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Feature Extraction form CT Scan of Plant Root

Chunyuan Li

Abstract— Roots are vital for plant by absorbing water
and nutrients and providing anchorage from beneath the soil.
These roles are closely related to the roots architecture, which
describes the geometry of individual roots and their branching
structure. We proposed a pipeline to efficiently annotate root
architecture. My contribution focus on building an interactive
tool to visual and annotate root architecture. Besides, we come
up with heuristics to automate the annotation process.

I. INTRODUCTION

Roots are important for plants for which they grow
downward and hold the plant in place. They absorb water
and minerals for use by the plant and store food reserves.
Root architecture is an important feature to describe and
understand root system. It includes shape of individual roots,
their branching hierarchy, and time of appearance. Being able
to quantitatively describe the architecture of a root system
is a prerequisite for statistical and computational study of
roots. For example, this will benefit discovering relationship
between genetic basis and root traits. Biologists can make
use of such relationship and breeding crops with favorable
traits, therefore increasing crop yield while reducing adverse
environmental effects. Different species have different root
architecture. Our work focusing on corn root, while it can be
extended to understand architecture of other species as well.

The root architecture consists of a stem in the center
(also called primary root, see figure 1. The nodes locate on
the stem where there are multiple branches reach out. The
branching hierarchy composed of the brace root from node
above ground, crown root, seminal root which grown from
the seed, etc. Those branches that originate from stem are
grouped as primary branches. The lateral roots which branch
out from primary branches are noted as secondary branches.

The objective of this project is to identify root traits
from CT scan. Our original input is an X-ray CT scan of
a root (image slices). A common process is to apply An
intensity threshold on the 3D image such that voxels whose
intensity is above the threshold are considered to be part
of the segmented shape (segmentation). Then a persistence-
based method is applied to remove topological noises and
a graphbased algorithm is used to compute a curve skeleton
skeleton. We use the curve skeleton to annotate root structure.
A pipeline for the entire work is shown in figure 2.

The root traits we are interested including Overall traits,
Architectural traits, Geometric traits. Overall traits include
volumes (number of voxels), depth, convex hull size, etc.
Architectural traits are branching hierarchy, types, number
and species-specific features e.g. nodes for corn root vs
nodules for soybean. Geometric traits like branch length,
tortuosity, branching angle, etc.

Fig. 1. Architectural traits of corn root. Root illustration from [1]

Fig. 2. Pipeline from CT scanned of plant root to skeleton.

Overall traits are easy to obtain directly from segmenta-
tion, while architectural or geometric traits requires under-
standing of the structure and shape of the segmentation. This
is challenging because segmentations are often imperfect,
which causing erroneous structures or shape. Besides, the
root system is highly complex. It is difficult to annotate
root traits in both CT scanned images and segmentations.
In scanned image volume, it is time consuming to identify
the root traits by looking at each image slices. In the
segmentation, it’s inefficient to annotate thousands of voxels
of each root traits.

To solve the problem, we convert segmentation to skeleton
and use it as the input to out tool for traits identification.
The thinned 1d representation (graph representation) of 3D
shape, described by vertices and edges, is fat less complex
than segmentation and thus reduced effort for annotating.

Our contribution for this project is to develop a software
for interactive and automatic root traits analysis. We take
in a segmentation and geometric skeleton of root. Example
of the input data is shown in figure 3 left. The blue shape
with transparency is the segmentation, and the red edges
represents the skeleton. Our work is operated on skeleton
while we use segmentation as a reference to quickly identify
traits. My work focus on creates annotations of the skeleton
(branches, types, etc.) and develop heuristics to compute root
traits.



Fig. 3. Left: Example of input skeleton and segmentation. Right: Annotated
root structure.

II. PRIOR WORKS

There are a few semiautomated methods to describe root
structure by skeletonizing. RootReader2D [2] draws 2D root
skeleton iamge using interactively selected root endpoints
and stored shortest path information. SmartRoot, developed
by Lobet et al. [3], enables quantitative analysis of root sys-
tem architeture. Such techniques using simple heuristics are
sensitive to segmentation errors and tend to invite incorrect
branching structures. Besides, user intervention is required to
infer individual roots, their hierarchy and types. As far as we
know, there is no automated solution capable of producing
a complete representation of root architecture.

III. SKELETON-BASED ROOT ANALYSIS

A. Interactive Tool

We designed graphical tool for modeling 3D root archi-
tecture from segmented images. This tool aims to visualize
the root structure and allow interactive operation on the ar-
chitecture. It takes in a segmentation and geometric skeleton
as input.

In editing aspect, the tool can clean up the topological
errors of the skeleton such as loops and disconnections.

To identify root architecture, we start from annotating the
stem, then primary nodes on the stem and finally, the primary
branches. The operation is simple and straight forward,
which requires around twenty minutes to annotate entire root
structure for a six week corn root like in figure 3.

B. Automatic Algorithm

We first identify the stem (Figure 4) using the radius
measure along the medial axis, which is the closest distance
to the surface for each skeleton vertex. The basic idea is to
find the longest path from a group of vertices that have high
radius. Detailed procedure is listed as follow.

1) The stem is the thickest region of the root, so naturally
we start finding the stem from the point of the skeleton
with the highest radius. This point, corresponds to the
thickest part of the stem, is chosen as a seed point. See
the yellow point in figure 4 (a).

