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Auto-Pipe: A Pipeline Design and Evaluation System∗

Mark A. Franklin1,†, John Maschmeyer1, Eric Tyson1,
James Buckley2 and Patrick Crowley1

1Department of Computer Science & Engineering 2Department of Physics
Washington University in St.Louis

Abstract

Auto-Pipeis a tool that aids in the design, evaluation and implementation of pipelined appli-
cations that are distributed across a set of heterogeneous devices including multiple processors
and FPGAs. It has been developed to meet the needs arising in the domains of communications,
computation on large datasets, and real time streaming data applications. In this paper, theAuto-
Pipedesign flow is introduced and two sample applications, developed for compatibility with the
Auto-Pipesystem, are presented. The sample applications are the Triple-DES encryption stan-
dard and a subset of the signal-processing pipeline for VERITAS, a high-energy gamma-ray astro-
physics experiment. These applications are analyzed and one phase of theAuto-Pipedesign flow
is illustrated. The results demonstrate the performance implications of different task-to-stage and
stage-to-platform (e.g., processor, FPGA) assignments.

1 Introduction

There are numerous approaches to achieving computational speedup by performing tasks in parallel.

For application sets where the input data arrives as a sequential stream and data must be processed in

real-time, the use of pipelining is an effective design style for exploiting parallelism.Auto-Pipeis a

design tool that is being developed to automate the pipeline design process. In its full, eventual form,

it will include the ability to:

• Specify, in a high-level application language, a set of sequential, relatively coarse-grained tasks,
to be mapped onto a computational pipeline.

• Specify a computational pipeline in terms of a number of stages where each stage may be im-
plemented on one of a variety of platforms (e.g., processors, FPGAs, Network Processors).

∗This research has been supported in part by National Science Foundation grant CCF-0427794.
†Communicating author: Mark Franklin, jbf@cse.wustl.edu; Washington University, Dept. of Computer Science &

Engineering, Campus Box 1045, St. Louis, MO 63130.
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• Simulate the pipeline under alternative task-to-pipeline stage assignments and alternative stage
implementation platforms. Obtain performance data from these simulations to guide overall
design.

• Given the first two items above, and a given specific design (i.e., a mapping of tasks to plat-
forms): a) Produce the interface infrastructure necessary, and b) Integrate the program code and
FPGA design specifications for a pipeline implementation of the desired application.

In this paper, the overall design ofAuto-Pipeis presented and a subset of its operational capabilities

is described along with their use in example applications.Auto-Pipewas motivated by pipeline design

issues that arise in the following application domains: networking and communications; large, mass

storage based computation; and real-time scientific experimentallyderived data. Additionally, technol-

ogy developments in the areas of NPs (Network Processors) and CMPs (Chip Multi-Processors) have

made utilization of pipelined designs more attractive from both implementation and cost perspectives.

The application domains of interest are given below.

• Networking and Communications: In the networking environment, routers and related com-

ponents must examine and process packets on communications data in real-time and perform a host of

operations (e.g., packet routing, classification, encryption, etc.) on the data. In this domain, computa-

tional pipelines are often implemented using network processors [5].Auto-Pipewill enable specifica-

tion and implementation of pipelined architectures targeted to this domain.

In this context, one example problem we have examined relates to real-time packet encryption

using the DES [1] algorithm. DES is a common and widely studied algorithm. The algorithm involves

transforming unsecured information into coded information with the transformation being controlled

by an algorithm and a key. The standard DES algorithm operates on 64-bit data blocks using a 56-bit

key. For encryption of longer data blocks, multiple iterations are required with encryption of a single

block requiring 16 stages. Triple-DES, considered here, is a variant of DES requiring three sequential

DES stages. This increases the effective key size to 168 bits, thus making it more secure than DES.
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While the inner loop of Triple-DES can be broken into many small stages, we demonstrateAuto-Pipe

using a simple 3-stage pipeline, one stage for each DES block (Section 3.1).

