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Multi-Application Deployment in Integrated
Sensing Systems Based on Quality of Monitoring

Sangeeta Bhattacharya, Abusayeed Saifullah, ChenyangniduGruia-Catalin Roman
Department of Computer Science and Engineering
Washington University in St. Louis
{sangbhat, saifullaha, lu, romp@cse.wustl.edu

Abstract—Wireless sensor networks are evolving from building may employ an integrated WSN to support mul-
dedicated application-specific platforms to integrated in tiple applications including temperature and humidity
frastructure shared by multiple applications. Shared sen- monijtoring, security alarms, light control, and structura
sor networks offer inherent advantages in terms of flex- a4)th monitoring. Compared to a WSN dedicated to a
ibility and cost since they allow dynamic resource shar- o 10 anplication, a shared WSN can significantly re-
ing and allocation among multiple applications. Such . . L

duce the system cost by allowing multiple applications to

shared systems face the critical need for allocation of
nodes to contending applications to enhance the overall Share nodes and the network. It can also enhance system

Quality of Monitoring (QoM) under resource constraints. flexibility by dynamically allocating nodes to different

To address this need, this paper presentdtility-based applications in response to environmental changes and
Multi-application Allocation and Deployment Environment user requirements.

(UMADE), an integrated application deployment system  As WSNs evolve from application-specific platforms
for shared sensor networks. In sharp contrast to traditiond {5 shared cyber-physical systems infrastructure, they fac
approaches that allocate applications based on cyber,q pey challenge to allocate nodes and resources to con-

metrics (e.g., computing resource utilization), UMADE . i o b plications subject to the resource constraints
adopts a cyber-physical system approach that dynamically . .

allocates nodes to applications based on their QoM of _Of sen§9r nodes. In. contrast to application aIIocat!on
the physical phenomena.The key novelty of UMADE is N traditional computing systems only concerned with

that it is designed to deal with the inter-node QoM de- Cyber performance metrics (e.g., latency and through-
pendencies typical in cyber-physical applications. Further- put), a shared sensor network must allocate applications
more, UMADE provides an integrated system solution that based on theiQuality of Monitoring (QoM) of physical
supports the end-to-end process of (1) QoM specification phenomena due to the close coupling of the cyber
for applications, (2) QoM-aware application allocation, (3)  and physical aspects of distributed sensing applications.
application deployment over multi-hop wireless networks, o '6oMm of a distributed sensing application usually
and (4) adaptive reallocation of applications in response depends on the set of nodes allocated to it. Moreover,

to network dynamics. UMADE has been implemented on h £ diff ften hiahl
TinyOS and Agilla virtual machine for Telos motes. The the measurement of different sensors are often highly

feasibility and efficacy of UMADE have been demonstrated Correlated [5] resulting irinter-node dependency, i.e.,
on a 28-node wireless sensor network testbed in the contextthe QoM contributed by a node to an application is
of building automation applications. dependent on the other nodes allocated to the same
application. For example, intelligent air conditioning
control requires accurate estimation of the temperature
distribution in a building based on the measurement of
While wireless sensor networks (WSNs) have beenfinite set of nodes. Allocating a new node whose
traditionally tasked with single applications, recentngeareading is highly correlated to that of one already as-
have witnessed the emergence of shared sensor netwsigsed to the application, will not significantly increase
as integrated cyber-physical systems infrastructure five information about the temperature distribution. Such
a multitude of applications. Examples of shared sendater-node QoM dependencies specific to cyber-physical
networks include recent deployment of urban sensiingeractions introduce unique challenges to application
systems [1], [2], building automation [3], and integratedllocation that has not been addressed by existing ap-
environmental monitoring [4]. For example, a smaproaches to application allocation. For example, existing

. INTRODUCTION



allocation approaches developed for real-time computiogmpletion times. These attributes are mostly cyber-
systems and computing clusters [6]—[8] are typicallgriented and do not address physical aspects such as
concerned with cyber performance attributes. QoM of physical environments.

To address these challenges faced by shared sen- . .
sor networks, this paper proposesility-based Multi- S Utility-based Approaches to Sensor Networks
application Allocation and Deployment Environment Utility-based sensor selection schemes presented
(UMADE), an integrated system for application deployin [11] and [12] suggest mapping sensor nodesets to
ment in shared sensor networks. In sharp contrast udlity values. These schemes require the users to directly
traditional approaches that allocate applications basgRecify the nodeset to utility mappings and do not
on cyber attributes only, UMADE is based on a cybeprovide any QoM abstraction. Moreover, both of these
physical system approach that dynamically allocat#®rks mostly focus on the theory and algorithms and do
nodes to applications based on their QoM requiremenitgt provide any system for sensor selection. SORA [13]
of the physical environments. Specifically, this work had§ a utility-based resource allocation system in sensor
the following key contributions: networks in which nodes act as self-interested agents

