fransient and
persistent properties (by implementing general. PropertiesHolder interface), These classes are cloneable
and also provide constructors to construct object from their textual representation. They also provide setfer
and geffer methods to obtain and change values of their member data objects. These classes implement
Java.io.Serializable interface but do not save transient properties to the disk.

3.1.1 The Class Switch

The class Switch represents an ATM switch. A switch has a name and a location (x, v). A switch also
defines a source capacity, alpha, and a sink capacity, omega. The name of eacli switch must be unique.

3.1.2 The Class Link

The class Link represents a directed link connecting two ATM switches, Aead and fail. It also has a name.
It provides utility methods to reverse its direction, and to find the other end point given one endpoint. In
Cappuccino, self loops and multi-edges are not allowed.

3.1.3 The Abstract Class Network
This class represents a network of ATM switches and links. The class Network defines following methods:

1. getNumSwitches()/ getNumLinks(): Used to obtain the number of switches and links in the network.

2. add(Switch)/ add(Link): Used to add switches and Iinks fo the network. The network does not allow
self-loops and multiple links between two switches.

3. remove(Switch)/ remove(Link): Used to remove the switches and links from the network.

4. getSwitches()/ getLinks(): These methods return an Enumeration of all the switches {or links) present
in the network. The enumeration becomes invalid on any subsequent addition or deletion in the
network.

5. getOutgoingLinks()/ getlncomingLinks(): These methods return an Knumeration of outgoing/
incoming links of a switch. The enumeration becomes invalid on any subsequent addition or deletion in

the network.

6. getSwitchAt()/ getLinkAt(): These methods provide indexed access to the switch / link containers. The
index becomes invalid on any subsequent addition or deletion to the network.

28

7. indexOffSwitch)/ indexOffLink): These methods provide index of a switch/ link in its container. The
value becomes invalid on any subsequent addition or deletion in the network.

8. geiLinkGoingFrom(Switch s1, Switch s2): This method returns the link whose tail is s1 and the head is
s2. If no such link is present then it returns pull.

9. contains(Switch)/ contains(Link): This methods are used to find out if a switch or a link belongs to the
network,

10. createNetwork(): The class Network is an abstract class. Hence, it cannot be instantiated directly. This
class method is used to create a new empty network or a network from its textual representation.

11. clear()/ clearLinks(): This method deletes all the switches/ links of the network.

12. setHeight()/ setWidth(}: These methods determine the overall dimensions of the network. The units of
the height and width is left for the user to interpret.

3.2 Constraint Representation

Cappuccino uses set-pair constraints to represent traffic flow between set of switches in the network. These
constraints are in addition to the implicit constraints that are defined by the source and sink capacities of
the switches. The set-pair constraints are the most general kind of constraints and can be used to represent
any other kind of constraints, e.g., distance based constraints, capacity based constraints ete.

In Cappuccine, the constraints are separated from the network to which they can be applied, i.e., the
network data structure does not contain any reference to the constraints. Instead, each constraint keeps
reference to the network it is being applied to. The constraints observe the associated network for any
changes and automatically update themselves to handle the addition and deletion of switches.

3.2.1 The Class SetPairConstraint

This class represents a single set-pair constraint. A constraint is associated with a network and has two sets
of switches, FIRST and SECOND. These sets can share switches. A set can also be defined to be the
complement of the other set. Each set-pair constraint defines two traffic capacities, ouf and im, representing
the traffic flowing from set 1 to set 2 and vice-versa. A constraint observes its associated network and
modifies itself appropriately on deletion of switches in either of its sets. This class provides following
methods:

1. addsetld, Switch)/ remove(setld, Switch): These methods are used to add and remove switches to the
sets. The setld must be either FIRST or SECOND.

2. clear(setld): This method removes all the elements of the specified set.

3. getin()/ getOut: These methods are used to obtain the traffic going from one set to the other.

29

4. isTrivialConstraint(}: This method is used to findout if this constraint is a trivial constraint, i.e., both

sets contain all the switches of the network.

5. elements(setld): This method returns an enumeration of all the switches present in the specified set.

6. size(setld): This method returns the number of elements in the specified set.

3.2.2 The Class Constraints

This class represents a collection of set-pair constraints for a network. It is an observable object and
mitiates a pull on any change. It also monitors the associated network and clears itself if it is replaced. Its

methods are:

1. add{SetPairConstraint)/ remove(SetPairConstraint): These methods are used to add and remove

constraints,

2. clear(): Removes all constraints.

3. elements(): Returns an enumeration of all the constraints.

3.2.3 The Interface NetworkProperties

This mterface defines some common properties of a network. It also defines keys to access different types

of algorithms.

3.3 Interface NetworkView

This interface represents an abstraction to represent all kinds
of information algorithms need. The algorithms interact only
with a network view and need to obtain only the information
they want. A network view consists the network, constraints,
and the different parameters required by different algorithms.
It also contains the routing and dimensioning information
related to the network. It provides extensibility in its data
structure to store general parameters required by algorithms
by implementing the gereral PropertiesHolder interface. A
network view provides mechanism to access the GUI
information of the tool. For example, it provides methods to
find the switches and links selected by the user, and access to
the help hint displaying mechanisms,

‘Consirainis, 2 Algoriiheh
...r'~.__. ."a.."'" :. info-"" -___-* T
I Network 3 Pl YW
: . . Info
Networkviey
-"Topolc'nby; e,
- Algorithms. Super -
st 1 Algorithms 1

Y a

....... Conatigints "=+, .°

© Roufing -

~ Algorithms < .
Tte.e” U Dimensioning

% Algorithms, =

‘..Algorithn'iis_

<" Transien?” ;Trangents” .

.

. Porgistert », Parasent .t -
“Propsriies | Sk opeties ., Capacity
T "‘ al .1:“‘4.' "-. A
= Differentt - m
. L fupesof R T
S -, Farams. .« .. ueio: LI HelpHint
o . L . X 1 _'(?Draar's“; . Listensr ©
Quitch ° gt A TN v
w D vee. N iy . F, m
E R “Trangewr . § M /\&;PW . ot e, v,
LT ;orrant w s Congtrants - . Dimensioning - o0 ol
I <, Pargstard - ., et 1 . g.‘ : sdma:‘ .
~ Froperties ¢ vorto N, nfo - wswitehes, Hinks,
q.,_' P ._- 00- . PR .- I L F ;, f'{i,','}?,ﬂ:ﬁ.a
g.. i1 . AlgoParams ".Fgouting:r'- S w.ﬂ
) + Congraints. v odnfo o nfo
. Networl . : . .

“ear LY

T Trandent/” s
;Hromfﬁfr: e

e, .

Networfc/few

3.4 Classes for Algorithm Parameters

3.4.1 The Class Param

This class represents a parameter desired by an algorithm. It contains the key to access the parameter and
the defaunlt value for the parameter.

3.4.2 The Class AlgoParams

This class defines the set of parameters that an algorithm can require. The parameters are classified in four

types,

1. View Parameters: The parameters associated with the network view. For example, the number of
switches to add for RandomSwitchAdder algorithm.

2. Network Parameters: The parameters associated with the network.

3. Link Parameters: The parameters associated with each link of the network. For example, the weight of
a link.

4. Switch Parameters: The Parameters associated with each switch of the network.
This class defines following methods:

1. add(ParamType, Param): This method is used to add a parameter of the specified to the this object.

2. contains(AlgoParam): This method returns true if all the parameters present in the specified object are
present in this object as well, This method is used by the algorithm writers to check if the parameters
required by them are already present or not,

3.4.3 The Class ParamsUnavailableFxception

This exception is thrown by an algorithm when it does not find the parameters it desires. This exception
contains an AlgoParam object that describes all the parameters that are desired by the algorithm but are not
present.

3.4.4 The Class ViewProperties

This class defines some commonly used properties associated with the view. It also defines constant
parameters objects for some of these properties.

3.5 The Class NetworkUtils

This class contains some convenience methods for the classes of this package. Following methods are
present;

1. distance(Switch si, Switch s2)/ distance(Link): Returns the Euclidean distance between the specified
switches / the length of the link.

2. isComplete(Network): returns true if the specified network is a complete network i.e, it contains all
possible links.