• Storage Based Supercomputing:The sizes of databases and associated mass storage devices

have grown dramatically over the past ten years with systems containing tens of terabytes of data

now becoming common. Due to technology advances, magnetic bit densities have grown faster than

comparable semiconductor bit densities. The result has been a significant decrease in the cost of disk-

based magnetic storage. This decrease in cost, coupled with the increasing demands from government

and industry to store and process ever increasing amounts of information, has led to a performance

bottleneck. That is, there are a growing number of applications where processing cannot keep up with

the growth of the datasets that provide the driving inputs to the computation.

New system architectures oriented towards alleviating this problem are now being developed. One

approach is to move pipelined computational capabilities (e.g., processors, FPGAs, etc.) closer to

where the data is stored, and stream the data directly from the disk heads to a processing pipeline

which, in turn, feeds one or more primary system processors. If the data is partitioned appropriately

over a multiple RAID system, then multiple computational pipelines can operate in parallel across the

data, providing for even higher performance. This general approach has been presented in [3, 10, 22]

and its use in a computational genetics application may be found in [16]. A commercial unit that aims

at implementing this sort of architecture is the SGI Altix system [20] where FPGA “brick” nodes are

being designed and integrated into a shared memory multiprocessor [18].

• Scientific Data Collection: The final application domain is in the area of scientific data collec-

tion. The combination of low cost electronics (e.g., sensors) and the availability of low cost communi-

cations links, processors, and data storage has led to an explosion in the amount of data being collected

in the course of various scientific experiments. Many of these projects involve gathering information
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in real-time from a group of sensors. The information generally originates in the analog domain, is

transformed to the digital domain, goes through a sequence of processing steps (e.g., filtering), and

is finally stored away for further processing at a later time. Thus, a pipeline of processing steps is

required. We focus here on an experiment derived from theVERITAS project [21] and investigate

one particular but very common step in many areas of high-energy physics and astrophysics: the pro-

cessing of time-domain data streams in continuously digitized signals from high speed sensors. In the

specific case of VERITAS, we implement the signal processing block responsible for reconstructing

characteristics of the Cherenkov pulses resgistered by an array of sensors and flash analog-to-digital

convertors (Section 3.2).

The next section presents the overall design ofAuto-Pipe. Section 3 presents two example ap-

plications, DES encryption and VERITAS signal preprocessing. Section 4 presents the mapping of

the applications’ computational tasks to several pipeline implementations that include both processors

and FPGAs. Performance data is presented and we indicate how that data may be used in obtaining a

“good” pipeline design. Section 5 contains a summary of the paper and projected future work in this

area.

2 The Auto-Pipe System

2.1 System Overview

For algorithms that can be implemented in a pipelined manner, a large set of interacting design choices

is available.Auto-Pipeaddresses four key high-level choices:

• Determine the set of sequential tasks that implement the application algorithm.

• Determine the number of stages in the pipeline.

• Determine the type of implementation to be used for each stage (e.g. processor, FPGA, etc.)
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• Determine the mapping of tasks to stages. Multiple tasks may be mapped to a single stage.

Determining the best design choices is a difficult problem1 since the design space is large. The design

goal forAuto-Pipeis to permit the designer to explore this space incrementallyand in detail.Auto-Pipe

addresses pipelined algorithms with a coarse-grained data-flow approach. As such, each algorithm is

described as a set of connected atomic processing tasks. Each task has a well-defined interface of

inputs, outputs, and static configuration information with the interfaces being agnostic to the platform

on which the task is implemented.

2.2 Design Flow

Figure 1 depicts theAuto-Pipedesign flow. The flow is divided into four main phases that proceed

from functional representation and correctness checking, to actual pipeline implementation. Since

Auto-Pipeis still under development, the examples in this paper focus on Phase 2 of the flow.

Figure 1: TheAuto-Pipedesign flow.

In the first phase,functional simulation, the general algorithm is developed without concern for

1A subset of the task to stage mapping problem is considered by Datar and Franklin [6, 11].
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timing, execution platform issues, or overall performance. The algorithms of interest are composed of

a set of basic tasks that generally communicate in a pipelined manner.Auto-Pipe, when completed,

will provide a block oriented input language that will permit the user to represent the algorithm in

terms of connected and interacting sequences of tasks that are then compiled and executed. The goal

of this phase is to provide a high level representation mechanism followed by execution of the overall

algorithm permitting verification of functional correctness.

