
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-69

2003-10-10

Storage Coalescing Storage Coalescing

Delvin C. Defoe

Typically, when a program executes, it creates objects dynamically and requests storage for its

objects from the underlying storage allocator. The patterns of such requests can potentially lead

to internal fragmentation as well as external fragmentation. Internal fragmentation occurs when

the storage allocator allocates a contiguous block of storage to a program, but the program

uses only a fraction of that block to satisfy a request. The unused portion of that block is

wasted since the allocator cannot use it to satisfy a subsequent allocation request. External

fragmentation, on the other hand, concerns chunks of memory that reside between... Read Read

complete abstract on page 2. complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Defoe, Delvin C., "Storage Coalescing" Report Number: WUCSE-2003-69 (2003). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1115

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1115?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1115

Storage Coalescing Storage Coalescing

Delvin C. Defoe

Complete Abstract: Complete Abstract:

Typically, when a program executes, it creates objects dynamically and requests storage for its objects
from the underlying storage allocator. The patterns of such requests can potentially lead to internal
fragmentation as well as external fragmentation. Internal fragmentation occurs when the storage
allocator allocates a contiguous block of storage to a program, but the program uses only a fraction of
that block to satisfy a request. The unused portion of that block is wasted since the allocator cannot use
it to satisfy a subsequent allocation request. External fragmentation, on the other hand, concerns chunks
of memory that reside between allocated blocks. External fragmentation becomes problematic when
these chunks are not large enough to satisfy an allocation request individually. Consequently, these
chunks exist as useless holes in the memory system. In this thesis, we present necessary and sufficient
storage conditions for satisfying allocation and deallocation sequences for programs that run on systems
that use a binary-buddy allocator. We show that these sequences can be serviced without the need for
defragmentation. We also explore the effects of buddy-coalescing on defragmentation and on overall
program performance when using a defragmentation algorithm that implements buddy system policies.
Our approach involves experimenting with Sun’s Java Virtual Machine and a buddy system simulator that
embodies our defragmentation algorithm. We examine our algorithm in the presence of two approximate
collection strategies, namely Reference Counting and Contaminated Garbage Collection, and one
complete collection strategy - Mark and Sweep Garbage Collection. We analyze the effectiveness of these
approaches with regards to how well they manage storage when we alter the coalescing strategy of our
simulator. Our analysis indicates that prompt coalescing minimizes defragmentation and delayed
coalescing minimizes number of coalescing in the three collection approaches.

https://openscholarship.wustl.edu/cse_research/1115?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1115?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1115&utm_medium=PDF&utm_campaign=PDFCoverPages

Short Title: Storage Coalescing Defoe, M.Sc. 2003

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

EFFECTS OF COALESCING ON THE

PERFORMANCE OF SEGREGATED SIZE STORAGE ALLOCATORS

by

Delvin C. Defoe

Prepared under the direction of Professor Ron K. Cytron

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

December, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ABSTRACT

EFFECTS OF COALESCING ON THE

PERFORMANCE OF SEGREGATED SIZE STORAGE ALLOCATORS

by Delvin C. Defoe

ADVISOR: Professor Ron K. Cytron

December, 2003

Saint Louis, Missouri

Typically, when a program executes, it creates objects dynamically and re-

quests storage for its objects from the underlying storage allocator. The patterns

of such requests can potentially lead to internal fragmentation as well as external

fragmentation. Internal fragmentation occurs when the storage allocator allocates a

contiguous block of storage to a program, but the program uses only a fraction of

that block to satisfy a request. The unused portion of that block is wasted since the

allocator cannot use it to satisfy a subsequent allocation request. External fragmen-

tation, on the other hand, concerns chunks of memory that reside between allocated

blocks. External fragmentation becomes problematic when these chunks are not large

enough to satisfy an allocation request individually. Consequently, these chunks exist

as useless holes in the memory system.

In this thesis, we present necessary and sufficient storage conditions for sat-

isfying allocation and deallocation sequences for programs that run on systems that

use a binary-buddy allocator. We show that these sequences can be serviced without

the need for defragmentation.

We also explore the effects of buddy-coalescing on defragmentation and on

overall program performance when using a defragmentation algorithm that imple-

ments buddy system policies. Our approach involves experimenting with Sun’s Java

Virtual Machine and a buddy system simulator that embodies our defragmenation

algorithm. We examine our algorithm in the presence of two approximate collection

strategies, namely Reference Counting and Contaminated Garbage Collection, and

one complete collection strategy - Mark and Sweep Garbage Collection. We analyze

the effectiveness of these approaches with regards to how well they manage stor-

age when we alter the coalescing strategy of our simulator. Our analysis indicates

that prompt coalescing minimizes defragmenation and delayed coalescing minimizes

number of coalescings in the three collection approaches.

to my family and friends who always express confidence in my capacity to succeed

Contents

List of Tables . vii

List of Figures . viii

Acknowledgments . x

1 Introduction . 1

1.1 Memory Management . 1

1.2 Real-Time and Embedded Systems 3

1.3 Problem Definition . 4

1.4 Structure of Thesis . 4

2 Related Work . 5

2.1 The LINUX Kernel . 5

2.2 Controlling Fragmentation in Metronome 6

2.3 Tailored-List and Recombination-Delaying Buddy Systems 7

3 Background . 9

3.1 Overview of Garbage Collectors . 9

3.1.1 Mark and Sweep Garbage Collector 10

3.1.2 Contaminated Garbage Collector 11

3.1.3 Reference Counting Garbage Collector 13

3.2 Storage Allocation Mechanisms . 14

3.2.1 Sequential Fit Allocator . 16

3.2.2 Segregated Free List . 18

3.2.3 Buddy-System . 19

3.3 Defragmentation . 22

3.3.1 Compaction . 23

iv

4 Storage Requirement for Binary Buddy Allocator 24

4.1 Notations . 24

4.2 Intuitive Upper Bound . 25

4.3 Translation Algorithm . 26

4.3.1 Intuition for Translation Algorithm 26

4.3.2 Pseudo Code for Translation Algorithm 27

4.4 Sufficient Storage Requirement . 29

4.5 Necessary Storage Requirement . 30

4.6 Necessary and Sufficient Storage

Requirement . 31

5 Experiments on Coalescing . 32

5.1 Simulators . 32

5.1.1 Trace Reader . 33

5.1.2 Buddy Simulator . 33

5.1.3 Random Allocation Trace . 34

5.2 Java Benchmarks . 35

5.3 Experiments with Java Benchmarks 37

5.3.1 Generating Binary Log File 37

5.3.2 Extracting Allocation and Deallocation Requests 38

5.3.3 Simulating Memory Manager Behavior 39

5.4 Experiments with Random Allocation Trace 39

6 Experimental Results . 41

6.1 Minimum Heap . 41

6.2 Number of Coalescings . 43

6.3 Memory Relocation - Defragmentation 44

6.4 Results from Synthetic Traces . 52

7 Conclusions and Future Work . 56

7.1 Conclusions . 56

7.2 Future Work . 57

Appendix A Supporting Data for Experiments 58

A.1 Data for Size 100 of Java Benchmarks 59

A.1.1 JVM Garbage Collector . 59

v

A.1.2 Contaminated Garbage Collector 60

A.1.3 Reference Counting Garbage Collector 61

A.2 Data for Size 1 of Java Benchmarks 62

A.2.1 JVM Garbage Collector . 62

A.2.2 Contaminated Garbage Collector 64

A.2.3 Reference Counting Garbage Collector 66

A.3 Memory Relocation - Defragmentation 68

A.4 Synthetic Traces . 69

References . 70

Vita . 73

vi

List of Tables

3.1 Liveness of Heap Objects . 12

6.1 Minimum Heap Size (in KB) for Size 1 of Java Benchmarks 41

6.2 Minimum Heap Size (in KB) for Size 100 of Java Benchmarks 42

6.3 Percentage of Memory Relocated for Size 100 of Java Benchmarks . . 48

A.1 Memory Usage Statistics for Size 100 of Java Benchmarks when Using

JVMGC . 59

A.2 Memory Usage Statistics for Size 100 of Java Benchmarks when Using

CGC . 60

A.3 Memory Usage Statistics for Size 100 of Java Benchmarks when Using

RCGC . 61

A.4 Memory Usage Statistics for Size 1 of Java Benchmarks when Using

JVMGC . 62

A.5 Memory Usage Statistics for Size 1 of Java Benchmarks when Using

CGC . 64

A.6 Memory Usage Statistics for Size 1 of Java Benchmarks when Using

RCGC . 66

A.7 Percentage of Memory Relocated for Size 1 of Java Benchmarks . . . 68

A.8 Memory Usage Statistics for Synthetic Traces - 70% Allocation Bias . 69

vii

List of Figures

3.1 Contaminated Garbage Collection . 11

3.2 Reference Counting Garbage Collection 14

3.3 Sequential Fit Example . 15

3.4 Tree Configuration of Free List for Binary Buddy-System 20

5.1 Random Allocation Trace User Interface 35

5.2 Generating Binary Log File . 38

5.3 Extracting Allocation/Deallocation Requests 39

5.4 Simulating Memory Management . 39

5.5 Flow Chart of Experiments with Java Benchmarks 40

6.1 Number of Coalescings vs Coalescing Strategy when Using JVMGC -

Benchmarks are of Size 100 . 45

6.2 Number of Coalescings vs Coalescing Strategy when Using CGC -

Benchmarks are of Size 100 . 46

6.3 Number of Coalescings vs Coalescing Strategy when Using RCGC -

Benchmarks are of Size 100 . 47

6.4 Percentage of Memory Relocated for Size 100 of Java Benchmarks when

Using JVMGC . 49

6.5 Percentage of Memory Relocated for Size 100 of Java Benchmarks when

Using CGC . 50

6.6 Percentage of Memory Relocated for Size 100 of Java Benchmarks when

Using RCGC . 51

6.7 Total Number of Objects Created by Each Run of The Synthetic Trace

Application . 53

6.8 Number of Coalescings vs Coalescing Strategy when Using Synthetic

Traces . 54

viii

6.9 Percentage of Memory Relocated for Each Run of The Synthetic Trace

Application . 55

A.1 Number of Coalescings vs Coalescing Strategy when Using JVMGC -

Benchmarks are of Size 1 . 63

A.2 Number of Coalescings vs Coalescing Strategy when Using CGC -

Benchmarks are of Size 1 . 65

A.3 Number of Coalescings vs Coalescing Strategy when Using RCGC -

Benchmarks are of Size 1 . 67

ix

Acknowledgments

I am indebted to my advisor, Ron K. Cytron, for his supervision, support, guidance,

and insight into the work that forms the substance of this thesis. I would also like

to acknowledge the other members of my defense committee, Dr. Chris Gill and

Dr. Aaron Stump, for offering their time and expertise in evaluating my research.

Thank you goes out to Reynold Bailey, Ronelle Bailey, Dante Cannarozzi,

Sharath Cholleti, Morgan Deters, Matt Hampton, and Christine Julien, for their

willingness to lend their time, support, and intellect in making this project a success.

I also extend my gratitude to the Chancellors Graduate Fellowship Program

for financially supporting my education and for creating an environment that allows

me to have fun while advancing my academic credentials.

I would especially like to thank my parents, Molly Williams and Morrel Defoe

for their love, support, and care that they give so selflessly. Special thanks go out to

my granny Aldith Joseph.

To all those who contributed in one way or the other in making this thesis a

success, I thank you.

Delvin C. Defoe

Washington University in Saint Louis

December 2003

x

1

Chapter 1

Introduction

1.1 Memory Management

Typically, when a program executes on a machine it is associated with four regions

of computer memory, namely the code segment, the global data area, the stack, and

the heap [14].

Code Segment: The code segment contains the stored instructions of programs in

execution. For the most part, instructions are preloaded in this area; hence,

dynamic storage issues do not significantly affect this region.

Global Data Area: The global data area is used for allocating statically declared

objects, such as global variables and constants [9]. These objects remain live for

the duration of the executing program; thus their storage is not reclaimed until

the program exits the runtime system. The static nature of these allocations

means the storage allocator must reserve enough storage for these objects a

priori and not pull storage from some dynamic source because dynamic storage

is not guaranteed to be available when needed.

Stack: Typically, the stack is used to allocate and deallocate variables that are local

to methods [9]. When a method is invoked in a single-threaded application,

storage is allocated on the stack for its local variables. This allocation causes

the stark to grow. When the method returns its local variables are no longer

meaningful and can no longer be used, hence the storage associated with its

variables are reclaimed and the result is the shrinkage of the stark. For a

multi-threaded application, the storage allocation problem is not as simple,

2

since each thread may be associated with its own stack. This complicates the

job of the storage allocator since it has to keep track of and respond to the

storage behavior of each thread. Another issue multi-threading introduces is

synchronization, especially if a single stack is used.

Heap: The heap is used to allocate objects dynamically using mechanisms such as the

malloc function of the C programming language and the new operator of Java.

These facilities allow for the setting apart of a contiguous block of storage in

the heap for the dynamically allocated objects of an application written in these

languages. Languages like C and C++ allow program developers the flexibility

of explicitly deallocating objects and reclaiming the storage occupied by those

objects using mechanisms such as free and delete, respectively. This process

can be automated using garbage collection mechanisms and for languages like

Java these are the only options.

As is the case with the stack, multi-threading also introduces issues with the

heap that the storage allocator must address. Some of these issues involve syn-

chronized access to the heap or to free storage of the heap, locking granularity,

and overhead in updating the heap and in responding to allocation requests.