3. merge(Network netl, Network net2): merges two networks.

4. sumAlpha(Network), sumOmega(Network): returns the sum of alpha (or omega) capacitics of the all of
the switches of the specified network.

geiTotalCost{Dimensioninglnfo): retirns the sum of the cost of each link. The cost of a link is defined
to be the product of its euclidean length and its capacity.

h

4. Writing Topology Algorithm

A Topology algorithm modifies the topology of the network i.e. it adds or deletes switches and links in
the network. In Cappuccino, a topology algorithm implements the TopologyModifier interface. The
algorithm does its work in the execute() method. The execure() method is defined as:

public interface TopologyModifier {
public abstract NetworkView execute (NetworkView nv)
throws ParamsUnavailableException:

The algorithm is applied to the parameter nv. The algorithm should throw
ParamsUnavailableException if it doesn’t not find all the required parameters An example algorithm

is given here:

package jfs_root.home.guest; // “guest” user’s work directory
// relative to the cappuccino
// classes,

import java.util.*; // Used for Hashtable etc,

import COM.objectspace.jgl.*; // Might want to use JGL datastructs
// and algorithms.

import general.*; // Cappuccino specific utilities.
import network.*; // Defines network, constrains and
// algorithm classes

/** A functor to add switches at random positions in the network.
* @author Inderjeet Singh */
public class RandomSwitchAdder implements TopologyModifier |
// This algorithm wants to define a new parameter, NumSwitchesToadd
public static final String ParamKey = “NumSwitchesToAdd";

// This method creates the required set of parameters by this
// algorithm
public AlgoParams getRequiredParams (Network net) {
AlgoParams ap = new AlgoParams{}:;
ap.add(AlgoParams.VIEW_PARAM,
new Param(ParamKey, new Integer{i0})}:
ap.add(AlgoParams.VIEWWPARAM,
new Param{ViewProperties.intDefaultsSwitchNamelndex,
new Integer (nei.getNumSwitches (}))):
ap.add (AlgoParams.VIEW PARAM, ViewProperties.pDefaultAlpha):
ap.add{AlgcParams.VIEW PARAM, ViewProperties.pDefaultOmega):;
return ap;

}

// This is the main method in which RandomSwitchAdder will add
// new switches teo the network.
public NetworkView execute (NetworkView nv)

throws ParamsUnavailableException {

Netwerk net = nv.getNetwork(); // extract network to work on.

// check if the desired parameters are actually present

// in the network view.

AlgoParams requiredParams = getReguiredParams (net);
if(!nv.getAlgoParams () .contains (requiredParams))
throw new ParamsUnavailableException(requiredParams) ;

// Parameters were present, so get them.
int count = ({Integer)nv.getPersistentProp().
get (ParamKey)) .intValue (};
String switchName = (String)nv.getPersistentProp().
get (ViewProperties.strDefaultSwitchNameTagqg) ;
int namelndex = ({Integer)nv.getPersistentProp().
get (ViewProperties.intDefaultSwitchNameIndex)).intValue();

double maxAlpha = ((Double)nv.getPersistentProp().
get (ViewProperties.dblDefaultAlpha}) .doubleValuel(};
double maxzOmega = ((Double)nv.getPersistentPropl().
get (ViewProperties.dblDefaultOmega)) .doubleValue{};

Random random = new Random{):
for{int i=0; i<count;) {

Switch s = new Switch{switchName + nameIndesx,
random.nextDouble () *net.getWidth(),
random.nextDouble () *net.getHeight (},
maxAlpha*random.nextDouble (),

maxOmega* random.nextDouble(});
if(net.add{s)) { // switch was successfully added
++namelndex;
++i;

}
}

// update any parameter if it is required
nv.getPersistentProp () .put{ViewProperties.
intDefaultSwitchNameIndex, new Integer({namelndex));
return nv;
} // end of execute method
} // end of RandomSwitchAdder algorithm

The above example represents a typical manner in which an algorithm is written. The algorithm first checks
if its required parameters are available and if not then it throws an exception. Note that the algorithm writer
15 not required to write any GUI code. However, if the need ever arises, the NetworkView interface exposes
sufficient information to write sophisticated GUI input mechanisms.

S. Writing Routing Algorithms

Routing algorithms create routing information for a network. In Cappuccino, a routing algorithm needs to
implement the NetworkRouter interface,

public interface NetworkRouter {
public RoutingInfo execute (NetworkView nv)
throws ParamsUnavailableException;

}

A routing algorithm returns an object of the type Routinglnfo, which keeps the routing information for each
link. The routing information for a link is described by the set of ODPairs passing through it.

5.1.1 The Class ODPair

This class represents an origin-destination pair of switches and the percentage of traffic flowing between
the two switches using the link to which this ODPair is associated.

34

5.1.2 The Class Routinginfo

This class, for each link in the network, naintains a list of ODPairs that send traffic through the link. It
observes the associated network for any changes and invalidates itself if the network changes.

6. Writing Dimensioning Algorithms

Dimensioning algorithms are used to dimension the links of the network, that is, to find out the required
traffic carrying capacity of each link to support the desired traffic flow. In Cappuccino, the dimensioning
algorithms implement LinkDimensioner interface.

public interface LinkDimensioner {
public DimensioninglInfo execute (NetworkView nv,
RoutingInfo ri)

throws ParamsUnavailableException;

1

The parameter ri, is the routing information generated by a routing algorithm. The execute() method
returns an object of type Dimensioninginfo.

6.1.1 The Class Dimensioninginfo

This class maintains information about the capacity associated with dimensioned links of the network. It
observes the network for any changes and invalidates itself if the network changes.

7. Writing Constraints Algorithms

The constraints algorithms are used to generate the set pair constraints in the network. In Cappuccino, a
constraints generating algorithm must implement the ConstraintsGenerator mterface.

public interface ConstraintsGenerator {
public NetworkView execute{NetworkView nv)
throws ParamsUnavailableException;

}
The execute() method of this algorithm is identical to that of the TopologyModifier interface. This

highlights the fact that the differentiation in the type of an algorithim is largely by convention. A constraint
generator algorithm is free to modify the topology if it so desires.

8. Writing Super Algorithms

Super algorithms are used to combine the different steps in the network design process. In Cappuccino, a
super algeorithm implements the Superdigorithm interface.

public interface SuperAlgorithm {
public DimensicningInfeo execute (NetworkView nv)

ot
n

throws ParamsUnavailableException;

}
The super algorithm directly returns the dimensioning results in an object of the type Dimensioninglnfo.

8.1 Understanding the general Package

This package provides important services and many utility classes in Cappuccino. The following classes
are for the use of an algorithm writer:

8.1.1 The PropertiesHolder Interface

This interface is implemented by the objects that support extensibility in their data structure through
properties. The method getTransientProp() is used to obtain transient properties of the object and the
method getPersistentProp() is used to obtain the persistent properties of the object. Cappuccino shows the
persistent properties of the switches, links, network and the view to the user and allows the user to change
these at will. The persistent properties of an object are also streamed to the disk and used in foSfring() and
equals() methods. The transient properties are not shown to the user and are not used in the z0String() and
equals() methods of the object. The keys to obtain transient properties should be unique and can be
generated using the general. Utils. generateUniqueKey() method. The keys to obtain persistent properties
must be of the type java. lang.String and need not be unique. It is even recommended that the different
algorithms use the same key to obtain same persistent properties to reduce the number of properties shown
to the user.

8.1.2 The Class Debug

This class is used to show debugging or error information in Cappuccino. It defines different methods for
handling different types of errors. For an algorithm writer, the most important methods of this class are
warnUser() and errorUser(). These two methods are available in multiple forms but the algorithm writer
must use the form that takes a Frame argument.

1. errorUser(): This method is invoked to report a fatal error that must result in the termination of the
algorithm. An algorithm writer shouid use the

2. warnUser(}: This method is invoked to report a non-fatal error that will be meaningful to the
Cappuccino users..

8.1.3 The Abstract Class FileHandler

An algorithm writer sometimes needs to do some file operations. In Cappuccino, all file i/o happens
through the FileHandler interface. The actual object for the FileHandler can be obtained by calling the
getlnstance() class method. Following methods of this class are useful for an algorithm writer:

1. getlnstance(): This class method returns the actual FileHandler object for the Cappuccino.

