
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2008-17

2008-01-01

Multi-Application Deployment in Integrated Sensing Systems Multi-Application Deployment in Integrated Sensing Systems

Based on Quality of Monitoring Based on Quality of Monitoring

Sangeeta Bhattacharya, Abusayeed Saifullah, Chenyang Lu, and Gruia-Catalin Roman

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Bhattacharya, Sangeeta; Saifullah, Abusayeed; Lu, Chenyang; and Roman, Gruia-Catalin, "Multi-Application
Deployment in Integrated Sensing Systems Based on Quality of Monitoring" Report Number:
WUCSE-2008-17 (2008). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/227

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/227?utm_source=openscholarship.wustl.edu%2Fcse_research%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Department of Computer Science & Engineering

2008-17

Multi-Application Deployment in Integrated Sensing Systems Based on
Quality of Monitoring

Authors: Sangeeta Bhattacharya, Abusayeed Saifullah, Chenyang Lu and Gruia-Catalin Roman

Corresponding Author: sangbhat@cse.wustl.edu

Web Page: http://www.cse.wustl.edu/wsn/index.php?title=Building_Automation

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Multi-Application Deployment in Integrated
Sensing Systems Based on Quality of Monitoring

Sangeeta Bhattacharya, Abusayeed Saifullah, Chenyang Lu,and Gruia-Catalin Roman
Department of Computer Science and Engineering

Washington University in St. Louis
{sangbhat, saifullaha, lu, roman}@cse.wustl.edu

Abstract—Wireless sensor networks are evolving from
dedicated application-specific platforms to integrated in-
frastructure shared by multiple applications. Shared sen-
sor networks offer inherent advantages in terms of flex-
ibility and cost since they allow dynamic resource shar-
ing and allocation among multiple applications. Such
shared systems face the critical need for allocation of
nodes to contending applications to enhance the overall
Quality of Monitoring (QoM) under resource constraints.
To address this need, this paper presentsUtility-based
Multi-application Allocation and Deployment Environment
(UMADE), an integrated application deployment system
for shared sensor networks. In sharp contrast to traditional
approaches that allocate applications based on cyber
metrics (e.g., computing resource utilization), UMADE
adopts a cyber-physical system approach that dynamically
allocates nodes to applications based on their QoM of
the physical phenomena.The key novelty of UMADE is
that it is designed to deal with the inter-node QoM de-
pendencies typical in cyber-physical applications. Further-
more, UMADE provides an integrated system solution that
supports the end-to-end process of (1) QoM specification
for applications, (2) QoM-aware application allocation, (3)
application deployment over multi-hop wireless networks,
and (4) adaptive reallocation of applications in response
to network dynamics. UMADE has been implemented on
TinyOS and Agilla virtual machine for Telos motes. The
feasibility and efficacy of UMADE have been demonstrated
on a 28-node wireless sensor network testbed in the context
of building automation applications.

I. INTRODUCTION

While wireless sensor networks (WSNs) have been
traditionally tasked with single applications, recent years
have witnessed the emergence of shared sensor networks
as integrated cyber-physical systems infrastructure for
a multitude of applications. Examples of shared sensor
networks include recent deployment of urban sensing
systems [1], [2], building automation [3], and integrated
environmental monitoring [4]. For example, a smart

building may employ an integrated WSN to support mul-
tiple applications including temperature and humidity
monitoring, security alarms, light control, and structural
health monitoring. Compared to a WSN dedicated to a
single application, a shared WSN can significantly re-
duce the system cost by allowing multiple applications to
share nodes and the network. It can also enhance system
flexibility by dynamically allocating nodes to different
applications in response to environmental changes and
user requirements.

As WSNs evolve from application-specific platforms
to shared cyber-physical systems infrastructure, they face
the new challenge to allocate nodes and resources to con-
tending applications subject to the resource constraints
of sensor nodes. In contrast to application allocation
in traditional computing systems only concerned with
cyber performance metrics (e.g., latency and through-
put), a shared sensor network must allocate applications
based on theirQuality of Monitoring (QoM) of physical
phenomena due to the close coupling of the cyber
and physical aspects of distributed sensing applications.
The QoM of a distributed sensing application usually
depends on the set of nodes allocated to it. Moreover,
the measurement of different sensors are often highly
correlated [5] resulting ininter-node dependency, i.e.,
the QoM contributed by a node to an application is
dependent on the other nodes allocated to the same
application. For example, intelligent air conditioning
control requires accurate estimation of the temperature
distribution in a building based on the measurement of
a finite set of nodes. Allocating a new node whose
reading is highly correlated to that of one already as-
signed to the application, will not significantly increase
the information about the temperature distribution. Such
inter-node QoM dependencies specific to cyber-physical
interactions introduce unique challenges to application
allocation that has not been addressed by existing ap-
proaches to application allocation. For example, existing

allocation approaches developed for real-time computing
systems and computing clusters [6]–[8] are typically
concerned with cyber performance attributes.

To address these challenges faced by shared sen-
sor networks, this paper proposesUtility-based Multi-
application Allocation and Deployment Environment
(UMADE), an integrated system for application deploy-
ment in shared sensor networks. In sharp contrast to
traditional approaches that allocate applications based
on cyber attributes only, UMADE is based on a cyber-
physical system approach that dynamically allocates
nodes to applications based on their QoM requirements
of the physical environments. Specifically, this work has
the following key contributions:

• We propose a novel utility-based approach that
allocates nodes to contending applications based
on their QoM of the physical environments. A key
feature of our approach is the characterization and
handling of inter-node QoM dependencies typical
in cyber-physical applications.

• We present UMADE, the first integrated system
for QoM-aware application deployment in shared
sensor networks. UMADE provides an integrated
system solution that supports the end-to-end pro-
cess of (1) QoM specification for applications, (2)
QoM-aware application allocation, (3) application
deployment over multi-hop wireless networks, and
(4) adaptive reallocation of applications in response
to network dynamics.

• We describe the implementation and experimental
evaluation of UMADE on a physical testbed of
28 Telos motes in an office building. Our results
demonstrate the efficacy and advantages of QoM-
aware multi-application deployment in shared sen-
sor networks in the context of building automation
applications.