The next phase focuses onstage allocation & timing. In this phase, three aspects of design are

considered. The first two correspond to components of task allocation. First, the tasks defined in

Phase 1 are assigned to pipeline stages. While initially this is done manually, task assignment aids

are also available [6, 11]. Second, the platform on which the stages are to be executed is specified.

If the platform is a processor, then the appropriate software libraries and compilers are designated.

If the platform is an FPGA or an ASIC, then the VHDL code libraries and simulation engines are

specified. Given these first two elements,Auto-Pipeuses a common MPI (Message Passing Interface)

interface between the pipeline stages, creates the appropriate software executables, and then executes

the simulation. From this, using generic processor and FPGA parameters, the performance statistics

associated with each task in the algorithm are gathered. Based on these results, alternative task-to-

stage, and stage-to-platform (e.g., processor or FPGA) assignments can be considered to improve

performance. This is theAuto-Pipephase that is illustrated in the examples that follow.

Following the general hardware/software simulation is thedevice simulationphase. This phase

particularizes the hardware and software device models of the previous phase to simulate or emulate

the real devices on which the application may be eventually deployed. For example, say that a given

pipeline contains two stages with the first targeted for implementation on a specific general purpose

processor, and the second on a particular FPGA. In this phase, the C code implementation of the
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first stage is compiled for execution on a simulation model of the processor, and the VHDL model

is parameterized to the selected FPGA component (e.g., back annotation from the synthesized logic).

The two are then simulated together and performance statistics generated are used to further optimize

the task and device mappings.

In the final phase,design execution, the compiled objects run on the actual devices. This phase is

used to further tune the pipeline by testing the design under expected running conditions (e.g. nonzero

bus and interconnect utilization). Initially we are targeting a general-purpose hardware system that

contains an FPGA (Xilinx Virtex II) and dual Opteron processors (AMD). A later version of this

system will include a network processor.

2.3 Related Work

Auto-Pipeshares many features with other academic and commercial tools. It draws on developments

in performance modeling, graphical and streaming programming languages, and hardware/software

codesign toolsets. Some examples of related work are outlined below.

The programming interface employed byAuto-Pipeis similar to many other graphical system pro-

gramming languages such asLabVIEW [15]. Additionally various projects allow for the simplified

development of streaming applications using the familiar environment of traditionally sequential pro-

gramming languages. Most involve a sub- or super-set of the functionality available in C[13], C++[17],

or Java[4]. These projects share the similar goal of easing the development of streaming algorithms in

hardware, however they concentrate on fine-grained and implicit dataflow programming, as opposed

to the coarse-grained programming ofAuto-Pipe. These projects are complementary withAuto-Pipe,

and their use as an implementation language forAuto-Pipeprocessing blocks is potentially useful.

The codesign aspect ofAuto-Pipeshares features with other systems design projects.Bluespec[2],
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for example, is a hardware design toolset for behavioral synthesis using the SystemVerilog HDL. Blue-

spec creates accurate C programs and testbenches at all levels of development, including behavioral,

timing, and gate-level implementation.

TheAuto-Pipeinfrastructure differs from the above projects three distinct ways:

1. Auto-Pipeaids the analysis and performance tuning of pipelined architectures. New process-
ing infrastructures can be discovered and tested by modeling the performance of hypothetical
computational resources.

2. Auto-Pipestrongly supports the ability to effortlessly move processing components onto differ-
ent devices. The same compiler can use the same functional description and produce code for
different systems of devices. Such devices will eventually include any mix of FPGAs, network
processors, clusters, and desktops.

3. Auto-Pipedoes not constrain development to any single set of hardware and software languages.
Instead, it is a code generation tool for any language for which anAuto-Pipeinterface has been
written. Initially, we have such interfaces in C and C++ for software development and VHDL
for hardware development.

3 Example Applications

3.1 DES Encryption

Encryption involves transforming unsecured information into coded information under control of a

key. The Data Encryption Standard (DES) operates on 64-bit data using a 56-bit key. To encrypt data

blocks longer than 64 bits, several iterations are required (e.g., encrypting a 256-bit block requires four

iterations).