2. getFileDialog(): This method is used to obtain a file dialog. It is important to remember that the
complete path name for the selected file is getDirectory() + getFile(), and not getFile() alone.

36

3. getlnputStream(fileName): This method is used to open a file for reading. If an error is encountered
while opening the file an InvalidFileOperationException is thrown.

4. getOutputStream(fileName); This method is used to open a file for writing. If an error is encountered
the InvalidFileOperationException is thrown,

getlmage(imageFileName): This method is used to create an image corresponding to the specified
image file name.

(3

The following example shows how to use a file dialog to obtain a file name chosen by the user and then
open it as an input stream.

FileHandler = FileHandler.getInstance(); // obtain filehandler object
// obtain information requird by the FileHandler
Hashtable prop = nv.getCappuProp();

try {
// NetworkView nv is the parameter passed to the algorithm
FilebialogInterface fdi = fh.getFileDialog({nv.getFrame({},
"Open Network",
FileDialog.LOAD, prop):;
fdi.show(); // show the dialog box tec the user
if({fidi.getFile() == null) // null indicates that the
return; // user canceled the operation.
String fileName = fdi.getbDirectory{) + fdi.getFile(}:
InputStream is = fh.getInputStream{fileName, prop):
// file successfully opened
} catch({InvalidFileOperationException ifoe) |
Debug.warnUser{fm, “Error Opening file: “+ifoe.getMessage());

]
8.1.4 The Class HelpEngine

This class HelpEngine is used to show the help information in Cappuceine. An algorithm writer can use
showHelp() method to show help to the user.

Example code:

URL helpURL = new URL(“http://siesta/~user/myalgo.html”);
HelpEngine.getInstance () .showHelp (new HelpEvent {this, helpURL}};

8.1.5 The Class CGI

This class defines method to access different CGI scripts used in Cappuccino. It defines a generic post
method that implements HTTP POST. It also defines a method to run linear programming CGI script and

obtain its results.

8.1.6 The Class ObserveeTracker

This class provide a convenient mechanism to keep track of the objects being observed by an Observer
object. It provides mechanisms to stop observing a single object or all objects currently being observed.

37

8.1.7 Miscellaneous Utility Classes

1. FiniteStateMachine: The class FiniteStateMachine is sub-classed to create a class that needs to run
like a finite state machine. The important methods in this class are start(), stop() and process(Event).

2. Utils: This class provides common utility functions. The function, generate UniqueKey() is used to
obtain a unique key to access transient properties. This class also provides some functions to generate
concrete classes using meta-classes to support extensibility features in Cappuccino. It also provides
some methods that aid in parsing text and formatting floating point numbers.

3. Assert: This class defines functions to assert post-conditions and pre-conditions. Failure of an assert
results in the java.lang lllegalArgumentException being thrown.

38

Performance Evaluation and Project Statistics

1. Performance Evaluation

In Cappuccino, the performance evalnation has two aspects, the speed of the execution of the algorithms
and the general performance of Cappuccino itself. The performance of an algorithm depends largely on its
implementation. However, Cappuccino does have some features to improve performance.

1.1 Efficient Network Representation

The underlying network representation used in Cappuccino is built using JGL data structures that are very
efficiently implemented. The Network class exposes sufficient methods to avoid creating subsidiary data
structures for the network by the algorithms, a problem that plagued Decaf, the earlier version of the
network design tool. Moreover, in Cappuccino, only an abstract form of the network is used, hence, the
underlying representation can be changed by an alternate representation that works better for the critical
and performance hungry algorithms. The default implementation of the Network class permits the changing
of the actual container classes used to keep switches and links without recompiling itself.

1.2 Algorithm Animation

Animation of an algorithm animation can provide useful insights into its nature. However, it can slow down
the execution time considerably, Cappuccino provides menu-options to turn on and off algorithm
animation.

1.3 Hiding Background

In Cappuccino, the user can move a switch by dragging it. The dragging process generates a repaint event
for each of the intermediate mouse positions. In the presence of a background image, the dragging process
can slow down the response time of the GUI considerably. This slow down occurs due to the slow image
rendering by the java run-time system. Cappuccino provides menu-options to turn on and off the
background display.

1.4 Observable Objects

In Cappuccino, all the switches, links and the network are observable objects meaning that other objects
can register themselves with the object to be notified of any state changes. This approach makes possible
the automatic synchronization of different windows displaying the same information. However, if the
number of observers of an object is very large (or the number of objects being observed by an object is very
large, e.g., the display observes each switch and link for any changes) the number of generated push events
can be very large resulting in slow GUI response times. In Cappuccino, most of the observable objects

39

provide methods for disabling and enabling notifications, so, if a large number of changes are to be made
then it 1s prudent to turn off notifications for a brief while.

1.5 Cappuccino Loading Time

Cappuccino is a large software system consisting of hundreds of class files. The java run time system
downloads and verifies the classes on demand, a process that can result in noticeable GUI slowdown when
a class is referenced for the first time. Cappuccino solves this problem by allowing the pre-caching of the
classes. The classes to be pre-cached are specified in config. Caching and Cappuccino runs a low priority
thread in the background that forces the java run-time system to load and verify these classes.

1.6 File I/O over Internet

The applet version of Cappuccine does its file I/O on the server. The file i/o is done by starting a file server
daemon that listens to a pre-determined port for file i/o requests. This mechanism does not go through
firewalls but has the advantage of being considerably faster than the alternate CGI mechanisms that are
firewall friendly,

1.7 Storing the Network as Objects
Cappuccino stores the network as an object instead of as text files. Textual representation of a network is,
somewhat surprisingly, more compact than the object representation (typically, by a factor of 1.5 - 2).

1.8 Compilation in Java IDE

The compilation in the applet version of Java IDE is done on the server through a CGI script. This
mechanism is considerably slower than the corresponding mechanism used in the application version. This
is due to the inefficiencies of the CGI execution process and the network delays.

1.9 Optimizing the Best Star Algorithm

Cappuccino provides the Best-Star algorithm to generate the cheapest star network for the switches of a
network given all the constraints. The algorithm uses a linear program to find the cost of each star which is
very slow for reasonably sized networks. However, typically the best star network is required to generate a
good topology to start with and the constraints are not very much important. The present implementation of
the best star algorithm uses a considerably faster version (which does not use the linear program) if no set-
pair constraints are present.

2. Key Contributions

Cappuccino provides a user friendly tool to design ATM Networks. This sub-section describes the key
contributions and novel ideas demonstrated by the Cappuccino project.

40

2.1 Extensibility without Recompilation

Cappuccino allows run-time incorporation of algorithms without recompilation of the Cappuccino code. To
implement this functionality, Cappuccino uses following novel approaches:

1. Extensible Data Structures: In Cappuccino, the concept of properties to achieve extensibility in data
structures is introduced.

2. Algorithms as Function Object: Algorithms are usually thought of as procedural programs that
operate on the data structures. Cappuccino presents the algorithms as function objects (an object-
oriented approach), which are applied to the data,

3. Zero GUI code in Algorithms: In a similar project, this author had created a tool for graph
visualization that used a function object approach for the algorithm representation. However, in that
project, the addition of almost any algorithm required some GUI code to get parameters from the user,
Cappuccino provides an ingenious solution to this problem in which an algorithm throws an exception
if it does not get the parameters it requires. GUI mechanisms to get those parameters are built into
Cappuccino.

2.2 Availability as an Applet and an Application

Cappuccino is a successful demonstration of software that can be used both as an applet and an
application. Most of the code (except for some bootstrapping classes) is not aware of whether it is being
executed as an applet or an application even though it does use services in which these two models differ.
Cappuccino achieves this by providing abstractions for the functions in which the two models differ. The
bootstrapping code plugs-in the required concrete classes while the rest of the code uses the abstractions to
access the required services. The Cappuccino design was largely motivated by ACE [Ds01, Ds02] which
also resolves incompatibilitics by providing abstractions.

2.3 Document/ View/ Controller Approach

The Cappuccino design involves significant GUI components that interact with each other in complicated
manners. The clean internal design of Cappuccino is a demonstration of the power of the Document/ View/
Controller approach [MNR97] in managing large GUI applications.