II. RELATED WORKS

A. Resource Allocation in Related Domains

Resource allocation has been addressed in several
different domains like wireless networks [9], [10], clus-
ter [6], grid [7], and real-time computing systems [8].
The resource allocation problems addressed in these
domains are, however, fundamentally different from that
addressed by UMADE. For example, wireless networks
domain mostly addresses network-level attributes like
data rate, packet delay, throughput, and packet-loss-
probability, while cluster and grid computing systems
address attributes like number of machines and task

completion times. These attributes are mostly cyber-
oriented and do not address physical aspects such as
QoM of physical environments.

B. Utility-based Approaches to Sensor Networks

Utility-based sensor selection schemes presented
in [11] and [12] suggest mapping sensor nodesets to
utility values. These schemes require the users to directly
specify the nodeset to utility mappings and do not
provide any QoM abstraction. Moreover, both of these
works mostly focus on the theory and algorithms and do
not provide any system for sensor selection. SORA [13]
is a utility-based resource allocation system in sensor
networks in which nodes act as self-interested agents
that select actions to maximize utility under energy
constraints. However, SORA is designed for a single
application and does not deal with node allocation to
multiple applications.

C. System Support for Shared Sensor Networks

With the emergence of shared sensor networks, pro-
gramming abstractions and systems have been developed
to support multiple applications in such systems. Several
projects developed group-based abstractions to support
multiple concurrent applications [14]–[16]. Ma et al.
[17] proposed a market-oriented approach for bandwidth
allocation in shared sensor networks. However, none of
the aforementioned systems for shared sensor networks
considers QoM when allocating applications. In con-
trast, we propose a cyber-physical system approach to
application allocation based on the QoM of physical
environments.

III. SYSTEM MODEL

A. Shared Sensor Networks

A shared sensor network consists of resource-
constrained sensor nodes and a base station with more re-
sources. The base station serves as the gateway between
the sensor network and the Internet. Users may submit
new applications to the shared sensor network through
the base station. Sensor nodes can be heterogeneous in
terms of both supported sensors and resource capacities.
A sensor node may be equipped with one or more
sensors. Integrating multiple sensors on the same node
can reduce hardware cost as the sensors share the micro-
processor and radio. A shared sensor network serves as a
highly flexible infrastructure that supports different levels
of resource sharing among applications. For example,
multiple applications may share (1) a sensor on a node
(e.g., a magnetometer can be used for detecting parked

cars and tracking moving vehicles [2]), (2) a node with
multiple sensors, and (3) the network when multiple
applications are deployed on different nodes.

Sensor nodes have severe resource constraints. In
particular, existing sensor nodes typically have limited
memory. For example, the widely used TelosB mote [18]
has only 10KB of RAM and 48KB of ROM1. As memory
is a critical resource in many sensor networks, UMADE
is currently designed to deal with memory constraints.
In future work we plan to extend UMADE to deal with
other resource constraints such as bandwidth and energy.

B. Quality of Monitoring

A sensor network is shared by multiple distributed
sensing applications that monitor certain physical phe-
nomena. Many distributed sensing applications are im-
portant for cyber-physical systems closely coupled with
physical environments. For example, distributed temper-
ature monitoring and estimation are needed for intel-
ligent air conditioning systems, and distributed event
detection is needed for security systems. Applications
may be deployed dynamically at different points of time
based on user demand.

In contrast to traditional computing applications, the
performance of a sensing application should be char-
acterized by its QoM of the physical phenomenon of
interest. The QoM attributes are application specific. We
now describe two specific QoM attributes as concrete
examples. A contribution of UMADE is that it provides
a general framework for characterizing and incorporating
a wide range of QoM attributes suitable for different
applications.

• Variance reduction: Many distributed sensing appli-
cations are designed to estimatespatially correlated
phenomena (e.g., temperature and humidity). For
example, intelligent air conditioning requires fine-
grained estimation of the temperature distribution
based on the measurement of a finite set of nodes.
The temperature measurements of different sensors
are correlated with each other, and the degree of
their correlations depends on the sensor locations
and the spatial distribution of temperature. To ex-
ploit the correlation of sensor readings, probabilistic
models have been developed that enable the pre-
diction of sensor readings at all nodes based on
the sensor readings of a subset of nodes.Such
probabilistic methods are fairly general and have

1While some sensor nodes have external flash with a capacity of
up to a few megabytes, writing to the flash is power consuming and
cannot be used in place of memory for many applications.

been validated in a broad range of applications
that monitor temperature, humidity, and pollution
in waste water [5], [19]–[21]. While they have been
used for sensor selection for target localization [22]
and for sensor placement [5], [19]–[21], we propose
to use them, for the first time, for allocating subsets
of nodes to multiple contending applications.Dif-
ferent subsets of nodes provide different reductions
in the variance of the estimated sensor readings. The
higher the variance reduction, the higher the confi-
dence in the predictions. Thus,variance reduction is
an important QoM attribute for a common class of
distributed sensing applications that aim to estimate
the spatial distributions of environmental variables
by sampling a subset of nodes.

• Detection probability: Detection probability is a
common QoM attribute for event detection applica-
tions. It is defined as the probability for a specific
type of event to be detected by a fusion group con-
sisting of multiple sensors, subject to a certain upper
bound of false alarm rate. For instance, with dis-
tributed detection based on decision fusion, the local
detection probability of a node can be estimated
based on a stochastic model of the signals and
noise. The per-node detection probabilities are then
combined to obtain the system detection probability
based on the fusion rule. Different subsets of nodes
provide different detection probabilities, depending
on the locations of the nodes in the subset.

As discussed in the above examples, an inherent
property of distributed sensing applications is that the
measurements of a physical phenomenon from different
sensors are usually correlated to each other. As a result,
the contribution of a node to the QoM of an applica-
tion is dependent on the other nodes allocated to the
same application. We call this propertyinter-node QoM
dependency. For instance, the contribution of a sensor
to the variance reduction for temperature estimation
application is heavily influenced by the correlation of
its measurement with those of sensors allocated to the
same application. Similarly, the contribution of a sensor
to system detection probability depends on the locations
of sensors allocated to the same fusion group [23].
Handling such inter-node dependencies of QoM is a key
contribution and novelty of the UMADE system which
distinguishes it from traditional application allocation
approaches.

