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Abstract—
Open soft real-time systems, such as mobile robots, ex-

perience unpredictable interactions with their environments
and yet must respond both adaptively and with reasonable
temporal predictability. Because of the uncertainty inherent in
such interactions, many of the assumptions of the real-time
scheduling techniques traditionally used to ensure predictable
timing of system actions do not hold in those environments.
In previous work we have developed novel techniques for
scheduling policy design where up-front knowledge of execu-
tion time distributions can be used to produce both compact
representations of resource utilization state spaces and efficient
optimal scheduling policies over those state spaces.

This paper makes two main contributions beyond our previ-
ous work, to the state of the art in scheduling open soft real-
time systems: (1) it shows how to relax the assumption that
the entire distribution of execution times is known up front, to
allow online learning of an execution time distribution during
system run-time; and (2) it shows how to relax the assumption
that the execution time of a system action can be characterized
by a single distribution, to accommodate different execution
time distributions for an action being taken in one of multiple
modes. Each of these contributions allows a wider range of
system actions to be scheduled adaptively and with temporal
predictability, which increases the applicability of our approach
to even more general classes of open soft real-time systems.

I. I NTRODUCTION

Open soft real-time systems, such as mobile robots,
must respond adaptively to varying operating conditions. In
many situations, such as when a mobile robot approaches
a physical obstacle or a branch in its possible navigation
path, decisions must be made and enacted within specific
timing constraints (e.g., before hitting the obstacle or
passing a way point at which a different path should have
been taken). In previous work [1], [2], [3], we described a
method for automatically synthesizing optimal scheduling
policies tailored to the particular operating parameters of
such systems. Specifically, given a distribution describing
the execution time for each task and a desired resource
share, that method automatically generates a scheduling
policy that optimally shares that resource under our system
model.

That method is suitable for an important category of
system actions where a single characteristic distributionof

This research was supported in part by NSF grants CNS-0716764
(Cybertrust) and CCF-0448562 (CAREER).

execution times can be determined readilya priori, for
example the movement of a robot’s pan-tilt unit from one
position to another. However, for other actions it may be
difficult to characterize their execution time distributions
before the system is running, and instead decisions must
be made dynamically, based on observations made at run-
time. Furthermore, the execution time distribution for an
action may differ from one mode of system operation
to another. For example, as we illustrate in Figure 1 in
Section II the dwell time required for image capture by a
digital camera may depend significantly on both the scene
being captured and whether or not the camera’s view of
the scene is occluded. To increase the applicability of our
approach to such cases, new techniques for scheduling
policy design are thus needed.

To address that need, in this paper we refine the system
model used in our previous work by allowing either of
two key simplifying assumptions to be relaxed (while still
retaining the other assumption): (1) that we can obtain a
full characterization of system behaviora priori; or (2)
that a single mode of operation is sufficient to describe the
system’s behavior. While our long-term goal is to design
scheduling policies for systems with both unknown modes
and unknown task execution time distributions within
those modes, learning optimal scheduling policies for a
system with both of these competing sources of uncertainty
appears to be quite challenging in general – consider for
example the problem of how to distinguish whether an
outlying observation belongs to a given mode, particularly
initially when few observations have been made.

In this paper we therefore relax each of the two as-
sumptions separately, showing how to generate scheduling
policies automatically for either case, as a necessary and
important first step towards our more general goal of
considering them together which we defer to future work.
For brevity we focus our treatment of these extensions in
the context of our previously described scheduling policy
design techniques [2]. However, the new techniques we
present in this paper can be adapted to work within any
framework that allows scheduling policy synthesis given a
refinable model of tasks’ durations and desired scheduling
properties, such as their observed worse case execution
times and task priorities in the case of Rate Monotonic
Scheduling [4].



In Section II we describe our resulting system model
with these two alternative refinements. In Section III we
describe our solution approaches for online learning of
execution time distributions and modes. In Section IV we
present analytical and experimental evauations of these so-
lution approaches. In Section V we discuss related work. In
Section VI we present our conclusions about the techniques
presented in this paper, and describe future directions for
this research.

II. SYSTEM MODEL

In previous work [1], we proposed a system model in
which: (1) multiple threads of execution require mutually
exclusive use of a single common resource (e.g., a CPU);
(2) whenever a thread is granted the resource, it occupies
the resource for a finite and bounded subsequent duration;
(3) the duration for which a thread occupies the resource
may vary from run to run but overall obeys a known,
independent and bounded distribution; and (4) a scheduler
repeatedly chooses which thread to run according to a
given scheduling policy, dispatches that thread, and waits
until the end of the duration during which the thread
occupies the resource.