2.4 Web based Service Model

Cappuccino is available as a java applet and hence can be run in any JDK1.1 enabled browser. This frees
the user from the typical download, install, and upgrade cycle. This is especially important due to the
extensibility features in Cappuccino because an extensible system often means more frequent upgrades.

3. Project Statistics

Cappuccino consists of around 25,000 lines of java code distributed in over 300 classes defined in around
250 java files. Out of these, the java file server (JFS) accounts for nearly 14,000 lines that comprise about

41

80 classes. The remaining code of about 11,000 lines generates around 400 kbytes of classes that are sent
over to the browser as an applet.

4. Future Work
4,1 Adding New Algorithms

The easiest enhancements in Cappuccino are done by adding new algorithims. Different kinds of algorithims
can be added for theoretical studies or for improving the network design process. Some of the algorithms
that can be added to the Cappuccino:

1. Partitioning Algorithms: Different kind of partitioning algorithms (Hexagonal, triangular etc.) can be
added in Cappuccino.

2. Random Network Generators: These algorithms generate random networks that contain switches
according to specific probability distributions.

4.2 Cappuccino as a Trusted Applet

Currently, Cappuccino is downloaded as an untrusted applet by the browser. Due to the security
restrictions on the untrusted applets, Cappuccino provides the file i/o and compilation services on the
server. The compilation is done by invoking a CGI script that is a slow process. To provide the file
services, while ensuring the security of the server itself, Cappuccino uses JFS to define different accounts
and their associated home directories. This has resulted in the need for tools for JFS server administration
(e.g., account and directory management, etc.). Moreover, the JFS server, not being professional software,
lacks robustness and uses a proprietary protocol for file transfer between applet and the server. This
prevents the connections from going through the firewalls as well.

The right way to solve these problems is not to use the server based file-i/o but to rewrite the applet as a
signed applet. If a Cappuccino user wants to permit local file I/O then he can grant those rights to the
trusted applet.

This will have further benefits for the Cappuccino project:

1. It allows the user to develop {write/compile etc.) his algorithms in the IDE of his choice, thereby
obviating the need of the Java IDE.

2. Presently, Cappuccino resolves applet/application differences by providing abstractions, Although, this
approach is clean, it results in the minimum common denominator API's being available to the
Cappuccino programmer. By making Cappuccino a signed applet, many of these differences will go
away and so will be the need for these abstractions,

3. The user will see an improved GUI for file dialog and account management because these services will
be provided by the native system.

42

4. The dependency on the JFS code will go away. JFS is a big piece of code (around 14,000 lines in java).
It was written using JDK1.0.2 and it does not have a very nice GUL Although, a lot of timie was spent
in its re-organization and interworking with Cappuccino, it still needs to be overhaunled in some major

ways.

5. File i/o and compilation performance will be much better (local vs remote).

4.3 A Configuration Tool for Cappuccino

Cappuccino design allows the flexibility in choosing the classes for the network representation, the
algorithms to be shown in the choice lists, the different image files used in Cappuccino (for image buttons,
icons ¢tc.), the size of different windows, etc. However, presently these parameters are taken either from
the text files or from the class methods. JDK1.1 introduces the concept of Javabeans that can be
manipulated in GUI builder tools to create applications without writing any code. The different components
in Cappuccino can be implemented as javabeans and a configuration tool (which can also be a javabean)
can be used to configure Cappuccino easily.

4.4 Using JAR to Package Class Files

To run Cappuccino, the browser needs to downlead more than 300 classes and numerous image files. The
browser downloads each of the these as a separate file through the web-server which results in significant
loading delays. JDK1.1 defines the JAR format to package more than one class files and data files (e.g.,
image files) in a single archive that can then be downloaded efficiently by the browser. Cappuccino should
be packaged as a .jar file to take advantage of this feature.

4.5 Support for Adding New Cost Models

Currently, Cappuccino assumes a linear link and switch cost model, i.e. the cost of a switch or a link
increases linearly with its capacity, and the cost of a link also increases linearly with its length. It would be
desirable to allow more general cost models in Cappuccino. One idea is to allow each switch and a link to
have an associated cost model that can be changed by the user. The network package defines interfaces for
these general cost models but these interfaces are not currently being used in Cappuccino.

public interface SwitchCostFunction {
public double getCost(Switch s, double capacity):

]

pubklic interface LinkCostFunction {
public double getCost{Link 1, doublie capacity);

}
The getCost() method of the SwitchCostFunction, returns the cost of the specified switch for the specified

capacity. The getCost() method of the LinkCostFunction, returns the cost of the specified link for the
specified capacity. These functions can also use any of the properties of the associated switch or link to
arrive at the cost.

43

4.6 A Dialog Box for Algorithm Management

Currently, Cappuccino provides a file dialog box for adding new algorithm. The user has no way of
deleting an algorithm once it is successfully added. A sophisticated dialog box is required which presents
all the algorithms to the user and the user is allowed to put them in different choice lists.

4.7 Allowing Enumerated Types as Property Values

Currently, the properties that can be associated with a PropertyHolder object can either be a string or a
number. The input for the properties is taken in text-fields. For some algorithms, the property needs to be
an enumerated type (or boolean) which needs to be presented as a choice list.

4.8 Providing Selection Rectangle

Currently, Cappuccino allows the selection of switches and links, one by one. However, Menu options exist
for selecting/deselecting all switches and links. It would be more user friendly if the user can draw a
selection rectangle to select multiple switches and links at once. The facility to move all switches together
can also result in conveniences to the user.

4.9 Numerous Performance Enhancements

1. Currently, when the user dimensions all the links, the linear program is run independently for each link.
However, if the network and the constraints are symmetric, then the link dimensioning information 1s
same for (s1, s2) and (s2, s1). Hence, link dimensioning algorithm need to be run only half the time.

2. Currently, whenever a dimensioning algorithm is executed, the routing information for the network is
generated again, However, the routing algorithm is required to be re-run only if it is the information
generated in the last run has become stale. However, presently, the link dimensioning takes "orders of
magnitude" more time than routing algorithm and this enhancement is not going to improve speed
significantly.

44

Credits and Acknowledgments

The constraints based approach to ATM network design was developed by Andrew Fingerhut m his Ph.D.
thesis under the supervision of Professor Jonathan Turner. Cappuccino implements this approach and 1s
based on the work done in Decaf which was implemented by Hongzhou Ma and me with help from Andrew
Fingerhut and Rob Jackson. Cappuccino uses a modified version of the JES file system to provide server
based file i/o in the applet mode. The JFS was implemented by Jamie Cameron (jeameron(@letterbox.com)
at Monash University, Australia. In the design and implementation of Cappuccino, I have taken numerous
ideas from the postings on comp.lang. java. * news-groups.

Professor Jonathan Turner has been a good advisor, providing insight, advice and ideas for enhancing the
overall quality of this software project. I wish to thank my former manager at Sun Microsystems, Dr.
Abhay K. Parekh, who provided some valuable inputs regarding this tool. Hongzhou Ma deserves special
thanks for converting some Decayf algorithms to Cappuccino and by providing general java related help. I
also wish to thank my friends, Abhishek, Nikhil and Sridhar for providing ideas related to the network

design tool.

My foremost and deepest respect goes to my parents, Late S, Bhagat Singh and Satwant Kaur, who have
provided immeasurable motivation to achieve the very best in the life. I also wish to thank my brother,
Narinderjeet Singh, and my sister, Baljeet Kaur, whose deep affection has always kept me in high spirits.

Appendix A: References

1. [BF77] Boorstyn and Frank, "Large Scale Network Topological Optimization." IEEE Transactions on
Communications, Vol, COM-25, No.1, Jan 1977.

2. [Af94] Andrew Fingerhut, "Approximation Algorithms for Configuring Non-blocking Communication
Networks." D.Sc. thesis, Washington University Computer Science Department, May 1994,

3. [ARSI96] Andrew Fingerhut, Rob Jackson, Subhash Suri, and Jonathan S. Turner, "Design of Non-
blocking ATM Networks." Washington University Computer Science Department WUCS-9603, 1/96

4. [ASJ96] Andrew Fingerhut, Subhash Suri, and Jonathan S. Turner, "Designing Least Cost Non-
blocking Broadband Networks.” Washington University Computer Science Department WUCS-9606,
1/93

5. [Jt01] Jonathan Turner, "Design and analysis of ATM Switching Systems." Course notes for CS 577.
Department of Computer Science, Washington University, St. Louis,

6. [HIJ01] Hongzhou Ma, Inderjeet Singh, Jonathan Turner, “Constraints based Design of ATM
Networks, an Experimental Study.” WUCS-97-15 Technical Report, Department of Computer
Science, St. Louis.