Note that, besides the QoM attributes, UMADE also
supports traditional computing attributes (e.g., reliabil-

ity) that are sometimes needed for some applications.
UMADE computes node reliability as the product of
the sensor and network path reliability. The reliability
achieved by an application is the probability that at least
one node among the set of nodes assigned to it is alive
and successfully sending data to the base station.

C. Utility Function

To handle dynamic application arrivals, a shared sen-
sor network should support flexible tradeoff between
QoM and the resource consumption of an application.
UMADE allows users to specify an application’s utility
at different QoM levels through its utility function [8],
[10], [17]. A utility function specifies the range of QoM
acceptable by the application and the corresponding
utility gained by the application. Therefore, this function
represents a QoM to utility mapping. Utility functions
are non-decreasing and typically concave since sensing
applications tend to have diminishing marginal returns on
QoM. While these functions can be arbitrarily complex,
simple functions (e.g., piece-wise linear) usually suffice
for sensing applications.We require utility functions to
be only non-decreasing. For example, a simple utility
function for an application that requires a minimum
variance reduction of 80% and a maximum variance
reduction of 95% can be represented as shown in Fig. 1.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Variance Reduction

U
til

ity

 -

Fig. 1. Example utility function

D. Allocation Objective

The objective of application allocation by UMADE
in a shared sensor network is to allocate sensor nodes
to applications so as to maximize the system utility
subject to node memory constraints. This problem can
be formulated as follows:

1) The sensor network consists ofm nodes, denoted
by the setR = {R1, R2, · · · , Rm}. Let Lk be the
memory available at nodeRk, 1 ≤ k ≤ m.

2) A total of n applications, denoted by the set
A = {A1, A2, · · · , An}, need to be deployed. Each

application Aj , 1 ≤ j ≤ n, has a weightwj ,
memory requirementrj , and an associated utility
function uj : Qj → U , where Qj is the set of
possibleQoM values that can be received byAj ,
andU = {x|0 ≤ x ≤ 1} is the set ofutility values.

3) For every applicationAj , 1 ≤ j ≤ n, there is a
QoM profile that maps anodeset to a QoM value
and is represented byqj : P(R) → R. That is, if
applicationAj is deployed on a nodesetSj ⊆ R,
then it achieves a QoM ofqj(Sj) and a utility of
uj(qj(Sj)).

The total system utility is defined as the weighted
sum of the utilities ofn applications, i.e.,

∑n
j=1

wj ∗
uj(qj(Sj)). Thus, the objective of the QoM-aware allo-
cation is to assign a nodesetSj ⊆ R to each application
Aj so as to

maximize

n∑

j=1

wj ∗ uj(qj(Sj)) (1)

subject to

n∑

j=1

ajk ∗ rj ≤ Lk, ∀k = 1, · · · ,m;

where ajk is 1 if node Rk is allocated to application
Aj, and 0 otherwise. This constraint states that the total
memory consumed by the applications sharing a node
must not exceed the memory available at the node.

This allocation problem for shared sensor networks is
NP-hard, which can be proven through a straightforward
reduction from the QoS optimization problem stated
in [8] which has been shown to be NP-hard. The problem
addressed in [8] can be stated as follows. Givenn tasks
T1, · · · , Tn, the problem is to assign qualities (q′j) and
allocate resources (r′j) to tasks in order to

maximize

n∑

j=1

w′
j ∗ u′

j(q
′
j) (2)

subject to q′j ≥ q′
min
j or q′j = 0, ∀j = 1, · · · , n; and

n∑

j=1

r′jk ≤ r′
max
k , ∀k = 1, · · · ,m;

where u′
j(.) and w′

j denote the utility and weight,
respectively, of taskTj. We can, therefore, reduce the
above problem to our allocation problem by setting,
uj = u′

j, qj(Sj) = q′j, Lk = r′
max
k , wj = w′

j , and
ajk ∗ rj = r′jk. The allocation problem, therefore, is NP-
hard.

It is important to note that this QoM-aware appli-
cation allocation for shared sensor networks isfunda-
mentally different from traditional QoS-based resource
allocation (Q-RAM) [8] and multiple knapsack prob-
lems (MKP) [24], because shared sensor networks must
deal with inter-node QoM dependencies imposed by
distributed sensing applications. In contrast, neither Q-
RAM nor MKP considers inter-node dependencies in
resource allocation. In MKP, the items in one knapsack
do not affect the weight of items in adjacent knapsacks.
Similarly, the QoS values achieved by different nodes
are considered independent from each other in Q-RAM.
The key novelty and contribution of our work is to
model and handle such inter-node dependencies imposed
by distributed sensing applications. For example, since
inter-node QoM dependency implies that theQoM value
of a set of nodes is not equivalent to the summation of the
QoM values of the individual nodes, the above problem
formulation usesnodeset to QoM mappings to capture
the inter-node QoM dependencies in distributed sensing
applications. Furthermore, as described in the next sec-
tion, the UMADE system supports automatic mapping
of nodeset to QoM based on training data, and employs
efficient greedy heuristics to allocate applications while
considering the inter-node QoM dependencies.

IV. SYSTEM DESIGN AND IMPLEMENTATION

The UMADE system, as shown in Fig. 2, mainly
consists of theApplication Allocation Engine and the
Application Deployment Engine. The allocation engine
completely resides at the base station (since applications
are usually submitted at a base station) while the de-
ployment engine is distributed across the base station
and sensor nodes.

Application Allocation
Engine

Base Station Sensor Nodes

Nodeset-Utility
Mapper

VM

Application
Deployment Engine

Applications

Wireless
Network

Application
Profile

Repository

Network State Monitor

Application
Profiles

Application
Allocator

UMADE

Network Node
& Topology
Information

Application Deployment
Engine

MultiHop Routing

UMADE

Neighborhood
Monitor

Route
Monitor

QoS Aggregator

Node
Measurements

Repository

Fig. 2. UMADE architecture

The Application Allocation Engine is invoked when-
ever applications are submitted to the system for de-

ployment. Applications are submitted using application
profiles. An application profile includes the application
code, weight, memory requirement, andutility function.
The application memory requirement including memory
required for the application code, data, and other sys-
tem variables can be obtained through simulation and
analysis tools [25], [26]. After application submission,
the allocation engine executes an allocation algorithm
(described in Subsection IV-B) to allocate sensor nodes
to the applications. The output of the Application Alloca-
tion Engine specifies a set of nodes for each application
Aj, 1 ≤ j ≤ n, meaning that applicationAj should be
deployed on this set of nodes. This output is then sent
to the deployment engine that deploys the applications
wirelessly in the shared sensor network according to the
allocation. Following are the details of the design and
implementation of the key components of UMADE.