Typically, a process does not request that all its dynamic objects be allocated at

the beginning of its execution and its dynamic objects are not all deallocated together

some time later. Instead, allocations and deallocations are interspersed in time and

space. This gives rise to the evolution of holes in the heap whenever deallocations

occur in the middle of the heap. These holes may not be large enough individually

to satisfy subsequent allocation requests since the objects that generate subsequent

requests may require blocks of storage that are individually larger than each hole.

A heap with holes as described above may become exhausted to the point where

the next allocation request cannot be satisfied, even though there may be enough

collective free storage to satisfy the request. Such a heap is considered fragmented and

requires some form of defragmentation before an allocation request can be serviced.

Defragmentation seeks to resolve the fragmentation problem by relocating live objects

so that multiple adjacent holes can be merged into a larger contiguous block that can

potentially be used to satisfy a subsequent allocation request.

3

1.2 Real-Time and Embedded Systems

Real-time systems model activities in the real world and, consequently, are concerned

with keeping up with events that take place in real time in the outside world [17].

Some of the tasks of such systems are real-time tasks that have a degree of urgency

associated with them. The correctness of these tasks depends not only on the results

that follow from computations, but also on the time at which these results are made

available. Communication networks, avionics, navigation, medicine, and multimedia

are a few of the fields in which real-time systems are deployed.

Because these systems are time-critical systems, their allocation request se-

quences must be satisfiable in bounded time, both in terms of predictability and with

respect to specific bounds derived from the application or its environmental charac-

teristics. This leaves little allowance for defragmentation since defragmentation can

be costly and can introduce unnecessary overhead, hence motivating the need for a

defragmentation-free storage allocator.

Embedded systems are found in automobiles, microwave ovens, toys, tele-

phones, robotics and mobile computing devices. Because of their particular char-

acteristics and specific usage as components with specific functionality, embedded

systems have stringent energy, power, and area constraints [10]. Embedded sys-

tems are also constrained with regards to cost and memory (of which the heap is a

part) size. Typically, embedded systems are components of larger systems and exist

mainly to perform specific functions, hence the storage requirements for these systems

may be known a priori [5]. Notwithstanding their deployment, a decision must be

made as to whether embedded systems should be equipped with the capabilities of

static storage allocation or dynamic storage allocation. Static storage allocation is

an inefficient storage management strategy if some allocated objects do not have a

lifespan as long as the duration of program execution. Dynamic storage allocation

also poses a problem since it tends to fragment the heap. We explore the fragmen-

tation/defragmentation problem to gain insight into the extent to which it can be

addressed.

4

1.3 Problem Definition

Fragmentation is one of the many serious issues with real-time and embedded systems

when dynamic storage allocation is allowed. A fragmented heap may necessitate

defragmentation in order to satisfy a subsequent allocation request. We seek to:

• provide necessary and sufficient storage conditions for satisfying allocation and

deallocation sequences for programs that run on systems that use a binary-

buddy allocator without the need for defragmentation, and to

• measure the effects of buddy-coalescing on defragmentation and on the overall

performance of programs in execution.

We provide a detailed explanation of the experiments we have conducted,

present our experimental results, and analyze these results in subsequent chapters.

1.4 Structure of Thesis

The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chap-

ter 3 provides background information on storage allocators, defragmentation algo-

rithms, and garbage collection techniques. Chapter 3 also introduces variations of the

binary-buddy allocator. Chapter 4 discusses storage requirements for binary-buddy

allocators and provides a proof for the general case of such allocators. Chapter 5

details the experiments we conducted in exploring the effects of buddy-coalescing on

fragmentation and on program performance. Chapter 6 presents the results of our

experiments and gives some analysis of the results. Finally, we offer conclusions and

discuss future work in chapter 7.

5

Chapter 2

Related Work

2.1 The LINUX Kernel

The Linux Kernel employs a page memory system for which it must establish a robust

and efficient strategy for allocating contiguous page frames [2]. In doing so, it has

to deal with a well-known memory management problem called external fragmenta-

tion. External fragmentation is the idea that frequent allocations and deallocations

of groups of contiguous page frames of different sizes may lead to a situation in which

several small blocks of free page frames are “scattered” inside larger blocks of allo-

cated page frames. One consequence of external fragmentation is that it may make

it impossible to allocate a large block of contiguous page frames, even though there

are enough free pages to satisfy the request.

To resolve the external fragmentation issue, an algorithm based on the binary

buddy-system is employed. The kernel accesses physical memory through 4KB pages.

All free page frames are grouped into lists of blocks that contain 1, 2, 4, 8, 16, 32,

64, 128, 265, or 512 contiguous page frames, respectively. The physical address of the

first page frame of a block is a multiple of the group size - for example, the initial

address of a 16-page-frame block is a multiple of 16 ∗ 212 (16 ∗ 4KB).

Using a simple example, we show how the Linux Kernel uses the buddy algo-

rithm. Assume there is a request for a group of 128 contiguous page frames, i.e., half

a mega-byte. To satisfy this request, the algorithm first checks to see if a free block

in the 128 page-frame list exists. If it finds one, it uses it to satisfy the request. If it

fails to find one, the algorithm looks for the next larger block - a free block in the 256

page-frame list. If such a block exists, the kernel allocates 128 of the 256 page frames

to satisfy the request and inserts the remaining 128 page frames into the list of 128

6

page-frame blocks. If a 256 page-frame block does not exist, the process continues to

the list of 512 page-frame blocks. If that list is empty, the algorithm signals an error

condition and gives up.

When the kernel releases blocks of page frames, it attempts to merge pairs of

free buddy blocks of size b together into a single block of size 2b. If there is no buddy

block for the new block of size 2b, the kernel puts it on the list of blocks of size 2b.

Otherwise, the merging of buddy pairs continues until there are no more buddy pairs

to merge. The kernel puts the resulting larger block on the appropriate list of free

blocks.

There are alternatives to the buddy-system algorithm, but the developers of the

Linux Kernel chose that algorithm for the following reasons. In some cases, contiguous

page frames are necessary to satisfy a request, since contiguous linear addresses may

not always work. A typical example involves a memory request for buffers to be

assigned to a Direct Memory Access (DMA) processor. DMA accesses the address

bus directly while transferring several disk sectors in a single I/O operation, thus, the

buffers requested must be located in contiguous page frames. Even when contiguous

page frame allocation is not strictly necessary, it offers the kernel the big advantage of

leaving the paging tables unchanged. This in turn minimizes average memory access

times.

2.2 Controlling Fragmentation in Metronome

Bacon, Cheng, and Rajan [1] did work on controlling fragmentation and space con-

sumption in Metronome, a real-time garbage collector for Java. Although the main

focus of our work is not real-time garbage collection per se, we have similar interests

in exploring fragmentation issues. For this reason and the fact that we use a number

of garbage collectors in our experiments, we reference Bacon, Cheng, and Rajan [1]

as related work.

Metronome is a mostly non-copying real-time garbage collector, which achieves

worst-case pause times of 6 milliseconds while maintaining consistent mutator CPU

utilization rates of 50% with only 1.5 to 2.1 times the maximum heap space required

by the application. Metronome is incremental in nature and is targeted at embedded

systems. It is a uni-processor collector that does copying only when defragmentation

occurs.

7

Bacon, Cheng, and Rajan show that Metronome exhibits the following char-

acteristics: provable real-time bounds, time-based and work-based scheduling, and

control over internal fragmentation. They also show that Metronome corrects the

external fragmentation problem by relocating objects from mostly empty to mostly

full pages, if the number of free pages falls below a certain threshold. This is similar

in spirit to the defragmentation algorithm we implemented in Buddy Simulator where

minimally occupied blocks are freed to allocate larger objects.

2.3 Tailored-List and Recombination-Delaying

Buddy Systems

Kaufman introduced two variations of the binary buddy-system that focus on delayed

coalescing [11] some two decades ago. These variants are Tailored-List Buddy Sys-

tem (TLBS) and Recombination-Delaying Buddy-System (RDBS). We discuss these

variants shortly, but we first introduce a few concepts.

• k-block - a block of memory of size 2k (1 ≤ k ≤ M), 2M is the size of the

largest block.

• k-list - a list of available blocks of size 2k.

• k-buddies - a pair of k-blocks formed when a (k + 1)-block is split.

Tailored-List Buddy System (TLBS): TLBS tries to maintain the number of

blocks on each k-list in accordance with the proportion of requests that are

expected to be served from each k-list. It is assumed that the actual requested

size-distribution is known a priori, so the desired number of blocks on each k-

list is established according to this distribution. As a result, the likelihood that

the tailored k-list is not empty is increased, and thus fewer searches, splits, and

recombinations of k-buddies are necessary. When a pair of k-buddies becomes

free as a result of deallocation, the buddies are not necessarily recombined to

form a (k + 1)-block. Instead, the k-list’s block count is first examined. If

the block count is greater than the desired number of blocks, the buddies are

recombined to form a (k + 1)-block, which is put on the (k + 1)-list. This

recombination process is recursive. Otherwise, no recombination takes place

and the k-buddies are put on the rear end of the k-list. Allocations are served

from the front end of the list.

8

Recombination-Delaying Buddy-System (RDBS): The allocation procedure

for RDBS is similar to that of TLBS, but deallocation is simpler. Deallocation

involves simply returning a freed k-block to its k-list, regardless of the k-block

count and the anticipated number of requests from the k-list. RDBS does

not recombine blocks during deallocation, but postpones recombination until it

receives a request for which no k-block is directly available.

Although RDBS runs as fast as TLBS, when using a lightly loaded system TLBS

runs slightly faster. RDBS’s high performance is attributed to the dynamic

manner in which it determines its k-block count from the size distribution of

the blocks being released.

Both variants run faster than the traditional binary buddy-system and thus

reduce program execution times. These variants are also as effective as the traditional

binary buddy-system in minimizing external fragmentation.

9

Chapter 3

Background

Because of the significance of the memory management problem, researchers and

industry leaders the world over have been expending resources in seeking solutions.

There is much debate over whether garbage collection should be used to free up

storage or whether program developers should be allowed the flexibility of manually

reclaiming storage. Even in the arena of garbage-collected-languages, there is battle

over the garbage collection strategies that should be used and the effectiveness of

these strategies. Section 3.1 gives an overview of the garbage collection strategies

with which we experiment in this project.

Another aspect of the memory management problem that we consider is the

set of storage allocation policies that govern the behavior of memory managers. In

Section 3.2 we describe some of the most widely used allocation policies [21] includ-

ing buddy-system [12] policies upon which we base our research. We also discuss

defragmentation in Section 3.3.

3.1 Overview of Garbage Collectors

Garbage collection is the process whereby the reclamation of a computer’s memory

is automated. In systems written with languages like C and C++, the programmer

is responsible for explicitly reclaiming heap storage using mechanisms like free and

delete, respectively. In some cases, the use of libraries and frameworks help to hide

this; however, it is still the programmer’s responsibility to deal with deallocation of

application’s objects. In languages like Java, on the other hand, garbage collection is

used to alleviate this burden. The functions of a garbage collector are two-fold [20].

A garbage collector is responsible for finding data objects that are no longer reachable

10

through pointer traversal. That task involves distinguishing live objects from dead

objects. A garbage collector is also responsible for reclaiming the storage of dead

objects so it can be used by the running program. Live objects are objects that are

reachable by the running program and therefore may be used in future computation.

Dead objects, on the other hand, are those objects that are not reachable by the

running program and are referred to as garbage. In the literature the first function

of a garbage collector is referred to as garbage detection, and the second function

is referred to as garbage reclamation. In practice, these functions are interleaved in

time, and garbage reclamation is usually strongly dependent on the garbage detection

mechanisms in use. In our experiments we use the following three garbage collectors:

the Java Virtual Machine’s [13] Mark and Sweep Garbage Collector [20] (packaged

with Sun’s 1.1.8 JVM) which we will call JVMGC, a Reference Counting Garbage

Collector (RCGC) [20], and a Contaminated Garbage Collector (CGC) [4]. These

collectors implement the two-fold functionality described above in their own ways.

We give an overview of each collector in subsequent subsections.

3.1.1 Mark and Sweep Garbage Collector

The Mark and Sweep Garbage Collector (MSGC) distinguishes live storage from

garbage using a technique known as tracing [20]. Tracing commences from the root

set1 and traverses the graph of pointer relationships using either a depth-first or

breadth-first approach. The objects that are reached are marked [7] in some way,

either by altering bits within the object or using a bitmap or other data structure.

This constitutes the garbage detection phase of the two-phase functionality described

above.

The sweep phase of the collector is its garbage reclamation phase. Once the live

objects have been determined, their storage is protected, but the storage of the dead

objects is reclaimed. The reclamation process involves the exhaustive examination of

memory to find all unmarked objects and to declare their storage as free storage that

can be used to service other allocation requests. That free storage is linked to one or

more free lists accessible to the allocation routine.

One advantage of MSGC is that it is an exact collector i.e., it collects all objects

that are unreachable by the running program. It accomplishes this by exhaustively

1The root set comprises the variables that are active when the garbage collector is invoked. This
includes global variables, local variables in activation records on the activation stack, and variables
currently in registers.

11

searching the heap for garbage. All garbage is swept during the collector’s reclamation

phase.

While it is a simple scheme, MSGC has some drawbacks. First, detecting live

objects has a time complexity of Θ(n+ l) where n is the number of live objects and

l is the number of live references. n is usually not known prior to execution, so n is

not bounded. The running time of MSGC is also not bounded since it depends on

n. This situation is bad for real-time systems since the upper bound on the running

time of the collector must be known a priori. Another problem with MSGC is that

the cost of a collection is proportional to the size of the heap. All live objects must

be marked and all dead objects must be collected, imposing serious limitations on the

efficiency of MSGC.

