Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-32

1997-01-01

The Programmers' Playground Application Management System
User Guide

William M. Shapiro, T. Paul McCartney, and E.F. Berkley Shands

Application Management permits the advertising, launching, and configuring of distributed
applications created using the Programmers' Playground. Applications can be documented and
made available to end-users through the use of application pages on the World Wide Web. The
launching and configuring of applications is performed by a brokerage system consisting of an
applicatoin broker and one or more hierarchies of module launchers. This document describes
how to setup and use the components of the Application Management system.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Shapiro, William M.; McCartney, T. Paul; and Shands, E.F. Berkley, "The Programmers' Playground
Application Management System User Guide" Report Number: WUCS-97-32 (1997). All Computer Science
and Engineering Research.

https://openscholarship.wustl.edu/cse_research/447

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/447?utm_source=openscholarship.wustl.edu%2Fcse_research%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

The Programmers’ Playground
Application Management System User Guide

William M. Shapiro, T. Paul McCartney,
and E.F. Berlkley Shands

WUCS-97-32

August 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Application Management
User Guide

William M. Shapiro, T. Paul McCartney, E.F. Berkley Shands

Revised for Application Management v2.1.0
August 1997

Copyright (c) 1996-1997 by

Distributed Programming Environments Group

Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899

Abstract

Application Management permits the advertising, launching, and configuring of distributed applications
created using The Programmers’ Playground. Applications can be documented and made available to
end-users through the use of application pages on the World Wide Web. The launching and configuring
of applications is performed by a brokerage system consisting of an application broker and one or more
hierarchies of module launchers. This document describes how to setup and use the components of the
Application Management system.

Table of Contents

1 Introduction ... vesassesnesnersresnararasse k
11 ApPLCAON PAGES ..ooiviieiiriiiiesinisinscssssnsinnrserannssessstsisssssaesseesesssssssssasessssssesssssssessssasssassssenssnns 1
1.2 Application Management System COMPONEILScccervcrreriermrirreessnssessssssesessssssssssssssssssssessssssnns 1
L3 OVEBIVIBW wvoirivninieriseincersricassesseesssssesesstssssssassasssssssssstsssssssssssssssosssensasssassosssssnsorssnsassssnsnssssss 3

2 Using Application Management with the World Wide Webceemmmmmsenmcsnnsssssesssed

2.1 Starting a LAUNCHET ..oocceiieeiriicieeieiet sttt st s srsts e sssn st s ms s s asarassensssssnssressasessssons 4
2.2 Starting the BrOKELcccerccieiieeisieiesiises s ssssssvesessssasssasessssssesssaesamsassssasssssessessssassassssssssesss 5
2.3 Starting the MEAIBIOTooccreeecrrertnre st sttt stss st sbonsasssebobsassosasiasorssossabsrsanse 35
24 USINg (e LIAISOM Liiiiiiiisimerireseseieesesssssessesessssssesessatssessassssssssssssssssssssasessssssssssessssessassenss s 6
2.5 Using Remote LAUNCHELScccciiceieceeeceirsesieiennenssssssesiessssessseesmessessesssssesssssassssssssnsstsssnssssnsesns 7

3 Customizing the LaunCh System ltnc---u---n.noonﬁn.--n----nn-n--l»nnooDocoonooo‘o-&bo-»'-o-"o----o-no--on---;---tvounus

3.1 Creating and Configuring the Launch TIEE ...ccveiviievcstinenninnienirinesteissiessssissesssneseessnnsssnns 8

311 MOGUIE DIFECIOIIES c.eeeeeeuierieiccereeeieteesae s st sesasasssrssssbasas e e babe nssetesa e bensmsmsesasssasmamesessssessnrestenes 8

312 INFOFULE oo sess e va e seseseens searssns s s arese e s e bbb e esn bbbt e s s s n st b bt s nes st ensinsseenan o]

3.1.3 LaunchTree.Defaulls File. ..o eeceeresersssssnenssssesssssssssaressessses sessssesesssssessssssssasssssssssareseas 11

3.14 SUbauNCher DIFCIOIIES ... coovteerrcetieccresitsssressssssssssiesssnssesssnsssensren s seararasasasssesessssssasemnsssesseress 11
3.2 Configuring the BIOKET ..cvicirioniiiisiaimimiirresscssissesieseassssessesssessnssssnsssssssrssssssnssssssssorssssssssssesss 12
3.3 Running the BenchmMAarKercicimminiemioimmimmimisessssssssssssseressssssssssssssssssssns 14
34 The Launcher’s POLCY File .iiiicmierirencesenrncesvesneiseesesnsecssssssssessssssssssasssosssosssasssssers 14
3.5 Advertising Remote LaUnNCRersciiieiiimiieniinrnrrcrinnrnrerssessissessassasssssssssssessrsesssssessssssnsessass 15
4,1 Creating the Application DIrectory SITUCLUIEcccveirviiverrerinnrrereseesrrrsisrsssessssssesssssissessserns 16
4.2 Creating the Application Page ROOL DIFECIOIY ..vvviveerierererineissssnsesersesessmssssssesessesessessssassesss L7
4.3 Creating APPLICAtion PABesccocceieiecerivinriessisissssisseenrssssssssesssssesssesmentsneinssastsnsersssestesssssseres 17
44 Creating the AppHcation DeSCrIPHON ..c.cccieinveiiririrnirreccresisesceiessesssssresssisssssssrsossssessssesassrens 18
4.5 Customizing the Application DACITIONccccevieeirsirirsrciriseiasssrrsssisesiessensssssssssssssssassssssenssesasne 19
4.6 Starting the Application DACINOM ...u..cvecnieerieriesiiinirisieiseseestesstasessesssssesrssssssseanasssasssessesssses 19

A Command-Line AUZUNMIENES c.uvivcisesssissesssrssssssessraessssnesssssssesssasssnsensssnssnssnsesasnsssnenassnsssressae S0
B Launch Tree Information File GIraIMINAL ..eeeceversesesseresessserasssassrssossssessssensassonssrssaserssse 22

C Application Speciﬁcation File Gramlnar .c-----o-----un--n-o..noonoo-onloooooonooolboooolbo-loibolioliilooituzs

- ii -

Chapter 1

Introduction

This manual assumes the user is familiar with the basic concepts of The Programmers’ Playground. An
introduction to Playground can be found in [1], [2].