« We propose a novel utility-based approach thihat se!ect actions to maxim?ze uti_Iity under energy
allocates nodes to contending applications basg@nstraints. However, SORA is designed for a single
on their QoM of the physical environments. A keyappllcatlon and does not deal with node allocation to

feature of our approach is the characterization afgultiPle applications.

handling of inter-node QoM dependencies typicgt sygtem Support for Shared Sensor Networks
. {?V:ybr%rég?xslf&;aggIct?]zo?if'st intearated svstem With the emergence of shared sensor networks, pro-
b o grated sy ramming abstractions and systems have been developed
for QoM-aware application deployment in share?

sensor networks. UMADE provides an integrateé’r C)S.:Egogercg:gpf dapr%llfa.ti)oansseg] Zgggaséisgﬁ?zssivergln
system solution that supports the end-to-end prB- ) ped group PP

e o ultiple concurrent applications [14]-[16]. Ma et al.
cess of (1) QoM specification for applications, (2?n : :
QoM-aware application allocatior(3) application 17] proposed a market-oriented approach for bandwidth

deployment over multi-hop wireless networks, an llocation in shared sensor networks. However, none of
(4) adaptive reallocation of applications in responstee a_forementloned systems fpr share_d Sensor networks
to network dynamics. considers QoM when allocating applications. In con-

« We describe the implementation and experimentterlftSt’ we propose a cyber-physical system approach to

evaluation of UMADE on a physical testbed 0]application allocation based on the QoM of physical

28 Telos motes in an office building. Our resultgnvwonments.

demonstrate the efficacy and advantages of QoM- 1. SYSTEM MODEL
aware multi-application deployment in shared sen-

'\ Shared Sensor Networks
sor networks in the context of building automation

applications. A shared sensor network consists of resource-
constrained sensor nodes and a base station with more re-
Il. RELATED WORKS sources. The base station serves as the gateway between
the sensor network and the Internet. Users may submit
new applications to the shared sensor network through
Resource allocation has been addressed in sevéhal base station. Sensor nodes can be heterogeneous in
different domains like wireless networks [9], [10], clusterms of both supported sensors and resource capacities.
ter [6], grid [7], and real-time computing systems [8]A sensor node may be equipped with one or more
The resource allocation problems addressed in thesmsors. Integrating multiple sensors on the same node
domains are, however, fundamentally different from thaan reduce hardware cost as the sensors share the micro-
addressed by UMADE. For example, wireless networksocessor and radio. A shared sensor network serves as a
domain mostly addresses network-level attributes likeghly flexible infrastructure that supports differentééy
data rate, packet delay, throughput, and packet-log$-resource sharing among applications. For example,
probability, while cluster and grid computing systemsiultiple applications may share (1) a sensor on a node
address attributes like number of machines and ta@&kg., a magnetometer can be used for detecting parked

A. Resource Allocation in Related Domains



cars and tracking moving vehicles [2]), (2) a node with
multiple sensors, and (3) the network when multiple
applications are deployed on different nodes.

Sensor nodes have severe resource constraints.
particular, existing sensor nodes typically have limited
memory. For example, the widely used TelosB mote [18]
has only 10KB of RAM and 48KB of ROM As memory
is a critical resource in many sensor networks, UMADE
is currently designed to deal with memory constraints.
In future work we plan to extend UMADE to deal with

other resource constraints such as bandwidth and energy.

B. Quality of Monitoring

A sensor network is shared by multiple distributed
sensing applications that monitor certain physical phe-
nomena. Many distributed sensing applications are im-_
portant for cyber-physical systems closely coupled with
physical environments. For example, distributed temper-
ature monitoring and estimation are needed for intel-
ligent air conditioning systems, and distributed event
detection is needed for security systems. Applications
may be deployed dynamically at different points of time
based on user demand.

In contrast to traditional computing applications, the
performance of a sensing application should be char-
acterized by its QoM of the physical phenomenon of
interest. The QoM attributes are application specific. We
now describe two specific QoM attributes as concrete
examples. A contribution of UMADE is that it provides
a general framework for characterizing and incorporating

In

been validated in a broad range of applications
that monitor temperature, humidity, and pollution
in waste water [5], [19]-[21]. While they have been
used for sensor selection for target localization [22]
and for sensor placement [5], [19]-[21], we propose
to use them, for the first time, for allocating subsets
of nodes to multiple contending applicatiori3if-
ferent subsets of nodes provide different reductions
in the variance of the estimated sensor readings. The
higher the variance reduction, the higher the confi-
dence in the predictions. Thugriancereduction is

an important QoM attribute for a common class of
distributed sensing applications that aim to estimate
the spatial distributions of environmental variables
by sampling a subset of nodes.