3.1.2 Contaminated Garbage Collector

Figure 3.1: Contaminated Garbage Collection

Contaminated garbage collection (CGC) is a new technique for determining

when an object can be garbage collected [4]. CGC does not mark live objects as

MSGC does, but it dynamically associates each object X with a stack frame M such

that X is collectible when M pops. CGC is based on the following property of single-

threaded applications: the liveliness of each object X in the heap is due to references

that ultimately begin in the program’s runtime stack and static areas. X is live until

12

all frames containing references to it are popped. These references may be direct or

indirect. A direct reference is a reference from a stack frame to a heap object as shown

in Figure 3.1, but an indirect reference involves at least one intermediate object.

Because of the nature of a stack, the set of frames responsible for the liveness

of X contains some frame M that pops last (the oldest frame). Consequently, the

liveness of X is tied to frame M so that when M pops, X is collectible.

In Figure 3.1 and Table 3.1, the stack frames are numbered from 0 to 5 with

frame 0 being the last and frame 5 being the first frame to pop. Each frame is associ-

ated with a method call, and the local variables of each method reside in the method’s

frame. Frame 0 contains static allocations. The objects labeled A to E reside in the

heap and the arrows represent references from the method’s local variables to the

heap objects. Table 3.1 shows the liveness of the heap objects.

Table 3.1: Liveness of Heap Objects

Object Referencing Frames Dependent Frame
A 3, 5 3
B 2, 5 2
C 1, 5 1
D 4, 5 4
E 0 0

One of the features that Figure 3.1 fails to show is that each heap object X

potentially has a field X.x that is able to reference other heap objects. Suppose C

references A so that C.c→ A. With this new reference A can be collected no earlier

than C, and thus A’s dependent frame is changed from frame 3 to frame 1. In this case

we say C contaminates A by touching or referencing it. The effect of contamination

is symmetric, i.e., if C contaminates A or A contaminates C the dependent frame of

{A,C} is the older of the dependent frames of A and C. In Figure 3.1 the dependent

frame of this set is frame 1, C’s dependent frame.

In terms of the abstract two-phase collector described above, CGC does garbage

detection when a heap object is referenced by a variable that resides in the runtime

stack or in the static area, or when a heap object contaminates another. Garbage

reclamation occurs when the dependent frame of a heap object pops.

CGC possesses some good qualities that are worth mentioning. First, it is

feasible to bound the execution time of CGC for detecting live objects because CGC

13

executes incrementally over the lifespan of the running program. Second, the point

of collection for CGC is a stack frame pop. After CGC garbage collects it simply

hands over the pointers to the areas most recently collected to appropriate lists of

free space. Third, collection of each object has a complexity of O(1).

However, CGC also faces problems that can have serious implications on its

efficiency. Overhead is one such problem. The execution of every instruction is asso-

ciated with some overhead that adds to a program’s overall execution time. Although

the overhead per instruction is small, large programs can experience noticeable de-

lays in execution. Another problem associated with CGC is its conservativeness in

detecting dead objects. Objects may be dead several stack frames earlier but CGC

detects them only when their dependent stack frame pops. This is due to the concept

of equilive sets2. From the perspective of CGC, every object in an equilive set has

the same lifespan, so every object is collected at the same time when their equilive

set’s dependent frame pops.

3.1.3 Reference Counting Garbage Collector

In Reference Counting Garbage Collection (RCGC), each object is associated with a

count of references to it. When a reference, for example to object X, is created by

copying a pointer from one place to another using assignment, X’s reference count

is incremented. Figure 3.2 illustrates this concept. When an existing pointer to X

is eliminated, X’s reference count is decremented. The storage X occupies can be

reclaimed when X’s reference count becomes 0. A reference count of 0 means there

are no references pointing to X and, as such, X cannot be reached by the running

program.

When an object’s storage is reclaimed, its pointers are examined and any object

to which it points has its reference count decremented appropriately since references

from dead objects don’t count in determining whether or not an object is live. Thus,

reclaiming one object can potentially lead to reclaiming other objects.

In terms of the two-phase functionality described above, for RCGC the garbage

detection phase is equivalent to incrementing and decrementing reference counts and

2An equilive set is a set of heap objects whose lifespan is tied to a dependent frame. Initially,
every object has its own equilive set but when objects contaminate each other, their equilive sets
are merged and are tied to their objects’ oldest dependent frame. From CGC’s perspective every
object in an equilive set dies at the same time.

14

Figure 3.2: Reference Counting Garbage Collection

checking whether reference counts equal 0. The garbage reclamation phase occurs

when an object’s reference counts become 0.

Like CGC, RCGC’s execution is incremental over the lifetime of the program

so its running time can be bounded. This is good for real-time systems since RCGC

can be utilized as a real-time collector. With RCGC collection is frequent (when

stack frames pop) and can be done in constant time.

The main problem with RCGC is its inability to collect objects involved in

reference cycles. Consider Figure 3.2. In the heap space, object G references object

H and H references G, forming a cycle. Suppose F no longer references G. This

causes G’s reference count to decrease to one. From that instant neither G nor H is

reachable by the program, but RCGC does not collect them because their reference

counts are not 0.

3.2 Storage Allocation Mechanisms

The job of a storage allocator is to keep track of memory that is in use and memory

that is free so that when a program requests allocation for its objects the allocator

is able to satisfy the requests from free storage [21]. An allocator has no control over

15

the number of requests that are made, nor does it have any authority over the sizes

of the blocks requested. These are all up to the program generating the requests.

The allocator can only deal with memory that is free and choose where in the free

memory an allocation request can be satisfied. It records the address and size of free

memory in some hidden data structure, for example a linear list, an ordered tree, a

bitmap, or some other data structure.

Since the allocator has no off-line knowledge of allocation requests it utilizes

an on-line algorithm to deal with the requests. This means the allocator can only

respond to requests sequentially. The decisions it makes must be immediate and

irrevocable.

Figure 3.3: Sequential Fit Example: Unshaded blocks are free and shaded blocks
contain live objects.

In the following subsections we give a brief overview of some conventional

storage allocation mechanisms. The list of mechanisms is extensive but we limit our

discussion to sequential fit, segregated free list, and the buddy-system [8] because

they are the most common.

16

3.2.1 Sequential Fit Allocator

Typically, a sequential fit allocator has a single linear list of all free blocks of memory.

The list is often doubly-linked or circularly-linked. Figure 3.3 illustrates the archi-

tecture of a sequential fit allocator that uses a doubly-linked list to organize its free

blocks of memory. The label inside each block shows the actual size of the block in

kilobytes. A shaded block is a block with live storage and an unshaded block is a

free block that may be allocated. Variants of sequential fit allocators include first fit,

next fit, best fit, and worst fit allocators. We describe these variants with the aid of

the following example.

Consider Figure 3.3. Suppose a request is made for a 6KB block. We illustrate

how each sequential fit allocator attempts to satisfy that request.

First Fit: First fit simply searches the list from the beginning until a free block

large enough to satisfy the allocation request is found. If the block found is too

large to satisfy the request, it is split into two sub-blocks so that one is used to

satisfy the request and the other is put on the free list.

The behavior of a first fit allocator is easily demonstrated using the example

given above. To satisfy the request a first fit allocator searches the list from

the left end until it encounters the leftmost 8KB block, which is the first free

block large enough to satisfy the 6KB request. It splits that block into a 6KB

block and a 2KB block, uses the 6KB block to satisfy the request, and puts the

remaining 2KB block on the list of free blocks.

One of the issues with first fit allocators is the observation that larger blocks

near the beginning of the heap tend to be split first and the remaining fragments

result in multiple small blocks near the beginning of the heap. This can cause

an increase in search time since the search is sequential and these blocks would

have to be passed each time a request is made for a larger block. First fit

allocators also scale poorly for systems in which many objects are allocated and

many different sizes of blocks accumulate. Weinstock discusses other issues with

using first fit allocators in [18].

Next Fit: Next fit uses a roaming pointer for allocations. The pointer “remembers”

the location where the last successful search was satisfied and begins the next

search from there. Consequently, successive searches cycle through the free list

so that searches do not always begin from the same location. This behavior

17

has the effect of decreasing average search time when using a linear list. Knuth

regards next fit as an optimization over first fit [12].

With regards to the sample problem above, suppose the last successful request

resulted in allocating the leftmost 18KB block. The roving pointer is currently

at that location. The request to allocate a 6KB block does not cause the search

to begin from the front of the heap but from the current location of the pointer

even though there is an 8KB block available near the front (left side) of the

heap. The search continues rightward until the available 6KB block is reached.

That block satisfies the request exactly so no splitting is required.

Although next fit is an optimization over first fit, next fit is not problem-free.

The roving pointer cycles through memory regularly causing objects from differ-

ent execution phases3 to be interspersed in memory. This may adversely affect

fragmentation if objects from different phases have different lifetimes.

Best fit: Best fit involves exhaustively searching the list from the front until the

smallest free block large enough to satisfy a request is found. The basic strategy

of best fit allocators is to minimize wasted space so that fragmentation is as

small as possible. A study of the worst case performance of these allocators is

given in [16]. The request represented above can be satisfied by using the only

free 6KB block in Figure 3.3. This block becomes live and the number of free

blocks decreases.

One of the problems of best fit allocators is the exhaustive search required to

find a block that fits best. Although the search stops if an exact fit is found,

the exhaustive nature of the search can be a bottleneck to scalability. This is

even more prevalent in heaps with many free blocks. Another problem that can

prevail is fragmentation if the fits are very good but not perfect. In this case

most of each block will be used, but the remainder might be so small that they

might be unusable.

Worst fit: A worst fit allocator satisfies the request for a 6KB block by splitting

the 18KB block at the end of the list into a 6KB block and a 12KB block.

The 6KB block is used to satisfy the request and the 12KB block is put on the

list of free storage. In essence, the worst fit allocator searches the list to find

3An execution phase occurs when a ‘group’ of objects is ‘born’ at the same time and ‘dies’ at
about the same time.

18

the largest block that can satisfy the allocation request, splits that block to

satisfy the request and puts the remaining storage on the list. This avoids the

problem of having too many small, unusable fragments as in best fit allocation.

One concern with worst fit allocation is the observation that it works poorly in

synthetic trace studies, i.e. in studies using traces from simulations. This may

be attributed to the tendency to ensure that no very large blocks are available.

3.2.2 Segregated Free List

The idea of segregated free list allocators is that an array of free lists is used to index

free storage where each entry in the array points to a different list of blocks of the

same size [21]. No two entries point to the same list, and blocks in different lists are

of different sizes. Typically, the segregation in these allocators is logical for indexing

purposes and not physical. When an executing program requests memory, the list

of the requested size block is searched and a block of that size is used to satisfy the

request providing that list is not empty. When a block of allocated memory becomes

free, that block is returned to the free list of blocks of that size. Most variants

of this class of allocators support general splitting and coalescing. We give a brief

introduction of a few variants of segregated free list allocators.

Size Class: Size classes are used to cluster blocks of similar sizes together so that

when a particular size block is requested, the request is serviced from the class

containing that size. If the requested size is not on the boundary of its class,

the common response of these allocators is to round up the requested size to

the upper boundary of its class and to use that much storage to service the

request. A variety of different size schemes have been experimented with, for

example linear schemes and powers of two schemes, but schemes with smaller

spacing are preferred for indexing purposes. Although this type of allocator has

the potential to perform well, especially for classes with small spacing, it also

has the potential to suffer from internal fragmentation.

Simple Segregated Storage: In simple segregated storage allocators, no splitting

of larger blocks to satisfy requests for smaller blocks is allowed. Instead, when a

free list becomes empty, to service requests for blocks of that size more storage is

requested of the underlying operating system (OS). The OS responds by making

one or two virtual memory pages available for use. These pages are then split

19

into blocks of the same size, strung together and put on the free list. Requests

for blocks of that size are satisfied from the extended list. This also explains

the nomenclature of this type of allocator: each large unit of storage contains

blocks of only one size.

One advantage of using simple segregated storage allocators is the fact that no

headers are required for each allocated block of a particular size since a per page

header is used to record sizes and other relevant information. This saves storage

overhead in cases where small objects are allocated. A significant disadvantage

with this scheme is its vulnerability to external fragmentation since no attempt

is made to split or coalesce blocks to satisfy requests for objects of other sizes.

Segregated Fit: A segregated fit allocator is a type of size class allocator that uses

an array of free lists where each array holds blocks within a certain class. When

a request for a block within a particular class is made, a sequential fit (typically

first fit or next fit) search within that class is done to satisfy that request. If

no fit for the requested size is available within that class, the list of next larger

size blocks is searched. If a block is found, it is split to satisfy the request. If

no block is found, however, the list of the next larger size block is searched.

This process continues until a free block is found, or the list with blocks of the

largest size is exhausted. In this case more memory is requested of the OS.

One of the advantages of segregated fit allocators is search speed. Using multiple

lists makes searching for free blocks faster than using a single list. Although

this is the case, coalescing of blocks can cause search time to increase. Consider

the situation where two free blocks of size X are coalesced to form a larger free

block of size 2X such that no more free blocks of size X are available. Consider

a subsequent request for a block of size X. Instead of finding a free block of

size X available, the allocator has to search the list that contains blocks of size

2X, split one such block into two blocks of size X each, and use one to satisfy

the request. Delayed coalescing can help in solving that problem.