Application Management refers to a software approach for automating the process of launching and
configuring complete distributed multimedia applications created using The Programmers’ Playground.
With such a software system, end-users can use complex distributed multimedia applications without
knowing the internal details of the application. For example, an application may have the requirement
that a certain component must operate on a particular file system in order to access a locally stored
database. Exposing this information directly to the end-user is undesirable since it forces the end-user to
be knowledgeable about the application’s internal details and the current performance characteristics of
the resources that may be used. Instead, it is better to leave the launching details to the Application
Management system described in this manual.

1.1 Application Pages

End-users interact with the Application Management system through the use of application pages. Each
application page is a World Wide Web document that is viewable through the use of a Java-enabled web
browser (e.g., Netscape Navigator). Application Pages provide both application documentation and a end-
user mechanism for launching and configuring complete distributed applications. Figure 1 contains an
example application page for the Medical Image Filtering application.

1.2 Application Management System Components

Figure 2 shows the relationship between the Application Management system components. The
application directory is a world-readable web directory tree that contains application specific information
for one or more applications, including the application’s web page, launch specification, and information
about running application instances.

The Application Daemon module manages and controls access to a set of application directories.
Information about launched applications is communicated to the Application Daemon, which writes the

data to the appropriate application directory.

Application Management User Guide Chapter 1: Introduction

o P
1 Medical Image Filter

A nuclear medicine radioactive blood pasl study is used te create movies of the human heart for

diagnostic purposes. Each moviz consists of a sexizs of images, However, the images suffer from nofse

;}au_s:d by ambient radiation, making them difficult te read, This nolse can be reduced by digitally Eltering
e images.

This dema application Eiters a series of noisy medical images of the human heard, allswing one to view the
original and filtered images in an interactive graphical user interface. Mpre infermation is avaflable on the:
compunents of this 2pplication.

AR L R RN

The abovs plctures show the appiicaton’s user interface and medule configuration. Each of the modules
may run on a separate workstation, Note that viewing the module configuration is purely optional; this
Informationis enly seer: wher the user has started the Mediator visuzal configuradon teol
Instructions

. Youmust dowmload and install the Blagreround User Edition to run this deme,

—-

>

. Startthe brokerage system as descrived in the Application Management User Guide,
Prass the " Start Lizison” button belew, See theze [nstrustions for using the Lialsen,

Lol

After the user interface has been started, editand chonge the flename for the movie chelee.
Pessible volues ave: "rvg00L203", "rvg001 202", "regl0 10D, *rvghi2 2017, "2v 002 502",
rygf02 203", "ryg003.501", 'evg 0033027, 'rvg003.2403".

P

Figure 1: Example Application Page: Medical Image Filtering

When an application page is viewed with a Java-enabled Web browser, a Java program called the Liaison
applet is run. The Liaison periodically scans the application directory and displays a list of all currently
running application instances. Users can interact with the Liaison’s GUI, specifying requests o be sent
to the brokerage system (e.g., a “launch application” request, see Section 2.4).

The brokerage system, which consists of a Broker module and a hierarchy of Launcher modules, controls
the launching and configuration of application modules. Each end-user runs their own personal copy of
the Broker. In response to a Liaison request, the end-user’s Broker forms connections to the appropriate
Application Daemon in order to receive application information and send information about newly
launched applications. Module specifications and application configuration information are read by the
Application Daemon from the application directory and communicated to the Broker. The Broker
delegates the task of module launching to its Launchers, gathers module IDs of newly launched modules,
configures the communication among modules, and communicates the set of IDs back to the Application
Daemon. In addition, the Mediator visual configuration tool [4] can be used to view, manipulate and
launch modules in conjunction with the Broker.

The Launcher is responsible for launching a collection of modules and optimizing module allocation to
processors according to heuristics based on module performance requirements, hardware configurations,
and other factors. Each Launcher controls access to some portion of the total computing resource,

Application Management User Guide Chapter 1: Introduction

|| Web Page (htm)
+ 1 Configuration Info.
¢ |- Application Info. #1
.| Application Info. #2

Figure 2: The Application Launch architecture.

including other Launchers and physical CPUs. Launchers may form a hierarchy, as seen in Figure 2.
“Leaf” Launchers gather information about a single workstation (e.g., its current load, list of supported
modules) and launch modules on that workstation, Other Launchers manage a collection of child
Launchers, summarizing child information to parents and delegating the launching task to children. A
Launcher may conceal the details of resources it controls, acting as a firewall to those resources.

1.3 Overview

The remainder of the manual is organized as follows. Chapter 2 provides quick-start instructions for
using Application Management. Chapter 3 describes the setup and customization of the brokerage
system. Chapter 4 explains how to create, and allow others (o use, application pages on the World Wide

Web.

Throughout this manual, the directory of “/home/fred/PG” is used for demonstration purposes as the base
directory of the Playground User Edition installation. Additionally, the UNIX file separator */” is used
throughout the manual. For Windows NT, the file separator “V” should be used instead.

Also, this manual refers to a directory called “.pgdir.” This directory and its contents are created in the
user’s home directory the first time that the Application Management system is used.