That system model established a basic foundation for
scheduling policy design in open soft real-time systems
built atop commonly used operating systems such as Linux
or VxWorks. For example, within the Linux kernel, hard
and soft interrupts may be threaded and placed under
scheduler control [5], with different resulting durationsof
resource occupation for the different kinds of interrupts.
However, for cyber-physical systems that basic system
model is not sufficient. Since complex interactions among
physical, computational, and communication components
may result in execution time distributions that (1) are
initially unknown or at the very least are sufficiently hard
to characterizea priori; or (2) are distinctly different in
different modes of system operation.

a) Unknown Execution Time Distributions::In the
first case, we may only have access to a poor model of the
distribution that governs the execution time of each system
action, if we have any knowledge at all. Therefore, we
must learn these distributions from observations obtained
while the system runs. This extension to our system
model provides a foundation for scheduling enforcement
in complex cyber-physical systems such as mobile robots,
where unforeseen factors such as the exact state of the
environment may make accuratea priori characterization
of execution times infeasible.

In addition, run-time adaptation of a model of execution
times may be vital if the model differs significantly from
what is observed online. For example, execution time
distributions generated through simulations or observations
made during previous runs of a system may be useful
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Fig. 1. Digital camera image capture times: the lower capture times
when the camera’s view is occluded and the higher capture times when
it isn’t, are observably distinguished by those modes.

to establish reasonable initial scheduling behavior, but
if distributions of subsequently observed execution times
differ, the scheduling policy should be adapted to use those
more situational observations.

b) Unknown Modes of Operation::In the second
case, the execution time distributions are knowna priori
as before, but the system may operate in one of a number
of possible known modes. Each mode has its own indepen-
dent distributions of the execution times for each system
action in that mode. While all distributions for all actionsin
all modes are known before run-time, the particular mode
the system is in at any given time must be inferred by
observation.

c) Illustrative Example:: A common action in mo-
bile robotics is to capture a camera image to obtain
information about a robot’s environment. Because many
cameras deployed on common robotics platforms do image
compression as a normal part of their data processing, the
response time of this system action depends on properties
of the scene being imaged. For the first case, a camera
with an unobstructed view of a sufficiently rich scene
will experience different image capture times simply by
pointing it at different parts of the scene. For the second
case, if the lighting of the scene changes or if the camera’s
view of the scene is occluded, distinctly different image
capture times may result from those lighting or occlusion
modes for a given camera orientation. To illustrate these
effects, we alternately occluded and uncovered a camera
and measured its image capture times during those occlu-
sion modes. Figure 1 shows the results of those trials, with
the observed image capture times being noticeably smaller
when the camera’s view was obscured than when it had an
un-obscured view of the scene.

As we noted in Section I, we consider unknown distri-
butions vs. unknown modes separately in the techniques
presented in this paper, though this illustrative example



motivates the utility of both our separate treatment of these
here and our plans for considering them jointly in future
work. Some thoughts on this synthesis are described in
Section VI. In Section III we next describe the intuition
behind our previous solution approach, and how we have
extended that approach to handle each of these cases.

III. SOLUTION APPROACH

In this section we first describe our system representa-
tion and how it is used to automate optimal scheduling
policy design. This technique serves as the foundation for
each of the extensions described in this paper. We then
describe these extensions in detail, starting with our ap-
proach for systems where (1) the distribution of execution
times is not known up front and must be learned online.
We then examine the case where (2) the system operates
in any of a number of different modes.

We model each mode of the task scheduling problem
as a Markov Decision Process [6], [7], or MDP. An MDP
consists of a set of statesX , actionsA, a real-valued cost
function that indicates the immediate benefit or detriment
of entering a state, and a transition system that describes
how states evolve. We also have a set of decision epochs
d = 0, 1, 2, . . . associated with an MDP such that at each
decision epoch, a controller observes its current statexd

and chooses an actionad, and then the system transitions
to a new statexd+1 and emits costcd+1.

A task scheduling problemmodeis defined as an MDP
with actions corresponding to the decision to dispatch a
particular task; the system state is the cumulative utilization
of each task, so thatx = (x1, x2, . . . , xn) is a vector with
non-negative integer components. In statex the system
transitions toy = x + t∆a with probabilityP (t|a), where
∆a is a vector with theath component equal to one and
all other components zero; in other words, running task
a increases its cumulative utilization,xa, by the duration
t with probability P (t|a). The cost of entering a statex,
c(x), is defined in terms of the distance betweenx and the
ideal utilization at timeτ(x), τ(x)u:

c(x) =
n

∑

a=1

|xa − τ(x)ua| , (1)

where the elapsed time atx, τ(x), is the sum of each task’s
cumulative utilization,

τ(x) =

n
∑

a=1

xa.

A policy π maps states to actions. The valueV π of a
policy is the expected, discounted sum of long-term costs
observed while following that policy

V π(x) = E
{
∑∞

d=0 γdc(xd)|x0 = x
}

, (2)

where the expectation is taken with respect to the prob-
ability of observingxd+1 after dispatchingπ(xd) in xd.
The discount factorγ ∈ [0, 1) weights future costs against
more immediate ones. The optimal value functionV is
the value of any policy that minimizes Equation 2. It is
well-established that the optimal value function satisfies
the Bellman equation

V (x) = max
a∈A

{Q(x, a)} , (3)

where

Q(x, a) =

∞
∑

t=1

P (t|a)[γV (x + t∆a) − c(x + t∆a)] (4)

is the value of choosing actiona in x then behaving
optimally afterwards.