3.2.3 Buddy-System

The buddy-system is a variant of segregated free lists that supports restrictive but

efficient splitting and coalescing of memory blocks. In the simplest buddy-systems

the heap is split into two large portions which are each split into two smaller portions,

20

and so on. This creates a hierarchical division of memory that constrains where in

the heap objects can be placed. Each block size has its unique free list. Thus, when a

block of a particular size is requested, a free block from the list with the smallest size

blocks large enough to satisfy the request is used. If that block is large enough to be

split in two smaller blocks, one of the smaller blocks is used to satisfy the request and

the other is put on its free list. In a sense the buddy-system allocator functions like a

segregated fit allocator. There are several versions of the buddy system; however, we

focus only on the binary buddy-system. The buddy-system has the speed advantage

of the segregated fit allocator but internal fragmentation is a concern. For references

to resources that describe the buddy-system in more detail, Peterson and Norman [15]

serves as a good guide.

Figure 3.4: Tree Configuration of Free List for Binary Buddy-System

A binary buddy allocator uses an array, a binary tree, or other data structure

to maintain free lists of available block sizes 2i, 0 ≤ i ≤ m where 2m ≤ the heap size.

When a block of size 2j is split into two smaller blocks, each small block is of size 2j−1.

These small blocks are called buddies and can be merged with each other to form a

larger block when they are both free at the same time. It is possible for two adjacent

blocks of the same size to fail to be buddies, as Figure 3.4 illustrates. Hence, a means

for determining whether two adjacent blocks of the same size are buddies is needed.

21

Fortunately, a straightforward method is available. Given the memory address and

size of a block, only a bit flip is necessary to compute the address of its buddy [12].

Figure 3.4 illustrates the use of a binary tree to maintain the free lists of each

block size. Let 2m be the size of the heap where the unit of storage is a byte. Let

the root of the tree be at the mth level of the hierarchical division of the heap. Thus,

blocks at depth 1 of the tree are at the (m− 1)th level of the hierarchy, and blocks at

depth i are at the (m− i)th hierarchical division. Given the size of blocks at a level,

the level number can be found by taking the base two logarithm of the size. So in

Figure 3.4 the root of the tree is at level 5.

We use shadings to differentiate the types of blocks used in the configuration.

The unshaded ovals represent blocks that are free and can be allocated. The live

ovals signify blocks that contain live objects and cannot be allocated. The parent

ovals stand in place of blocks that once existed but were split into smaller blocks. We

use this figure to show the allocation behaviors of the address-ordered binary buddy

allocator and the address-ordered best-fit binary buddy allocator.

Address-Ordered Binary Buddy Allocator: An address-ordered binary buddy

allocator (AOBBA) is a binary buddy allocator that uses a first fit allocation

mechanism as described in Section 3.2.1. Given the heap configuration in Fig-

ure 3.4, suppose an allocation request is made for a block of size 2. Either of

three blocks, namely two blocks of size 2 at level 1 and one block of size 8 at

level 3, can be used to satisfy the request. However, because AOBBA uses a

first fit mechanism, the 8 byte block is split repeatedly to satisfy the request.

The 2 byte block with the smallest address is used to service that request.

One observation that can be made from this behavior is that the lower end of

the heap is heavily used, and the upper end is used only if a request cannot

be satisfied from the lower end. Thus, address-ordered binary buddy allocators

give preference to the lower end of the heap. In Chapter 4, our presentation

of the heap storage requirements for the binary buddy-system is based on the

analysis of this mechanism [5].

Address-Ordered Best-Fit Binary Buddy Allocator: Instead of using a first

fit mechanism as AOBBA does, an address-ordered best-fit binary buddy al-

locator (AOBFBBA) uses a best fit algorithm to satisfy a request. Thus, the

smallest block large enough to service a request will always be used, regardless

of its location in the heap. Notice that preference is given to the lower end of

22

the heap, hence the address-ordered nature of the mechanism. Finding such a

block is not necessarily too expensive since a free list for each block size is main-

tained. To satisfy the request mentioned above the leftmost 2 byte free block

at level 1 is used. This means that the 8 byte block whose address is smaller

than that of this 2 byte block is not split. Thus, it can potentially be used to

satisfy a subsequent request. Our implementation of the buddy allocator [5] is

based on this mechanism.

3.3 Defragmentation

Defragmentation may be defined as the relocation of live objects from their current

location in the heap to some other location so that vacated blocks can be coalesced to

form larger contiguous blocks. This is a function of the underlying memory allocator,

typically performed in response to an allocation request for which no single block of

storage is large enough to satisfy, even though there may be sufficient interleaved free

memory to satisfy the request. Memory in that condition is fragmented and if no

coalescing of free blocks is done, storage would be wasted. Defragmentation seeks to

minimize such waste, but not without cost.

One of the cost factors associated with defragmentation is processor time.

The less processor time expended on relocating live storage, the more effective the

defragmentation algorithm. For real-time and embedded systems defragmentation is

discouraged, but for systems that are not in these classes, effective defragmentation

algorithms are explored.

The defragmentation algorithm we use in our experiments is a bounded-time

algorithm described in [5] that uses a greedy heuristic, which we explain shortly.

Suppose allocation for a block of size Z bytes is requested, but there is not enough

contiguous free storage to satisfy that request. In an attempt to minimize the cost

associated with the defragmentation process, the greedy algorithm searches the heap

for a continuous block of storage that is minimally occupied. The objects in this

minimally occupied block of storage, the target block, are relocated to the smallest

blocks outside of that block that can accommodate them. Objects are never relocated

from one location within the target block to another location within the same target

block. This process is recursive and leads to the coalescing of smaller blocks to form

larger blocks. Ultimately the target block becomes a contiguous block of available

storage that can be used to satisfy the request.

23

One reason this algorithm is bounded in time is that the search for a minimally

occupied block is not sequential. Rather, it is a tree traversal that commences at the

hierarchical division of the requested size. More details on this algorithm can be

found in Section 4.4.1 of [5].

3.3.1 Compaction

There are a number of other defragmentation algorithms in use in research and in

industry. One of these is compaction. Compaction, as the name suggests, involves

compacting one end4 of the heap with live storage while the other end of the heap

remains free for allocation. This algorithm does not necessarily model buddy-system

properties, although some variants do. Essentially, all the live storage in a fragmented

heap slides to one end of the heap, leaving a large continuous region of free storage

on the other end. The individual blocks that form this region are coalesced into

the largest free block possible that can then be used to satisfy the pending and/or

subsequent requests. Compaction can be rather costly since it displaces a significant

amount of storage.

4Despite the dynamic representaion of the heap via binary tree, etc., the heap itself is ultimately
a range of contiguous memory addresses with a lower address bound and an upper address bound.
These bounds are considered the ends of the heap.

24

Chapter 4

Storage Requirement for Binary

Buddy Allocator

In his Master’s thesis, Storage Allocation in Bounded Time [5], Sharath Cholleti

proved that for an Address-Ordered Binary Buddy Allocator that favors free blocks

in lower addresses of the heap, M(log n + 2)/2 bytes of storage is necessary and

sufficient for that allocator to satisfy an allocation and deallocation sequence without

the need for defragmentation (Theorem 3.3.3) [5]. In the expression, M(log n+ 2)/2,

M represents the maxlive: the maximum storage the program requires at any instant

during its execution, and n denotes the max-blocksize. The max-blocksize is the size of

the largest block the program can allocate at any instant during execution. We seek to

extend this proof to include the class of binary buddy allocators. Our approach is to

show that every variant of the binary buddy allocator can be made to behave like an

Address-Ordered Binary Buddy Allocator (AOBBA) that favors the lower addresses

of the heap and has the same storage requirements.

4.1 Notations

We use the notations described below throughout this chapter and the rest of the

thesis to discuss the storage usage and behavior of applications. All storage sizes are

in bytes.

1. allocate(i, ni) denotes the ith allocation request for the application where ni

signifies the block size requested.

2. deallocate(i) signifies the deallocation request for the ith object allocated.

25

3. θ = {θ1, θ2, . . . , θs} denotes an allocation and deallocation request sequence

where θj represents:

• allocate(i, ni), or

• deallocate(i).

4. logN represents log2N .

5. θ ↪→ θ
′
signifies an into mapping of θ to θ

′
such that |θ| ≤ |θ′| and either of the

following is true:

• θi → θ
′
i

• θi → θ
′
j, i < j

6. ‘Allocator α satisfies sequence θ’ means α is able to find storage for every

allocate(i, ni) ∈ θ and allows the underlying garbage collector to reclaim the

storage occupied by allocate(i, ni) after deallocate(i) ∈ θ.

7. Allocation policy, as used in this thesis, refers to a set of rules governing the

behavior of a storage allocator. Variants of a particular class of allocators have

distinct policies since they emphasize varying behavioral patterns.

4.2 Intuitive Upper Bound

The following theorem shows an intuitive upper bound for the storage requirement

for binary buddy allocators.

Theorem 4.2.1 For every binary buddy allocator α with allocation policy ψ and for

every allocation and deallocation sequence θ, there exists θ
′

such that θ ↪→ θ
′

and

α satisfies θ
′
without defragmentation with no more than M logM bytes of storage,

where M = maxlive, n = max-blocksize, both maxlive and max-blocksize are powers

of 2, and n < M .

Proof: This theorem is very similar in spirit to Theorem 3.1.1 from [5] since they

both present an upper bound heap size for storage allocators. The difference between

this theorem and Theorem 3.1.1 is that this theorem is more general since it targets

all binary buddy allocators and not just AOBBA.

26

Let K = logM denote the largest number of distinct block sizes that can

be allocated. We use proof by contradiction to show that KM bytes of storage is

sufficient for satisfying an allocation and deallocation sequence without the need for

defragmentation. Suppose KM bytes of storage is not sufficient for satisfying an

allocation and deallocation sequence without the need for defragmentation. Commit

to each size k ∈ {2i|0 ≤ i ≤ K} a contiguous block of M bytes of storage. For each

request for a block of size k bytes the memory manager allocates storage from that

size’s pool of M bytes. Since the total number of bytes that can be allocated cannot

exceed M , i.e.,
∑2K

k=20 k ≤M , no more storage is needed by the allocator to satisfy a

request of size k bytes. Hence a contradiction.

Theorem 4.2.1 gives an upper bound for the storage that is required by a binary

buddy allocator to satisfy allocation and deallocation sequences without the need for

defragmentation, but the bound is not a tight upper bound. Programs do not require

that much storage and allocators do not make all that storage available to programs.

We present storage requirements that are more realistic in subsequent sections, but

before we do so, we describe a necessary translation algorithm in Section 4.3.

4.3 Translation Algorithm

Let F be an algorithm that translates allocation and deallocation sequence θ to

allocation and deallocation sequence θ
′
such that θ

′
= {θ′

1, θ
′
2, . . . , θ

′
t}, s ≤ t, θ ↪→ θ

′
,

and an allocator with allocation policy ψ can satisfy θ
′
with the same heap size that

an allocator with allocation policy β would use to satisfy θ. We give some intuition

into what F does in Section 4.3.1.

4.3.1 Intuition for Translation Algorithm

In the description for F , β represents an AOBBA allocation policy and ψ represents

any variant of the the class of binary buddy allocation policies. To facilitate our dis-

cussion of F , let β signify an AOBBA and let ψ signify a variant of the class of binary

buddy allocators. Using these latter representations, we describe the functionality of

F .

What F does is the following: F uses the storage needed for β, f(n), to

constrain ψ by incrementally generating an allocation and deallocation sequence, θ
′
,

that forces ψ to behave as β. Since F is knowledgeable of θ, β, ψ, and f(n), F is able

27

to generate θ
′
by using address mapping and pseudo objects. We use an example to

illustrate how this is done.

Suppose the next θi ∈ θ is a request to allocate a 4 byte block in a partially

occupied heap with at least two free blocks large enough to satisfy that request. To

satisfy θi, β would use the free block at the lower end of the heap. Suppose ψ uses

another free block in the middle or other end of the head. F forces ψ to use the same

free block as β by creating a pseudo object and allocating it where ψ would allocate

θi, thus leaving the free block on the lower end of the heap as the only block from

which ψ can satisfy θi. The pseudo object is then deallocated. The allocation request

for the pseudo object, the allocation request for θi, and the deallocation request for

the pseudo object are all added to θ
′
in that order. If additional pseudo objects were

needed, requests for their allocation and deallocation would also be added to θ
′

in

the same order. The pseudo code detailing the behavior of F follows. Notice that F

generates θ
′
without violating f(n).

4.3.2 Pseudo Code for Translation Algorithm

1. Input to F

θ is an allocation and deallocation sequence

s = |θ|
β() is a function that takes θi ∈ θ, 0 ≤ i ≤ s, as input and returns its

address under allocation policy β.

ψ() is a function that takes θ
′
j as input and returns its address under

allocation policy ψ.

f(n) is the storage needed for β to satisfy θ.

2. Output from F

θ
′
is an allocation and deallocation sequence

t = |θ′|

3. Pseudo Code for F

i = 0

j = 0

bud = f(n) /* memory left to satisfy remaining allocation requests */

while i ≤ s and bud !≤ 0 do

address = β(θi)

28

if address == ψ(θi) then

/* mapping is established */

θi → θ
′
j

/* bud is updated by subtracting the size of θi if θi is an allocation

request or by adding the size of θi if θi is a deallocation request.