UNIX

Chapter 2

Using Application Management with the
World Wide Web

This chapter provides step-by-step instructions for starting the Application Management system for use
with the World Wide Web, assuming that the Playground User Edition has been installed.

Starting the Application Management system can be divided into four steps:

1. Start one or more Launchers,

2. Start a Broker on the local machine
3. Start a Mediator (optional).
4,

Using Netscape Navigator version 4, go to an application page and press the “Start Liaison” button.

2.1 Starting a Launcher

At least one Launcher must be running in order to launch modules. The Launchers may be run on either
remote or local computers; however, you must run at least one local Launcher. The performance of
graphical modules {(e.g., EUPHORIA) is superior when running locally. A Launcher should be running
on each computer that you intend to launch modules. This may include “remote launchers” managed by
other users (see Section 2.5).

To start a Launcher, you must know the root of a launch tree of available modules (see Section 3.1). In
the Programmers’ Playground user edition, a “launchTree” directory is created upon installation. You
may provide this directory as a command-line argument to the Launcher:

PGlauncher -base /home/fred/PG/launchTree
start PGlauncher ~bkase C:\home\fred\PG\launchTree

or, alternatively, you may specify the root of the launch tree in Launcher. Policy file (see Section 3.4) and
start the Launcher without arguments.

UNIX

UNIX

Application Management User Guide Chapter 2: Using Application Management with the World

2.2 Starting the Broker

In order to use Application Management, the user must have a Broker running on the local machine. The
user may start the Broker with the command:

PGbroker

start PGbroker

2.3 Starting the Mediator

The Mediator may be used to view, launch and visually configure Playground modules. Application
modules initiated by your Broker will appear in your Mediator GUL. The Mediator may be started with
the command:

PGmediator

start PGmediator

A Mediator containing the modules for 2 medical filtering application is shown in Figure 3.

File View Module Broker

A EUPHORIA |3

=

zl Image Filtering Application

Figure 3: Mediator Containing Modules for a Medic

Application Management User Guide Chapter 2: Using Application Management with the World

2.4 Using the Liaison
Currently, you must be running Netscape Communicator version 4,0 or above to use the Liaison applet.
Each application page contains a button to expose the Liaison applet window (see Figure 1). Figure 4

shows an example Liaison window. The Liaison contains a list of running application instances and
several buttons.

Launches a new instance of the
application

Kunning Agplication’inst: Ty Provides additional information about
the selected instance

Patient #34653 Consuitation Dr. David Ross 8/4/37

Undergraduate Radloiegy Demo Prof. Johnson 8/4/97 N
Imports running modules from

selected instance into the Mediator

Launches the “client” portion for the
selected instance

Attempts to kill the selected
application instance

Figure 4; Liaison Window

The NEW option launches a new instance of the given application. When the NEW button is pressed,
the box shown in Figure 5 pops up, requesting information from the user. The user must provide a name
for the instance. Additionally, the user may provide the name of the person or group that started the
instance and documentation information. The documentation information may either consist of text or a
URL with further information. Finally, the user may specify whether the instance should be made public
(i.e., viewable by other users in the Liaison window).

http://www.fredswerld.org/conference. htmi

Application Management User Guide Chapter 2: Using Application Management with the World

To use any button other than NEW, the desired application instance in the list must first be selected. The
INFO option provides additional information about the selected application instance by either displaying
text or a web page (supplied previously when the NEW command was executed). The GRAB option
imports the already running modules of the selected application into the Mediator (see Figure 2.3). The
JOIN option launches the “client” portion of the selected “server” application. One may wish to “join” a
teleconferencing application, for example. Not all applications are set up to be joined. Finally, the KILL
option attempis to shut down the selected application instance.

Due to performance issues, the Liaison’s table of running applications is only uwpdated every five
minutes. That is, applications that are exited in some other way than using KILL may continue to appear
in the Liaison table for several minutes.

Applet Security

The Liaison is a signed applet (signed by the authors of this manual), which needs to interact with the
user’s computer, The first time the NEW, GRAB, JOIN or KILL button is pushed, several security
dialog boxes will pop up the screen, requesting permission to read files on the user’s file system, read
system properties and connect to other computers. If all security permissions are not granted, the Liaison
will not able to send requests to the Broker. A description of each permission requested is provided in
Table 1.

Permission Description Why Needed
UniversalPropertyRead | Reading information stored in your computer | Required to find your home directory,
that is normally kept private, such as your where the file containing the Broker’s
user name and the current directory. location is stored.
UniversalFileRead Reading any files stored o1t hard disks or other | Required to read the file that stores
storage media connected to your computer. the location of your Broker.
UniversalConnect Contacting and connecting with other Required to connect to your Broker

computers over a network.

Table 1: Security Permissions Requested by the Liaison Applet

2.5 Using Remote Launchers

Sometimes users may wish to use launchers that are running on remote systems. Application
Management allows users to specify remote launchers in a “RemoteLaunchers” directory. To specily a
remote launcher, the user must save a remote launcher file (created by the remote launcher provider, see
Section 3.5) into their ~/.pgdir/RemoteLaunchers directory. When the Broker is started, it searches this
directory for available launchers, and connects to those launchers. To remove a remote launcher, simply
remove the remote launcher’s file from the directory. Each remote launcher file will contain instructions
on how to add it to your list of remote launchers. An example remote launcher file is provided below:

Example Remote Launcher file: example.url
To use this launcher save this file in vour
~/.pgdir/RemoteLauncher directory

http://www.fredsworld.org/fred/my_launcher.pgmid

Chapter 3

Customizing the Launch System

The brokerage system is responsible for launching and configuring Playground applications. It consists
of a Broker module, which is run on the user’s local machine, and one or more Launcher modules (see

Figure 2).
Customizing the launch system for your computers/filesystem involves:

1. Creating and configuring one or more launch trees
2. Creating a policy file for the Broker
3. Creating a policy file for the Launcher

3.1 Creating and Configuring the Launch Tree

A launch tree is a directory that contains information about module executables, module public names,
filesystem specific settings and other information. The launch tree consists of a root launcher directory
that may contain any number of module directories and sublauncher directories. Each module directory
contains information describing where the executable for the module is located and additional module
properties. Each sublauncher directory represents the root of a separate launch tree, A sublauncher may
contain additional module directories and sublauncher directories.