Detection probability: Detection probability is a
common QoM attribute for event detection applica-
tions. It is defined as the probability for a specific
type of event to be detected by a fusion group con-
sisting of multiple sensors, subject to a certain upper
bound of false alarm rate. For instance, with dis-
tributed detection based on decision fusion, the local
detection probability of a node can be estimated
based on a stochastic model of the signals and
noise. The per-node detection probabilities are then
combined to obtain the system detection probability
based on the fusion rule. Different subsets of nodes
provide different detection probabilities, depending
on the locations of the nodes in the subset.

a wide range of QoM attributes suitable for different As discussed in the above examples, an inherent

applications.

property of distributed sensing applications is that the

« Variance reduction: Many distributed sensing appli-measurements of a physical phenomenon from different
cations are designed to estimapatially correlated sensors are usually correlated to each other. As a result,
phenomena (e.g., temperature and humidity). Fdre contribution of a node to the QoM of an applica-
example, intelligent air conditioning requires finetion is dependent on the other nodes allocated to the
grained estimation of the temperature distributiosame application. We call this propeiityter-node QoM
based on the measurement of a finite set of nodéependency. For instance, the contribution of a sensor
The temperature measurements of different senstwsthe variance reduction for temperature estimation
are correlated with each other, and the degree a@pplication is heavily influenced by the correlation of
their correlations depends on the sensor locatioits measurement with those of sensors allocated to the
and the spatial distribution of temperature. To exsame application. Similarly, the contribution of a sensor
ploit the correlation of sensor readings, probabilisti® system detection probability depends on the locations
models have been developed that enable the peé-sensors allocated to the same fusion group [23].
diction of sensor readings at all nodes based étandling such inter-node dependencies of QoM is a key
the sensor readings of a subset of nodBach contribution and novelty of the UMADE system which
probabilistic methods are fairly general and hawéistinguishes it from traditional application allocation

approaches.

While some sensor nodes have external flash with a capacity of
up to a few megabytes, writing to the flash is power consumitd) a
cannot be used in place of memory for many applications.

Note that, besides the QoM attributes, UMADE also
supports traditional computing attributes (e.g., reliabi



ity) that are sometimes needed for some applications. application4;, 1 < j < n, has a weightw,
UMADE computes node reliability as the product of memory requirement;, and an associated utility
the sensor and network path reliability. The reliability function u; : Q; — U, where@; is the set of
achieved by an application is the probability that at least ~ possibleQoM values that can be received b,
one node among the set of nodes assigned to it is alive andU = {z]|0 < x < 1} is the set olutility values.

and successfully sending data to the base station. 3) For every applicatio;, 1 < j < n, there is a
o ) QoM profile that maps aodeset to a QoM value
C. Utility Function and is represented by : P(R) — R. That is, if

To handle dynamic application arrivals, a shared sen-  applicationA; is deployed on a nodesét C R,
sor network should support flexible tradeoff between  then it achieves a QoM af;(S;) and a utility of
QoM and the resource consumption of an application.  u;(g;(5;)).

UMADE allows users to specify an application’s utility  The total system utility is defined as the weighted
at different QoM levels through its utility function [8], sum of the utilities ofn applications, ey w;
[10], [17]. A utility function specifies the range of QoM. (4,(S;)). Thus, the objective of the QoM-aware allo-

acceptable by the application and the correspondiggtion is to assign a nodesgt C R to each application
utility gained by the application. Therefore, this functio Aj so as to

represents a QoM to utility mapping. Utility functions

are non-decreasing and typically concave since sensing n

applications tend to have diminishing marginal returns on mazimize Y w;j *uj(q;(S;)) 1)
QoM. While these functions can be arbitrarily complex, j=1

simple functions (e.g., piece-wise linear) usually suffice n

for sensing applicationdVe require utility functions to subject to Zaﬂf x1; < Ly, Vk=1,---,m

be only non-decreasing. For example, a simple utility j=1

function for an application that requires a minimum

variance reduction of 80% and a maximum varianéj%here ajx 1S 1 If node R Is allocated to application

reduction of 95% can be represented as shown in Fig.’ ¥, and 0 otherwise. This constraint states th_at the total
memory consumed by the applications sharing a node

must not exceed the memory available at the node.

1t This allocation problem for shared sensor networks is
08 - NP-hard, which can be proven through a straightforward
06 | reduction from the QoS optimization problem stated
> in [8] which has been shown to be NP-hard. The problem

s 04 addressed in [8] can be stated as follows. Giuetasks

02 Ti,---,T,, the problem is to assign qualitiesﬂ and

0 ‘ ‘ ‘ allocate resourceah;() to tasks in order to
0 2 40 60 80 100
Variance Reduction n
mazximize Zw; «uj(q)) (2)

Fig. 1. Example utility function —
J:

man

D. Allocation Objective subject to q; > ¢

or q;:(), Vi=1,---,n; and
The objective of application allocation by UMADE
in a shared sensor network is to allocate sensor nodes "
o - . ZT/ < pMET gl 1 me
to applications so as to maximize the system utility Jk ="k — Ty
j=1

subject to node memory constraints. This problem can

be formulated as follows: where «/(.) and w) denote the utility and weight,
1) The sensor network consists @f nodes, denoted respectively, of taskl;. We can, therefore, reduce the
by the setR = {Ry,Rs, -+ , R, }. Let L, be the above problem to our allocation problem by setting,
memory available at nod&,, 1 < k < m. uj = uf, qi(S;) = ¢ Ly = """, w; = W}, and
2) A total of n applications, denoted by the set,*r; = r}k. The allocation problem, therefore, is NP-
A={Ay, Ay, -+, A,}, need to be deployed. Eacthard.