*/

update bud

else

/* mapping is not established because β(θi) and ψ(θi) yield different

addresses. We need to allocate “pseudo-objects” to change the

allocation policy from ψ to β or to force ψ to mimic the behavior

of β . “Pseudo-object” sequence begins at current value of j. */

pseudo start = j

while address 6= ψ(θi) and bud !≤ 0

/* add a new allocation request (“pseudo object”) to θ
′
*/

θ
′
j = new allocation request of size θi

update bud

j = j + 1

end while

/* mapping is now established */

θi → θ
′
j

update bud

/* “pseudo object” sequence ends at j - 1 */

pseudo end = j - 1

/* now deallocate “pseudo objects”*/

k = pseudo start

while k ≤ pseudo end do

j = j + 1

θ
′
j = deallocation request for “pseudo object” allocated at θ

′
k

update bud

k = k + 1

end while

/* all “pseudo objects” are deallocated and θi → θ
′
j */

end if

i = i + 1

29

j = j + 1

end while

/* the size of θ
′
is one less than j */

t = j - 1

4.4 Sufficient Storage Requirement

Lemma 4.4.1 For every binary buddy allocator α with allocation policy ψ and for

every allocation and deallocation sequence θ, there exists an allocation and deallocation

sequence θ
′
such that θ ↪→ θ

′
and α satisfies θ

′
without defragmentation, and with no

more than I(n) = M(log n + 2)/2 bytes of storage, where M = maxlive, n = max-

blocksize, both maxlive and max-blocksize are powers of 2, and n < M .

Proof: We now prove that I(n) = M(log n + 2)/2 bytes of storage is sufficient to

satisfy θ without the need for defragmentation when a binary buddy storage allocator

is employed. This proof uses the technique of mapping θ to some θ
′
using translation

algorithm F described in Section 4.3 so that ψ uses the same storage that an AOBBA

allocator would use.

Let P be a program that yields an allocation and deallocation sequence θ =

{θ1, θ2, . . . , θs} when using an AOBBA. Suppose P is run on allocator α with alloca-

tion policy ψ. Knowing ψ, let F be a translation algorithm, described in Section 4.3,

that takes an AOBBA as β and translates θ to θ
′

such that θ
′

= {θ′
1, θ

′
2, . . . , θ

′
t},

s ≤ t, and θ ↪→ θ
′
. F preserves the behavior of P since F is concerned only with

allocation and deallocation requests and F does not alter source code. Since each θi,

and each θ
′
j represents an allocation or deallocation request and θ ↪→ θ

′
, every θi ∈ θ,

1 ≤ i ≤ s maps to some θ
′
j ∈ θ

′
, 1 ≤ j ≤ t. Thus, F possesses the following features.

• Each request contains an object ID; F uses that ID and allocation and/or

deallocation address to map θi to θ
′
j. This follows from Section 4.3.

• In program P , if the allocation of object with IDk depends on the address of

object with IDk−r, 0 < r < k, k ≤ IDlastObject, or on some other address A,

F captures that address dependency in a data structure, for example a heap

data structure of size H ≤ M bytes. We attribute H to overhead since every

allocator uses some storage overhead.

30

• F potentially allocates and reclaims “pseudo-objects” but their storage does

not count toward maxlive since P is ignorant of those potential requests. Their

storage is regarded, instead, as overhead.

Suppose an AOBBA can satisfy the sequence θ without the need for defrag-

mentation. Then, according to [5], no more than M(log n + 2)/2 bytes of storage is

needed since I(n) = M(log n + 2)/2 bytes of storage is sufficient for an AOBBA to

satisfy allocation and deallocation request sequence θ without the need for defragmen-

tation, where M is the maxlive and n < M is the max-blocksize. But binary buddy

allocator α with allocation policy ψ satisfies θ
′
without the need for defragmentation

with no more than I(n) = M(log n + 2)/2 bytes of storage since ψ() is constrained

by f(n), the storage needed for β to satisfy θ and β is an AOBBA policy. Thus,

Lemma 4.4.1 holds.

4.5 Necessary Storage Requirement

Lemma 4.5.1 For every binary buddy allocator α with allocation policy ψ and for

every allocation and deallocation sequence θ, there exists an allocation and deallocation

sequence θ
′
such that θ ↪→ θ

′
and α satisfies θ

′
without defragmentation, and with at

least I(n) = M(log n+2)/2 bytes of storage, where M = maxlive, n = max-blocksize,

both maxlive and max-blocksize are powers of 2, and n < M .

Proof: We prove that I(n) = M(log n+ 2)/2 bytes of storage is necessary to satisfy

the allocation and deallocation sequence θ without the need for defragmentation when

a binary buddy storage allocator is used. The technique we use in this proof involves

showing the existence of an allocation and deallocation sequence θ that uses I(n)

bytes of storage when serviced by an AOBBA.

Let P be a program with allocation and deallocation sequence θ when executed

on a system with an AOBBA. Suppose θ is the result of the following steps.

1. Allocate blocks of size 2i, i = 0, such that
∑

2i ≤M

2. Deallocate every other block

3. Repeat steps 1. and 2. ∀i, 0 < i ≤ log n.

But an AOBBA requires exactly M(log n+2)/2 bytes of storage to satisfy the

sequence θ [5]. If translation algorithm F , described in Section 4.3, is used to translate

31

θ to some θ
′
with β being an AOBBA policy, ψ uses exactly M(log n + 2)/2 bytes

of storage to satisfy θ
′
. Thus, there exists a sequence that requires M(log n + 2)/2

bytes of storage. So, for every binary buddy allocator α with allocation policy ψ

and for every allocation and deallocation sequence θ, there exists an allocation and

deallocation sequence θ
′
such that θ ↪→ θ

′
and α satisfies θ

′
without defragmentation

with at least I(n) = M(log n + 2)/2 bytes of storage, where M = maxlive, n =

max-blocksize, both maxlive and max-blocksize are powers of 2, and n < M .

4.6 Necessary and Sufficient Storage

Requirement

Theorem 4.6.1 For every binary buddy allocator α with allocation policy ψ and for

every allocation and deallocation sequence θ, there exists an allocation and deallocation

sequence θ
′
such that θ ↪→ θ

′
and α satisfies θ

′
without defragmentation, and with

exactly I(n) = M(log n + 2)/2 bytes of storage, where M = maxlive, n = max-

blocksize, both maxlive and max-blocksize are powers of 2, and n < M .

Proof: The proof follows directly from Lemma 4.4.1 and Lemma 4.5.1.

Theorem 4.6.1 provides a tight bound for the storage requirement of any binary

buddy allocator. Typically, most applications do not consume that much storage for

the allocation of their objects, but for real-time and embedded systems where defrag-

mentation should be minimal, I(n) = M(log n + 2)/2 is required. Defragmentation

can be costly and unpredictable, thus, the feasibility of its occurrence should be low

to guarantee the correctness of these systems.

32

Chapter 5

Experiments on Coalescing

When a program executes, the underlying memory manager uses a finite heap to al-

locate storage for objects the program creates dynamically and to reclaim the storage

when those objects are no longer reachable. If little or no fragmentation is allowed,

according to Theorem 4.6.1 a heap of size Θ(M logM) bytes is required. The logM

factor makes the memory system very costly as M grows [5]. To keep the cost of

the system from getting too high, defragmentation can be allowed and the heap can

be Θ(M) bytes. We explore the effects of coalescing on defragmentation and pro-

gram performance using a heap of size M bytes. The defragmentation algorithm we

use in this study is presented in [5]. To facilitate experimentation, a few simulators,

which are described in subsequent sections are used. One of the key simulators is

Sharath’s BuddySystem, which implements the defragmentation algorithm and coa-

lescing strategies we use in this study.

This chapter is organized as follows. Section 5.1 describes the simulators we

employ in conducting experiments. Section 5.2 summarizes the Java benchmarks

for which we generate program execution-trace information. Section 5.3 details the

methodologies we employ for the experiments we perform with the Java benchmarks,

and Section 5.4 explains how we utilize an application that generates a random allo-

cation and deallocation request sequence in our experiments.

5.1 Simulators

The simulators we use to facilitate experimentation are discussed in the subsections

below. A flow chart that shows the order in which the simulators are used is given in

a subsequent section.

33

5.1.1 Trace Reader

When the JVM executes a Java program, for example a Java benchmark, and the

logfile flag is enabled, a binary output file is saved in the path specified. That file

comprises information on allocation and deallocation requests, time analysis, and

other pertinent concepts. The Trace Reader1 application extracts specific informa-

tion from the binary output file and stores it in an ASCII file. For this series of

experiments we employ a modified form of the Trace Reader application called Re-

questReader2. RequestReader generates two ASCII files: one file consists of allocation

and deallocation request information and the other file consists of a summary of the

allocation and deallocation request behavior.

5.1.2 Buddy Simulator

Buddy Simulator3 serves as the key simulator in the experimentation process. The

input parameters to Buddy Simulator are listed below.

1. file with the allocation and deallocation request sequence

2. maxlive (in bytes)

3. heapIncrFactor

4. [STRATEGY]

5. [APPROP BLOCK HEURISTIC]

6. [COALESCING COND]

7. [COALESCING LEV EL]

8. [DEBUG]

heapIncrFactor is multiplied by maxlive to determine the size of the heap

that is used to service the allocation and deallocation request sequence. The

[COALESCING COND] parameter is used to indicate whether the coalescing pol-

icy should be prompt-coalescing or delayed-coalescing. Prompt-coalescing is coalescing

1The Trace Reader was implemented by Dante Cannarozzi, David Olliges and Conrad Warmbold,
and was modified by Dante Cannarozzi, Morgan Deters and Matthew Hampton

2This modification was done by Sharath Cholleti
3Buddy Simulator is the work of Sharath Cholleti.

34

right away, coalescing immediately after a deallocation as long as a pair of buddies

is free. If delayed-coalescing is the policy specified, then [COALESCING LEV EL]

indicates the level of aggressiveness with which coalescing is to be done. We are con-

cerned with two levels of delayed-coalescing in these experiments: demand-coalescing

and thorough-coalescing. The idea of demand-coalescing is summarized accordingly:

whenever there is not a large enough contiguous free block to satisfy an allocation

request, coalescing is done only to satisfy that request. Thorough-coalescing, on the

other hand, is coalescing of the entire heap whenever a contiguous free block is not

available to satisfy an allocation request. The [DEBUG] parameter is similar in spirit

to a verbose output flag that is used to display extra status information.

With these command-line parameters, Buddy Simulator uses an Address-

Ordered Best-Fit Allocation strategy to service the allocation and deallocation request

sequence contained in the input file. If the heap becomes sufficiently fragmented

to the extent that the heap contains enough storage to accommodate an allocation

request but no contiguous block is large enough to satisfy that request, the heap is

then defragmented. The defragmentation algorithm implemented in Buddy Simulator

runs in bounded time and the amount of storage relocated is minimal [5]. A more

thorough discussion of the defragmentaion algorithm is found in [5].

Buddy Simulator displays allocation, deallocation, relocation, and coalescing

information on standard I/O, and stores the summary of this information in an ASCII

output file.

5.1.3 Random Allocation Trace

Random Allocation Trace is an program that simulates the allocation and dealloca-

tion behavior of applications. It functions as a trace generator given the complexity

of generating as many possible traces as possible with the wish to attain some rea-

sonable coverage on variety of program traces. Figure 5.1 gives an idea of some of

the parameters that must be specified when using this application.

The maxlive is the sole constraint on the size of the heap and is expected

to be a power of two integer in the range 16 ≤ maxlive < 231 − 1. The number

of allocations is indicative of the cumulative sum of all the allocation requests the

‘application’ makes of the memory manager and the percentage bias toward allocation

is honored as long as storage is available for satisfying allocation requests.

35

Figure 5.1: Random Allocation Trace User Interface

When the Generate Requests button is clicked, a file dialog pops up to allow

the user to specify the path to the file in which the allocation and deallocation re-

quest sequence should be stored. After the path is specified, the request sequence is

generated and stored in the output file.

Random Allocation Trace emulates an AOBBA but uses randomness in decid-

ing whether the next request should be an allocation request or a deallocation request.

The amount of storage to be allocated to the next object and the next object to deal-

locate are determined randomly also. During execution, a progress monitor is used

to aid the user in monitoring the progress of requests generation. At the end of exe-

cution, not only is the request sequence stored in the output file, but a summary of

the input parameters and the frequency with which the maxlive is used up are also

reported.

5.2 Java Benchmarks

The programs we use to obtain allocation and deallocation request sequences are the

SPEC JVM98 benchmark suite [6]. There are nine applications in that benchmark

suite and we give a brief description of each. More discussion on these applications

can be found in [6, 3].

36

200 check: This benchmark is a simple application that tests and verifies the validity

of the Java Virtual Machine (JVM). 200 check’s time is not used in the per-

formance metrics, but its output must be validated before performance metrics

can be generated. Some of the tests included in 200 check are tests for:

• logical, arithmetic, branch, shift and many other operations

• array indexing beyond its bounds

• creating super classes and their sub classes and checking for method and

field access violations

201 compress: 201 compress uses Modified Lempel-Ziv method (LZW). Basically,

it finds common substrings and replaces them with a variable size code. This

is a deterministic process that can be done on the fly. Thus, the decompression

procedure needs no input table, but tracks the way the table was built. The

algorithm for this technique is from [19].

201 compress is a Java port of the 129.compress benchmark from CPU95, but

improves upon that benchmark in that it compresses real data from files instead

of synthetically generated data as in 129.compress.

209 db: This benchmark performs multiple database functions on a memory resident

database. It reads in a 1 MB file which contains records with names, addresses

and phone numbers of entities, and a 19KB file called scr6 which contains a

stream of operations to perform on the records in the file. The program loops

and reads commands until it hits the ‘q’ command. The commands it performs

on the file include, among others:

• add an address

• delete an address

• find an address

• sort addresses

228 jack: 228 jack is a Java parser generator that is based on the Purdue Compiler

Construction Tool Set (PCCTS). This is an early version of what is now called

JavaCC. The workload consists of a file named jack.jack, which contains in-

structions for the generation of jack itself. This file is fed to jack so that the

parser generates itself multiple times.