A. Nodeset to QoM Mapping

UMADE automatically generatesnodeset to QoM

mappings, thereby easing the task of the users. It
achieves this by supporting pluggable modules that com-
pute thenodeset to QoM mappings based on training
data consisting of measurement from individual sensor
nodes. These pluggable modules act asQoM Aggregators
that aggregate and map individual sensor measurement to
system QoM attributes. For example, a QoM Aggregator
for variance reduction outputs the variance reduction
achieved by a nodeset based on the Gaussian joint distri-
bution estimated using the training data from individual
sensor nodes. A QoM Aggregator for detection probabil-
ity outputs the system detection probability achieved by a
nodeset based on the fusion rule and the training data (the
local detection probabilities) of individual sensor nodes.
The training data may be provided by the user based
on historical data, or automatically collected by a sensor
data collection tool provided by UMADE. Note that a
completenodeset to QoM mapping has an exponential
size of2m, wherem is the total number of nodes. Hence,
UMADE does not precompute the entire mapping for
each application. Instead, it generates only the required
mappings on the fly, when required by the allocation
algorithm, that helps in keeping the overall time and
space polynomial.

For example, the QoM Aggregator for variance reduc-
tion uses the following procedure to map a nodeset,S,
to the variance reduction that it provides.

1) It collects training data from all sensor nodes
in the network. This data consists of readings

from all sensors that are used for sensing spatial
phenomena like light, temperature, and humidity.

2) For each sensor type, it assumes that the corre-
sponding sensor values have a (multivariate) Gaus-
sian joint distribution and computes a covariance
matrix ΣV , whereV is the set of all nodes that
have the corresponding sensor type [5]. For ex-
ample, a uniqueΣV is computed for each of the
temperature, light, and humidity sensor types.

3) It uses the covariance matrix to compute
the variance reductionq(S) = trace(ΣV) −
trace(ΣV \S|S) achieved by subsetS ⊆ V . The ex-
act equations used for computingΣV andΣV \S|S

can be found in [5].

This procedure is based on theprobabilistic method
using gaussian processesproposed in [5] which was
originally designed for optimal sensor placement. Due
to the generality of theprobabilisticmethod, this QoM
Aggregator can be applied to a wide range of envi-
ronmental variables, such as temperature, humidity, and
water pollution. UMADE also allows users to plug in
other QoM Aggregators to support other QoM attributes.

B. QoM-aware Application Allocation

The allocation engine invokes the QoM-aware Ap-
plication Allocation Algorithm whenever a set of new
applications is submitted. Since the optimal allocation
problem is NP-hard as discussed in Section III, we
propose a simple greedy heuristic to assign a nodeset
to each application. Note that the allocation algorithm
needs to be reasonably efficient because the allocation
needs to be recomputed dynamically in response to
application arrivals and departures, as well as node
additions and removals. As noted in Section III, existing
heuristics for Q-RAM [8] and MKP [24] are not suitable
for shared sensor networks as they do not consider inter-
node QoM dependencies. The novelty of our QoM-aware
Application Allocation Algorithm lies in its capability
to handle inter-node QoM dependencies. Moreover, it
is integrated with the QoM Aggregator that provides
automatic nodeset to QoM mapping needed to capture
the inter-node QoM dependencies.

The greedy allocation algorithm works as follows.
First, a list of available nodes that have enough free
memory to accommodate at least one of the applications
is obtained. Next, nodes from this list are repeatedly
assigned to thepending applications until all applications
achieve their maximum desired utility values or until
there are no more available nodes. An application is
called apending application if it has not yet achieved its

maximum utility specified by its utility function. Nodes
are assigned as follows: each available node is consid-
ered in turn and assigned to the pending application that
(1) has not been assigned that node before, (2) has a
memory requirement that can be satisfied by the node,
and (3) when assigned, results in the maximum increase
in system utility per unit memory consumption. The
increase in system utility upon allocation of a nodeRi

to an applicationAj (needed in step 3) is obtained by
multiplying the weight of applicationAj to the increase
in utility, say ∆uj, of application Aj . Let S be the
subset of nodes containing the new nodeRi and the
other nodes that have already been allocated toAj .
Then, ∆uj = uj(qj(S)) − uj(qj(S − {Ri})), where
uj(qj(S)) is the utility provided toAj by nodesetS
and uj(qj(S − {Ri})) is the current utility ofAj (see
Subsection III-D). The pseudo code of our allocation
algorithm is shown in Algorithm 1.

As shown Fig. 2, to get the utility achieved by a node-
set the Application Allocator invokes the Nodeset-Utility
Mapper, which in turn invokes the QoM Aggregator to
get the QoM value provided by the nodeset and then
maps the QoM value to the utility value based on the
utility function specified for the application. Note that
our allocation algorithm calculates the utility gain based
on the nodeset to QoM mapping, which enables it to
capture the inter-node QoM dependencies imposed by
distributed sensing applications.

Since the greedy algorithm is affected by the ordering
of the available nodes, we execute the algorithm for a
fixed number of rounds, sayI, while varying the ordering
of the available nodes in each round. The best solution
over all rounds is selected as the final solution. The
greedy solution, thus, has a polynomial time complexity
of O(n2m), where m is the number of nodes andn
is the number of applications and, therefore, scales to
large number of nodes and applications (as shown in
our simulation results in Section VI). Due to the non-
linearity and discrete nature of the allocation problem
as a result of the inter-node QoM dependencies, we
have not proven the approximation bound of our greedy
algorithm. Our evaluation (Section V) indicates that it
achieves system utilities that are only slightly worse than
that achieved by the optimal algorithm under realistic
settings.