It is important to note that this QoM-aware appliployment. Applications are submitted using application
cation allocation for shared sensor networksfuada- profiles. An application profile includes the application
mentally different from traditional QoS-based resourceode, weight, memory requirement, and utility function.
allocation (Q-RAM) [8] and multiple knapsack prob-The application memory requirement including memory
lems (MKP) [24], because shared sensor networks mustuired for the application code, data, and other sys-
deal with inter-node QoM dependencies imposed by tem variables can be obtained through simulation and
distributed sensing applications. In contrast, neither @nalysis tools [25], [26]. After application submission,
RAM nor MKP considers inter-node dependencies ime allocation engine executes an allocation algorithm
resource allocation. In MKP, the items in one knapsa¢#escribed in Subsection IV-B) to allocate sensor nodes
do not affect the weight of items in adjacent knapsacks.the applications. The output of the Application Alloca-
Similarly, the QoS values achieved by different nodd®n Engine specifies a set of nodes for each application
are considered independent from each other in Q-RAM,;, 1 < j < n, meaning that application; should be
The key novelty and contribution of our work is todeployed on this set of nodes. This output is then sent
model and handle such inter-node dependencies imposedhe deployment engine that deploys the applications
by distributed sensing applications. For example, sinegrelessly in the shared sensor network according to the
inter-node QoM dependency implies that the)M value allocation. Following are the details of the design and
of a set of nodes is not equivalent to the summation of tiraplementation of the key components of UMADE.
QoM values of the individual nodes, the above problem
formulation usesiodeset to QoM mappings to capture A, Nodeset to QoM Mapping
the inter-node QoM dependencies in distributed sensingU _
applications. Furthermore, as described in the next sec PMADE automatically generategodeset to QoM
tion, the UMADE system supports automatic mapping2PPings, thereby easing the task of the users. It
of nodeset to QoM based on training data, and emplog&ieves this by supporting pluggable modules that com-

efficient greedy heuristics to allocate applications whilkUt€ thenodeset to QoM mappings based on training
considering the inter-node QoM dependencies. data consisting of measurement from individual sensor

nodes. These pluggable modules adQaM Aggregators
IV. SysTEM DESIGN AND IMPLEMENTATION that aggregate and map individual sensor measurement to
The UMADE system, as shown in Fig. 2, mainlyystem QoM attributes. For example, a QoM Aggregator
consists of theApplication Allocation Engine and the for variance reduction outputs the variance reduction
Application Deployment Engine. The allocation engine achieved by a nodeset based on the Gaussian joint distri-
completely resides at the base station (since applicatidngion estimated using the training data from individual
are usually submitted at a base station) while the dsensor nodes. A QoM Aggregator for detection probabil-
ployment engine is distributed across the base statioypoutputs the system detection probability achieved by a
and sensor nodes. nodeset based on the fusion rule and the training data (the
local detection probabilities) of individual sensor nodes
| Mores " The training data may be provided by the user based
p : < on historical data, or automatically collected by a sensor
— romlicaion Alocatio data collection tool provided by UMADE. Note that a
e completenodeset to QoM mapping has an exponential
size of2™, wherem is the total number of nodes. Hence,
UMADE does not precompute the entire mapping for
Taee each application. Instead, it generates only the required
mappings on the fly, when required by the allocation
; Nefghborhood algorithm, that helps in keeping the overall time and
- space polynomial.
L - (o Routng ) For example, the QoM Aggregator for variance reduc-
Base Station Sensor Nodes tion uses the following procedure to map a nodeSet,
Fig. 2. UMADE architecture to the variance reduction that it provides.

R

VM
I Applications

- Application
Allocator
-y
H

Wireless
Network

The Application Allocation Engine is invoked when- 1) It collects training data from all sensor nodes
ever applications are submitted to the system for de- in the network. This data consists of readings