Encryption of a single block requires 16 stages (see Figure 2) with the key being used to generate

16 48-bit subkeys, one key for each stage. In each stage, the 64-bit input block is split into two 32-bit

halves. The right half is expanded from 32 bits to 48 bits using a fixed table and this result is XORed

with the stage’s subkey. Using another set of tables (S-boxes), the 48-bit value is then divided into

eight 6-bit segments and transformed into a single 32-bit result. This value is then permuted using
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another table and the result XORed with the left half of the original input. This final value is used as

the new right half for the next stage, and the original right half is used as the new left half.

Figure 2: Triple-DES algorithm block diagram. L blocks≡ left 32 bits; R blocks≡ right 32 bits.

Triple-DES, a variant of DES, uses three sequential DES stages to increase the key size. Each stage

performs a standard DES encryption using the first, second and third 56-bit keys (64-bits with parity)

respectively, and results in a more effective key-length of 168 bits, (versus 56 bits in DES). While the

inner pipeline of Triple-DES can be broken into many small stages, we have chosen to demonstrate

Auto-Pipeusing a simple 3-stage pipeline, one stage for each DES block.

3.2 Astrophysics Data Pipeline

In ground-based high-energy astrophysics observations, very high energy (VHE) gamma-rays and

cosmic-ray particles strike the atmosphere and create a shower of particles that produce Cherenkov

light. These VHE gamma-rays, reaching energies as high as 10TeV have been observed from super-

nova remnants and pulsars.

A number of new-generation projects including HESS [14], MAGIC [19], and the VERITAS [21]

project are based on the technique of stereoscopic imaging of Cherenkov light from gamma-ray in-

duced electromagnetic showers. These systems employ large (10 - 17m diameter) mirrors to image
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Figure 3: The Overall VERITAS Pipeline for Cherenkov Light Processing

the faint flashes of Cherenkov light onto large arrays of photomultiplier tube sensors, each capable

of detecting single photon events at sampling rates surpassing 500 MHz. To improve the signal-to-

noise ratio for detecting these images against the large diffuse night-sky background light, rigorous

signal processing must be performed on the digitized waveforms registered by each sensor/electronics

channel. The signal must be deconvolved, its signal-to-noise ratio improved, and the timescales that

characterize the Cherenkov pulses extracted. Furthermore, an image processing analysis must be per-

formed across all channels in a telescope to detect and characterize Cherenkov events based on the
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properties of the images produced by the gamma-ray showers. A detailed description of this process

is given in Gammel [12] and an example processing pipeline is shown in Figure 3.

In this pipeline, records containing signal waveforms are retrieved from a subset of telescope pix-

els. These are distributed among up to 499 (the total number of pixels) signal processing pipelines.

In each pipeline, the waveform is zero padded to a higher resolution and undergoes a Fast Fourier

Transform (FFT). The frequency-domain signal is low-pass filtered and then deconvolved (a vector

multiplication with the channel’s inverse transfer function [7]). These steps accomplish a sinc inter-

polation of the input which smoothes the waveform, and subsequently improves the photon pulses

signal-to-noise ratio thus helping to reduce signal “smear” from adjacent pulses. This is followed by

an inverse FFT that returns the signal to the time domain. Following the processing of each channel,

the entire pixel set is analyzed and gamma-ray images determined.

Our initial efforts aim at employingAuto-Pipein evaluating and implementing one of the real-time

processing pipelines required; for example the left most, dot enclosed pipeline shown in Figure 3.

4 Implementation and Performance Evaluation

This section examinesAuto-PipePhase 2 implementationsof the two prototype applications. As shown

in Sections 3.1 and 3.2 these applications are easily expressed as a simple linear pipeline of tasks.

In order to useAuto-Pipe, the basic tasks were first coded in a combination C and VHDL. Table 2

lists the application tasks and the available implementation platforms. Once functional correctness

was established, performance was measured on an 3.4GHz Pentium 4 single-processor PC. Message

passing between processors used the MPICH implementation of MPI. ModelSim and Synplify Pro

were used to obtain approximate performance for VHDL implementations on a selected FPGA (a

Xilinx Virtex II). From the simulations, data was obtained for each task executing on one or both
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platforms.