C. Handling Application and Network Dynamics

UMADE adapts application allocations in response to
(1) dynamic application arrivals and terminations and (2)
sensor node additions and removals/failures. To balance

A′ ← set of applications;
R′ ← set of nodes that can accommodate an
application;
while A′ 6= ∅ and R′ 6= ∅ do

for each Ri ∈ R′ do
max = 0;
for each Aj ∈ A′ which can be
accommodated by Ri and has not yet been
assigned Ri do

S ← set ofRi and nodes assigned to
Aj ;
∆uj = uj(qj(S))− uj(qj(S − {Ri}));
if wj ∗∆uj > max then

max = wj ∗∆uj; Amax = Aj;
end

end
Assign nodeRi to applicationAmax;
if Amax achieves its maximum utility then

A′ = A′ − {Amax};
end

end
Delete the nodes fromR′ which do not have
enough memory to accommodate any
application inA′, that isn’t already assigned to
the node;

end

Algorithm 1 : QoM-aware Application Allocation

system utility and redeployment cost, UMADE considers
both preemptive and non-preemptive allocation strate-
gies when computing the new allocation. Preemptive
allocation recomputes the allocations of all applications
across the entire network and, hence, may reallocate
existing applications. In contrast, non-preemptive allo-
cation only considers new applications and nodes with
sufficient residual memory when computing the new
allocation and, hence, does not reallocate applications
already deployed on existing nodes. If the system utility
resulting from preemptive allocation exceeds that of the
non-preemptive allocation by more than a threshold,
then UMADE deploys applications according to the pre-
emptive allocation. Otherwise, UMADE picks the non-
preemptive allocation. To enable the user to adjust the
tradeoff between utility and deployment cost, UMADE
can generate different allocations with a range of thresh-
olds (as shown in simulation results in Section VI) for
system administrators to choose from. Note that this
threshold-based approach is practical since the alloca-

TempMon HumidityMon AirQualityMon

Fig. 3. Application allocation (deployment 1 on our testbed)

tion is computed at the base station and the allocation
algorithm has polynomial complexity.

D. Implementation

UMADE has been implemented as an integrated en-
vironment that supports the end-to-end process of ap-
plication deployment in shared sensor networks. The
Allocation Engine on the base station is implemented
in Java, except the QoM Aggregator which is imple-
mented in MATLAB. The Application Deployment En-
gine on the sensor nodes is written in NesC [27] on
the TinyOS [28] operating system. It currently employs
the Agilla VM [29] to support concurrent application
execution and dynamic application deployment, although
it may be extended to work with operating systems that
support dynamically loadable modules [30], [31]. The
Agilla VM supports applications implemented in high-
level scripts, thereby enabling low cost re-tasking of the
sensor network. We extended the Agilla VM to support
dynamic memory management in order to support ap-
plications with a range of memory requirements. As a
result, we were able to reserve 7KB out of 10KB of
RAM available on a TelosB mote for the applications.
Multi-hop routing is achieved using theMultiHopLQI
protocol [32]. MultiHopLQI builds a routing tree rooted
at the base station in which parent nodes are selected
based on the link LQI values. Information about the
routing tree is collected periodically at the base-station.
This information is used to compute routes from the base
station to the nodes, which are used for source-routing-
based deployment of applications to designated nodes
over multi-hop network.On a TelosB mote, the UMADE
system uses 2626B of RAM for itself, while making 7KB

6146

4462

1870 1870

1006

0

1000

2000

3000

4000

5000

6000

7000

AcousticMon TempMon HumidityMon AirQualityMon LightMon

Tasks

M
em

o
ry

 (
B

yt
es

)

-

Fig. 5. Application memory requirements

available to applications running on Agilla VM. It uses
45494B of ROM.

UMADE provides the user, a graphical interface (GUI)
for entering application code, requirements and prop-
erties, as shown in Fig. 4. Submitted applications are
stored by the system for later reference/reuse and are
automatically displayed by the GUI. As shown in Fig-
ure 4(a), the user needs to type-in or load the application
code. The user also needs to enter the application utility
function as shown in Figure 4(b). The job of entering
the utility function is simplified by providing a graphical
view of the entered utility function. The graphical view
is continuously updated as the user inputs the utility
function. As shown in the figure, the GUI also provides
the user with a choice of QoS metrics. In addition
to this, the GUI allows the user to view the network
state (the routing tree created in the network for data
collection/application deployment) and to reset some
or all nodes in the network. Once the user selects an
application for deployment, he/she needs to enter the
application memory requirement and its weight. These
requirements can be easily obtained through simulation
or using some analysis tool, as mentioned earlier. The
user also needs to enter the type of sensor that the
application monitors. Once this information is input, the
user can deploy the applications by clicking the “Deploy
Applications” button.

V. TESTBED EXPERIMENTS

In this section, we present an empirical evaluation
of the entire UMADE system on a physical testbed
consisting of 28 TelosB motes and one Pentium IV PC
acting as the base station. These experiments evaluate
UMADE using realistic applications in the context of
building automation system. In the next section we
evaluate the scalability and the threshold-based dynamic

deployment strategy under a broader range of conditions
through simulations.

Our 28-node testbed covers 6 rooms on the fifth floor
of Jolley Hall in Washington University and forms a
3-hop wireless sensor network. Fig. 3 shows the lay-
out of our testbed. We evaluated UMADE using five
representative applications in the context of building
automation: temperature monitoring (TempMon), humid-
ity monitoring (HumidityMon), air quality monitoring
(AirQualityMon), light monitoring for lighting control
(LightMon), and acoustic signal monitoring for noise
control (AcousticMon). The applications periodically
sample and transmit the average sensor data to the base
station. The memory requirements of the applications are
shown in Fig. 5.

We implemented the temperature, light, and humidity
monitoring applications. Due to the lack of required
sensors on our testbed, we emulate the other two ap-
plications based on estimated memory requirement. The
memory requirement of the applications is dependent on
the sensor data size. The sensor data size is set to 16 bits
assuming that the sensors are connected to a 12-bit ADC
based on the information provided in the data sheets of
commercially available acoustic and air quality sensors.
The weights of all five applications were initially set to
1. Variance reduction was used as the QoM attribute for
the first three applications, since all three applications
monitor spatial phenomena. In order to evaluate the
flexibility of our system in handling applications with
different attributes, we usereliability metric (as defined
in Section III) for the other two applications.