from all sensors that are used for sensing spatabximum utility specified by its utility function. Nodes
phenomena like light, temperature, and humidityare assigned as follows: each available node is consid-
2) For each sensor type, it assumes that the coreged in turn and assigned to the pending application that
sponding sensor values have a (multivariate) Gau4) has not been assigned that node before, (2) has a
sian joint distribution and computes a covarianamemory requirement that can be satisfied by the node,
matrix Xy, whereV is the set of all nodes thatand (3) when assigned, results in the maximum increase
have the corresponding sensor type [5]. For ekd system utility per unit memory consumption. The
ample, a uniquely is computed for each of theincrease in system utility upon allocation of a nolle
temperature, light, and humidity sensor types. to an applicationd; (needed in step 3) is obtained by
3) It uses the covariance matrix to computeultiplying the weight of applicationd; to the increase
the variance reductiony(S) = trace(Xy) — in utility, say Au;, of applicationA;. Let S be the
trace(¥y\ g|s) achieved by subsét C V. The ex- subset of nodes containing the new nofig and the
act equations used for computidg, and >y g5 other nodes that have already been allocated4jo
can be found in [5]. Then, Au; = u;(q;(S)) — u;(g;(S — {R;})), where
This procedure is based on tipeobabilistic method u;(¢;(S)) is the utility provided toA; by nodesetS
using gaussian processesoposed in [5] which was andu;(q;(S — {R;})) is the current utility ofA; (see
originally designed for optimal sensor placement. Dugubsection I1I-D). The pseudo code of our allocation
to the generality of thgrobabilisticmethod, this QoM algorithm is shown in Algorithm 1.
Aggregator can be applied to a wide range of envi- As shown Fig. 2, to get the utility achieved by a node-
ronmental variables, such as temperature, humidity, a$ft the Application Allocator invokes the Nodeset-Utility
water pollution. UMADE also allows users to plug intMapper, which in turn invokes the QoM Aggregator to

other QoM Aggregators to support other QoM attributeget the QoM value provided by the nodeset and then
maps the QoM value to the utility value based on the

B. QoM-aware Application Allocation utility function specified for the application. Note that
The allocation engine invokes the QoM-aware Apsur allocation algorithm calculates the utility gain based
plication Allocation Algorithm whenever a set of newon the nodeset to QoM mapping, which enables it to
applications is submitted. Since the optimal allocatiozaepture the inter-node QoM dependencies imposed by
problem is NP-hard as discussed in Section Ill, wdistributed sensing applications.
propose a simple greedy heuristic to assign a nodeseSince the greedy algorithm is affected by the ordering
to each application. Note that the allocation algorithmf the available nodes, we execute the algorithm for a
needs to be reasonably efficient because the allocatfixed number of rounds, say while varying the ordering
needs to be recomputed dynamically in response dbthe available nodes in each round. The best solution
application arrivals and departures, as well as nodeer all rounds is selected as the final solution. The
additions and removals. As noted in Section lll, existingreedy solution, thus, has a polynomial time complexity
heuristics for Q-RAM [8] and MKP [24] are not suitableof O(n?m), wherem is the number of nodes and
for shared sensor networks as they do not consider intarthe number of applications and, therefore, scales to
node QoM dependencies. The novelty of our QoM-awal&ge number of nodes and applications (as shown in
Application Allocation Algorithm lies in its capability our simulation results in Section VI ). Due to the non-
to handle inter-node QoM dependencies. Moreover, lihearity and discrete nature of the allocation problem
is integrated with the QoM Aggregator that provideas a result of the inter-node QoM dependencies, we
automatic nodeset to QoM mapping needed to capturave not proven the approximation bound of our greedy
the inter-node QoM dependencies. algorithm. Our evaluation (Section V) indicates that it
The greedy allocation algorithm works as followsachieves system utilities that are only slightly worse than
First, a list of available nodes that have enough freethat achieved by the optimal algorithm under realistic
memory to accommodate at least one of the applicatiosettings.
is obtained. Next, nodes from this list are repeatedlé/ ) o )
assigned to thpending applicationsuntil all applications & Handling Application and Network Dynamics
achieve their maximum desired utility values or until UMADE adapts application allocations in response to
there are no more available nodes. An application (&) dynamic application arrivals and terminations and (2)
called apending application if it has not yet achieved its sensor node additions and removals/failures. To balance



A/ — set Of applications_ O TempMon @ HumidityMon @ AirQualityMon

R’ — set of nodes that can accommodate an _gl —I_—':' fC"lrw . 7[._'

application; (. @
while A’ # 0 and R’ # ) do wa’
for each R; € R’ do E ] r
maz = 0; ,_L:va .J

for each A; € A’ which can be

accommodated by R; and has not yet been C.——~« C. .
assigned R; do '
S < set of R; and nodes assigned to i
A |g ;] [ 1 |

Auj = u;(g;(9)) —u;(g;(S — {R:}));

if w;* Au; > max then B ) cocy— B
max = wj * Auj; Aper = Aj; ° C;. r
end

end Fig. 3. Application allocation (deployment 1 on our testbed

Assign nodeR; to applicationA,,q.;
if A, achieves its maximum utility then tion is computed at the base station and the allocation
A=A —{Anaz}; algorithm has polynomial complexity.

end
end D. Implementation
Delete the nodes fronk’ which do not have
enough memory to accommodate any
application inA’, that isn’t already assigned tg

the node
end

UMADE has been implemented as an integrated en-
vironment that supports the end-to-end process of ap-
plication deployment in shared sensor networks. The
Allocation Engine on the base station is implemented
in Java, except the QoM Aggregator which is imple-