Since methods for computing the optimal policy are not
the focus of this work, we omit discussion of these methods
here. In previous work [2], [3] we described methods that
allow us to represent the value function despite the infinite
state space under consideration. This is the basis of our
automatic scheduling design technique. In order to extend
this approach past the limitations of our previous work we
now look at two extensions.

d) Online Learning:: We take anindirect approach
to online reinforcement learning in this work [8]. We use
observations of the system to estimate a system model;
we then use the optimal solution for this estimate as
an approximation to the optimal solution of the original
system. This is in contrast todirect approachessuch as
Q-learning [9], which use the observations to tune the
parameters of an approximation toQ directly. Since the
transition function is defined with respect to the task
durations, which are independent of the system state, con-
structing a transition model reduces to estimating the task
durations. Combined with the fact that the cost function
is determined completely by the user-specified utilization
target, our indirect, model-based approach appears most
appropriate in this domain.

Under our system model, task durations are described
by discrete probability histograms. We approximate the
task distribution by simply maintaining histograms cor-
responding to historical observations of the system that
we want to control. Suppose we have a collection of past
observations(ad, td), where taskad was run fortd time
quanta at decision epochd, for d = 1, . . . , m. Then let
Om(a) be the number of observations withad = a, and let
Om(a, t) be the number of observations with bothad = a
and td = t. Then our approximate system model consists
of the histogram estimators for each taska, defined as

Pm(t|a) = Om(a, t)/Om(a).

In Section IV, we present analytical results for the
sample complexity of learning an optimal scheduling pol-
icy given that we initially have no knowledge of the



task durations. We also present empirical results consid-
ering a number of exploration strategies that address the
exploration-exploitation trade off:how often should we
make decisions that are apparently suboptimal in order to
reduce uncertainty, and so improve our chances for quickly
discovering the true optimal behavior?

We decompose our analytical results into two parts
by examining the sample complexity of guaranteeing an
accurate estimate of the duration density, then looking at
the accuracy of our approximate policies as a function of
the density estimator’s residual. We expect that this will
allow for straightforward generalization of our results to
richer descriptions of stochastic tasks.

e) Multi-Mode Systems::In order to schedule tasks
in systems with a set of modes,M, we must first derive
the set of scheduling policies{πM |M ∈ M} whereπM

is the optimal scheduling policy for modeM . Here we
assume that distributions for each task are known in each
mode, and that tasks are common across all modes; this
allows us to use our scheduling synthesis techniques from
previous work directly. Given the current system mode,
the scheduler just follows the policy synthesized for that
mode.

This leaves the problem of estimating the current system
mode, which in this extension to our system model can
only be learned via observation. The probability of a task
a running for durationt, in modeM ∈ M is given by
P (t|a, M) and is defined by the duration distributions for
each mode. Given a collection of past observations(ad, td),
where taskad was run fortd time quanta at decision epoch
d, for d = 1, . . . , m the maximally likely current mode is

argmax
M∈M

{

w
∏

i=1

P (ti|ai, M)

}

.

Using this approach,w, the window of past observations
to use in estimating the current mode, becomes a design
parameter which affects two different quantities in the
system: (1) the expected lag time between an actual mode
change and when that mode change is observed; and
(2) the expected error rate for mislabeling the current
mode. Intuitively we expect that larger values ofw should
result in higher expected lag times as more evidence is
required to decide that a mode change has occurred, while
resulting in lower error rates for labeling the current mode,
as this mode prediction is made with more information.
Alternately, we expect smaller values ofw to result in
lower lag times, but higher error rates for current mode
prediction.

This straightforward approach to mode identification is
a direct outgrowth of our system model. However, this
approach makes several two key assumptions about the
nature of modes in the system: that (1) the probability of
switching away from the current system mode is low and

(2) the probability of switching between distinct modes is
uniform for all pairs of modes.

The first assumption, that mode changes are relatively
rare events, is necessary because otherwise it may not be
optimal to follow the policy prescribed by a particular
mode. To calculate the true optimal policy for multi-mode
systems would require evaluating the cost of future actions
across mode boundaries. If the probability of moving into
other modes is sufficiently low, the cost within the current
mode dominates the overall expected cost, and the optimal
mode is exactly the policy synthesized for the system
regardless of other modes.

The second assumption, that the probability of switching
between any distinct pair of modes is uniform simplifies
mode estimation. Altering this assumption would require
maintaining additional information about the mode struc-
ture; in general, the relationship between modes may best
be described as a probabilistic graph-structured model. We
defer investigating appropriate strategies for maintaining
this information as a subject for future work. We now
present experimental results that demonstrate the trade offs
between lag and overall error rate induced by different
window sizes.

IV. EVALUATION

A. Learning Task Distributions Online

In the presence of uncertainty about the distribution
of task durations, we must consider the relative merit of
choosing exploratory actions over exploiting our current
model of the environment. It is well-known in the rein-
forcement learning literature [10], [11] that there is a trade
off between exploring and exploiting; an agent that chooses
apparently suboptimal actions may obtain better long-term
performance due to its access to more accurate information
about the system, while an agent that acts greedily with
respect to its current model may lock itself into a local
minimum and so never achieve optimal performance.