Auto-Pipeprovides for generation of standard MPI [9] interfaces between sequential tasks assigned

to processors, and for MPI like interfaces for processor to FPGA, and FPGA to processor interfaces.

The overhead associated with moving messages between stages depend on a number of factors. If the

stages are assigned to a single processor, then we assume that message passing consists of a simple

function call and takes negligible time. If message passing crosses platforms (e.g., processor→ FPGA;

FPGA→ processor; processor→ processor) then the overhead consists of two primary components:

the processor overhead and the transfer overhead. The processor overhead is the amount of additional

processor time required to generate the message and send (or receive) it. This step must be carried

out before the processor is ready to work on the next input from the pipeline. It must thus be added

directly to execution time associated with the task. The transfer overhead is the time required for the

data to arrive at the next pipeline stage and may overlap stage processing time. This value will increase

the latency of pipeline, but will not affect the throughput. Naturally, the actual value for the transfer

overhead will depend on the interconnectused. Note that in situations where stages have been assigned

to the same processor platform, the stages communicateusing MPI calls that are optimized to the single

processor environment. In this case, the overheads are sufficiently low that they are not considered in

the analysis. The measured performance of the MPI processor messaging overhead is given in Table

1. The execution times and throughputs (1/execution time) for each task taken separately, both with

and without messaging overhead, are shown in Table 2.

In the following sections, we investigate a “manual approach” to the iterative optimization com-

ponent ofAuto-Pipe. In particular, the performance implications of different stage-to-platform alloca-

tions is discussed. This corresponds to repeated iterations of Phase 2,stage allocation & timing. In

effect, we have done by hand what theAuto-Pipetool will automatically do in its first three phases to
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explore the design space of a pipelined algorithm.

Message Base Processor Base Processor
(µs) Overhead: Overhead/KB: (µs)

Send 4.53 1.68
Receive 0.84 0.012

Table 1: Messaging Overhead

Function Execution Execution Time Throughput ET with TP with
Block Platform (ET): (µs) (TP): (KOps/s) Overhead:(µs) Overhead (KOps/s)

Zeropad Proc 0.937 1067.24 9.694 103.15
FFT Proc 52.163 19.17 60.920 16.41
FFT FPGA 6.880 145.35 6.880 145.35

Vector Mult. Proc 5.812 172.06 14.569 68.64
IFFT Proc 55.487 18.02 64.244 15.57
IFFT FPGA 6.880 145.35 6.880 145.35

DES Proc 45.060 22.19 50.446 19.82
DES FPGA 0.106 9400.00 0.106 9400.00

Table 2: Stage performance with & without messaging overhead

4.1 The DES Pipeline

While the inner pipeline of Triple-DES could be broken into many small stages, we have chosen to

demonstrateAuto-Pipeusing a simple 3-stage pipeline, one stage for each DES block. Each of the

three pipeline stages takes a single 64-bit input and generates a single 64-bit output. The 56-bit key is

not treated as an input since it is only set once. We assume data can be supplied to the pipeline and

results read from the pipeline at a rate high enough to ensure the pipeline is a performance bottleneck.

Both the encryption and decryption blocks can be implemented on a conventional microprocessor or

on an FPGA. The time for each of the identical stages when implemented on either of these platforms

can be seen on the bottom two rows of Table 2. Using these values, along with overhead estimates

for the message passing mechanisms used to transfer results from one stage to the next, estimates
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of the performance of alternative task(s)-to-stage and stage-to-platform assignments can be evaluated

directly.

Configuration Longest Stage Throughput
(µs) (KOps/s)

A P 135.180 7.5
B P-P-P 50.446 19.8
C P-F-P 50.446 19.8
D F-F-F 0.106 9400.0

Table 3: Performance of various Triple-DES pipeline implementations

The results of four assignments are shown in Table 3. For the simplest case, A, all three tasks are

placed on a single processor (P). While message passing can be optimized into simple function calls

creating negligible message passing overhead, all three stages must be carried out sequentially. Thus,

throughput is limited to approximately 7.5 thousand Triple-DES operations per second (KOps/s).