Algorithm 1: QoM-aware Application Allocation mented in MATLAB. The Application Deployment En-
gine on the sensor nodes is written in NesC [27] on
the TinyOS [28] operating system. It currently employs
the Agilla VM [29] to support concurrent application

system utility and redeployment cost, UMADE considemsxecution and dynamic application deployment, although
both preemptive and non-preemptive allocation strate- it may be extended to work with operating systems that
gies when computing the new allocation. Preemptiwpport dynamically loadable modules [30], [31]. The
allocation recomputes the allocations of all applicatiofsgilla VM supports applications implemented in high-
across the entire network and, hence, may reallocédgel scripts, thereby enabling low cost re-tasking of the
existing applications. In contrast, non-preemptive allgensor network. We extended the Agilla VM to support
cation only considers new applications and nodes wittynamic memory management in order to support ap-
sufficient residual memory when computing the newlications with a range of memory requirements. As a
allocation and, hence, does not reallocate applicatiorsult, we were able to reserve 7KB out of 10KB of
already deployed on existing nodes. If the system utilifAM available on a TelosB mote for the applications.
resulting from preemptive allocation exceeds that of tidulti-hop routing is achieved using th®lultiHopLQI
non-preemptive allocation by more than a thresholdrotocol [32]. MultiHopLQI builds a routing tree rooted
then UMADE deploys applications according to the preat the base station in which parent nodes are selected
emptive allocation. Otherwise, UMADE picks the nonbased on the link LQI values. Information about the
preemptive allocation. To enable the user to adjust thauting tree is collected periodically at the base-station
tradeoff between utility and deployment cost, UMADH his information is used to compute routes from the base
can generate different allocations with a range of thres$tation to the nodes, which are used for source-routing-
olds (as shown in simulation results in Section VI) fobased deployment of applications to designated nodes
system administrators to choose from. Note that thiser multi-hop networkOn a TelosB mote, the UMADE
threshold-based approach is practical since the allosystem uses 2626B of RAM for itself, while making 7KB




7000 ” deployment strategy under a broader range of conditions

' 6000 - [ through simulations.

Our 28-node testbed covers 6 rooms on the fifth floor
4462 of Jolley Hall in Washington University and forms a

3-hop wireless sensor network. Fig. 3 shows the lay-
out of our testbed. We evaluated UMADE using five

1870 1870 representative applications in the context of building

H H 1006 automation: temperature monitoring (TempMon), humid-
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ity monitoring (HumidityMon), air quality monitoring
(AirQualityMon), light monitoring for lighting control

AcousticMon  TempMon  HumidityMon AirQualityMon  LightMon (LightMon), and acoustic signal monitoring for noise
Tasks control (AcousticMon). The applications periodically
Fig. 5. Application memory requirements sample and transmit the average sensor data to the base

station. The memory requirements of the applications are

available to applications running on Agilla VM. It useshown in Fig. 5.
45494B of ROM. We implemented the temperature, light, and humidity

UMADE provides the user, a graphical interface (GUIonitoring applications. Due to the lack of required
for entering application code, requirements and propensors on our testbed, we emulate the other two ap-
erties, as shown in Fig. 4. Submitted applications apéications based on estimated memory requirement. The
stored by the system for later reference/reuse and gtemory requirement of the applications is dependent on
automatically displayed by the GUI. As shown in Figthe sensor data size. The sensor data size is set to 16 bits
ure 4(a), the user needs to type-in or load the applicati@@suming that the sensors are connected to a 12-bit ADC
code. The user also needs to enter the application utiligsed on the information provided in the data sheets of
function as shown in Figure 4(b). The job of enteringommercially available acoustic and air quality sensors.
the utility function is simplified by providing a graphicalThe weights of all five applications were initially set to
view of the entered utility function. The graphical viewl. Variance reduction was used as the QoM attribute for
is continuously updated as the user inputs the utilitpe first three applications, since all three applications
function. As shown in the figure, the GUI also providegonitor spatial phenomena. In order to evaluate the
the user with a choice of QoS metrics. In additioflexibility of our system in handling applications with
to this, the GUI allows the user to view the networlifferent attributes, we useeliability metric (as defined
state (the routing tree created in the network for daita Section Ill) for the other two applications.
collection/application deployment) and to reset some The utility function used for the TempMon application
or all nodes in the network. Once the user selects Enshown in Fig. 1. Fig. 7 shows the utility functions
application for deployment, he/she needs to enter tHged for other applications. In practice, the utility
application memory requirement and its weight. Thedénctions should be assigned based on the application
requirements can be easily obtained through simulatieharacteristics and user requirements. For example,
or using some analysis tool, as mentioned earlier. TB&en the importance of TempMon in achieving a
user also needs to enter the type of sensor that thigh comfort level through intelligent air conditioning,
application monitors. Once this information is input, théempMon may be assigned a high variance-reduction
user can deploy the applications by clicking the “DeplofR0M) requirement ranging from 80% to 95% as shown
Applications” button. in Fig. 1. We computed theodeset to QoM mappings
for the applications in the following way. For the first
three applications, we collected the temperature, light,