37

213 javac: This is the Java compiler from the JDK 1.0.2.

202 jess: Jess is the Java Expert Shell System based on NASA’s CLIPS expert

shell system. Jess supports the development of rule-based expert systems (like

Eliza) that can be tightly coupled to code written in Java. In simplest terms,

an expert shell system continuously applies a set of if-then statements, called

rules, to a set of data, called the fact list. The benchmark workload solves a

set of puzzles commonly used with CLIPS. To increase run time the benchmark

problem iteratively asserts a new set of facts representing the same puzzle but

with different literals. The older sets of facts are not retracted. Thus the

inference engine must search through progressively larger rule sets as execution

proceeds.

222 mpegaudio 222 mpegaudio is an application that decompresses audio files that

conform to the ISO MPEG Layer-3 audio specification (developed by Fraunhofer

IIS). MP3 is an encoding technique that allows data compression of digital

signals up to a factor of 12 without losing sound quality as perceived by the

human ear. The workload consists of about 4MB of audio data.

227 mtrt 227 mtrt is a variant of 205 raytrace, a raytracer that works on a pictorial

scene depicting a dinosaur. This program uses a multi-threaded driver where

the threads render the scene in an input file of size 340KB.

5.3 Experiments with Java Benchmarks

The experiments with the SPEC JVM98 benchmark suite consists of several phases

and each phase is illustrated in a figure below. We discuss each phase in its subsection.

5.3.1 Generating Binary Log File

The version of the JVM we use for these experiments is JDK 1.1.8. This virtual

machine was instrumented to support the JVMGC, CGC, and RCGC garbage collec-

tors. Figure 5.2 shows the input to the JVM and the output from running benchmark

applications on the JVM. By altering the values of ms and mx while keeping them

equal, we are able to use a sum-of-binaries technique to determine the minimum heap

size (with KB precision) for each benchmark/garbage collector combination. This is

38

significant since we need the minimum heap size to accurately measure defragmen-

tation. The binary logfile contains, as a minimum, the information requested in the

logconf file. For these experiments the requested information consists of allocation

and deallocation requests. The logfile parameter is the path to the binary logfile where

the JVM stores the output. The sizes associated with each run of each benchmark

on each garbage collector are 1% and 100%.

Figure 5.2: Generating Binary Log File

5.3.2 Extracting Allocation and Deallocation Requests

The binary output file generated by the JVM is fed to the RequestReader application,

as indicated in Figure 5.3. RequestReader parses the file, extracts the allocation and

deallocation requests, and stores them in a ‘request’ file. Each line of the request

file contains an allocation request or a deallocation request. The former is of the the

form “1 6 256” where 1 indicates the request is an allocation request, 6 is an example

object ID, and 256 is the storage on the heap, in bytes, needed to store that object.

The latter is of the form “0 5” where 0 signals a deallocation request and 5 is the ID

of the object whose storage is being reclaimed. A deallocation request should not be

interpreted as the application requesting of the memory manager that its objects be

deallocated because Java applications do not do such. It is, however, the job of the

garbage collector to determine when an object is collectible and to reclaim storage

from that object. RequestReader also outputs a ‘statistics’ file with a summary of

the allocation behavior of the benchmark.

39

Figure 5.3: Extracting Allocation/Deallocation Requests

5.3.3 Simulating Memory Manager Behavior

Before the request file from RequestReader is fed to Buddy Simulator, the maxlive

has to be measured. A Java application named Maxlive4 is used to measure the

actual maxlive and the power-of-two maxlive for the requests in the request file. We

are concerned with the power-of-two maxlive because Buddy Simulator uses a power-

of-two allocation algorithm. With the maxlive determined, the request file, maxlive,

and all the parameters outlined in Section 5.1.2 are fed to the simulator as its input

parameters. The simulator uses them to model the behavior of the storage allocator

mentioned in Section 5.1.2 and presented in [5]. The simulation results are stored in

an appropriate ASCII file. We study the results meticulously to gain insight into the

effects of coalescing on defragmentation and program performance. Our findings are

presented in chapter 6.

Figure 5.4: Simulating Memory Management

5.4 Experiments with Random Allocation Trace

When executing the Random Allocation Trace application, the maxlive, number of

allocations, and percentage bias toward allocation are all entered in their appropriate

text fields. The maxlive is expected to be a power-of-two maxlive since Random

4Maxlive was implemented by Sharath Cholleti.

40

Allocation Trace does not verify that it is. The absence of this check is intentional

since the user may want to experiment with different types of maxlive. Clicking the

‘Generate Requests’ button prompts the user to specify the path to the file where the

allocation and deallocation request sequence is to be stored. Being satisfied that it

has all the necessary parameters to execute, Random Allocation Trace simulates the

allocation behavior of a typical application and saves its allocation and deallocation

requests in the specified location. That request file, along with the maxlive, and

other parameters described above are fed to Buddy Simulator to yield allocation

and relocation statistics as described in Section 5.3.3. These results are presented in

chapter 6.

Figure 5.5: Flow Chart of Experiments with Java Benchmarks

41

Chapter 6

Experimental Results

In chapter 5 we thoroughly described the experiments we performed. We present the

results of these experiments and analyze them in this chapter.

6.1 Minimum Heap

Table 6.1: Minimum Heap Size (in KB) for Size 1 of Java Benchmarks

Benchmark JVMGC CGC RCGC

200 check 384 421 344
201 compress 9687 9697 9697

209 db 451 551 407
228 jack 1987 8317 5141
213 javac 894 961 847
202 jess 684 1221 714

222 mpegaudio 507 501 481
227 mtrt 6184 6881 6267

205 raytrace 6184 6881 6267

If an allocator has an unbounded heap to satisfy allocation requests, fragmen-

tation is not an issue and the underlying garbage collector does not need to run.

However, the reality is such that memory is a limited resource that must be managed

properly. Our objectives for this research were to investigate the effects of coalescing

on defragmentation and on programs’ performance; as such we believe it was nec-

essary to determine the minimum heap size the Java benchmarks needed when they

42

were executed on systems with different garbage collectors. Using larger heap sizes

would not have allowed us to measure defragmentation accurately since a heap that

is too large typically has a free chunk of memory large enough to satisfy an allocation

request; hence, requiring no defragmentation. We present the minimum heap sizes for

size 1 and size 100 of the Java Benchmarks in Table 6.1 and Table 6.2, respectively.

These heap sizes are given with kilobyte precision.

Table 6.2: Minimum Heap Size (in KB) for Size 100 of Java Benchmarks

Benchmark JVMGC CGC RCGC

200 check 384 421 344
201 compress 134367 134367 134367

209 db 11587 127456 11597
228 jack 2000 64520 9041
213 javac 19530 130988 86607
202 jess 1968 22128 5850

222 mpegaudio 507 507 507
227 mtrt 6184 14776 12904

205 raytrace 6184 20400 7747

With the exception of 201 compress size 100 and 222 mpegaudio size 100, for

each benchmark the minimum heap size varies from garbage collector to garbage

collector. For the most part, JVMGC produced the smallest minimum heap size for

the benchmarks. However, RCGC outperformed JVMGC for 209 db size 1, 200 check

(both sizes), 213 javac size 1, and 222 mpegaudio size 1. CGC produced the largest

minimum heap sizes.

These differences in heap size can be attributed to the varying characteristics of

the garbage collectors. JVMGC is the least conservative of the collectors since it has

the potential to collect every dead object. However, JVMGC runs least frequently.

RCGC runs incrementally but has difficulty reclaiming objects involved in reference

cycles. CGC is the most conservative collector since object contamination causes

younger equilive sets to shrink and older equilive sets to grow, resulting in more

objects being collected later.

43

6.2 Number of Coalescings

Coalescing buddies consumes system resources just as any other memory operation.

Some of the costs associated with coalescing buddies include verifying that two neigh-

boring blocks of the same size are buddies, verifying that the buddies are indeed free,

merging free buddy pairs, adjusting the lists that buddies belonged to before merging,

and adjusting the lists that resulting larger blocks belong to after merging. These

costs are overhead and should be kept at a minimum.

Figure 6.1, Figure 6.2, and Figure 6.3 show the effects of delayed coalescing

on number of coalescings for size 100 of Java benchmarks. These figures reveal that

regardless of which garbage collector is used, for each Java benchmark prompt coa-

lescing does the most coalescings of buddies. Thorough coalescing reduces number of

coalescings significantly; thus, indicating that the number of times prompt coalescing

coalesces buddies is unnecessary.

The savings derived from using thorough coalescing with JVMGC instead of

prompt coalescing varies in the range of 3.8 to 2.3 million. For 222 mpegaudio,

prompt coalescing merged buddies 3.8 times as many as did thorough coalescing and

for 209 db, prompt coalescing merged buddies as many as 2.3 million times as many

as thorough coalescing did. Demand coalescing yielded even more savings for most

of the benchmarks. However, for 200 check and 222 mpegaudio thorough coalescing

and demand coalescing coalesced buddies the same number of times. 201 compress

and 209 db experienced at least 1000 coalescings with prompt coalescing but zero

with both thorough coalescing and demand coalescing.

The results for CGC are similar to those for JVMCG but there is no difference

in savings between thorough coalescing and demand coalescing. The largest savings

experienced by the delayed coalescing strategies was 652000 , and the benchmark

for which these savings were observed was 202 jess. The smallest savings, 3.6, was

recorded for 200 check. 201 compress and 209 db did not coalesce buddies when

delayed coalescing strategies were used.

RCGC produced results that differ in several respects to the results from both

JVMGC and CGC. While most of the benchmarks witnessed no difference between

thorough coalescing and demand coalescing, 228 jack, 213 javac, and 202 jess did.

No benchmark experienced zero coalescing with the delayed coalescing strategies and

the best savings CGC received from delayed coalescing was limited to 59000.

44

From these three garbage collectors, 209 db and 201 compress benefited most

from delayed coalescing and 222 mpegaudio and 200 check benefited least. The find-

ings for size 1 of the benchmarks are similar to those of size 100 and are captured in

Figure A.1, Figure A.2, and Figure A.3.

6.3 Memory Relocation - Defragmentation

Defragmentation - relocation of live objects can be very expensive and has the po-

tential to be problematic. Some of the costs involve searching the address space for

blocks large enough to accommodate objects subject to relocation, deallocating those

objects, and reallocating them. These actions can result in cache inconsistency if the

caching mechanism is write back and not write through. To avert these consequences,

defragmentation should be minimal. Table 6.3 shows the effects of delayed coalescing

on defragmentation for size 100 of Java benchmarks.

From among the three garbage collectors we employed, JVMGC had the largest

margin of percentage of memory relocated for prompt coalescing, followed by CGC,

then RCGC. JVMGC also recorded the largest margin for thorough coalescing and

demand coalescing. Typically, the percentage of memory relocated increased from

prompt coalescing to thorough coalescing and from thorough coalescing to demand

coalescing, but the increase is not significant. The largest increase witnessed was

0.38532% and it was witnessed by 228 jack. It is interesting to note, also, that for

some benchmarks, delayed coalescing introduced no defragmentation across garbage

collectors and for another group, no defragmentation with a particluar garbage col-

lector. 209 db and 201 compress were not adversely affected by delayed coalescing,

but 228 jack was affected worst since delayed coalescing caused 228 jack to relocate

the largest proportion of live storage.

The results for size 1 of the of Java benchmarks are slightly different from the

results for size 100, but for the most part, they are comparable. Some of the differ-

ences observed are the following: CGC recorded the largest margin of percentage of

memory relocated for thorough coalescing and demand coalescing, the largest percent-

age increase was almost 1%, and no benchmark enjoyed zero relocation across garbage

collectors. These results can be verified from Table A.7, Figure 6.4, Figure 6.5, and

Figure 6.6.