In the next case, B, the Triple-DES stages are implemented on a pipeline consisting of three sepa-

rate processors (P-P-P) using standard MPI interface calls. The maximum throughput for the pipeline

is now limited by the slowest stage of the pipeline. Since the stages are identical, the throughput

is equal to the throughput of a single stage, including processor overheads, or approximately 19.8

KOps/s. The speedup of 2.68 is slightly less than 3, which is consistent with the expected speedup for

a three-stage pipeline.

Case C implements the Triple-DES pipeline on a mixed platform (P-F-P). The first stage consists

of a single processor, the second stage an FPGA, and a second processor is used for the third stage.

Here the stages implemented on processors will still contain the message passing overhead, while the

FPGA stage does not. This is due to our assumption that message setup and reception can be pipelined

at the same clock frequency as the main functional block. In this case, the total system throughput

is again limited by the throughput of an individual stage running on a processor. While this example
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does not show any performance benefit, it does demonstrate the ease with which a user ofAuto-Pipe

can move a block from one target implementation to another.

The final case, D, implements the entire pipeline on FPGAs (F-F-F). Unlike the processor cases,

there is no throughput impact due to message passing overheads. As a result, message passing only

increases the latency. Thus, the throughput is identical for pipelines implemented on a single or mul-

tiple FPGAs (assuming, as is the case here, that the FPGA is large enough to hold all the stages). The

throughput of the entire system will be based on the clock frequency attained for the functional block.

If this block is internally pipelined, a very large throughput can be attained. In the case of the DES

block, the FPGA implementation completes a single operation every 17 cycles and can be clocked at

about 160 MHz. This results in a maximum throughput of about 9,400 KOps/s, or a speedup of nearly

500 over the pipelined processor software implementation and over three orders of magnitude over the

single processor implementation.

4.2 The Astrophysics Data Pipeline

As shown in Figure 3, initial VERITAS processing is implemented as a five-stage pipeline. This

pipeline is a general pipeline for optimizing the signal reconstruction for a given sensor/electronic

channel and has been discussed in Section 3.2. The performance for each of these operations on

various execution platforms can be seen in the top rows of Table 2. In the VERITAS pipeline, each

input contains twenty 8-bit values. The output is an upsampled signal containing 256 samples.

Configuration Longest Stage Throughput
(µs) (KOps/s)

A P 120.21 8.32
B P-P-P-P-P 64.24 15.57
C P-F-P-P-F 14.57 68.64

Table 4: Performance of various Veritas pipeline implementations
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As in the DES example, the VERITAS pipeline can be implemented in multiple configurations. In

the first configuration, A, the entire pipeline is implemented on a single processor. In this case, there

are no messaging overheads and the latency of a single operation is simply the sum of the individual

block latencies. This results in 120.2µs per operation or a throughput of 8.32 KOps/s.

The second configuration, B, places each stage onto a separate processor. In this case, processor

messaging overheads must be taken into account, and the throughput of the entire pipeline is limited

by the throughput of its slowest stage. The IFFT stage is the limiting stage, requiring 64.24µs per

operation. The throughput of the entire pipeline is only 15.57 KOps/s, a speedup of only 1.87 over the

single processor implementation. This is a result of the unbalanced workload in each stage. In fact, the

zeropad stage could be combined with the FFT stage (creating a single-stage latency of 61.86µs) and

the two vector multiply stages could be combined together (creating a single-stage latency of 20.38µs)

with no loss in performance. In other words, the five-stage pipeline could be reduced to three-stages

while maintaining the same throughput.

A significant performance improvement over the software implementations can be gained by re-

placing the FFT and IFFT stages with faster FPGA implementations. In fact, the FPGA implemen-

tation used can perform a 256-point FFT or IFFT in 1032 cycles and can be synthesized at a rate of

173 MHz on a Xilinx Virtex II. This results in an operation latency of only 6.88µs. By replacing

the processor implementations with FPGAs, and by again noting that the messaging overhead can be

pipelined in with the function on an FPGA, the pipeline throughput can be dramatically improved.