In this section we examine the question of behaving
optimally online while learning the task durations. We
approach this question both analytically and empirically.
We derive a PAC-style bound [12], [13] on the number of
mistakes made by an exploration policy. We then perform
an empirical comparison of a number of exploration strate-
gies to evaluate their practical effects on the behavior of
the system.

f) Analytical Results::We characterize the accuracy
of an approximate policy in terms of the likelihood of
making a mistake. A mistake may occur whenever the
approximate policy and the optimal policy disagree. How-
ever, it turns out that we can not guarantee every potential
mistake is avoided with high probability without requiring
arbitrarily many observations, since any magnitude of error



|Pm(t|a) − P (t|a)| may result in a mistake when two tasks
have sufficiently similar costs.

The optimal policy π chooses actions greedily with
respect toQ; that is,

π(x) = argmax
a∈A

{Q(x, a)} .

Similarly, our approximation to the optimal policy,πm, se-
lects actions greedily with respect toQm, the approximate
state-action value function. This approximation is obtained
by solving the Bellman equation (see Equations 3 and 4
in Section III) with Pm substituted forP .

The approximate optimal policyπm does not neces-
sarily make a mistake if it differs fromπ at x, since
it is possible thatQ(x, πm(x)) = Q(x, π(x)); i.e., there
may be more than one optimal policy. A mistake occurs
when Q(x, π(x)) > Q(x, πm(x)) and Qm(x, πm(x)) >
Qm(x, π(x)); that is, a mistake occurs when the value
of these actions is inverted between the approximate and
exact state-action value functions. Considering the ordering
of these particular actions given an approximationPm is
complicated, since we can not easily separateQ andQm

from the optimal policies for the respective MDPs. Instead,
we will consider the more general problem of getting
the ordering of actions underQm to match up with the
ordering underQ. Additionally, we mentioned above that
we can make a mistake any timePm is not exact. With
this in mind, we introduce a tolerance parameterǫ > 0 and
a certainty parameterδ > 0. Our objective is to choose
a sample that is sufficiently large to guarantee that for
any pair of tasksa and b, Qm(x, a) > Qm(x, b) with
probability at least(1−δ) wheneverQ(x, a)−Q(x, b) > ǫ.

The intuition behind this is that we want to consider
the risk of making a mistake. WhenQ(x, a) − Q(x, b)
is near zero, there is not a substantial difference in long-
term cost under either action, so we are more lenient about
mistakes in these cases. When this difference grows large,
it is more important to get the ordering right to minimize
costs (notice that in order to get the optimal policy right,
it is sufficient that the optimal action maximizesQm(x, ·)
even if the approximation is not particularly accurate).

We address the sample complexity of approximating the
optimal policy in two parts. First, we consider the sample
complexity of guaranteeing with high probability that the
distribution estimation error is bounded. Then we consider
the probability of making an expensive mistake given that
error bound. This simplifies the analysis and also would
allow us to vary our strategy for estimating the task models
without substantially impacting the rest of the analysis.

Suppose that we want to choose enough samplesm to
guarantee with high probability that|Pm(t|a) − P (t|a)| ≤
λ for some target errorλ > 0. Specifically, we wantm
large enough to guarantee that

P {|Pm(t|a) − P (t|a)| ≥ λ} ≤ δ. (5)

We make the simplifying assumption that we have an equal
number of observations of each task; that is,Om(a) = ν =
m/n for every task. We then can rewrite this probability
as follows:

P {|Pm(t|a) − P (t|a)| ≥ λ}
≡ P {|Om(a, t) − νP (t|a)| ≥ νλ}

Om(a, t) is the sum of outcomes ofν independent
Bernoulli trials, each with success rateP (t|a). This means
thatE {Om(a, t)} = νP (t|a), so we can apply Hoeffding’s
inequality:

P {|Pm(t|a) − P (t|a)| ≥ λ} ≤ 2e−2(νλ)2 ,

so that Equation 5 is satisfied whenever

2e−2(νλ)2 ≤ δ,

or equivalently, sinceν = m/n,

m >
n

λ
√

2
(ln(2/δ))

1/2
. (6)

This is consistent with our expectations: if we demand
greater certainty by decreasingδ, or greater accuracy by
decreasingλ, or if we increase the number of tasks, we
will need more observations.

Now we consider the likelihood of making a mistake
given that|Pm(t|a) − P (t|a)| is uniformly bounded above
by λ. We can avoid inverting the order of actionsa andb
underQm whenQ(x, a) − Q(x, b) > ǫ by requiring with
high probability that the approximation error is at most
ǫ/2. We can bound this approximation error uniformly in
terms ofλ, as shown in Proposition 1.

Proposition 1. If there is a constantλ such that for all
tasksa and durationst, |Pm(t|a) − P (t|a)| ≤ λ and if
there is a finite constantT such thatP (t|a) = 0 whenever
t > T , then for every statex and taska,

|Qm(x, a) − Q(x, a)| ≤ λT (T − 1)

(1 − γ)2
.