45

Figure 6.1: Number of Coalescings vs Coalescing Strategy when Using JVMGC -
Benchmarks are of Size 100

46

Figure 6.2: Number of Coalescings vs Coalescing Strategy when Using CGC -
Benchmarks are of Size 100

47

Figure 6.3: Number of Coalescings vs Coalescing Strategy when Using RCGC - Bench-
marks are of Size 100

48

Table 6.3: Percentage of Memory Relocated for Size 100 of Java Benchmarks

Benchmark Garbage % Memory Garbage % Memory Garbage % Memory Coalescing
Collector Relocated Collector Relocated Collector Relocated Strategy

JVMGC 0.0 CGC 0.0 RCGC 0.00143 Prompt
JVMGC 0.21274 CGC 0.08138 RCGC 0.08567 Thorough200 check
JVMGC 0.21274 CGC 0.08138 RCGC 0.08567 Demand
JVMGC 0.0 CGC 0.0 RCGC 0.0 Prompt
JVMGC 0.0 CGC 0.0 RCGC 0.0 Thorough201 compress
JVMGC 0.0 CGC 0.0 RCGC 0.0 Demand
JVMGC 0.0 CGC 0.0 RCGC 0.0 Prompt
JVMGC 0.0 CGC 0.0 RCGC 0.00002 Thorough209 db
JVMGC 0.0 CGC 0.0 RCGC 0.00002 Demand
JVMGC 0.21050 CGC 0.0 RCGC 0.01269 Prompt
JVMGC 0.20455 CGC 0.05370 RCGC 0.09148 Thorough228 jack
JVMGC 0.58987 CGC 0.05370 RCGC 0.12976 Demand
JVMGC 0.0 CGC N/A RCGC 0.00230 Prompt
JVMGC 0.17458 CGC N/A RCGC 0.05478 Thorough213 javac
JVMGC 0.17879 CGC N/A RCGC 0.05437 Demand
JVMGC 0.00018 CGC 0.0 RCGC 0.00002 Prompt
JVMGC 0.01626 CGC 0.0 RCGC 0.00012 Thorough202 jess
JVMGC 0.01890 CGC 0.0 RCGC 0.00012 Demand
JVMGC 0.0 CGC 0.03941 RCGC 0.0 Prompt
JVMGC 0.07020 CGC 0.03941 RCGC 0.00246 Thorough222 mpegaudio
JVMGC 0.07020 CGC 0.03941 RCGC 0.00246 Demand
JVMGC 0.0 CGC 0.00019 RCGC 0.00011 Prompt
JVMGC 0.0 CGC 0.00026 RCGC 0.00037 Thorough227 mtrt
JVMGC 0.0 CGC 0.00026 RCGC 0.00037 Demand
JVMGC 0.0 CGC 0.00009 RCGC 0.0 Prompt
JVMGC 0.00404 CGC 0.00010 RCGC 0.00031 Thorough205 raytrace
JVMGC 0.00404 CGC 0.00010 RCGC 0.00031 Demand

49

Figure 6.4: Percentage of Memory Relocated for Size 100 of Java Benchmarks when
Using JVMGC

50

Figure 6.5: Percentage of Memory Relocated for Size 100 of Java Benchmarks when
Using CGC

51

Figure 6.6: Percentage of Memory Relocated for Size 100 of Java Benchmarks when
Using RCGC

52

6.4 Results from Synthetic Traces

We were suspicious about the results we obtained from the Java benchmarks, Sec-

tion 6.3, because those programs seemed to be very ‘well-behaved’. They allocate a

majority of ‘small’ objects and few ‘large’ objects. Their allocations are many and

their deallocations are few. These programs also allocate objects in groups and deal-

locate them in groups. The ‘well-behaved’ nature of those programs caused them to

not significantly fragment the heap. This prompted us to use synthetic traces to study

the allocation behavior of programs that are not so ‘well-behaved’. In this venture

we utilized the Random Allocation Trace Application (RATA).

RATA was used to simulate the execution of real programs. We used a maxlive

of 4194304 bytes (4 MB) and an allocation bias of 70% for generating those traces.

Figure 6.7 shows the number of objects created for each run of RATA. Table A.8 sum-

marizes the memory usage statictics for those traces. FIgure 6.8 highlights the effects

of the coalescing strategies on the number of coalescings and Figure 6.9 demonstrates

how the coalescing strategies affect defragmentation.

Those traces show significantly more defragmentation that the Java bench-

marks. The percentages of memory relocated for the Java benchmarks are upper

bounded by 1% but for those traces they are upper bounded by 6%. Besides this

observation, the effects of delayed coalescing on defragmentaion for those traces are

similar to what we observed for the Java benchmarks.

Another observation from using those traces we found interesting was that

delayed coalescing had negligible effects on number of coalescings. This suggests that

the coalescings that were done when using prompt coalescing were necessary since

the delayed coalescing strategies do not coalesce buddy-pairs until they have to.

53

Figure 6.7: Total Number of Objects Created by Each Run of The Synthetic Trace
Application

54

Figure 6.8: Number of Coalescings vs Coalescing Strategy when Using Synthetic
Traces

55

Figure 6.9: Percentage of Memory Relocated for Each Run of The Synthetic Trace
Application

56

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In his thesis, Storage Allocation in Bounded Time [5], Sharath Cholleti proved that

M(log n + 2)/2 bytes of storage is necessary and sufficient for an Address-Ordered

Binary Buddy Allocator to satisfy an allocation and deallocation sequence without

the need for defragmentation. We expanded this proof to the class of Binary Buddy

Allocators by showing that the behavior of any such allocator can be modified to

mimic the behavior of an Address-Ordered Binary Buddy Allocator. Our approach

involved designing an algorithm that translates allocation and deallocation request

sequences generated by an Address-Ordered Binary Buddy Allocator to allocation

and deallocation request sequences that would require no more storage if used with

some other Binary Buddy Allocators. Our algorithm would need to know the other

allocator in order to tailor the sequence to that allocator.

We also instrumented Sun’s Java Virtual Machine to use a Contaminated

Garbage Collector and a Reference Counting Garbage Collector, in addition to Sun’s

default Mark and Sweep Garbage Collector. We ran the SPEC JVM98 benchmark

suite [6] on the instrumented JVM to obtain traces that allowed us to study the

effects of delayed coalescing on defragmentation and on the overall performance of

programs. From the results of Buddy.Simulator we discovered that delayed coalescing

reduced number of coalescings remarkably over prompt coalescing (by a factor of the

order of 2.6 million), resulting in significant reduction in overhead. While this finding

is motivating, it is not always free. Delayed coalescing can also introduce a slight

increase in defragmentation. For the SPEC JVM98 benchmarks, we noticed that the

largest increase is less than 1%. We also experimented with some synthetic traces and

57

our findings were different from what we observed for the SPEC JVM98 benchmark

suite. We found that delayed coalescing did not reduce the number of coalescings and

significantly more defragmentation was observed in those traces.

7.2 Future Work

From analyzing the results from our experiments, we observed that in some cases

demand coalescing reduces number of coalescings more than thorough coalescing does,

while in other cases the reduction is the same. Demand coalescing also has the

potential to defragment more than thorough coalescing. We seek to use this knowledge

to enhance Buddy.Simulator look for allocation and deallocation patterns and to

use those patterns to optimize its performance. Performance optimization would

involve finding a balance between reducing number of coalescings and minimizing

defragmentation.

We would also like to implement Buddy.Simulator in the JVM so we can thor-

oughly test it to determine how efficient it functions as a storage allocator. Testing it

would allow us to measure how long it takes to coalesce buddies and how long it takes

to relocate live objects. These measurements would expose any unforeseen factors.

We would also be interested in exporting these ideas to file systems. Much

research has gone into developing file systems. However, we believe we can make

some contribution to that research by offering an alternative to the systems already

deployed.

58

Appendix A

Supporting Data for Experiments

The tables and figures below contain either raw data or supporting data for the

experiments performed for this thesis. The captions and/or legends describe the data

contained in each table or figure.

Section A.1 contains data for size 100 of the Java benchmarks; Section A.2

contains data for size 1 of the Java benchmarks, Section A.3 contains Memory Re-

location data for size 1 of the Java benchmarks, and data for the traces from the

Random Allocation Trace application are stored in Table A.8 of Section A.4.

59

A.1 Data for Size 100 of Java Benchmarks

A.1.1 JVM Garbage Collector

Table A.1: Memory Usage Statistics for Size 100 of Java Benchmarks when Using
JVMGC

Benchmark maxlive Memory Memory No. of No. of Coalescing
Allocated Relocated Relocations coalescings Strategy

481720 560296 0 0 1180 Prompt
481720 560296 1192 73 219 Thorough200 check
481720 560296 1192 73 219 Demand

166520200 166520200 0 0 1052 Prompt
166520200 166582520 0 0 0 Thorough201 compress
166520200 166582520 0 0 0 Demand
9403296 72632816 0 0 2299943 Prompt
9403296 72632816 0 0 0 Thorough209 db
9403296 72632816 0 0 0 Demand
2277880 37517608 78976 3674 984634 Prompt
2277880 37517608 76744 1788 172537 Thorough228 jack
2277880 37517608 221304 6904 148536 Demand
18096880 147267016 0 0 1636547 Prompt
18096880 147267016 257104 8772 319967 Thorough213 javac
18096880 147267016 263296 9039 281274 Demand
2244624 283031528 512 6 3154507 Prompt
2244624 283031528 46032 1287 46355 Thorough202 jess
2244624 283031528 53488 1511 35651 Demand
638976 649592 0 0 265 Prompt
638976 649592 456 27 69 Thorough222 mpegaudio
638976 649592 456 27 69 Demand
4377872 118076944 0 0 1258232 Prompt
4377872 118076944 0 0 264288 Thorough227 mtrt
4377872 118076944 0 0 21098 Demand
4378064 112743896 0 0 1134884 Prompt
4378064 112743896 4560 243 163236 Thorough205 raytrace
4378064 112743896 4560 243 10745 Demand

60

A.1.2 Contaminated Garbage Collector

Table A.2: Memory Usage Statistics for Size 100 of Java Benchmarks when Using
CGC

Benchmark maxlive Memory Memory No. of No. of Coalescing
Allocated Relocated Relocations coalescings Strategy

515280 560360 0 0 1038 Prompt
515280 560360 456 16 286 Thorough200 check
515280 560360 456 16 286 Demand

166485968 166582648 0 0 1028 Prompt
166485968 166582648 0 0 0 Thorough201 compress
166485968 166582648 0 0 0 Demand
70642104 72765200 0 0 795 Prompt
70642104 72765200 0 0 0 Thorough209 db
70642104 72765200 0 0 0 Demand
8023736 37542424 0 0 783804 Prompt
8023736 37542424 20160 1182 1748 Thorough228 jack
8023736 37542424 20160 1182 1748 Demand
4523992 283154664 0 0 4561983 Prompt
4523992 283154664 16 1 7 Thorough202 jess
4523992 283154664 16 1 7 Demand
617984 649624 256 2 324 Prompt
617984 649624 256 6 7 Thorough222 mpegaudio
617984 649624 256 6 7 Demand
9221488 118076944 224 4 6359732 Prompt
9221488 118076944 304 5 373357 Thorough227 mtrt
9221488 118076944 304 5 373357 Demand
12837392 112743896 96 3 6136837 Prompt
12837392 112743896 112 3 517372 Thorough205 raytrace
12837392 112743896 112 3 517372 Demand

61

A.1.3 Reference Counting Garbage Collector

Table A.3: Memory Usage Statistics for Size 100 of Java Benchmarks when Using
RCGC

Benchmark maxlive Memory Memory No. of No. of Coalescing
Allocated Relocated Relocations coalescings Strategy

403080 560296 8 1 1021 Prompt
403080 560296 480 18 217 Thorough200 check
403080 560296 480 18 217 Demand

166426944 166582648 0 0 795 Prompt
166426944 166582648 8 1 187 Thorough201 compress
166426944 166582648 8 1 187 Demand
9096664 72632816 0 0 1486494 Prompt
9096664 72632816 16 1 25 Thorough209 db
9096664 72632816 16 1 25 Demand
2574848 37516296 4760 130 438138 Prompt
2574848 37516296 34320 896 32679 Thorough228 jack
2574848 37516296 48680 1268 25193 Demand
29733936 145647976 3352 137 1253813 Prompt
29733936 145647976 79792 3522 11780 Thorough213 javac
29733936 145647976 79192 3496 9829 Demand
1849000 283037192 56 3 2144614 Prompt
1849000 283037192 328 17 1844 Thorough202 jess
1849000 283037192 328 17 587 Demand
595000 649624 0 0 372 Prompt
595000 649624 16 1 7 Thorough222 mpegaudio
595000 649624 16 1 7 Demand
6960048 118076944 128 1 6060775 Prompt
6960048 118076944 432 20 18989 Thorough227 mtrt
6960048 118076944 432 20 18989 Demand
4304992 112743896 0 0 6087513 Prompt
4304992 112743896 352 22 39127 Thorough205 raytrace
4304992 112743896 352 22 39127 Demand

62

A.2 Data for Size 1 of Java Benchmarks

A.2.1 JVM Garbage Collector

Table A.4: Memory Usage Statistics for Size 1 of Java Benchmarks when Using
JVMGC

Benchmark maxlive Memory Memory No. of No. of Coalescing
Allocated Relocated Relocations coalescings Strategy

481688 560264 0 0 1169 Prompt
481688 560264 1216 72 220 Thorough200 check
481688 560264 1200 72 220 Demand
9984112 10020984 0 0 238 Prompt
9984112 10020984 1248 45 137 Thorough201 compress
9984112 10020984 1248 45 137 Demand
579968 778056 0 0 2764 Prompt
579968 778056 0 0 0 Thorough209 db
579968 778056 0 0 0 Demand
2267336 11785824 0 0 317982 Prompt
2267336 11785824 26528 841 27454 Thorough228 jack
2267336 11785824 26528 841 27454 Demand
1056904 1549448 0 0 8113 Prompt
1056904 1549448 0 0 0 Thorough213 javac
1056904 1549448 0 0 0 Demand
846640 2357616 0 0 24166 Prompt
846640 2357616 0 0 0 Thorough202 jess
846640 2357616 0 0 0 Demand
638904 649512 0 0 258 Prompt
638904 649512 424 26 67 Thorough222 mpegaudio
638904 649512 424 26 67 Demand
4377728 6627768 0 0 209523 Prompt
4377728 6627768 0 0 0 Thorough227 mtrt
4377728 6627768 0 0 0 Demand
4378040 6676872 0 0 208831 Prompt
4378040 6676872 0 0 0 Thorough205 raytrace
4378040 6676872 0 0 0 Demand

63

Figure A.1: Number of Coalescings vs Coalescing Strategy when Using JVMGC -
Benchmarks are of Size 1

64

A.2.2 Contaminated Garbage Collector

Table A.5: Memory Usage Statistics for Size 1 of Java Benchmarks when Using CGC

Benchmark maxlive Memory Memory No. of No. of Coalescing
Allocated Relocated Relocations coalescings Strategy