The utility function used for the TempMon application
is shown in Fig. 1. Fig. 7 shows the utility functions
used for other applications. In practice, the utility
functions should be assigned based on the application
characteristics and user requirements. For example,
given the importance of TempMon in achieving a
high comfort level through intelligent air conditioning,
TempMon may be assigned a high variance-reduction
(QoM) requirement ranging from 80% to 95% as shown
in Fig. 1. We computed thenodeset to QoM mappings
for the applications in the following way. For the first
three applications, we collected the temperature, light,
and humidity readings from all testbed nodes over a
few hours in order to compute the temperature, light,
and humidity covariance matrices, which are then
used to compute the nodeset to variance reduction
mappings for TempMon, LightMon, and HumidityMon,
respectively. To obtain the nodeset to reliability
mappings for AirQualityMon and AcousticMon,

(a) (b)

Fig. 4. UMADE graphical user interface (GUI).

(a) System utility (b) Execution time (note that missing bars indicate 0 values)

Fig. 6. Performance comparison of algorithms during deployment 1.

we calculated the per-node failure probability and
computed the reliability provided by a set of nodes as
1− (product of failure probability of all nodes in the set).
The failure probability of a node was computed as
1 − (node reliability). Node reliability, was calculated
based on the reliability of the sensor used (assumed to
be 0.98 in our experiments), and the reliability of the
multi-hop path from the node to the base station which
was computed using per-link LQI readings.

We have evaluated the performance of our greedy
algorithm against an optimal algorithm that uses ex-
haustive enumeration to obtain an optimal allocation
that maximizes system utility under the memory con-
straints. We have also compared the performance of
our greedy algorithm against two standard application

allocation algorithms -knapsack and randomized allo-
cation. The knapsack algorithm sorts the applications
(in non-increasing order) according to the ratio of their
weights and their memory requirements and uses this
list to sequentially assign applications to each sensor
node. Thus, the knapsack algorithm achieves a uniform
allocation on all the sensor nodes. The randomized-
allocation algorithm, on the other hand, randomly picks
applications to assign to each network node. The alloca-
tions are computed per room since this physical division
enables the use of a divide and conquer strategy of the
algorithms.

We have evaluated the performance of UMADE using
a step-wise deployment scheme. Each deployment was
initiated after an arbitrary interval of 1 hour. In the first

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Variance Reduction

U
ti

lit
y

(a) HumidityMon Utility Function

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Variance Reduction

U
til

ity

(b) LightMon Utility Function

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Reliability

U
til

ity

(c) AirQualityMon Utility Function

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Reliability

U
til

ity

(d) AcousticMon Utility Function

Fig. 7. Evaluation settings.

0

0.2

0.4

0.6

0.8

1

TempMon HumidityMon AirQualityMon LightMon AcousticMon

Applications

A
ve

ra
g

e
U

ti
lit

y

-

Deployment 1
Deployment 2
Deployment 3

(a) Application utility

0

20

40

60

80

100

TempMon HumidityMon AirQualityMon LightMon AcousticMon

Applications

A
ve

ra
g

e
V

ar
ia

n
ce

 R
ed

u
ct

io
n

/R
el

ia
b

ili
ty

-

Deployment 1
Deployment 2
Deployment 3

(b) Application variance reduction/reliability

Fig. 9. Application utility and variance reduction/reliability achieved per deployment

step (Deployment 1), we deployed three applications -
TempMon, HumidityMon, and AirQualityMon. In the
second step (Deployment 2), we increased the number of
applications by adding LightMon and AcousticMon. In
the third step (Deployment 3), we changed the weight
of one of the applications to evaluate its effect on the
application allocations. The results obtained in each step
are presented below.

A. Deployment 1: Comparison of Allocation Methods

Fig. 3 shows the allocation of the three applications
in the testbed after they are deployed by UMADE
based on our QoM-aware greedy algorithm. Given the
memory requirements of TempMon, HumidityMon, and
AirQualityMon applications, it is easy to see that at
most two of these applications fit on a node (since only
7K is available per node for applications). Fig. 6(a)
compares the system utility achieved by our greedy

algorithm with the optimal, knapsack, and randomized
allocation algorithms. Fig. 6(a) shows that in some cases
the greedy algorithm achieves the optimal system utility
while in other cases it performs only slightly worse than
the optimal algorithm. The greedy algorithm, however,
consistently performs much better than the knapsack and
randomized-allocation algorithms, which is expected,
since these two algorithms do not try to optimize the
system utility. Fig. 6(b) compares the execution times
of these algorithms. The greedy algorithm is several
orders of magnitude faster than the optimal algorithm.
For example, for Room 2 which has 8 sensor nodes,
the optimal algorithm takes 3205 seconds as compared
to 2.7 seconds taken by the greedy algorithm. The
greedy algorithm is slower than the knapsack and the
randomized-allocation algorithms since it executes for a
number of iterations.

Given that the greedy algorithm achieves a much
higher system utility than both the knapsack and
randomized-allocation algorithms, we exclude these two
schemes in later experiments. Fig. 8 shows the average
system utility per room achieved by the greedy and
optimal algorithms.

B. Deployment 2 and 3: Adaptation to Changes

Deployment 2 tests how UMADE adapts when two
new applications are added to the system. Fig. 8 shows
that the overall system utility is improved as a result
of the new allocations computed by UMADE. The
figure only shows the greedy solution because the op-
timal algorithm has not terminated after several hours
of execution. The individual application utilities and
variance reduction/reliability values achieved with the
new allocation are shown in Fig. 9(a) and Fig. 9(b),
respectively. Note the change in the application utilities.
In particular, we see that the TempMon application is
not allocated enough nodes resulting in low QoM and 0

Deployment 1 Deployment 2 Deployment 3
0

1

2

3

4

5

6

Deployments

A
ve

ra
g

e
S

ys
te

m
 U

ti
lit

y

Optimal
Greedy

Fig. 8. Average system utility per room

utility. This is because of the relatively high QoM and
memory requirements of the application.

In Deployment 3, we increase the importance of the
TempMon application by increasing its weight to 5 while
maintaining the weights of the other applications at 1.
The improvement in the utility and QoM achieved by the
TempMon application as a result of this change is shown
in Fig. 9(a) and Fig. 9(b), respectively. Notice how the
TempMon utility increases to about 60% from 0 and the
QoM increases to 90% from 19%. The improvement in
the overall system utility achieved as a result of this
change is shown in Fig. 8. These experiments demon-
strate that the UMADE system can effectively adapt to
dynamic changes to the applications.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
s)

Number of Nodes

5 Apps
10 Apps
15 Apps

Fig. 10. Execution time under varying network size and number of
applications

VI. SIMULATIONS

In this section, we present an evaluation of UMADE
with a wide range of synthetic workloads and settings.
Because of the extremely long run-time needed by the
optimal algorithm, we do not compare the QoM-aware
greedy allocation algorithm against the optimal algo-
rithm in simulations because they involve large numbers
of nodes and applications. In the simulation setup, each
application is assigned a random weight between 1 to 6,
a random memory requirement ranging from 1000 bytes
to 7 KB, and a random two-segment utility function.
Nodeset to QoM mappings are also generated at random.
Each node has a maximum memory capacity of 7KB for
applications.