A proof of the proposition is given in Appendix A.
This is similar to the Simulation Lemma of Kearns and
Singh [14]; one notable difference is that their result
depends on having a finite number of states and bounded
costs, whereas our bound depends on each state having a
finite number of successors, and a bound on the growth
rate of costs. This is consistent with results from Kakade’s
thesis [15] indicating that the sample complexity of ob-
taining a good approximation should depend polynomially
on the number of parameters to the transition model. In
general MDPs this is quadratic in the number of states,
but in our problem this is finite while the number of states
is not.



In order to guarantee that we avoid expensive mistakes
with toleranceǫ, it is sufficient to require

λT (T − 1)/(1 − γ)2 ≤ ǫ/2,

or equivalently,

λ ≤ (1 − γ)2ǫ/[2T (T − 1)].

Plugging this into Equation 6 indicates thatm observations
are sufficient to avoid inverting actions withQ(x, a) −
Q(x, b) > ǫ with probability at least(1 − δ), where

m >
2T (T − 1)n

(1 − γ)2ǫ
√

2
(ln(2/δ))1/2.

This bound indicates that the number of observations
increases linearly in the number of tasks. The number
of observations also grows as distributions become more
spread out, since the maximum durationT will have to
increase. As we discount the future less, the discount factor
γ approaches unity, and also requires a commensurate
increase in the number of observations.

g) Empirical Comparisons::The analytical results
above give a sense of how the system will behave given
a finite number of observations; however, we had to make
a number of simplifying assumptions, so the bound is
unlikely to be tight. These included assuming that obser-
vations were obtained by following an exploration strategy
that selects each task an equal number of times. In practice,
alternative exploration strategies may yield better perfor-
mance than our bound would indicate. We investigated the
empirical performance of these techniques in the context
of the task scheduling problem by conducting experiments
comparing ǫ-greedy, E3, and an optimistic exploration
strategy, which we now describe.

An ǫ-greedy exploration policy [10], [11] chooses an
action uniformly at random with probabilityǫ; otherwise,
with probability (1 − ǫ) the policy exploits its current
knowledge by behaving greedily with respect to the op-
timal policy of the approximate model. This strategy
approaches the optimal policy so long asǫ is decayed
appropriately, since atǫ = 0, the resulting policy is
purely exploitive.ǫ-greedy exploration is perhaps the most
commonly used exploration strategy in practice, likely due
to its simplicity.

The E3 algorithm [14] is a more principled approach
to exploration for general Markov Decision Processes. It
divides the state space into “known” and “unknown” states;
a state is “known” when each action has been tried more
than some minimum number of times. Unknown states are
aggregated into a single state, but may become known
as a sufficiently many observations become available in
each state. A later extension, R-max, associated a reward
with reaching the unknown state aggregate in order to
encourage exploration [16]. Since transition distributions

depend on the duration distributions of each task, which
are independent of state, this additional incentive to explore
becomes unnecessary: all of the states are known once we
have tried each task a suitable number of times. Therefore,
in the task scheduling domain,E3 and R-max reduce to a
balanced wandering strategy that simply tries each action
a fixed number of times prior to choosing an exploitive
strategy.

Optimism in the face of uncertainty [10], [17] is a heuris-
tic for encouraging exploration by underestimating the cost
(or equivalently, overestimating the reward) of states and
actions that have been observed fewer times. This biases
the controller towards taking exploratory actions while
being more sensitive to past observations thanǫ-greedy ex-
ploration. We implement this strategy by choosing actions
by estimatingP (t|a) usingOm(a, t)/(Om(a) + 1); since
the reward and value functions are negative, this strategy
underestimates the cost of tasks that have been observed
fewer times. This is equivalent to acting as though the
agent received a new observation ofa that resulted in
a zero-cost state; this is similar in spirit to confidence
interval based methods for exploration [18]. Since the
number of observationsOm(a) will eventually dominate
the denominator, this method asymptotically approaches
the exploitive policy.

We compare these exploration strategies to an policy that
always exploits its current approximate model by choosing
the apparent greedy action. We expect that this strategy
will converge to the optimal policy in the task scheduling
domain; no matter how poor our estimate of the duration
of some task, eventually that task will be executed, since
otherwise the cost of the states encountered would grow
without bound. We measure the performance of exploration
in terms of the cumulative number of mistakes as a function
of the number of decisions.

For ease of exposition, we consider the two-task case.
Empirically, it appears that in the two-task case behaving
greedily with respect to reward is the optimal behavior.
Therefore, we evaluate the number of observations needed
to determine accurately the greedy policyπ,

π(x) = argmin
a∈A

{

∑

t

P (t|a)c(x + t∆a)

}

.