7. [AkO1] Aaron Kershenbaum, “Telecommunications Network Design Algorithms.” McGraw Hill, 1993.

8. [Ret01] R.E. Tarjan, “Data Structures and Network Algorithms.” SIAM, 1983,

9, [TCRO1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introductin To Algorithms,
MIT Press.

10. [GHIV95] Gamma, Helm, Johnson, Vlissides, “Design Patterns: Elements of Reusable Object Oriented
Software.” Addison-Weseley, 1995,

11. [MNR97] Robert C. Martin, James W. Newkirk, Bhama Rao, “Taskmaster: An Architecture Pattern
for GUI Applications™ C++ Report, March 1997

12. [Dm96] David McGeary, “Graphic Java -- Mastering the AWT," SunSoft Press, 1996.
13. [JDK1.1] JDK 1.1 Documentation, JavaSoft Inc.

14. [JGL2.0] JGL 2.0 Documentation, Object Space Inc.

46

15. [Ds01] Douglas C. Schmidt, “Distributed Software System Development.” Course notes for C5544.
Department of Computer Science, Washington University, St. Louis.

16. [Ds02] Douglas C. Schmidt, “ACE: an Object-Oriented Framework for Developing Distributed
Applications,” in Proceedings of the 6™ USENIX technical conference, (Cambridge, Massachussetts),

USENIX Association, April 1994,

47

Appendix B: Glossary

1. Singleton: Singleton is a design pattern [GHIV95] that is used when only one system wide instance of
an object is desired.

2. THterator: An iterator is a design pattern [GHIV93] that provides access to a sequence of elements of a
Container, without providing the power to add or remove elements. Hence, an iterator provides a read-
only way of looking info a container,

3. Pre-conditions of a method: The conditions that must be true for the method to run correctly.

4. Post-conditions of a method: The conditions that must be true, if the method is correctly implemented
and the pre-conditions are met.

5. Class methods: The methods that are associated with the class itself and not with any instance of the
class.

6. IDE: IDE stands for Integrated Development Environment. It refers to a software development
environment consisting of an editor and a compiler.

7. Java Beans: A javabean is a software component that can be manipulated in a GUI builder tool. By

convention, a javabean defines various seffer and gesfer methods to provide access to its different
properties that are presented to the user by a GUI builder tool.

48

Appendix C: Cappuccino Packages

1. The Default Package
1.1 The Main Classes

111 Cappudpplet

This class creates the login panel in the browser that can be used to create Cappuccino windows. It also
initializes the FileHandler and HelpEngine singleton with applet specific concrete classes. It also creates a
clipboard specific to the Cappuccino applet.

1.1.2 Cappudpplication

This class creates a single Cappuccino window that is an instance of gui. GUIManager. It also initializes
the FileHandler and HelpEngine singleton with application specific concrete classes. It also sets the
clipboard to be the system wide clipboard.

1.2 The Concrete File Handlers

1.2.1 AppletFileHandler

AppletFileFHandler is the applet specific concrete class for the FileHandler singleton. It uses java.net
package to open files on the server and uses CGI scripts for writing files. It uses get/mage() method of
Java.applet. Applet for obtaining images corresponding to image files.

1.2.2 ApplicationFileHandler

ApplicationFileHandler is the application specific concrete class for the FileHandler singleton. It uses
Java.io package for implementing various file operations.

1.3 The Concrete Help Engines

1.3.1 AppletHelpEngine

AppletHelpEngine is the applet specific concrete class for the HelpEngine singleton. If the help key is a
valid URL then it displays it in a frame in the browser. Otherwise, it displays the help key in a message
box.

1.3.2 ApplicationfHelpEngine

ApplicationHelpEngine is the application specific concrete class for the HelpEngine singleton. If the help
key is a valid URL then it first tries to show help in an already running browser. If a browser is not already
running then it tries to start a browser with the desired webpage. If all attempts fail or the help key isnot a
valid URL then it displays the help key in a message box.

49

1.4 The Concrete Compiler Classes

1.4.1 AppletCompiler

This class is the applet specific concrete class for the SourceCodeCompiler singleton. It uses a CGI script
to compile the class and get the results of the compilation,

1.4.2 ApplicationCompiler

This class is the application specific concrete class for the SourceCodeCompiler singleton. It mvokes the
Javac compiler on the specified class file.

1.5 Pre-caching classes

Cappuccino is a large software system and hence consists of a large number of classes. In most
implementations of java, the first reference to a class suffers significant delays due to on-demand
downloading and verification of the class files. This delay is more pronounced in an applet environment
where the classes are downloaded over the network. Cappuccino reduces the overall downloading time of
the classes by launching a separate low priority thread, PreCacher, which pre-caches the list of class and

mage files specified in config. Caching.

1.6 Classes Defining Properties

1.6.1 AppletProperties

This class defines some properties that are specific to the applet. The other applet specific classes use these
properties to configure themselves.

1.6.2 ApplicationProperties

This class defines some properties that are specific to the application. The other application specific classes
use these properties to configure themselves,

1.7 Concrete Classes for File Dialog

1.7.1 AppletFileDialog

The applet version of Cappuceino can not use the default Elle Names

file dialog box that comes with the java run time system

because the file dialog needs to display the directory I

information corresponding to the user’s home directory on

the server. This class interacts with the JFS server to obtain Direatories: Files: _
the directory information and display it in the dialog box. It .- 2:22:;:::9 s
also provides buttons to create and delete directories. % - stm\:;_f | azs

1.7.2 ApplicationFileDialog

This class represents the file dialog used for the application
version of Cappuccino. It uses java.awt. FileDialog to
implement this functionality. i,

2. The general Package

This section describes those implementation details and the classes that are not covered in the Extending
Cappuccino chapter.

2.1 Class Debug

This class defines the debugging policy in Cappuccino. It defines different methods for handling different
types of errors:

L.

error(): This method is invoked to report a fatal bug that will not be meaningful to the Cappuccino
users or administrator.

warning(): This method is invoked to report a non-fatal bug that will not be meaningful to the
Cappuccino users or administrator.

errorAdmin(): This method is invoked to report a fatal bug that will be meaningful to the Cappuccino
administrator but not to the users.

warnAdmin(): This method is invoked to report a non-fatal bug that will be meaningful to the
Cappuccino administrator but not to the users..

errorUser(): This method is invoked to report a fatal bug that will be meaningful to the Cappuccino
users.

warnUser(): This method is invoked to report a non-fatal bug that will be meaningful to the
Cappuceino users..

Each method comes in two forms, one that takes a string parameter representing the message and the other
that takes a message string as well as an argument of the type Exception. The second form is available as a
convenience because most of the errors in Cappuccino result from unexpected exception.

2.2 Class HelpEvent

This class represents an event that represents a request to show help. A help event has a help key associated
with it that either represents a URL or the help text itself.

2.3 Class HelpHintEvent

This class represents an event that is a request to show a help hint. An event of this type has a single line
help hint associated with it.

2.4 Interface HelpHintListener

This interface describes a listener for the help hint events. It provides a method, showHint(), to act on the
specified help hints.

2.5 Interface SourceCodeCompiler

This interface represents an abstraction for providing java source code compilation facilities. It defines a
compile(fileName) method that compiles the specified file and returns the compilation results. It also
defines a getClassName(} method that returns a class name corresponding to a file name.

2.6 Class ChangeCommand

Cappuccino uses the push model of the Document/View/Controller paradigm. This class represents the
change being pushed. It defines methods to identify the change that has occurred and the old value of the
field that has changed. So, the observers need not pull whole state of the document every time a change

ocCurs.

2.7 Exception Classes

1. CappulnternalError: This class represents an exception that is thrown if a fatal error occurs in
Cappuccino. This class derives from java.lang. Runtime Exception to obviate the need for catching this

exception everywhere.