The first set of simulations evaluates the scalability of
UMADE’s QoS-aware greedy allocation algorithm with
different number of nodes and applications. Fig. 10 il-
lustrates how the execution time of the greedy allocation

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 10 20 30 40 50 60 70 80 90 100
 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24
A

ve
ra

ge
 S

ys
te

m
 U

til
ity

A
ve

ra
ge

 D
ep

lo
ym

en
t C

os
t

Threshold (% of current system utility)

AvgSysUtility
AvgDepCost

(a) Performance under increasing number of applications

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0 10 20 30 40 50 60 70 80 90 100

 3

 4

 5

 6

 7

 8

 9

 10

A
ve

ra
ge

 S
ys

te
m

 U
til

ity

A
ve

ra
ge

 D
ep

lo
ym

en
t C

os
t

Threshold (% of current system utility)

AvgSysUtility
AvgDepCost

(b) Performance under increasing network size

Fig. 11. Performance under varying network size and number of applications

algorithm on a Pentium IV PC varies with the numbers
of nodes and applications. Each data point in the figure
is averaged over 100 runs. 95% confidence intervals are
also plotted but are not visible due to the small range
of the intervals. The figure indicates that the greedy
algorithm can scale effectively to large cluster sizes and
number of applications.

The second set of simulations evaluates the cost-
effectiveness of the threshold-based allocation scheme
in the face of application and node additions and re-
movals. Fig. 11(a) shows UMADE’s performance when
the number of applications is increased from 1 to 10
on a 30-node network. We deploy one application at a
time and compute thedeployment cost as the summation
of the number of new nodes assigned to each applica-
tion. We also compute the average system utilityand
average deployment costover different configurations
of the network. The figure shows that both the average
system utility and average deployment cost reduce as the
threshold is varied from 0 to 100% utility-gain which is
expected. Interestingly, when the threshold is between
25% and 50%, the drop in deployment cost is much
larger (38.7%) than the drop in system utility (1.6%).
Hence, a threshold-based allocation scheme would result
in only 1.6% reduction in system utility when compared
against the preemptive scheme, while reducing the de-
ployment cost by 38.7%. This result demonstrates that,
by exploring different threshold values for each deploy-
ment, UMADE enables the user to identify the most
cost-effective allocation scheme when a new application
arrives.

Fig. 11(b) shows UMADE’s performance when the
number of applications is fixed at 10, but the number
of nodes is increased from 10 to 30. When a new node

is added to the system, UMADE uses a policy similar
to what it does when a new application is submitted to
the system. That is, it redeploys all applications if the
system utility can be increased to a value greater than a
threshold; otherwise it just deploys applications on the
new node if the utility gain is less than the threshold (but
> 0). Here, too, we see that the average system utility
and deployment cost drop as the threshold is increased
from 0 to 100% utility-gain, as expected. In this case,
thresholds in the range 20% to 25% give the best balance
between utility gain and deployment cost.

Thus, we see that the threshold is an effective knob
for achieving a desired balance between utility gain
and deployment cost. Exposing the system utility and
deployment cost with different thresholds to the user
allows the user to choose a threshold (per deployment)
that results in the desired tradeoff between deployment
cost and system utility.

VII. C ONCLUSION

As wireless sensor networks evolve into integrated
infrastructure shared by numerous applications, they face
the critical need for allocating and deploying applications
in shared networks. We have developed UMADE, an
integrated environment for application deployment in
shared sensor networks. In sharp contrast to traditional
approaches that allocate applications based on computing
metrics only, UMADE adopts a cyber-physical system
approach to allocate applications based on theQuality
of Monitoring (QoM) of the physical environments. The
key novelty of UMADE is that it is designed to deal
with the inter-node QoM dependencies inherent to many
distributed sensing applications. Furthermore, UMADE
provides anintegrated system solution that supports (1)

automatic nodeset to QoM mapping for applications,
(2) QoM-aware application allocation, (3) application
deployment over multi-hop wireless networks, and (4)
adaptive reallocation of applications. UMADE has been
implemented on TinyOS and the Agilla virtual machine
for Telos motes. The efficacy of UMADE has been
demonstrated on a 28-node wireless sensor network
testbed in the context of building automation applica-
tions.

As a promising start towards supporting integrated
sensing systems, UMADE also opens up several research
directions. UMADE currently treats memory as the crit-
ical resource constraint for shared sensor networks. In
the future, UMADE will be extended to address multi-
ple resource constraints. In addition, UMADE currently
adopts a centralized approach to application allocation,
which can effectively handle our 28-node network in our
empirical study. To handle large-scale networks we will
investigate hierarchical approaches. For example, in a
building automation system for a large commercial build-
ing, different floors may form separate sub-networks
connected by an upper-tier network. UMADE can be
extended to perform multi-level application allocation in
a hierarchical fashion in such tiered networks.

REFERENCES

[1] R. Murty, G. Mainland, I. Rose, A. Chowdhury, A. Gosain,
J. Bers, and M. Welsh, “CitySense: An urban-scale wireless
sensor network and testbed,”IEEE Conference on Technologies
for Homeland Security, pp. 583–588, May 2008.

[2] “Can’t find a parking spot? Check smartphone,” July 2008,
http://www.nytimes.com/2008/07/12/business/12newpark.html.

[3] “Building automation applications,” 2006, Ember Corporations,
http://www.ember.com/applicationsbuilding automation.html.

[4] R. Pon, A. Kansal, D. Liu, M. Rahimi, L. Shirachi, W. Kaiser,
G. Pottie, M. Srivastava, G. Sukhatme, and D. Estrin, “Net-
worked infomechanical systems (NIMS): Next generation sen-
sor networks for environmental monitoring,”Microwave Sym-
posium Digest, 2005 IEEE MTT-S International, pp. 373–376,
June 2005.