We expect two parameters of the task scheduling prob-
lem to dominate the mistake rate. First, the amount of
overlap between task duration distributions should in part
determine the difficulty of approximating the true greedy
policy; for example, in many states we can choose the task
with least expected cost more easily when the duration
of one task always has shorter duration than the other.
Second, the relative resource share for each task is also
likely to influence the learning rate, since this will affect
the magnitude of costs associated with running one task



relative to the other.
We compared the performance of the different explo-

ration techniques. We compared the performance ofǫ-
greedy using varying decay ratesρ, so that at decision
epoch d the agent exploits with probabilityρd. Notice
that ǫ-greedy with a decay rate of0.0 is equivalent to
always exploiting our current estimate. We also examined
the optimistic exploration policy andE3 with a varying
number of exploration rounds (the least-sampled task is run
until every task has a sufficient number of observations, so
that a round consists of running each task once); here as
well, E3 with 0 rounds of exploration is equivalent to the
purely exploitive policy.

We evaluated the number of times that the approximate
and true cost greedy policies differed by executing trajec-
tories starting in the state(0, 0) on randomly generated
problems. Problems were generated by determining ran-
dom utilization targets and task durations. The utilization
target was determined by selecting integer valuesz1 and
z2 uniformly at random from the range from1 to 128
inclusive, then settingui = zi/(z1+z2). Distributions were
generated by discretizing normal distributions with means
selected uniformly at random from1 to 32 inclusive and
variances from1 to 8 inclusive; each distribution was then
truncated to the range1 to 32 inclusive and normalized.

After generating an example problem, we then executed
a trajectory by following each exploration policy from the
initial state(0, 0). Trajectories consisted of 16,384 decision
epochs. At each decision epoch, we chose a task according
to the exploration policy and approximate task model. We
then simulated that task by emitting a duration according to
its true distribution. This observation was then incorporated
into the task model. We repeated this process for 1,000
problems.

h) Comparison Results::The results of these tests are
shown in Figure 2. We recorded the cumulative number
of suboptimal actions taken during training; we report the
mean at each decision epoch; 95% confidence intervals are
shown. Figure 2(a) compares the performance of optimistic
selection against the pure exploitation strategy. Figure 2(b)
compares several settings ofǫ-greedy exploration with de-
cay rates of0, 0.1, 0.2, and0.3; when this rate equals zero
the exploration strategy is identical to pure exploitation.
Figure 2(c) compares the performance ofE3 with 0, 30,
60, and 90 rounds of pure exploration prior to exploiting.

From Figure 2 we see that the exploitive policy outper-
forms any of these dedicated exploration strategies in the
task scheduling domain. We attribute this result to a pair
of factors. First, unlike the general MDP setting, learning
the distribution well for each task in one state is sufficient
to estimate the transition distribution well ineverystate.
Therefore, we need far fewer exploratory actions in order
to construct an accurate model of the environment than

would be necessary in general. This reduces the importance
of dedicated exploration to some degree.

The second factor is that no matter how badly we
overestimate the duration of some task, we will always
eventually reach a state where the exploitive policy chooses
that action – eventually that task will be underutilized to
such an extent that it must be run in order to reduce cost.
This means that the exploitive policy will eventually dis-
patch each task enough times to build accurate distribution
models.

It is consistent with these observations thatE3 and ǫ-
greedy strategies perform better as we decrease the amount
of dedicated exploration actions taken – by reducing the
decay parameter toǫ-greedy or by decreasing the number
of balanced wandering steps inE3. Optimistic exploration
acts on a policy that is nearly identical to the exploitive
policy except that it slightly underestimates costs, but this
strategy still does not outperform the exploitive policy.

In order to relate these results to the analytic bounds
given earlier in this section, keep in mind that in order
to simplify the derivation, we assumed that observations
were obtained by balanced wandering, and that the learner
ceased to modify its estimates after the initial exploration
phase. This corresponds to theE3 strategy in our empirical
results except that after the exploration stage, the mistake
curve would be linearly increasing on average. Based on
these results, we would expect the analytic bounds to also
apply to the pure exploitation strategy.

i) Problem Parameter Interaction::The results in
Figure 2 were obtained by generating several random
problems in order to control for the effects of problem
parameters. We are also interested in understanding how
the problem parameters interact with the mistake rate. In
particular, it is of interest to know how the choice of uti-
lization target impacts learning. We performed another set
of experiments to examine this. We considered utilization
targets of the formu = (1/(1 + j), j/(1 + j)), so that the
ratio of the utilization targets isj. This lets us study the
effect of giving one task a progressively larger share of
the resource. For each utilization target, we generated 500
random task models as above; we ran a single trajectory
on each model following a purely exploitive strategy and
recorded the total number of mistakes made in the first
16,384 steps. We report the results of these experiments in
Figure 3. From there we can see that it is more difficult
to behave optimally when one task is given a greater
share. This is a bit surprising since we expected that
as the utilization became more unfair, there would be a
corresponding skew in costs, making it easier to distinguish
the task with better cost. We are continuing to investigate
potential explanations for this behavior.
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Fig. 2. Simulation comparison of exploration techniques.

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30

m
is

ta
k
es

utilization ratio
Fig. 3. Simulation with varying ratios of utilization targets.