The Playground User Edition release will install a launch tree containing the EUPHORIA module as
shown in Figure 6.

3.1.1 Module Directories

Each module that will be used with the Application Management system must have a module directory.
The name of each module directory is arbitrary except that it must end with the suffix .module (e.g.,
foo.module). Additionally, the module directory must contain a .info file with the same name as the
directory (e.g., foo.info).

Applicarion Management User Guide Chapter 3: Customizing the Launch Systemn

LaunchTree Defanits

euphoria.info
Figure 6: Launch Tree Installed in the Playground User Edition Release

3.1.2 Info File

Currently, the designer must write each <module>.info file. A graphical interface for writing this file
will be provided in a future release.

The <module>.info file provides machine and/or filesystem-specific information needed to launch a
module. A <module>.info file must be provided for each module represented in the launch tree. An
example <module>.info file is provided below:

PG_MOD_SPEC 1 0 # This is required!

mandatory data
#
map EUPHORIA.dpe.cs.wustl.edu /home/fred/PG/bin/PGeuphoria

optional data

#

launch fork
directory /home/fred/

logging info
#
logto EUPHORIA.log

Each <module>.info file must contain a file header and the mapping between the module’s public name
and the module executable location. Additionally, each file may include additional options (explained
below) and comments beginning with “#”.

Public Name

A module is identified by its unique public name, a string that should identify the module, its publisher,
and something about its purpose. A suggested convention is <ModuleName>.<Group>.<Host>. For
example, EUPHORIA’s public name is “EUPHORIA.dpe.cs.wustl.edu”, The public name cannot contain
whitespace and is not case sensitive,

The launch system is responsible for finding an appropriate copy (i.e., 2 machine specific copy) of each
module executable at launch time. On UNIX systems, the public name may contain wild card characters
which will be matched with the available modules from the launch tree. It is then possible to code the
application specification (see Section 4.4) to request a generic public name and let the launch system find
an appropriate match. For example, “MathFunctions.*.cs.wustl.edu” could match

Application Management User Guide Chapter 3: Customizing the Launch System

“MathFunctions.Generic.dpe.cs.wustl.edu” or “MathFunctions. DEC-ALPHA .dpe.cs.wustl.edu”. If there
is more than one match, the first match will be chosen.

The mapping from the module public name to the executable location is required. The executable
location is specific to the filesystem of the running module. For example, if the public name of a module
is “mmx.dpe.cs.wustl.edu” and the path of the executable is “home/vaudeville/bin/mmx,” then the
mapping would be:

map mmx.dpe.cs.wustl.edu /home/vaudeville/bin/rmx

The path of the executable may also be local (e.g., mmx instead of /home/vaundeville/bin/mmx) if the
executable is stored in the same directory as the <module>.info file and the “directory” option (see
Options below) is not set to different directory.

Options

The options section allows the designer to specify additional properties of the module that may not have
been specified elsewhere, Options may be specified in arbitrary order.

* args - Allows the user to specify command-line arguments to send to the launched
modules.

args <string>

* env - specifies the UNIX shell dependent command to use to set environment variables
(on Windows NT this option is ignored).

env { setenv | set)

* launch - Specifies whether the module should be launched via fork()/exec() or by a
system() call (On Windows NT, all calls are done with CreateProcess())., By default
modules are launched via fork{)/exec().

launch { fork | system }

» var - Allows the user to specify environment variablefvalue pairs needed by the
module

var <variaklel>» <valuel>
var <variable2> <valuel>

* notpg - Specifies the module is not a Playground module, preventing the module ID
from being reported to the Application Daemon.

notpg

+ parent - Specifies the module is a *“parent,” causing subsequent modules to bootstrap
to it.

parent

* directory - Specifies the module’s working directory.

directory <directory path>

-10 -

Application Management User Guide Chapter 3: Cuostomizing the Launch System

* private - Specifies the module is launcher PRIVATE, meaning only the local launcher
will know about the module (it will not be propagated to other modules). This option is
useful for debugging modules.

private

* join only - Specifies that the module is long-lived (e.g., a server) and should not be
killed by the Application Daemon.

jeinonly

* log info - Specifies a log file for the module

logto <filename>

* remote host - specifies the host the module should be launched on.
host <host name>

3.1.3 LaunchTree.Defaults File

A Launcher.Defaults file may be placed in the root directory of a launch tree (see Figure 6). The file
contains default values for all modules in the launch tree. The format of the Launcher.Defaults file is the
same as the <module>.info file and may contain the same options. Values specified in the <module.info>
file overrule those in the Launcher.Defaults file. An example file is presented below:

PG_MOD_SPEC 1 0

mandatory data - LaunchTree.Defaults
#
map Mandatory Mandatory-but-—unused

optional data
#
var LD_LIBRARY_ PATH /home/fred/PG/lib

In this example, because the dynamically linked library path is the same for all modules, the environment
variable for the library path is set in the defaults file.