515280 560328 0 0 1030 Prompt
515280 560328 456 16 286 Thorough200 check
515280 515280 456 16 286 Demand
9985504 10020984 0 0 391 Prompt
9985504 10020984 0 0 0 Thorough201 compress
9985504 10020984 0 0 0 Demand
716424 778088 0 0 2413 Prompt
716424 778088 5720 324 1381 Thorough209 db
716424 778088 5848 332 1384 Demand
2668952 11785824 0 0 253960 Prompt
2668952 11785824 112 4 2874 Thorough228 jack
2668952 11785824 112 4 1340 Demand
977696 1549448 200 6 2596 Prompt
977696 1549448 200 6 9 Thorough213 javac
977696 1549448 200 6 9 Demand
1101696 2357232 56 5 24711 Prompt
1101696 2357232 56 5 278 Thorough202 jess
1101696 2357232 56 5 278 Demand
618144 649512 256 2 343 Prompt
618144 649512 256 6 7 Thorough222 mpegaudio
618144 649512 256 6 7 Demand
3991904 6627720 96 3 231769 Prompt
3991904 6627720 112 3 171385 Thorough227 mtrt
3991904 6627720 112 3 171385 Demand
3992328 6676776 96 3 232435 Prompt
3992328 6676776 112 3 171385 Thorough205 raytrace
3992328 6676776 112 3 171385 Demand

65

Figure A.2: Number of Coalescings vs Coalescing Strategy when Using CGC -
Benchmarks are of Size 1

66

A.2.3 Reference Counting Garbage Collector

Table A.6: Memory Usage Statistics for Size 1 of Java Benchmarks when Using RCGC

Benchmark maxlive Memory Memory No. of No. of Coalescing
Allocated Relocated Relocations coalescings Strategy

403080 560264 8 1 1028 Prompt
403080 560264 480 18 217 Thorough200 check
403080 560264 480 18 217 Demand
9972320 10020984 0 0 332 Prompt
9972320 10020984 32 2 7 Thorough201 compress
9972320 10020984 32 2 7 Demand
501248 778056 8 1 2346 Prompt
501248 778056 3512 162 774 Thorough209 db
501248 778056 3800 180 762 Demand
1955600 11785824 0 0 165505 Prompt
1955600 11785824 16 1 264 Thorough228 jack
1955600 11785824 16 1 28 Demand
856024 1549448 0 0 2692 Prompt
856024 1549448 16 1 2 Thorough213 javac
856024 1549448 16 1 2 Demand
639144 2357200 296 8 17047 Prompt
639144 2357200 520 10 108 Thorough202 jess
639144 2357200 712 13 89 Demand
595032 649512 0 0 395 Prompt
595032 649512 16 1 7 Thorough222 mpegaudio
595032 649512 16 1 7 Demand
3697472 6627768 0 0 42313 Prompt
3697472 6627768 0 0 1168 Thorough227 mtrt
3697472 6627768 0 0 145 Demand
3697704 6676920 0 0 42679 Prompt
3697704 6676920 0 0 1168 Thorough205 raytrace
3697704 6676920 0 0 145 Demand

67

Figure A.3: Number of Coalescings vs Coalescing Strategy when Using RCGC -
Benchmarks are of Size 1

68

A.3 Memory Relocation - Defragmentation

Table A.7: Percentage of Memory Relocated for Size 1 of Java Benchmarks

Benchmark Garbage % Memory Garbage % Memory Garbage % Memory Coalescing
Collector Relocated Collector Relocated Collector Relocated Strategy

JVMGC 0.0 CGC 0.0 RCGC 0.00143 Prompt
JVMGC 0.21704 CGC 0.08138 RCGC 0.08567 Thorough200 check
JVMGC 0.21418 CGC 0.08138 RCGC 0.08567 Demand
JVMGC 0.0 CGC 0.0 RCGC 0.0 Prompt
JVMGC 0.01245 CGC 0.0 RCGC 0.00032 Thorough201 compress
JVMGC 0.01245 CGC 0.0 RCGC 0.00032 Demand
JVMGC 0.0 CGC 0.0 RCGC 0.00103 Prompt
JVMGC 0.0 CGC 0.73514 RCGC 0.45138 Thorough209 db
JVMGC 0.0 CGC 0.75159 RCGC 0.48840 Demand
JVMGC 0.0 CGC 0.0 RCGC 0.0 Prompt
JVMGC 0.22508 CGC 0.00095 RCGC 0.00014 Thorough228 jack
JVMGC 0.22508 CGC 0.00095 RCGC 0.00014 Demand
JVMGC 0.0 CGC 0.01291 RCGC 0.0 Prompt
JVMGC 0.0 CGC 0.01291 RCGC 0.0010 Thorough213 javac
JVMGC 0.0 CGC 0.01291 RCGC 0.00103 Demand
JVMGC 0.0 CGC 0.00238 RCGC 0.01256 Prompt
JVMGC 0.0 CGC 0.00238 RCGC 0.02206 Thorough202 jess
JVMGC 0.0 CGC 0.00238 RCGC 0.03021 Demand
JVMGC 0.0 CGC 0.03941 RCGC 0.0 Prompt
JVMGC 0.06528 CGC 0.03941 RCGC 0.00246 Thorough222 mpegaudio
JVMGC 0.06528 CGC 0.03941 RCGC 0.00246 Demand
JVMGC 0.0 CGC 0.00145 RCGC 0.0 Prompt
JVMGC 0.0 CGC 0.00169 RCGC 0.0 Thorough227 mtrt
JVMGC 0.0 CGC 0.00169 RCGC 0.0 Demand
JVMGC 0.0 CGC 0.00145 RCGC 0.0 Prompt
JVMGC 0.0 CGC 0.00169 RCGC 0.0 Thorough205 raytrace
JVMGC 0.0 CGC 0.00169 RCGC 0.0 Demand

69

A.4 Synthetic Traces

Table A.8: Memory Usage Statistics for Synthetic Traces - 70% Allocation Bias

Trace No. of maxlive Memory Memory No. of No. of Coalescing
Objects Allocated Relocated Relocations coalescings Strategy

1000 4194304 19085760 711808 204 466 Prompt
1000 4194304 19085760 663280 279 453 Thoroughtrace0
1000 4194304 19085760 663280 280 453 Demand
10000 4194304 37191760 838640 2052 3070 Prompt
10000 4194304 37191760 871728 2021 3021 Thoroughtrace1
10000 4194304 37191760 871728 2021 3019 Demand
100000 4194304 64427408 1958928 19532 26590 Prompt
100000 4194304 64427408 1991504 19552 26591 Thoroughtrace2
100000 4194304 64427408 1991504 19552 26590 Demand
125000 4194304 65256272 1726720 23445 31551 Prompt
125000 4194304 65256272 1728368 23457 31555 Thoroughtrace3
125000 4194304 65256272 1728368 23457 31555 Demand
250000 4194304 85822560 3432944 46937 60170 Prompt
250000 4194304 85822560 3432944 46935 60160 Thoroughtrace4
250000 4194304 85822560 3432944 46935 60160 Demand
375000 4194304 98498608 4373136 70629 88403 Prompt
375000 4194304 98498608 4373712 70612 88369 Thoroughtrace5
375000 4194304 98498608 4373712 70612 88369 Demand
500000 4194304 108367376 4893184 94352 116136 Prompt
500000 4194304 108367376 4892336 94312 116068 Thoroughtrace6
500000 4194304 108367376 4892336 94312 116068 Demand
750000 4194304 127819520 6088592 140390 169551 Prompt
750000 4194304 127819520 6370624 140623 169729 Thoroughtrace7
750000 4194304 127819520 6370624 140623 169729 Demand
1000000 4194304 141283648 7495760 187868 222793 Prompt
1000000 4194304 141283648 7503040 187999 222867 Thoroughtrace8
1000000 4194304 141283648 7503040 187999 222867 Demand
1250000 4194304 156710096 8754512 235295 275906 Prompt
1250000 4194304 156710096 8756704 234922 275504 Thoroughtrace9
1250000 4194304 156710096 8756704 234922 275504 Demand

70

References

[1] David F. Bacon, Perry Cheng, and V. T. Rajan. Controlling fragmentation and

space consumption in the Metronome, a real-time garbage collector for Java. In

Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and

tool for embedded systems, pages 81–92. ACM Press, 2003.

[2] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly &

Associates, Inc., 103a Morris Street, Sebastopol, CA 95472, USA, Tel: +1 707

829 0515, and 90 Sherman Street, Cambridge, MA 02140, USA, Tel: +1 617 354

5800, second edition.

[3] K. Bowers and D. Kaeli. Characterizing the SPEC JVM98 benchmarks on the

Java Virtual Machine. Technical report, Northeastern University, Dept. of ECE,

Computer Architecture Group.

[4] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron. Contaminated

garbage collection. Proceedings of the ACM SIGPLAN ’00 conference on Pro-

gramming language design and implementation, pages 264–273, 2000.

[5] Sharath R. Cholleti. Storage allocation in bounded time. Master’s thesis, Wash-

ington University, Saint Louis, MO, 2002.

[6] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC, 1999.

Available by purchase from SPEC.

[7] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep

garbage collector on large-scale shared-memory machines. In Proceedings of High

Performance Computing and Networking (SC’97), San Jose, California, Novem-

ber 1997.

71

[8] Dirk Grunwald, Benjamin G. Zorn, and Robert Henderson. Improving the cache

locality of memory allocation. In SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 177–186, Albuquerque, New Mexico,

June 1993. ACM.

[9] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann, 3rd edition, 2002.

[10] Mahmut T. Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and W. Ye.

Influence of compiler optimizations on system power. In Design Automation

Conference, pages 304–307, Los Angeles, CA, June 2000. ACM.

[11] Arie Kaufman. Tailored-list and recombination-delaying buddy systems. ACM

Transactions on Programming Languages and Systems (TOPLAS), 6(1):118–125,

1984.

[12] Donald E. Knuth. The Art of Computer Programming, volume 1: Fundamental

Algorithms. Addison-Wesley, Reading, Massachusetts, 1973.

[13] Tom Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, Reading, Massachusetts, 1997.

[14] Chris H. Pappas and William H. Murray III. The Complete Reference Visual

C++ 6. Osborne/McGraw-Hill, 1998.

[15] James L. Peterson and Theodore A. Norman. Buddy systems. Communications

of the ACM, 20(6):421–431, 1977.

[16] J. M. Robson. Worst Case Fragmentation of First-fit and Best-fit Storage Allo-

cation Strategies. Computer Journal, 20(3):242–244, 1977.

[17] William Stallings. Operating Systems: Internals and Design Principles. Prentice

Hall, 4th edition, 2001.

[18] Charles B. Weinstock. Dynamic Storage Allocation Techniques. PhD thesis,

Carnegie-Mellon University, Pittsburgh, PA, April 1976.

[19] Terry A. Welch. A technique for high performance data compression. j-

COMPUTER, 17(6):8–20, June 1984.

72

[20] Paul R. Wilson. Uniprocessor garbage collection techniques (Long Version).

Submitted to ACM Computing Surveys, 1994.

[21] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic

storage allocation: A survey and critical review. In International Workshop on

Memory Management, Kinross, Scotland, UK, September 1995.

73

Vita
Delvin C. Defoe

Date of Birth November 28, 1973

Place of Birth La Plaine, Dominica

Degrees B.S. Magna Cum Laude, Computer Science and Mathematics,

May 2001, from MidWestern State University, Wichita Falls,

Texas.

Publications Delvin Defoe, Ranette Halverson, Nelson Passos, Richard Simp-

son, and Reynold Bailey. “A Study of Software Pipelining for

Multi-dimensional Problems”, in Proceedings of the AeroSense-

Aerospace/Defense Sensing, Simulation and Controls, Orlando,

FL, April 2001.

Delvin Defoe, Ranette Halverson, Nelson Passos, Richard Simp-

son, and Reynold Bailey. “Theoretical Constraints on Multi-

Dimensional Retiming Design Techniques”, in Proceedings of

the 13th International Conference on Parallel and Distributed

Computing Systems, Las Vegas, NV, August 2000.

December 2003

	Storage Coalescing
	Recommended Citation
	Storage Coalescing

	tmp.1471023011.pdf.mYNks

	Abstract: Abstract: Typically, when a program executes, it creates objects dynamically and requests storage for its objects from the underlying storage allocator. The patterns of such requests can potentially lead to internal fragmentation as well as external fragmentation. Internal fragmentation occurs when the storage allocator allocates a contiguous block of storage to a program, but the program uses only a fraction of that block to satisfy a request. The unused portion of that block is wasted since the allocator cannot use it to satisfy a subsequent allocation request. External fragmentation, on the other hand, concerns chunks of memory that reside between allocated blocks. External fragmentation becomes problematic when these chunks are not large enough to satisfy an allocation request individually. Consequently, these chunks exist as useless holes in the memory system.

In this thesis, we present necessary and sufficient storage conditions for satisfying allocation and deallocation sequences for programs that run on systems that use a binary-buddy allocator. We show that these sequences can be serviced without the need for defragmentation.

We also explore the effects of buddy-coalescing on defragmentation and on overall program performance when using a defragmentation algorithm that implements buddy system policies. Our approach involves experimenting with Sun's Java Virtual Machine and a buddy system simulator that embodies our defragmenation algorithm. We examine our algorithm in the presence of two approximate collection strategies, namely Reference Counting and Contaminated Garbage Collection, and one complete collection strategy - Mark and Sweep Garbage Collection. We analyze the effectiveness of these approaches with regards to how well they manage storage when we alter the coalescing strategy of our simulator. Our analysis indicates that prompt coalescing minimizes defragmenation and delayed coalescing minimizes number of coalescings in the three collection approaches.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: October 10, 2003
	Author: Authors: Defoe, Delvin C.
	Title: Storage Coalescing - Master's Thesis, December 2003
	ReportNumber: 2003-69
	DepartmentName: Department of Computer Science & Engineering