In this section, we present an empirical evaluaticemd humidity readings from all testbed nodes over a
of the entire UMADE system on a physical testbefw hours in order to compute the temperature, light,
consisting of 28 TelosB motes and one Pentium IV P&d humidity covariance matrices, which are then
acting as the base station. These experiments evalused to compute the nodeset to variance reduction
UMADE using realistic applications in the context omappings for TempMon, LightMon, and HumidityMon,
building automation system. In the next section wespectively. To obtain the nodeset to reliability
evaluate the scalability and the threshold-based dynamappings for AirQualityMon and AcousticMon,

V. TESTBED EXPERIMENTS
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Fig. 6. Performance comparison of algorithms during depleyt 1.

we calculated the per-node failure probability andllocation algorithms knapsack and randomized allo-
computed the reliability provided by a set of nodes astion. The knapsack algorithm sorts the applications
1 — (product of failure probability of all nodes in the q@h)non-increasing order) according to the ratio of their
The failure probability of a node was computed aseights and their memory requirements and uses this
1 — (node reliability). Node reliability, was calculatedlist to sequentially assign applications to each sensor
based on the reliability of the sensor used (assumednide. Thus, the knapsack algorithm achieves a uniform
be 0.98 in our experiments), and the reliability of thallocation on all the sensor nodes. The randomized-
multi-hop path from the node to the base station whidilocation algorithm, on the other hand, randomly picks
was computed using per-link LQI readings. applications to assign to each network node. The alloca-

ons are computed per room since this physical division

t'
We have evaluated the performance of our greeé}(]ables the use of a divide and conquer strategy of the
algorithm against an optimal algorithm that uses e)éﬂgorithms

haustive enumeration to obtain an optimal allocation
that maximizes system utility under the memory con- We have evaluated the performance of UMADE using
straints. We have also compared the performance aftep-wise deployment scheme. Each deployment was
our greedy algorithm against two standard applicationitiated after an arbitrary interval of 1 hour. In the first
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Fig. 9. Application utility and variance reduction/relibify achieved per deployment

step (Deployment 1), we deployed three applicationsA: Deployment 1: Comparison of Allocation Methods
TempMon, HumidityMon, and AirQualityMon. In the

- ig. 3 shows the allocation of the three applications
second step (Deployment 2), we increased the number, oF'g
applications by adding LightMon and AcousticMon. | n the testbed after they are deployed by UMADE

the third step (Deployment 3), we changed the weig ?sed on our QOM'?W‘?? grecle\;ljy algorlthdr:. I\(ABlven t:le
of one of the applications to evaluate its effect on t emory requirements ol Temphion, Humiditylvion, an

application allocations. The results obtained in each st’é Qtu?lltyl\/:cotr;] appllca'I[!ontg, It ::St casy tod see that alt
are presented below, ost two of these applications fit on a node (since only

7K is available per node for applications). Fig. 6(a)
compares the system utility achieved by our greedy



algorithm with the optimal, knapsack, and randomizadility. This is because of the relatively high QoM and
allocation algorithms. Fig. 6(a) shows that in some casegmory requirements of the application.

the greedy algorithm achieves the optimal system utility In Deployment 3, we increase the importance of the
while in other cases it performs only slightly worse thamempMon application by increasing its weight to 5 while
the optimal algorithm. The greedy algorithm, howevemaintaining the weights of the other applications at 1.
consistently performs much better than the knapsack aflde improvement in the utility and QoM achieved by the
randomized-allocation algorithms, which is expectedempMon application as a result of this change is shown
since these two algorithms do not try to optimize thie Fig. 9(a) and Fig. 9(b), respectively. Notice how the
system utility. Fig. 6(b) compares the execution timeEempMon utility increases to about 60% from 0 and the
of these algorithms. The greedy algorithm is sever@oM increases to 90% from 19%. The improvement in
orders of magnitude faster than the optimal algorithrthe overall system utility achieved as a result of this
For example, for Room 2 which has 8 sensor noded)ange is shown in Fig. 8. These experiments demon-
the optimal algorithm takes 3205 seconds as compaghte that the UMADE system can effectively adapt to
to 2.7 seconds taken by the greedy algorithm. Tliynamic changes to the applications.

greedy algorithm is slower than the knapsack and the
randomized-allocation algorithms since it executes for a
number of iterations.

Given that the greedy algorithm achieves a much
higher system utility than both the knapsack and
randomized-allocation algorithms, we exclude these twog
schemes in later experiments. Fig. 8 shows the averagé&
system utility per room achieved by the greedy and."g’
optimal algorithms. F

5Apps ——
10 Apps —*—
15 Apps —*—

B. Deployment 2 and 3: Adaptation to Changes

O P N W M 01 O N 00 ©

Deployment 2 tests how UMADE adapts when two |

new applications are added to the system. Fig. 8 shows 10 15 20 25 30 35 40 45 50
that the overall system utility is improved as a result Number of Nodes
O_f the new allocations CompUted_ by UMADE. Th%ig. 10. Execution time under varying network size and nundie
figure only shows the greedy solution because the afpiications
timal algorithm has not terminated after several hours
of execution. The individual application utilities and
variance reduction/reliability values achieved with the
new allocation are shown in Fig. 9(a) and Fig. 9(b), In this section, we present an evaluation of UMADE
respectively. Note the change in the application utilitiegvith a wide range of synthetic workloads and settings.
In particular, we see that the TempMon application Because of the extremely long run-time needed by the
not allocated enough nodes resulting in low QoM anddptimal algorithm, we do not compare the QoM-aware
greedy allocation algorithm against the optimal algo-
rithm in simulations because they involve large numbers
o of nodes and applications. In the simulation setup, each
B ey | application is assigned a random weight between 1 to 6,
a random memory requirement ranging from 1000 bytes
to 7 KB, and a random two-segment utility function.
Nodeset to QoM mappings are also generated at random.
Each node has a maximum memory capacity of 7KB for
applications.