3.1.4 Sublauncher Directories

Each sublauncher directory is named for the machine it is to exist on. For example, if we wish to create a
sublauncher directory for the machine “trampoline,” we would create a subdirectory named
“trampoline.sublauncher.” The directory would then contain directories for any modules that are located
on trampoline and possibly other sublauncher directories. When a launcher starts, it checks for
sublauncher directories in its launch tree. For each sublauncher directory without a running launcher, the
root launcher attempts to start an appropriate launcher. The root launcher must be able to do a remote
login to the sublauncher’s computer without the need to enter a password.

~11 -

Application Management User Guide Chapter 3: Customizing the Launch System

3.2 Configuring the Broker

The Broker is responsible for delegating the launching of an application to one or more Launchers, It
receives requests from either the Liaison, the Mediator, or its Playground interface.

Each user must launch his or her own Broker on the local machine. If more than one Broker exists for a
given user, each Broker must have a different “DISPLAY” value, which the Broker determines by
reading the “DISPLAY” environment variable. If the “DISPLAY” environment variable is not defined,
the Broker will create one based on the current host name.

All configuration information for the Broker is stored in the file Broker.Policy, which is located in the
users .pgdir directory (~/.pgdir/Broker.Policy). The Broker.Policy file is free-form meaning that the
order of each item does not matter. Additionally, comments beginning with “#” and extending to the end
of the line are permitted throughout the file. An example policy file is provided below:

Example Broker Policy File
launcherbase /home/fred/PG/launchTlree

overrideretry false
retry softfail
launchpelicy complex
socket 32145

The user may specify the following properties (in any order) in the Broker.Policy file:
* launcherbase - Specifies the base directory of all auto-launched launchers the Broker
initiates:
launcherbase <root directory>

where <root directory> is the root of the launch tree (see Section 3.1). The launcherbase may also
be specified by setting the environment variable “PGLAUNCHERDIR” or with a command-line-
argument (see Section A.1).

* socket - Specifies the socket to which Broker should listen for requests from the Liaison.
The form is:

socket <integer>

where <integer> is a valid socket port (between 1024 and 65535). If <integer> is specified to be 0,
the Liaison interface will be disabled.

* retry - The Broker’s default retry policy:

retry (none | abort | rotate | broker | softfail)

A retry occurs when a module cannot be launched given the current constraints (e.g., there is
excess load on the desired launcher). Several retry options are available if module placement fails.
“Softfail” will drop performance requirements and retry the launch, “Abort” simply stops and does
not retry. “Rotate” tries the next available Launcher until its retries are used up. “Broker” returns
the request back to the Broker (used with a Liaison). The retry option specified will be used if
either the application designer did not specify a retry policy or the “overrideretry” option is set.

S12-

Application Management User Guide Chapter 3: Customizing the Launch System

+ overrideretry - Specifies whether the Broker should ignore the designer’s retry policy
and, instead, use the retry option specified in Broker.Policy:

overrideretry (true | false)

* logging - Specifies the file where the Broker will log all errors and requests:

logging <file path>

* launchpolicy - Specifies the type of launch policy for the Broker:

launchpeolicy (simple | complex)

The default launch policy, “simple”, chooses the best machine for each individual module. If
“complex” is specified, the Broker attempts to balance the group of modules based on performance

and Ioad specifications.

* fixedpid and fixedsocket - Specifies default values for the process ID (pid) and socket
for used for Playground communication, For example,

fixedsocket 8765
fixedpid 5585

The user may choose a socket value between 1024 and 65535 for the underlying Playground
veneer to use for communication, Similarly, the user may specify a process ID (pid) between 1
and 1024 the Broker should use. Specifying both a fixedsocket and a fixedpid provides a fixed

address that can be published.
 launchwait - Specifies the time the launch system should wait for a module to be

launched. The defaunlt value is 20 seconds. The maximum value is 60 seconds. If a
module takes a long time to start, the user may wish to increase the launchwait. For

example,

launchwait 60

Finally, the Broker.Policy file may contain a rejection section that allows the user to specify which hosts
or users should be blocked and the rejection messages that should be sent to these users. For example:

SECTION rejections

host nowhere.com user fred accept message required

host nowhere.com user * reject message you're not fred!!
user bully redject message bullies are nct welcome here
END_SECTION

The designer may specify an arbitrary nmumber of rejections. Each rejection optionally begins with the
host to be rejected then specifies the user to be rejected and the rejection message. The *“*” denotes
wildcard, Full file name wildcarding is supported under UNIX.,

- 13-

UNIX

Application Management User Guide Chapter 3: Customizing the Launch System

3.3 Running the Benchmarker

The benchmarker uses a set of benchmarks to generate statistics describing the performance of a given
host. The statistics are used by the launch system to optimize module placement across computers, The
benchmarker need only be run once for each computer used by the Application Management system, To
run the benchmarker, go to the “bin™ directory of the release (e.g., /home/ired/PG/bin) and execute the
command:

PGhbenchmarker
start PGhenchmarker

The benchmarker will create a file <host>.hwinfo in the directory from which it is run. Launchers look
for this file in the “bin” directory.

3.4 The Launcher’s Policy File

Like the Broker, the Launcher also has a policy file that is located in the user’s Playground directory (~/
.pgdir/Launcher.Policy). An example Launcher.Policy files is provided below:

Example Launcher Pclicy File
launcherdir /home/fred/PG/launchTree

overrideretyry false
hiding false

retry softfail
launchpolicy simple

The Launcher.Policy file may contain the root of the Launcher hierarchy which is specified as:

launcherdir <path>

Additionally, the designer may specify that the Launcher *hide” all host information about the module by
stripping the host name from published variables of the outgoing module. To specify that “hiding”
should take place, the following line should be added:

hiding true

Finally, as in the Broker. Policy file (see Section 3.2), the designer may specify the Launcher’s:

* overrideretry policy

* retry policy

* launchpolicy

* logging

» fixedpid and fixedsocket
* rejection section

-14-

Application Management User Guide Chapter 3: Customizing the Launch System

3.5 Advertising Remote Launchers

Computers may be used as launch service providers, allowing remote users to launch modules on the
designated machines. The Launcher ID of each Launcher serving as a provider must then be made
available to remote users (sec Section 2.5). Application Management provides two mechanisms for
advertising Launcher IDs: directly, by creating a file with the suffix “.pgmid” containing the Launcher’s
Playground module ID [1] and indirectly, by publishing the URL of the file with the suffix “.url.”