B. Mode Selection in Multi-Mode Systems

Mode selection, as described in Section III is dependent
on the selection of a value for the window size parameter.
This parameter affects two notable system quantities: (1)
the overall error rate for confusing modes and (2) the lag
from a mode change to the detection of that mode change.
In order to test the effect of window size on these system
quantities, we ran a series of simulations of a simple
system with two modes and one task.

To measure the effect of window size on error rate, we
first generated 30 systems with randomized task duration
distributions. For each system we ran 30 simulations for
each of the 2 system modes and for each window size
between 1 and 30. A simulation consisted of holding
the system in a single mode for 4000 decision epochs,
after which the percentage of epochs where the system
incorrectly identified the current mode was recorded.

This raw error rate was highly dependent on the overlap
of the task duration distributions in each of the system’s
modes. Modes whose task duration distributions had low
overlap were highly distinct and thus for any window
size had very low error rates. Modes whose task duration

distributions overlapped greatly had comparatively high
error rates. In order to generalize our results across the set
of systems in our experiment, we normalized each error
rate with respect to the average rate seen for that system
at a window size of one. Figure 4 shows the results of this
experiment: normalized error rates for each window size
are shown with 95% confidence intervals. Because of our
normalization all systems had an average error rate of 1 at
a window size of 1. The normalized error rate for a system
with window size 2 was shown to be around 40% meaning
that changing from a window size of 1 to a window size
of 2 resulted in, on average, a 60% reduction of mode
selection error.

To measure the effect of window size on lag, we then
generated 100 systems with randomized task duration
distributions. For each system we ran 100 simulations
for each window sizes between 1 and 30. A simulation
consisted of holding the system in the first mode for a
number of decision epochs equal to the system window
size and then changing system modes, and running until the
system correctly identified the new mode. The number of
decision epochs between the mode change and the correct
identification of the mode was measured as the experienced
lag.

Figure 5 shows the results of this experiment: the lag,
quantified in elapsed decision epochs, is shown with 95%
confidence intervals for each window size. The average
lag time and the 95% confidence bounds grew linearly
with respect to the window size. The average lag time was
roughly half the window size, which matches the intuition
that it would take roughly an equal amount of observations
from the new mode before the system had gathered enough
evidence to justify moving to that new mode.

For both of these experiments the task duration distribu-
tion for each mode was chosen from normal distributions
with means selected uniformly at random from17 to 48
inclusive and standard deviations from1 to 4 inclusive.
Because mode selection is trivial when the distributions
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have disjoint support, we did not include any systems in
our experiment for which the unnormalized error rate after
30 simulations for a window size of 1 was 0.

V. RELATED WORK

In [19] the authors describe how to handle scenario
changes in hard real-time systems. While similar, the
concept of scenarios presented there differs from our
concept of modes in several key ways. First, scenarios
changes are planned, unlike system modes which are
known only through observation. Second, the set of tasks
across scenarios is transient while the set of tasks across
modes is fixed.

In [20] the authors use probabilistic system models to
synthesize real-time system design parameters. That work
shares several interesting features with our own, including
use of a similar underlying system representation. In ad-
dition to parameter estimation, the work presented in this
paper incorporates the learned distributions into scheduling
policy design.

Several efforts [21], [22], [23] have been made to clas-
sify real-time task behavior from observations, mostly in

the context of specifying worst case execution time bounds
for tasks. MABERA [21] is a tool for estimating worst-case
execution time for complex real-time systems by guided
simulation and exploration. Hybrid approaches [22], [23]
combines measurements of execution time bounds for
program segments with static analysis. In [22] these tech-
niques are used to derive loose but safe bounds, while [23]
refines these techniques in order to avoid underestimation
of observed execution times. These techniques are not
directly applicable to our extended system model, in which
task characterization must be learned fully online, and not
only WCET, but the entire task duration distribution must
be considered.

Relaxing the assumption that we have complete knowl-
edge of the system model leads to questions about bal-
ancing exploration and exploitation. Heuristic strategies,
such asǫ-greedy exploration [10], [11], and philosophies
like optimism in the face of uncertainty [10], [17], [24] are
well-established and commonly used methods to encourage
exploration. Fiechter [25] and Kearns and Singh [14] were
among the first to study this problem from a computational
learning theory standpoint, providing finite-sample guaran-
tees for learning performance; the latter proposed theE3

algorithm and provided a PAC-bound on its sample com-
plexity. Brafman and Tennenholz [16] proposed R-max,
an extension ofE3 for stochastic games, a generalization
of MDPs. Sample complexity results for these algorithms
are restricted to finite state spaces; Kakade [15] observed
that the complexity scales polynomially with the number
of parameters of the transition model.

VI. CONCLUSIONS ANDFUTURE WORK

The techniques presented in this paper constitute impor-
tant advances in the state of the art in scheduling policy
design for open soft real-time systems. By expanding the
foundations established in our previous work to include
system actions whose execution time distributions (1) only
can be obtained through run-time observation or (2) have
modal structure, these contributions have brought us closer
to the long-term goal of our research: placing all system
actions under the control of a common scheduling policy,
even in open soft real-time systems operating in highly
variable environments.