2) Since the stem is thicker than primary roots, a lower
threshold on radius can be used to determine a possible

Fig. 4. Stem Identification. (a) The algorithm start from the vertex with
the highest radius. (b) A region of the skeleton is expanded to include a
neighborhood around the stem. (c) The region is shrunk to a single point or
edge while each vertexs burn time is recorded. (d) Points are added back
two at a time to produce a high-radius chain of skeleton vertices.

region for the stem. Given a low radius threshold Tl ,
neighboring vertices are added to a set S over several
iterations until a reached vertex falls below Tl . Figure
4 (b) shows a example of resulting regions. This step
make sure S contains all vertices of the stem but not
too many of the neighboring points.

3) The next task is to find a subset of S containing the
stem. Kruskals algorithm is applied on S to obtain
a minimum spanning tree Smst which is devoid of
cycles. Then, several iterations of endpoint removal
are applied to Smst until only a single point or a single
edge are left - see figure 4 (c). During each iteration,
all current endpoints of Smst are removed, and the
iteration number is recorded to be the burn time for
each removed vertex.

4) The set Sstem, the final estimation of the stem, is
initialized with either the single point or two points
remaining in Smst . For each endpoint in Smst , the
neighboring point from S with the highest radius is
added to Smst . This addition is performed until the burn
time of an added point is 0, or equivalently when one
of the endpoints of S is reached. The resulting Sstem
is a chain of high radius vertices and edges which
approximate the main stem.

Based on identified stem, the primary nodes are estimated
using the idea the mean shift clustering. Mean shift is a
hill climbing algorithm which involves shifting node position
iteratively to a higher density region until convergence. The
algorithm is detailed next.

1) As it shown in figure 5 (a), we start from an identified
stem and a list of junction points on the stem.

2) For each junction point, we find a set of neighboring
points within a look distance.



Fig. 5. Node Identification. (a) Start with a set of interaction points on
the stem. (b) For each vertex, find a group of neighboring vertices within
predefined range. (c) Update position of each vertex by the weighted mean
of neighboring points. Go to step (b). (c) When the position of each vertex
no longer change or change within tiny range, terminate the algorithm.

3) Then updating the position of each point by shifting it
to the weighted mean of the neighboring points. The
weight is calculated by a Gaussian kernel, where we
use bandwidth to defined shape of the Gaussian kernel.
The updated vertices tend to converge to dense region,
see figure 5 (c).

4) Repeat the updating process until the position no
longer change or change within a small range. Figure
5 (d) shows the example of identified nodes of a
six week corn root. The final clustering result doesn’t
reduce number of vertex. the grouped vertices converge
to the same location, which looks like a single vertex.

IV. EXPERIMENTAL RESULT

Due to the complexity of the root skeleton, the resulting
image in figure 6 only shows identified stem on trimmed
skeleton. From the figure 6, the estimated stem (in white) are
very similar to ground truth (in green). The only difference
is on the top the stem, identified stem include partial branch.
The branches that grow from top of the stem are very thick
and the radius are very high. Therefore, the stem algorithm
cannot distinguish the upper endpoint of the stem. It takes
several seconds to compute stem depends on age of the
root. On the flowering root, the most complicated root that
contains thousands of vertices and edges, stem identification
costs approximate three second.

Figure 7 shows two example of node identification on four
week root (left) and six week root (right). In each age group,
the first image shows ground truth primary node with arrow
highlight the location of the nodes. The red points indicate
that there are branches grow out. The middle one is identified
node marked by cubes. The third image contains partial
branches around stem. On average, our algorithm identifies

Fig. 6. Result of automatic stem identification. (a) a four week corn root.
(b) six week corn root. In each age group, the ground truth stem is colored
in green on the left and the automatically identifies stem is colored in white
on the right.

Fig. 7. Result of automatic node identification on four week and six week
corn root. In each age group, ground truth primary nodes are shown on
the left, where the red points represent interaction on the stem and the
lager points indicated by arrows are primary nodes. The middle one is our
identification result, where the nodes are marked by cubes. The right image
shows branches around stem, which helps to analyze algorithm performance.

2.7 nodes more than ground truth. The euclidean distance
between identified nodes and corresponding nearest ground
truth nodes is less than 0.5 distance unit by average. (The
skeleton is converted from segmentation, which composed of
voxels. One distance unit in skeleton correspond to length of
one voxel in segmentation.)

The imperfectness of node identification mainly caused by
loops and noise. (1) When the branches grow downward and
touch the stem, it forms a intersection. Since the clustering
algorithm is based on intersections, it might be identified as
a primary nodes. A example of this case is the second node
in purple on Figure 7 (b). We can solve this problem by
using existing loop information to exclude fake intersection
on the stem. (2) The noise originate from the transformation
of segmentation to skeleton, which introduce perturbation
edges on stem. They are not actual branches. The current
algorithm cannot distinguish real branches and unreal edges.
These unreal edges are very short and lies within the radius
range. Therefore, removing such edges by comparing edge
length with radius will improve node identification process.



V. CONCLUSION

In this project, we built interactive tool to annotate root
structures and developed heuristics to automatically identify
stem and node. The node identification can be improved
according to analysis in above section. In addition, we will
automate primary branches identification. Our software will
be freely distributed upon completion.

APPENDIX

Figure 8 shows the user interface. A video demo of manual
process is available here

Fig. 8. User interface. Left: visualization options - controls dataset loading,
color mode option, size/thickness of vertices/edges etc.; center: show root
skeleton and segmentation; right: editing operation to clean topological
errors on the skeleton and architecture annotation operation to build root
structure.
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