Launch service providers can put their .pgmid and/or .url files in a well known location, such as the
World Wide Web, where users can easily locate and download the files. The .pgmid option is more
efficient, giving direct access to the launcher’s location. The second option is more flexible because it
allows the Launcher’s ID to change by providing an extra level of indirection, In general, if the Launcher
is a “system” launcher (i.c., it has a fixed address), then the first option is preferable.

An example .pgmid file is provided below:

Example *.pgmid file: foo.pgmid
To use this Launcher, save this file
in your ~/.pgdir/RemotelLaunchers directory

128.252.165.86,26091:5CK55549

The Playground module ID of a launcher is printed when it is started. Creating the .pgmid file simply
involves copying this ID into a file and (optionally) adding comments.

An example .url file is provided below. This file should give the URL of a .pgmid file stored in a World
Wide Web readable location.

Example *.url file: foo.url
To use this Launcher, save this file
in your ~/.pgdix/Remotelaunchers directory

htip://www.fredsworld.org/fred/foo.pgmid

-15-

Chapter 4
Creating and Serving Application Pages

The Application Daemon and Liaison allow end-users to initiate launching of distributed applications
from the World Wide Web. Users who solely plan to use either the Mediator or the Playground interfaces
of the brokerage system to launch applications may skip this chapter.

Making your application available on the World Wide Web for others to use requires:

* Creating an application directory

* Creating an application description file that contains module and configuration
information

* Creating the Application Daemon’s policy file

* Running the Application Daemon to manage the application directory

4.1 Creating the Application Directory Structure

The application directory hierarchy must reside in a world-readable directory (WWW directory)
containing all information specific to each application. The application directory structure consists of a
root directory and an arbitrary number of application subdirectories. Each application subdirectory must
contain an application description file called new.spec. An example application directory is shown in
Figure 7.

Figure 7: Example Application Directory Structure
Publishing a new application on the web for use with the Application Management system requires

creating a new application subdirectory containing an application page (HTML), a new.spec file, and
whatever other files are associated with the application (e.g., EUPHORIA files [3]).

_16-

Application Management User Guide Chapter 4: Customizing the Launch System

4.2 Creating the Application Page Root Directory

The root application page directory contains several files and all application page subdirectories. To
create the root directory:

1. Create a directory in your local World Wide Web directory and set the directory’s permissions to
be world-viewable.

2. Copy all files provided in the “liaison” directory of the distribution (e.g., /home/fred/PG/liaison)
to the directory you just created and set the permissions on all of these files to be world-readable.

4.3 Creating Application Pages

Creating an application page requires creating a HTML. web page and adding the Liaison applet tag to
the page. The application page would likely contain information about the application and possibly
documentation for using the application (see Figure 1).

The applet tag to be added to an application page is provided below:

<APPLET code="Liaison.class" archive="liaison.jar" codebase=".." WIDTH=240 HEIGHT=40>
<PARAM NAME=buttonImage VALUE="buttonl.jpg">
<PARAM NAME=pressedButtonImage VALUE="putionl.jpg">
<PARAM NAME=showRunningApps VALUE="true’>

</APPLET>

The user can customize the following attributes of the applet tag:

* buttons - The user may optionally add the parameters “buttonImage” and
“pressedButtonlmage” to specify the button images that appear in the Liaison
window. The images must then be stored in the root application directory and must be
world-readable.

<PARAM NAME=buttonImage VALUE="<FIRST IMAGE>">
<PARAM NAME~pressedButtonImage VALUE="<IMAGE WHEN PRESSED>">

* showRunningApps - The user may specify whether application instances should be
public (i.e., shown in the list of running applications). By default application instances
are shown.

<PARAM NAME=showRunningApps VALUE="<true or false>">

+ WIDTH and HEIGHT - The user may specify applet button’s the width and height.

-17-

Application Management User Guide Chapter 4: Customizing the Launch System

4.4 Creating the Application Description

Each application directory must contain a file named new.spec that specifies the modules that comprise
the application and how the modules are configured. The user creates a new.spec file for an application
by launching and configuring the application in the Mediator [2] and saving the configuration to a file
called new.spec. The file grammar for an application description is provided in Appendix C for
developers who would like to generate the new.spec file some other way.

In addition, an application directory may also (optionally) contain a file named join.spec that specifies
the modules that comprise the application client portion and the connections to the server portion (i.e.,
modules specified in the new.spec file). Currently, join.spec files cammot be created directly by the
Mediator. In the future, the Mediator will provide such a mechanism.

For client-server applications, join.spec and its associated new.spec can be created in the following way:
1. In the Mediator, launch and configure both the server portion and one instance of the client

portion.

Save the configuration as “new.spec”

Create a copy of the new.spec; call the copy “join.spec”

In the new.spec file, delete each “MODULE” section (see Appendix C) of client modules.

U

In the new.spec file, delete each connection in the “CONNECTIONS” section that refers to client
modules, These can be identified by the fromID and toID of the associated modules.

&

In the join.spec file, delete each “MODULE” section of server modules,

7. In the join.spec file, delete each connection in the “CONNECTIONS” section that refers to
strictly server connections (i.e., both from and to server modules).