2. IncompatibleClassException: This exception is thrown to indicate an unexpected meta-class. It
derives from java.lang Exception.

3. InvalidFileOperationException: This exception is thrown to indicate an unsuccessful file operation. It
derives from java.lang. Exception.

4. ParseFxception: This exception is thrown when an error occurs while parsing text to create desired
object forms.

3. The network Package

This section describes those implementation details and the classes that are not covered in the Extending
Cappuccino chapter.

3.1 Class NetworkImpl

This class is the default concrete implementation of the Nefwork. It allows the user to select different
container representations for the switches and links. The container so chosen must implement jgl Coniainer
mnterface.

3.2 Class ViewInfo

This class contains the complete view information that is saved in a file, It contains data members for the
network, constraints, routing and dimensioning information and the persistent propertics of the
NetworkView,

3.3 Class ConfigBean

This class represents the configuration java bean for this package. It provides mechanisms to select
different representation of the Network, the switch and link containers for the default Network
implementation and other configurable properties of the package.

4. The stk Package: A GUI Toolkit

The Cappuccino project was started when JDK1.1 was not available and hence JDK1.0 was the only
implementation choice. The initial design of Cappuccino used a toolkit, called GraphicJava Toolkit (GJT),
for providing an aesthetically pleasing graphical user interface. Later, Cappuccino was migrated to JDK1.1
which differs significantly (and incompatibly) from JDK1.0 AWT event model. GIT was originally
provided as an example toolkit along with [Dm96] and was, unfortunately, not revised for JDK1.1. Hence,
Cappuccino provides its own GUI toolkit called the STK (Small toolkit) which contains its own JDK1.1
versions of some GIT classes along with its own set of GUI components,

4.1 Revised versions of GJT classes

4.1.1 Border

A panel containing a single component around which a border is drawn. The component can itself be a
panel containing multiple components.

4.1.2 ButtonPanel

A button panel employs a java.awt. BorderLayout to
layout a separator in the north and a panel to which
buttons can be added in the center,

4.1.3 ColumnLayout

This is a layout manager to lay out components in a colummn. The orientation of the components within a
cell can be specified in the constructor,

4.1.4 RowLayout

This is a layout manager to lay out components in a row. The orientation of the components within a cell
can be specified in the constructor.

4.1.5 DrawnRectangle

A rectangle that draws itself inside a component,

4.1.6 EfchedBorder

An extension of a Border that draws an itched border.

4.1.7 EtchedRectangle

A DrawnRectangle that draws an etched border.

4.1.8 Etching

This class defines some constants for etching. It is not instantiable.

4.1.9 ImageCanvas

A canvas that displays an image.

4.1.10 MessageDialog

g% Lower bound = 1419.4124

Flow from si to s9 = 9.5 ,l

:
A MessageDialog is a non-modal dialog box to display % iF |Fiow rrom 22 to 218 = 5.5
'-)5?’ Flow from 23 to =4 = 8.3

a message. T —

4.1.11 Orientation

This class defines constants for orientations and
alignments. It is not instantiable.

4.1.12 Separator

A separator that is drawn either vertically or horizontally depending on how it is laid out. Can be drawn
etched-in or etched out and with varying thickness.

34

4.1.13 QuestionDialog

A dialog that presents a prompt and a textfield into which a reply can be entered.

4.1.14 YesNoDialog

A modal dialog box that prompts a question that is answered
by selecting either a yes or no button.

Ok to quit the netwerk design toel 7

4.2 New Classes in stk Tool-kit

4.2.1 PowerLayout

PowerLayout is an easy to use layont manager built on top
of java.awt. GridBagLayout.

4.2.2 Circle

This is a class on the lines of java.awt. Rectangle for circles.

4.2.3 ExclusivelmageButtonFPane!

A panel consisting of sticky image buttons of which only one can be pressed at one time. It implements
Java.awt. ItemSelectable interface and hence behaves like a choice list.

4.2.4 ExclusiveMenn

A java.awt.Menu consisting of java.awt. CheckboxMenultems of which only one can be selected at one
time. It implements java.awt. [ltemSelectable interface and hence behaves like a choice list.

4.2.5 ImageButton

An image button is a button with an image on it. The button can be specified to be either sticky or springy.
It is springy by default,

4.2.6 ImageButtonPanel

A panel containing image buttons arranged either horizontally or vertically.

4.2.7 StatusBar

This class implements a status bar to show single line messages.

4.2.8 StatusBarConiroller

A class that implements general. HelpHintListener interface and shows the help hint events in a status bar.

4.2.9 Util

This class contains a collection of utilities to create image buttons, menu options, waiting for images, etc,

Ln
in

S. The gui Package

Cappuccino allows users to work with multiple networks at the same time. Each of the windows is
launched in its own thread and is independent of the other windows. However, all windows share the same
FileHandler and HelpEngine singletons. All windows also use the same clipboard (the system-wide global
clipboard in case of the application version) for cut and paste. For ease of network creation, Cappuccino
provides various modes of operations. In the switch or link placement mode, the user can place switches
and links (with default parameters) with just a click of the mouse. The user can also select groups of
switches and links and do operations on them. Cappuccino presents all the available algorithms in different

choice lists.

5.1 GUI Entities

5.1.1 GUIManager

This class creates and displays the Cappuccino GUL It launches the Algorithm IDE, the different views of
the network (NetworkGUIView, NetworkTextView, NetworkSwitchView, and NetworkLinkView). It also
manages the status bar.

5.1.2 Viewlnfoldanager

This class manages the master information for a network view that is displayed in the multiple windows, It
also keeps an instance of the class AlgoExecuter. Different windows displaying the same network view
keep a reference to their master ViewlnfoManager.

5.1.3 I0GUIManager

This class provides the GUI corresponding to the I/O functions of Cappuccino. An instance of this class is
kept by all windows. It handles all the menu-items of the file menu except file|print.

3.1.4 AlgoGUIManager

This class managers the GUI corresponding to the algorithms. It handles events corresponding to the menu-
bar and the choice lists of the algorithms. It also provides the GUI for adding new algorithms. Different
window displaying the same network view create instances of this class to manage their algorithm GUIL

Cappuccino is designed to allow incorporation of a large number of algorithms in it. AlgoGUIManager
displays all the available algorithms (specified in a text file) as choice lists and menu options. However, it
loads and verifies any algorithm only on its first use. For subsequent uses, the algorithm object is reused.
All commonly used algorithms should be specified in the class config. Caching for reducing delays in the
first mvocation of the algorithm.

AlgoGUIManager shows the algorithms in choice lists and menu items. It also maintains different choice
list and menu in sync.

5.1.5 Clipboardiianager

This class manages the Cappuccino clipboard and is a singleton. It provides methods to place and obtain a
network object (or a textual representation of a network) on the clipboard.

36

5.1.6 ConfigBean

The class is the java bean for configuring the gui package.

5.2 Common GUI Components

5.2.1 Menu items for Algorithms

Cappuccino shows different algorithms as menu-items. To differentiate the received menu events,
Cappuccino defines the menu items corresponding to different algorithms as separate classes:

1. AlgoMenultem is used to show a menu item corresponding to a topology, dimensioning, constraints and
super algorithms,

2. RoutingAlgoMenultem is used to show a checkbox menu item corresponding to a routing algorithm,

5.2.2 Class ConstraintsW¥indow

The class represents the GUI form of the set of

constraints associated with a network view. The ‘ {f Constraints
constraints are represented as text. This class <Esi%, Eszu,sl'f,siﬁ,ss,ss, 515,54, 51
: : . <(s2),{s20,s18,517,516,58,s15, 56,
observes the Cogstramts object and reflects any <(s3)) (520, s13. 516 58, 415 56,35, 04
changes appropriately. If the user presses the update <(sd), (s20,519,s16,s8,56,514,53,51
button then it parses the text and creates a constraint | Egg%: %ﬁg:ﬁg: zgégkigzﬁ:ﬁ’;f
object | <(s7). (20,518,516, 58,515, 56,55, 54
' <{s8), (s20,519,s17,57,56,54,53,511
<(s9), (20,518, s16,s8,56,s14,s5,=1

5.2.3 FlexibleDialog

This class is sub-classed to create various information
dialog boxes, for example, SwirchinfoDialog,
LinkInfoDialog, etc. It uses stk. PowerLayout to lay
out rows of label, textfield pairs. It determines if a
scrollbar is necessary and automatically fits it if required.