The pipeline is now limited by the vector multiply stages, giving it a throughput of approximately

68.64 KOps/s. This is a speedup of 4.4 over the multiple processor pipelined version and 8.25 over the

single processor implementation. Thus, nearly an order of magnitude in performance can be gained

by pipelining the operation and optimizing the computation of blocks through the use of FPGAs.
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5 Summary and Conclusions

This paper has presented an introduction toAuto-Pipe, a design tool that addresses many difficulties

faced by designers of pipelined algorithms. Applications that make use of pipelined algorithms face a

very broad design space. TheAuto-Pipetools make development easier by providing a way to logically

express such algorithms, obtain performance data, generate “glue code” to connect tasks with well-

defined interfaces, and provide tools to optimize the allocation of tasks to pipeline stages where the

stages themselves may be on a variety of platforms (e.g., FPGA, ASIC, processor, etc.). While the

Auto-Pipetool is not yet complete, this paper represents a first presentation of its overall structure and

usage.

Auto-Pipewas developed to focus on the needs of specific applications in communications and

scientific data collection. In this paper, we have presented prototype examples representing the Triple-

DES encryption standard and the VERITAS high-energy astrophysics experiment. The performance

of each application was analyzed and selected portions of theAuto-Pipedesign flow were illustrated.

In the Triple-DES application, for example, four alternative pipeline designs were considered and the

best one, a pipeline mixture of processors and FPGAs, had a throughput over two orders of magnitude

higher than a pure processor pipeline.

We are now in the development stage of a language to describe the interconnection of basic pro-

cessing task blocks and the presence of implementationsof each block in a hierarchy of platforms. This

language will be integrated into theAuto-Pipedesign flow as the method to express algorithms and de-

vice bindings to the compiler. The compiler will then be able to create the entire distributed application

(i.e. software programs and hardware descriptions) from this high-level language input. Thus, while

in the paper the tasks were manually integrated into the pipeline structures using MPI-like interfaces,
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later versions ofAuto-Pipewill perform these and other composition operations. Thus, in the final sys-

tem, user-supplied task implementations will access a uniform interface to receive and transmit data

between the task block’s inputs and outputs. A library of software-software and hardware-software

communications routines will be available toAuto-Pipe. The proper routines will be automatically

chosen by the tool to connect interfaces across different platform devices, or among tasks on the same

device. To implement the “optimize stages” step depicted in Figure 1 and illustrated manually in Sec-

tion 3, the Phoenix[6] tool for optimizing the task-to-stage mapping of a network processor pipeline

will be extended. An important issue that is being considered is just how to enableAuto-Pipeto in-

clude current network processors and other CMPs (Chip Multi-Processors) that are rapidly becoming

available as target implementation platforms.

This paper presented relatively small applications that serve as sample problems. Future research

will include applying theAuto-Pipedesign flow tools and programming methodology on other more

complex problems that fit the general set of domains outlined in the introduction.

One such application is the complete VERITAS signal analysis pipeline. Figure 3 shows the entire

pipeline, including the remaining portions (outside the dashed-line box). Current plans for VERITAS

estimate an average data production of 8 megabytes of event data per second with 10 percent live time,

or about 24 terabytes per year of operation. For offline data analysis, such a large database introduces

many restrictions to the types of queries that can be performed by traditional software processing

systems. Future applicationofAuto-Pipewill focus on developing appropriate computationalpipelines

for rapid processing of this dataset. This will be useful in exploring various astrophysical problems

including the identification of rare astrological events.

Beyond the VERITAS application, other high-performance computing algorithms will also be

tested using theAuto-Pipesystem, particularly in the field of computational biology. The HMMer
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bioinformatics algorithm [8] is one such algorithm that is currently being analyzed for performance

improvements using customized hardware. An additional problem now being investigated involves

mass spectroscopy. The issue revolves around fast identification of substances in a mass spectrometer

by comparing results in real-time with large datasets of peptides. The comparison is computationally

complex, but permits a pipelined implementation. Streaming data from the disks holding the dataset,

while ingesting data from the mass spectrometer and performing the appropriate computation will

require special hardware.Auto-Pipewill be used in the system evaluation and design process.
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