-18 -

LINIX

A\

Application Management User Guide Chapter 4: Customizing the Launch System

4.5 Customizing the Application Daemon

The AppDaemon.Policy file is read by the Application Daemon in the user’s Playground settings
directory (~/.pgdir/AppDaemon.Policy). If the file does not already exist, the Application Daemon will
create it. The AppDaemon.Policy file may contain the web directory root where the application pages
reside and administrative information, Additionally, comments beginning with “#” and extending to the
end of the line are permitted throughout the file, An example policy file is provided below:

Example AppDaemon Policy File
weblocation /home/fred/www/apps

fixedsocket 7654
fixedpid 555

The attributes specified in the policy file are explained below:

* weblocation - The user may specify the root of the application directory:

weblocation <directeory path>

+ fixedsocket and fixedpid - The user may choose a socket value between 1024 and
65535 for the underlying Playground Veneer to use for communication, Similarly, the
user may specify a process ID (pid) between 1 and 1024 that the Application Daemon
should use. Specifying both a fixedsocket and a fixedpid provides a fixed location that
can be shared. Example specifications are provided below:

fixedsocket 8765
fixedpid 555

Finally, the AppDaemon. Policy file may contain a rejection section as described in Section 3.2.

4.6 Starting the Application Daemon

To enable users to start an application, an Application Daemon must be running to serve the information
in the application directory tree. The user may either specify the application page root directory as a
command line argument when starting the Application Daemon:

PGappDaemon -base /home/fred/www/apps &
start PGappDaemon -base C:\home\fred\www\apps

or, alternatively, the root directory may be specified in your AppDaemon.Policy file (see Section 4.5) and
the Application Daemon may be started without arguments.

The Application Daemon must have write access to the application directory.

-19-

Appendix A

Command-Line Arguments

Command-line arguments provide a means of either specifying or overriding the options described in the
* Policy files. This appendix describes the command-line arguments for the Broker, Application Daemon

and Launcher.

A.1 Broker Command-Line Arguments

Argument Description
-socket <N> Sets the socket the Broker should listen on for requests from the Liaison. A valne of 0
will disable the socket interface.
-fixedsocket <N> Sets the out-of-band communication socket for the Playground interface.
-fixedpid <N> Sets the alias process id.
-gystem Sets fixedsocket and fixedpid to known default values {3 and 5003).
-master <PGID> Permits the given PGID to kill the Jaunched Broker. Normally, only a PGDAD or

PGMOM [1] is allowed to kill a module.

-pgdir <path> Specifies that <path> should be used instead of ~/.pgdir. This option should be nsed for
a Broker running as nobody.

-nobodyuid <uid> If run as root, this option runs the Broker as the provided “nid” (e.g., nobody).

Table 2: Broker Command-Line¢ Arguments

Application Management User Guide Chapter 4: Customizing the Launch System

A.2 Application Daemon Command-Line Arguments

Argument Description

-base <dir> Specifies the path of the root of the application directory.

-fixedsocket <N> Sets the out-of-band communication socket to N for the Playground interface.

-fixedpid <N> Sets the altas process id.

-system Sets fixedsocket and fixedpid to known default values (3 and 5003).

-pgdir <path> Specifies that <path> should be used instead of ~/.pgdir. This option should be used for
an Application Dacmon ronning as nobody.

-nobodyuid <nid> If run as root, this option runs the Application Daemon as the provided “nid” (e.g.,
nobody).

Table 3: Applicationr Daemon Command-Line Arguments

A.3 Launcher Command-Line Arguments

Argument Description

~fixedsocket N Sets the out-of-band communication socket to N for the Playground interface.

-fixedpid N Sets the alias process id to N.

-system Sets fixedsocket and fixedpid to known default values (3 and 5003).

-base <dir> Sets the top-level directory where the Launcher recursively searches for modules and
sublaunchers.

-boolstrap Causes the Launcher to recursively bootstrap all sublaunchers in the directory tree (nsing
1sh).

-fork Causes the Launcher to fork(} and exec() an new process to free the shell for other use.

-hide_modules Prevents the launcher’s ID from being propagated up the launch tree to other Launchers or
Brokers.

-pgdir <path> Specifies that <path> should be used instead of ~/.pgdir. This option should be used for a
Launcher running as nobody.

-nobodyuid <uid> | If run as root, this option runs the Launcher as the provided “uid” (e.g., nobody).

Table 4: Launcher Command-Line Arguments

-21-

Appendix B

Launch Tree Information File Grammar

The grammar for the <module>.info file is provided for the user that wishes to either use advanced
options in the <module>.info file that are not described elsewhere or wish to write their own
configuration tool for the file format.

The grammar for the <module>.info file is as follows:

<header>
<mandatory>
<coptional>*
<headexr> — PG_MOD_SPEC <version> <revision>
<mandatory>» — map <publicName> <executable>
<publicName> —» Advertised name of module
<executable> — Absolute path to executable or just the executable name if stored locally.
<optional>» - args <siring to be sent to launched modules (command line options)> |

env (setenv | set) |

var <ervironment variable pairs> |

launch (fork | system) |

flags <launchCost> <runningCost> |

notpg <Not A Playground Module> |

parent <Module is bootstrapped to (I.E. a configurer)> |
directeory <Module’s connected directory on execution> |
private <Mocdule is launcher PRIVATE> |

joinonly <Module is long lived, do not kill it> |

logto <filename of log data> |

host <host name gf rsh launched module or sublaunchers |
launchwait <seconds to wait>

Appendix C

Application Specification File Grammar

The grammar for the new.spec and join.spec files is provided for the user that wishes to either use
advanced options that cannot be specified through the Mediator or wishes to write his or her own
configuration tool for creating new.spec and join.spec files.