[5] C. Guestrin, A. Krause, and A. P. Singh, “Near-optimal sensor
placements in gaussian processes,” inICML ’05: Proceedings of
the 22nd international conference on Machine learning. New
York, NY, USA: ACM, 2005, pp. 265–272.

[6] “PlanetLab: An open platform for developing, deploying, and
accessing planetary-scale services,” http://www.planet-lab.org.

[7] D. Abramson, J. Giddy, and L. Kotler, “High performance
parametric modeling with nimrod/g: Killer application forthe
global grid?” in IPDPS ’00: Proceedings of the 14th Inter-
national Symposium on Parallel and Distributed Processing.
Washington, DC, USA: IEEE Computer Society, 2000.

[8] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen,
“A scalable solution to the multi-resource QoS problem,” in
RTSS ’99: Proceedings of the 20th IEEE Real-Time Systems
Symposium. Washington, DC, USA: IEEE Computer Society,
1999.

[9] T. B. Reddy, I. Karthigeyan, B. S. Manoj, and C. S. R. Murthy,
“Quality of service provisioning in ad hoc wireless networks: a
survey of issues and solutions,”Ad Hoc Networks, vol. 4, no. 1,
pp. 83–124, 2006.

[10] C. Curescu and S. Nadjm-Tehrani, “Price/utility-based opti-
mized resource allocation in wireless ad hoc networks,” in
Sensor and Ad Hoc Communications and Networks, 2005. IEEE
SECON 2005. 2005 Second Annual IEEE Communications
Society Conference on, Sept. 2005, pp. 85–95.

[11] F. Bian, D. Kempe, and R. Govindan, “Utility based sensor
selection,” in IPSN ’06: Proceedings of the 5th international
conference on Information processing in sensor networks. New
York, NY, USA: ACM, 2006, pp. 11–18.

[12] J. Byers and G. Nasser, “Utility-based decision-making in
wireless sensor networks,” inMobiHoc ’00: Proceedings of the
1st ACM international symposium on Mobile ad hoc networking
& computing. Piscataway, NJ, USA: IEEE Press, 2000, pp.
143–144.

[13] G. Mainland, D. C. Parkes, and M. Welsh, “Decentralized,
adaptive resource allocation for sensor networks,” inNSDI’05:
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation. Berkeley, CA, USA:
USENIX Association, 2005, pp. 315–328.

[14] C. Frank and K. Römer, “Algorithms for generic role assign-
ment in wireless sensor networks,” inSenSys ’05: Proceedings
of the 3rd international conference on Embedded networked
sensor systems. ACM, 2005, pp. 230–242.

[15] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting
concurrent applications in wireless sensor networks,” inSenSys
’06: Proceedings of the 4th international conference on Embed-
ded networked sensor systems. New York, NY, USA: ACM,
2006, pp. 139–152.

[16] J. Horey, A. B. Maccabe, and A. Mielke, “Kensho: A dynamic
tasking architecture for sensor networks,”SIGBED Rev., vol. 4,
no. 3, pp. 19–24, 2007.

[17] Q. Ma, D. C. Parkes, and M. Welsh, “A utility-based approach to
bandwidth allocation and link scheduling in wireless networks,”
in First International Workshop on Agent Technology for
Sensor Networks (ATSN-07), May 2007. [Online]. Available:
http://www.eecs.harvard.edu/ mdw/papers/utility-atsn07.pdf

[18] “TelosB,” http://www.xbow.com/Products/Productpdf files/Wireless
pdf/TelosB Datasheet.pdf.

[19] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,”
in VLDB ’04: Proceedings of the Thirtieth international con-
ference on Very large data bases. VLDB Endowment, 2004,
pp. 588–599.

[20] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and
C. Faloutsos, “Efficient sensor placement optimization forse-
curing large water distribution networks,”Journal of Water
Resources Planning and Management, vol. 134, no. 6, pp. 516–
526, November 2008.

[21] A. Krause, B. McMahan, C. Guestrin, and A. Gupta, “Robust
submodular observation selection,”Journal of Machine Learn-
ing Research (JMLR), vol. 9, pp. 2761–2801, December 2008.

[22] V. Isler and R. Bajcsy, “The sensor selection problem for
bounded uncertainty sensing models,” inIPSN ’05: Proceedings
of the 4th international symposium on Information processing
in sensor networks. Piscataway, NJ, USA: IEEE Press, 2005.

[23] G. Xing, C. Lu, R. Pless, and J. A. O’Sullivan, “Co-Grid:an
efficient coverage maintenance protocol for distributed sensor
networks,” in IPSN ’04: Proceedings of the 3rd international

symposium on Information processing in sensor networks. New
York, NY, USA: ACM, 2004, pp. 414–423.

[24] S. Martello and P. Toth,Knapsack Problems: Algorithms
and Computer Implementations. New York, John
Wiley and Sons Ltd., 1990. [Online]. Available:
http://www.or.deis.unibo.it/knapsack.html

[25] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate
and scalable simulation of entire TinyOS applications,” in
SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems. ACM, 2003, pp. 126–
137.

[26] J. Regehr, A. Reid, and K. Webb, “Eliminating stack overflow
by abstract interpretation,”ACM Transactions in Embedded
Computing Systems (TECS), vol. 4, no. 4, pp. 751–778, 2005.

[27] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesC language: A holistic approach to
networked embedded systems,” inProceedings of the ACM
SIGPLAN 2003 conference on Programming language design
and implementation, 2003, pp. 1–11.

[28] “TinyOS Community Forum,” http://www.tinyos.net/.
[29] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid development

and flexible deployment of adaptive wireless sensor network
applications,” in ICDCS ’05: Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 653–
662.

[30] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes,” inMobiSys
’05: Proceedings of the 3rd international conference on Mobile
systems, applications, and services. New York, NY, USA:
ACM, 2005, pp. 163–176.

[31] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” in
LCN ’04: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 455–462.

[32] “MultiHopLQI,” 2004, http://www. tinyos.net/ tinyos-1.x/ tos/
lib/ MultiHopLQI/.

	Multi-Application Deployment in Integrated Sensing Systems Based on Quality of Monitoring
	Recommended Citation

	tmp.1418338203.pdf.xIjfC