The first set of simulations evaluates the scalability of
UMADE's QoS-aware greedy allocation algorithm with
Deployment 1 AT SAAA Deployment 3 different number of nodes and applications. Fig. 10 il-
lustrates how the execution time of the greedy allocation

V1. SIMULATIONS
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Fig. 11. Performance under varying network size and numbapplications

algorithm on a Pentium IV PC varies with the numbeilis added to the system, UMADE uses a policy similar
of nodes and applications. Each data point in the figut@ what it does when a new application is submitted to
is averaged over 100 runs. 95% confidence intervals &ne system. That is, it redeploys all applications if the
also plotted but are not visible due to the small ranggstem utility can be increased to a value greater than a
of the intervals. The figure indicates that the greediireshold; otherwise it just deploys applications on the
algorithm can scale effectively to large cluster sizes amgw node if the utility gain is less than the threshold (but
number of applications. > 0). Here, too, we see that the average system utility
The second set of simulations evaluates the coshd deployment cost drop as the threshold is increased
effectiveness of the threshold-based allocation schefm@m 0 to 100% utility-gain, as expected. In this case,
in the face of application and node additions and réresholds in the range 20% to 25% give the best balance
movals. Fig. 11(a) shows UMADE’s performance whehetween utility gain and deployment cost.
the number of applications is increased from 1 to 10 Thus, we see that the threshold is an effective knob
on a 30-node network. We deploy one application atfar achieving a desired balance between utility gain
time and compute thdeployment cost as the summation and deployment cost. Exposing the system utility and
of the number of new nodes assigned to each applickeployment cost with different thresholds to the user
tion. We also compute the average system utilityd allows the user to choose a threshold (per deployment)
average deployment costver different configurations that results in the desired tradeoff between deployment
of the network. The figure shows that both the averagest and system utility.
system utility and average deployment cost reduce as the
threshold is varied from 0 to 100% utility-gain which is VIl. CONCLUSION
expected. Interestingly, when the threshold is betweenAs wireless sensor networks evolve into integrated
25% and 50%, the drop in deployment cost is mudhfrastructure shared by numerous applications, they face
larger (38.7%) than the drop in system utility (1.6%}he critical need for allocating and deploying applicasion
Hence, a threshold-based allocation scheme would resnltshared networks. We have developed UMADE, an
in only 1.6% reduction in system utility when comparethtegrated environment for application deployment in
against the preemptive scheme, while reducing the ddvared sensor networks. In sharp contrast to traditional
ployment cost by 38.7%. This result demonstrates thapproaches that allocate applications based on computing
by exploring different threshold values for each deploynetrics only, UMADE adopts a cyber-physical system
ment, UMADE enables the user to identify the mosipproach to allocate applications based on Guality
cost-effective allocation scheme when a new applicatiof Monitoring (QoM) of the physical environments. The
arrives. key novelty of UMADE is that it is designed to deal
Fig. 11(b) shows UMADE’s performance when thevith theinter-node QoM dependencies inherent to many
number of applications is fixed at 10, but the numbelistributed sensing applications. Furthermore, UMADE
of nodes is increased from 10 to 30. When a new nogeovides anintegrated system solution that supports (1)



automatic nodeset to QoM mapping for applications[9]
(2) QoM-aware application allocation, (3) application
deployment over multi-hop wireless networks, and (4)
adaptive reallocation of applications. UMADE has begfg,
implemented on TinyOS and the Agilla virtual machine
for Telos motes. The efficacy of UMADE has been
demonstrated on a 28-node wireless sensor network
testbed in the context of building automation applicqﬂ]

tions.

As a promising start towards supporting integrated

sensing systems, UMADE also opens up several rese

directions. UMADE currently treats memory as the cri
ical resource constraint for shared sensor networks.

9

In

the future, UMADE will be extended to address multi-

ple resource constraints. In addition, UMADE currentl

adopts a centralized approach to application allocati

13
n,]

which can effectively handle our 28-node network in our
empirical study. To handle large-scale networks we will

investigate hierarchical approaches. For example,

inéﬁ]

building automation system for a large commercial buil

ing, different floors may form separate sub-networks
connected by an upper-tier network. UMADE can be
extended to perform multi-level application allocation ifo]

a hierarchical fashion in such tiered networks.
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