To realize that goal fully, however, further open research
problems need to be pursued as future work. The first
open research problem we plan to investigate is how online
learning of scheduling policies can be achieved when the
probabilities of switching between modes are arbitrary,
which has a significant impact on the notion of optimality
of a policy and on how policies should be constructed.
In particular, we intend to examine how the structure
of the transitions between modes affects the design of
optimal scheduling policies, along with other challenges



that arise in the absence of information about both the
mode structure and the behavior of tasks within modes.
While we have addressed these issues separately in this
paper, considering these problems together will allow us
to apply our techniques to an even more general class of
open soft real-time systems.
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APPENDIX

Proof of Proposition 1:

Lemma 1. For any statex, taska, and durationt,

|c(x + t∆a) − c(x)| ≤ tc(∆a).

Proof: The claim follows from the triangle inequality,
sincec(y) is the l1-norm betweeny andτ(y)u.

Lemma 2. For any statex, taska, and durationt,

|V (x + t∆a) − V (x)| ≤ tc(∆a)/(1 − γ).

Proof: Note that

|V (x + t∆a) − V (x)| ≤ max
b

|Q(x + t∆a, b) − Q(x, b)| .

By expandingQ and Qm according to Equation 4, then
grouping cost and value terms and applying the inequality
|u − v| ≤ |u| + |v|, we get the inequality

|Q(x + t∆a, b) − Q(x, b)|
≤

∑

s

P (s|b) |c(x + s∆b) − c(x + t∆a + s∆b)|

+ γ
∑

s

P (s|b) |V (x + t∆a + s∆b) − V (x + s∆b)| .

The first term simplifies totc(∆a) by applying Lemma 1.
The absolute value in the second term has the same form
as our initial condition, so recursively applying this same
argument yields

|V (x + t∆a) − V (x)| ≤
∞
∑

j=0

γjtc(∆a) = tc(∆a)/(1− γ).



Lemma 3. For any real-valued function f , if
|f(x + t∆a) − f(x)| ≤ βt for some constantβ ≥ 0
and every statex, taska, and durationt, then

∣

∣

∣

∣

∣

∑

t

[Pm(t|a) − P (t|a)]f(x + t∆a)

∣

∣

∣

∣

∣

≤ β
∑

t

|Pm(t|a) − P (t|a)| t

Proof: This follows by decomposingf into f(x) and
±βt; since

∑

t[Pm(t|a)−P (t|a)] = 0, the term involving
f(x) vanishes.

Let C be the expected cost, withCm defined similarly:

C(x, a) = −
∑

t

P (t|a)c(x + t∆a); (7)

we’ll also denote the expected successor values by

EP {V (x + t∆a)} =
∑

t

P (t|a)V (x + t∆a). (8)

Using Equations 7 and 8, we can write the definition ofQ
more concisely as

Q(x, a) = C(x, a) + γEP {V (x + t∆a)}.
We now use these definitions and lemmas to demonstrate
our central claim. Let(x, a) be a state-task pair. Then

|Qm(x, a) − Q(x, a)| (9)

≤ |Cm(x, a) − C(x, a)|
+ γ |EPm

{Vm(x + t∆a)} − EP {V (x + t∆a)}|
We can simplify the error in approximating expected cost,
|Cm(x, a) − C(x, a)|, using Lemmas 1 and 3,

|Cm(x, a) − C(x, a)| ≤ c(∆a)
∑

t

|Pm(t|a) − P (t|a)| t

< λT (T − 1);

this last inequality follows becausec(∆a) < 2 and
∑

t |P (t|a) − Pm(t|a)| t ≤ λT (T − 1)/2 when the maxi-
mum durationT is finite. The difference in expected future
values can be decomposed into components corresponding
to approximation errors on the future state value and on
the duration distributions,

|EPm
{Vm(x + t∆a)} − EP {V (x + t∆a)}|

≤
∑

t

Pm(t|a) |Vm(x + t∆a) − V (x + t∆a)|

+

∣

∣

∣

∣

∣

∑

t

[Pm(t|a) − P (t|a)]V (x + t∆a)

∣

∣

∣

∣

∣

.

The second term here simplifies by applying Lemmas 2
and 3,
∣

∣

∣

∣

∣

∑

t

[Pm(t|a) − P (t|a)]V (x + t∆a)

∣

∣

∣

∣

∣

≤ λT (T−1)/(1−γ).

We can then plug these terms into Equation 9,

|Qm(x, a) − Q(x, a)|
≤ λT (T − 1) + γλT (T − 1)/(1 − γ)

+
∑

t

Pm(t|a) |Vm(x + t∆a) − V (x + t∆a)|

since we can bound|Vm(x + t∆a) − V (x + t∆a)| by
maxb |Qm(x + t∆a, b) − Q(x + t∆a, b)| and substitute
according to9, we obtain the bound

|Qm(x, a) − Q(x, a)| ≤
∞
∑

j=0

γjλT (T − 1)/(1 − γ)

≤ λT (T − 1)/(1 − γ)2,

completing the proof.
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