C.1 Grammar

The grammar for the new.spec file is as follows:

PEMEDIATOR <version>
<section>*
END_DCCUMENT

<section> — SECTION <secname> <version>
<secbody>
END_SECTION

<secname> — APPSPACE | MODULE | CONNECTIIONS | APPDAEMON
<secbody> - <appbody>* | <modbody>* | <connectbody>* | <adbody>*
<appbody> - name <cstr> |

dimensions <1> <t> <w> <h> |
zoom <factor> <px> <py> |
module <intID> <x> <y>

<modbody > - id <intID> |
name <counted-string> |
publicName <string> |
location <location> |
optimize <optimize> |
launch (true | false) |
env <variable> <value> |
performance <performance> |
pgid <PGID> |
retry <retry> |
flags <fiags> |
args <command-line arguments>

_23.

Application Management User Guide

Chapter 4: Customizing the Launch System

<intiID> —
<lccation> -~
<retry> —
<flags> —>
<optimize> -

<periocrmance> —

<args> -
<env-pair> -
<varname> -3

<var-value> —

<string> -

<launcherName>—

<PEID> -
<cstr> -
<adbody> —

<connectbody> —
<float> —
<minutes> -
<properties> —

<bit-vector> —

a unique non-negative integer (an index)

local | preferred |
launcher <launcherName> | host <HostName>

abort | rotate | broker | softfail

joinenly | netpg | parent

flops | vmips | mcpys | lead

flops <float> | vmips <float> | mcpys <float>
string to be sent to launched modules (command line args)
<varname> <var—-value>

string of characters without whitespace - var name

string of characters without whitespace - var translation
string of characters without whitespace

<PGID> - fixed string of Launcher ID

string of encoded playground identifier

<count> string of characters - may have whitespace

demo <minutes>

connect <conlID> <fremID> <cstr> <toID> <cstr> <properties>
floating point number {(decimal}

integer, 0 < X < 60

<bit~vector>

1 : unidirectional
2 : bidirectional

4 : elt-to-zggr

8 elt-from—aggr
i6 send on ccnnect

-24 -

Application Management User Guide Chapter 4: Customizing the Launch System

C.2 Option Descriptions

¢ location - The <location> specifier allows the designer to specify WHERE a module
should be launched from. A “local” launch goes to a Launcher on the same machine as
the user’s Broker. A “preferred” launch heads to a work group Launcher (if any).
Specifying *“launcher X” or “host X" sends the modules directly to the named
Launcher. Launcher names may be fixed in advance using the fixedpid and fixedsocket
options in the launcher.

* flags - The <flags> specifier allows the designer to specify characteristics of the
module. A “notpg” indicates that the module is NOT a Playground compatible image,
and should not expect a veneer handshake. A “joinonly” indicates the module (if it
already exists) is not to be killed should a launch fail. This type of module would be
typified by a video server, or a conference management module, A “parent” indicates
that the module is to be launched before ALL other non-parent modules. The resulting
modules are then passed to the remaining modules as PGMOM modules. This allows a
GUI or other controlling module to be started as part of a launch,

* optimize - The <optimize> specifier allows the designer to choose the processor
characteristics of the host the launch system selects for execution. A keyword of
“flops” specifies that the fastest floating point hardware available is to be used for
launching this module, based on current loading. A keyword of “vmips” selects the
fastest scalar hardware available is to be used for launching this module, based on
current loading. A keyword of “mcpys” specifies the greatest memory bandwidth (or
size) hardware available is to be used for launching this module, based on current
loading. A keyword of “load” selects the least loaded machine available (beware, a
386 might have a load of zero!)

* performance - The <performance> specifier allows the designer to choose the
processor characteristics of the host the launch system selects for execution. A
keyword of “flops™ specifies that at least that many flops should be currently available
on the target machine before a launch is attempted. The target computes the available
flops based on the BenchMarker cutput and its current load. Windows-NT machines
have a fixed load of 5. Flops are double precision operations. A keyword “vmips”
indicates a specified minimum scalar performance. A keyword of “mcpys™ indicates a
specific memory characteristic.

° args - The <args> specifier allows the designer to pass command line arguments to the
launched module. These arguments are the last iterns on the launched module’s
command line. Locally specified arguments (i.e., those from the launching agent’s
machine) are appended first.

* pgid - The PGID of a module may be fixed in advance, say for a video server at a
know site. A typical PGID is of the form <inet-addr>,<pid>:<commtype><int>. e.g.,
128.252.137.1,1:SCK5001. The fixed address must be coded into the module at the
other end.

» properties - The connection properties are specific to the type of data and dataflow
directions needed for this connection. For a simple connection, the constant 17 is

typical.

* demo - The “demo N” entry in the APPDAEMON section specifies to the AD that all
modules (and this application) should be killed on the next update after N minutes
have passed. This will kill applications with “joinonly” set.

_95.

Application Management User Guide Chapter 4: Cusiomizing the Launch System

References

[1] Kenneth J. Goldman, Joe Hoffert, T. Paul McCartney, Jerome Plun, Todd Rodgers. “The Play-
ground Veneer Reference Manual.”

[2] Goldman, K.I., et. al. “Welcome to the Programmer’s Playground!” htip://www.cs.wustl.edu/cs/
playground/

[3] T. Paul McCartney, Kenneth J. Goldman. “EUPHORIA Reference Manual” Washington Universi-
tyDepartment of Computer Science WUCS-97-13, February 1997.

[4] T Paul McCartney. “Mediator Reference Manual.” In preparation.

_26-

	The Programmers' Playground Application Management System User Guide
	Recommended Citation

	tmp.1439928365.pdf.ELEaY