3.2.4 InputController

This class is used to monitor a text field for any changes. It takes a text field and an object and shows the
textual representation of that object in the text field. If the text
field is changed by the user then it constructs an object of the

same type using the java reflection APIL e
Hame: ljgl
5.2.5 SwitchInfoDialog . [se-052 ——
This class shows all the parameters of a switch in a dialog v |25 1752 _
box and allows the user to modify them. This class dertves Alphas -3 H
from gui. FlexibleDialog. If the user presses the ok button, Omega: [2-3 J
then it parses all the parameters and sets the corresponding Ceneral Paraueters:
switch parameters. Srws o
subnodes: Briil

35.2.6 LinkInfoDialog

This class shows all the parameters of a link in a dialog box
and allows the user to modify them. This class derives from

gui. FlexibleDialog. If the user presses the ok button, then it - ——
parses all the parameters and sets the corresponding link 'i Kamas
Tail:

parameters.

Head:

Ceneral Parameters: :J;
city: |.§nanha‘tt:ﬂ
3.2.7 PropertiesDialog] instatiation_costs [e0ms
This class represents a dialog box that shows a list of [suinerabitity o e

properties and allows the user to modify them.

5.3 Visual Representation of the Network

5.3.1 NetworkGUIView

The class NetworkGUIView implements the NetworkView interface and represents a network visually. It
observes the network for addition or deletion of switches and updates the screen accordingly. It also
supports drawing of a background image and provides vartous service methods to its controller,
GUIViewControiler. It uses following four classes to draw the networlk:

1. Interface NetworkGUIInfo: This interface provides methods for transforming the coordinates of
switches from the screen coordinates to the actual normalized values. NetworkGUIView implements
this interface.

2. Class GUISwitch: This class represents the graphical image of a switch. It observes the switch for
changes and modifies the screen image accordingly.

58

3. Class GUILink: This class represents the graphical image of a link. It observes the link for changes and
modifies the screen image accordingly.

3.3.2 GUIViewController

This class implements the Controller for the NetworkGUIView. It runs as a finite state machine and
maintains three modes, Select, Add Switch, and Add Link. Each of these modes also runs as finite state
machines. GUIViewController receives all the GUI events and forwards them to the appropriate state
machine. It intercepts the mouse right click events and displays the properties of the selected items.

1. Class StareMachineForSelectMode: This state machine handles the Select mode. It has 2 states:

a) SELECTING ITEMS: In this state, a click on a switch or link selects it while deselecting earlier
selections. A click with control key down keeps the earlier selections. A double click on a switch
changes state to MOVING_SELECTED_ITEMS.

b) MOVING_SELECTED_ITEMS: In this state, on 2 mouse drag event, the position of the selected
switch 1s changed to the coordinates of the event. A mouse release event changes the state back to
SELECTING_ITEMS.

2. Class StateMachineForAdddSwitchMode: A mouse click results in a switch being created using the
default name and position of mouse event.

3. Class StareMachineForAddLinkMode: This state machine acts on mouse clicks. It has two states:

a) SELECT HEAD: In this mode, a mouse click on a switch, selects the head of the link and changes
the state to SELECT TAIL.

b) SELECT_TAIL: A click on a switch results in a link being created joining the head and tail and
changes state to SELECT HEAD. A mouse click on empty screen area changes state to
SELECT HEAD.

5.3.3 AlgoFExecuter

The class AlgoExecuter handles the execution of all the algorithms. To increase the speed of algorithm
execution, it disables change notifications to the observers of the network view before executing an
algorithm. After algorithm completion, it enables the notification and refreshes all the observers by forcing
a pull. This disable/enable notification can be disabled by a GUI option to allow algorithm animation.

5.3.4 GUiViewManager

GUIViewMonager manages all these entities and also handles the interactions with the clipboard. It also
handles various other menu options (showing background image, zooming in and out, etc.) that affect the
view being shown on the screen.

5.4 Textual Representation of a Network

Cappuccino provides a textual view of the network as well. In this view, the network can be edited as a text
file. The Action|Update menu command is used to parse the text and create the actual network out of it.

i//Dimensions of the Hetwork: width, height
1800.0, 1000.0
{JSHEtches:

<s1,433.9809,61.7928,0.4381,0.2433, {}>
<s2,314.6752,240.5092,0.3165,0.1556, {}>
<s£3,2.6569,225.0569,0.0896,0.2134, {}>

<s4,219.4072,026.123,0.4788,0.1506, {]>
<s9,684.6812,636.3797,0.2773,0. 2633, {}>
<s6,994.5878,51.2916,0.2965,0.4758, [}>
<s7,48.266,299.2808,0.2762,0.1513, {}>

<s&,T07.8808,767.7811,0.3238,0.0504, {}>
<s9,248.7313,579.0911,0.2064,0.2524, {}>
<s10,684 585,543, 5741,0.2077,0.032, {}>

}
f/Links:
{

<11,s8,s9,{}>
<12,s8,s8,{}>
<13,s9,s1,{}>
<14,s7,83,{}>
<15,:10,51, {}>
<16,s4,s6, {}>
<IT,s1,s8,{}>
<18,s10,s5,{}>

Textual Representation of the Network

60

5.5 Class NetworkSwitchView

In this view of the network, all the switches present in the network
are shown in a list box. The user can select multiple items in the
list box and view their propetties as SwitchinfoView dialog boxes.
Any change made in a switch 1s reflected back in the network. This
class observes the network and handles any changes in the switches
appropriately.

5.6 Class NetworkLinkView

In this view of the network, ail the links present in the network are shown in a
list box. The user can select multiple items in the list box and view their
properties as LinklnfoView dialog boxes. Any change made in a link is
reflected back in the original network. This class observes the network and
handles any changes in the switches and links appropriately.

6. The editors Package

6.1 Integrated Development Environment for Algorithm

Creation

Cappuccino provides run-time creation and incorporation of new algorithums.

This implies that cappuccino needs to provide basic capabilities for writing, compiling, verifying and
invoking a java class. However, the providing a good development environment for writing java code is not
one of the main goals of Cappuccino. Ideally the best thing would be to have the capability of invoking the
IDE of the user’s choice. However, it is not possible for following reasons:

1. One of the key requirement in any editor is the capability to do file operations. However, applets and
applications have different file i/o capabilities, and any existing application will not have the capability
to work in both applet and application mode.

2. AnIDE also needs to provide facilities for compiling a java class and viewing its results, For an applet
case, the compilation is to be invoked on the server whereas for an application it will be done on the
local disk. Again, most of the existing IDEs run only as a java application.

In Cappuccino, these design forces were resolved by making the IDE independent of Cappuecino to the
maximum possible extent. The goal is to provide an IDE that stands on its own.

The default IDE in Cappuccino is called JavaIDE. It uses FileHandler and HelpEngine singletons for file
operations and showing help. It provides the compilation facilities through a SourceCodeCompiler
interface. It uses the stk package for creating its GUL

61

7. The TopologyAlgos Package

This package contains all the algorithms that modify the topology of a network. At present, there are 8
algorithms available in this package:

7.1 RandomSwitchAdder

This algorithm is used to generate switches at random location. It takes five view parameters:
1. NumSwitchesToAdd: Specifies the mimber of switches to add.

2. DefaultSwitchNameTag. Specifies the default name tag for the switch, e.g., if the tag is “s” then name
of switches will be s1, s2, etc.

3. DefaultSwitchNamelndex: Specifies the starting index to attach to the name tags.
4. DefaultAlpha: Specifies the maximum value of the alpha to use for the switches.

5. DefaultOmega: Specifies the maximum value of the omega to use for the switches.

7.2 RandomLinkAdder

This algorithm is used to generate random links in the network. It takes three view parameter:

1. MaxNumLinksToAdd: The algorithm tries to add the specified number of links until the network is
complete.

2. DefaultLinkNameTag. Specifies the default name tag for the link, e.g., if the tag is “l” then name of
links will be 11, 12, etc.

3. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

7.3 CompleteNetwork

This algorithm puts all possible links in the network. It takes two view parameters;
1. DefaultLinkNameTag. Specifies the default name tag for the link.

2. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

7.4 LinkComplement

This algorithm generates the complement links in the network, i.e., it deletes all the existing links and
puts in all those hinks that were not present earlier. It takes two view parameters:

62

1. DefaultLinkNameTag. Specifies the default name tag for the link.

2. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

7.5 DelaunayTriangulation

This algorithm generates the Delaunay Triangulation topology for the network, The properties of
Delaunay Triangulation are explored in Joseph O'Rourke's “Computational Geometry in C”. The
algorithm is implemented in C by Steve Fortune. It deletes the links that are not required in the
triangulation. It uses a CGI script to invoke the C implementation of this algorithm at the server. It

takes two view parameters:
1. DefaultLinkNameTag. Specifies the default name tag for the link.
2. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

7.6 MinimumSpanningTree

This algorithm generates the minimum spanning tree based on the Euclidean distance between the
switches. It uses Kruskal's algorithm(cf. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Introductin To Algorithms, p505) to find the minimum spanning tree. Those existing links that are part
of the MST are retained. All other links are deleted from the network. It uses jgl. PriorityQueue as a
heap for obtaining links in the increasing order of their lengths. It takes two view parameters:

. DefaulfLinkNameTag. Specifies the default name tag for the link.

2. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

7.7 Star

This algorithm generates a star network rooted at the selected node. It takes two view parameters:
1. DefauitLinkNameTag. Specifies the default name tag for the link,

2. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

7.8 SetPrimaryNetwork

1. This algorithm sets the present network to be the primary network. The primary network is used by the
AdjustPrimaryNetwork algorithm to selectively improve topology.

7.9 AdjustPrimaryNetwork

‘When this algorithm is invoked for the first time, it sets the current network to be the initial network. On
subsequent invocations, it uses the links present in the current network to decrease the shortest path
distance between the switches in the initial network. It takes two view paramcters:

63

1. AdjustinifialNetworkRatio: This is the ratio by which a link should improve at least one shortest path
distance in the initial network to get added.

2. InlncreasingOrder: This boolean parameter specifies if the links are to added in the increasing order of
their lengths.

8. The ConstraintsAlgos Package

This package contains algorithms that can be used to generate constraints for a network. Right now, it
contains two algorithm:

8.1 The Class PairwisePercentage

This algorithm generates set-pair constraints which is proportional to the relative source and sink capacity
of switch pair.

The constraints are generated in the following manner:
For each pair of switches (u, v):

Ju, v) = alpha(u) * omegafv} / (sumfomega) - omega(u))
g(u, v} = omega(v) * alpha(u) / (sum(alpha) - omega(v))
Mu(u, v) = RelaxFactor * min{ f{u, v}, gfu, v})
SetPairConstraint(v, v} = {u, v, Mufu, v), Mu(v, u) }

It takes one view parameter, RelaxFactor,

8.2 The Class Localized

This class implements the localized traffic constraints, It takes four view parameters:

1. Percentage: This is the percentage of the traffic that must go to the local switches.

2. Radius: The distance within which a switch is considered local.

3. Minimum_Number_of Neighbors: The minimum number of neighbors a switch must have. If the

number of neighbors of a switch within the specified radius is less than this number then the radius is
increased for the switch to include more switches.

64

4. Maximum Number_of Neighbors The maximum number of neighbors a switch can have. If the
number of neighbors within the specified radius is larger than this number then the radius is decreased
to exclude some switches.

For each switch, the algorithm generates the set-pair constraints for the switches in the local set and the
switches in the remote set.

9. The RoutingAlgos Package

This package contains the algorithms that are used to generate routing information for a network. At
present following algorithms are present in this package:

9.1 ShortestPathRouting

This algorithm generates the routing information based on the assumption that the traffic between two
switches is routed along the shortest path between them. It runs the all pair shortest path algorithm to
generate the shortest path links for each pair of nodes. Then, it generates Routinglifo by finding the list
of node pairs that use a particular link,

9.2 DistributedRouting

This algorithm takes a set of switches and a set of links and distribute the traffic between switches among
different routes. The user can specify the maxinmm number of routes to use. It takes three view
parameters:

I. Number_of Routes to_ Use: This parameter specifies the maximum number of different routes to use
for routing traffic.

2. Upper_Limit on_the_ratio_of longestRoute/shortestRoute: This parameter specifies the maximum
allowed ratio of the traffic routed on the longest and the shortest route.

3. Traffic_Distribution: This string parameter specifies the relative weights of the different routes for
distributing traffic.

10. The DimensioningAlgos Package

This package contains algorithms that are used to dimension links of a network. At present it contains the
following algorithras:

10.1 UseLinearProgram

This algorithm uses linear programming to generate dimensioning information for a network, given
routing information and a set of constraints, It uses a CGI script to run linear programming code

05

written in C., An introduction to linear programming dis available at
hittp://www.mes.anl.gov/home/otc/Guide/fag/. The code is written by Michel
Berkelaar(michel@es.ele.tue.nl) and is available at fip://fip.es.ele.tue.nl/pub/lp_solve/. For every link 1,
the capacity of the link is the maximum value of

sigma(x[i][j])

where x/i][j] are traffics route through link / under the chosen routing algorithm. So, this is a linear
programming problem, with objective function:

max: sigma(x{iJ[j]), summation over all traffics routed through link /
and constraints:

sigmaf xfi]fj]) over j < alphafi]

sigma(x[i]{j]) over i < omegafj]

and all those set-pair-constraints.

11. The common Package

This package is intended to contain some common classes for all three types of algorithms. Right now it
contains following classes:

11.1 The Class DisjointSetElement

This class defines a data structure for efficient union-find operation.

11.2 The Classes ShortestPathUtils and ShortestPathlInfo

These classes provide algorithm to generate shortest path information for a network.

12. The SuperAlgos Package

This package contains algorithms that combine the four-step network design process used in Cappuccino.

12.1 The Class BestStar

This algorithm iterates over all possible star networks in the network and chooses the one that has the least
link cost. Given N switches, each switch 7 has source termination limit, alpha, and destination termination
limit, omega. The distance between switches 7 and ; is dist/i][j]. If switch ¢ is center of the star network,

the cost is

66

SIGMA(distfj][c]*(out[j]+in{j])), summation is over j
When there is no set-pair-constraints, cut[j] and nfj} ts simply:

out[i] = minfalphafj], sigmafomegali])-omegafjj)

infj] = minfomegafj], sigma(alphafi])-alphafj])

When there are some set-pair-constraints, out[j] and in[j] should be calculated by a link dimensioning
considering all the constraints(c.f. page 58 of JAF's PhD thesis). However, the algorithm become
considerably slower and hence, this implementation of best star always ignores the set-pair constraints.
It takes two view parameters:

1. DefaultLinkNameTag: Specifies the default name tag for the link.

2. DefaultLinkNamelndex: Specifies the starting index to attach to the name tags.

12.2 The Class LowerBound

This algorithm generates a lower bound for the network given the source and the sink capacities and the
set-pair constraints. It displays the traffic flows for the lower bound in a message box.

13. The SwitchCostAlgos Package

This package contains algorithms that define different cost models for switches. These algorithms
implement network. SwitchCostFunction interface, which defines costs of a switch for different capacities.
Right now, it contains one algorithm. However, this package is currently not being used in Cappuccino.

13.1 The Class LinearSwitchCost

This algorithm represents the linear switch cost model, 1.e., the cost of each switch is linearly proportional
to its total source and sink capacity. Moreover, the cost is independent of the actual switches.

14. The LinkCostAlgos Package

This package contains algorithms that define different link cost models. These algorithms implement
network. LinkCostFunction interface, which defines costs for different capacities for each link. Right now,
it contains following algoritluns. However, this package is currently not being used in Cappuccino.

14.1 The Class LinearLinkCost

This algorithm represents the linear link cost model, i.e., the cost of each link is linearly proportional to its
capacity and euclidean length. Moreover, the cost is independent of the actual links.

67

	Cappucino: An Extensible Planning Tool for Constraint-based ATM Network Design
	Recommended Citation

	tmp.1439928365.pdf.Mu0pD

