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Abstract

This report describes an ATM Multipoint Connection Caching strategy (AMcc) to control
the explosive growth of traffic within the network and at an endpoint in a large Distributed
Interactive Simulation (DIs) application such as a battlefield simulation. For very large DIs
applications with 100,000 entities, the current method of broadcasting information among
entities will no longer be feasible due to computational and network bandwidth limitations.
Our scheme divides the simulation space into grids and each grid square or a set of grid
squares forms a multicast group. Entities join the groups within their perception range and
thus, they receive state updates only from entities within their perception range. AMcc
utilizes the unique capabilities of our dynamic multipoint ATM signaling protocol, CMAP.
We have implemented AMCC and have successfully demonstrated a small DIS battlefield
simulation application running over our ATM testbed.

*This work was primarily supported by Rome Air Force Labs and in part by ARPA, NSF, Ascom Nexion,
Bay Networks, Bell Northern Research, NEC America, NIH, NTT, Samsung, Southwestern Bell and Tektronix.



1 Introduction

Distributed Interactive Simulation (D1s) [8, 11] is an emerging I1EEE standard which defines pro-
tocols and mechanisms necessary for interoperability between manned military simulators of
various types and fidelities. In addition to virtual simulators operating over wide geographical
areas, participants will be generated by automated Al-based constructive simulations and even
live weapon systems. Dis is being promoted as a critical element in the development of joint
doctrine, requirements definition (weapon and training systems), design, prototyping and man-
ufacturing, contingency planning, operations, after mission review and as a tool for historical
analysis. While published DIS implementations to date have focused on military applications,
future extensions will support education, transportation, entertainment and other commercial
applications.

Dis has progressed beyond the early definition phase; simulation networking is the highest
priority for the 1990’s Defense Research and Engineering Science and Technology Thrust Num-
ber 11 (Human System Interfaces) in support of Science and Technology Thrust Number Six
(Synthetic Environments). We have already begun to see DIS requirements on such programs
as the Army’s Close Combat Tactical Trainer (ccTT) and the Air Force’s Special Operations
Forces Aircrew Training Systems (SOF ATs) and others. Virtually all new trainer programs
will require DIS interoperability; however, there is still a great deal of research and development
required in many areas to achieve the DIs vision of thousands of simulators, automated entities
and live participants interacting in a “seamless virtual battle field”.

Central concepts in the DIs architecture dictate that there is no central controlling computer
and that each individual node maintain a complete database of the current state of the exercise,
that is, locations, types, and other similar state information of each entity or player, in the
simulation. State updates are then broadcast to every player as necessary. Since DIs is intended
for real-time man-in-the-loop simulation, transport delay and variance of network data is of
primary concern. Dis implementations result in the generation of many relatively small Protocol
Data Units (PDUs), on the order of 100-200 octets each. The DIS standard specifies no particular
underlying communications service and is now typically implemented on local area Ethernets,
and uses a patchwork of dedicated leased telephone lines for wide area connections. Exercises
on the order of 1,000 entities have been demonstrated.

Distributed hosts are used for a single simulation. The simulation may be divided among
hosts by various criterion such as geographical location, entity types. The following paragraphs
present two important (proposed) capabilities of DIS based simulations that will be essential for
its long term success.

o Large number of entities. One of the “Grand Challenges” of DIs is to increase the
number of entities which participate in a given exercise. Future goals established by ARPA
involve exercises consisting of about 100,000 entities.

¢ Other media streams. Besides positional information, a simulation entity may send
other kinds of information or media streams. Examples include digital audio, video, and
electromagnetic signals. Video conferencing during DIs-based mission planning exercises
is one example.

Both these capabilities lead to many challenging research and implementation problems. For
example, while an individual entity in a simulation may not generate a substantial amount of
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data per second, the aggregate bandwidth generated by 100,000 such entities will be very large.
On the other hand, including digital audio, video, and various electromagnetic signals means
higher bandwidth streams with need for performance guarantees as in most other distributed
imaging and multimedia applications.

The research community has been suggesting that high speed ATM networks with multipoint
communication support will help support very large pis based simulations with multimedia
streams. DIS presents many demands on the communications service which ATM is well suited
to handle. When an entity moves or otherwise changes its state, that information is sent
to all the other players on the network. This translates directly into the requirements for
high bandwidth and multipoint communication capability. Minimizing transport delay is also
critical as geographically separated entities attempt tightly coupled operations such as air to air
refueling. The multimedia capabilities of ATM are also well suited to the DIs visions of interactive
training and after-action review. However, no research has been done in determining suitability
of ATM and existing protocols for pis applications.

With 100,000 endpoints, a single multipoint connection for the application will not be an
appropriate solution because such a large multipoint connection is difficult to manage and every
endpoint will have to process every message from every other endpoint leading to simply too
many messages at every endpoint. We therefore propose to use ATM with its native multicast
capabilities to set up connections between participating hosts in a DIs simulation. We have
developed an ATM Multipoint Connection Caching Scheme (AMcc) to manage the multicast
connections among the hosts. Qur goal is to demonstrate the viability of and to verify, experi-
mentally, the reduction in network traffic obtained and quantify the extra signaling overhead.
QOur scheme divides the simulation space into grids and each grid square or a set of grid squares
forms a multicast group. Entities join the groups within their perception range and thus, they
receive state updates only from entities within their perception range. We have implemented
a DIs application with McDonnell Douglas which uses AMcc for setting up multicast connec-
tions over an ATM testbed. AMCC uses an ATM signaling protocol developed at Washington
University for dynamically managing multicast connections between participating hosts in the
DIS simulation.

In the following sections we propose a scheme which will significantly reduce network traffic
for large DIS exercises by using multicast groups. Section 2 describes a signaling architecture
for our ATM network. In Section 3, we describe the ATM Connection Caching Scheme. Section
4 discusses implementation issues and solutions. Section 5 outlines our experimental setup,
Section 6 discusses the results obtained and Section 7 concludes the report.

2 Signaling protocols for ATM networks

Our signaling software system architecture [7] is depicted in Figure 1. This architecture at-
tempts to solve many of the important problems that confront ATM network control engineers
by providing uniform Application Programmer Interlaces (APIs) at each of the software layers,
thereby encapsulating and concealing vendor-specific interfaces. The four software layers are:

o the Switch Management Layer, which provides a uniform interface to switching equipment
produced by different vendors;

o the Node Management Layer, which groups multiple switches into single Nodes;
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Figure 1: ATM Signaling Software System Architecture

¢ the Connection Management Layer, which provides a homogeneous general ATM connec-
tion management interface; and,

e the Session Management Layer, which provides a high-level interface whereby applications
acquire the network resources appropriate to their communications requirements.

The Connection Management Access Protocol (cMaP), the most relevant for this project,
allows network clients to create, manipulate and delete multipoint, multiconnection commu-
nication channels, which we term calls [4]. A call is a distributed object maintained by the
network which describes the communication paths that interconnect clients. A multipoint call
is a call involving two or more clients; a point-to-point call is a special case of a multipoint
call involving only two clients. Data sent over a connection by an endpoint in a call is received
by all other endpoints electing to receive on this connection, although reliable delivery is not
guaranteed by the network. Each call can have one or more connections and each endpoint
in a call has the ability to choose which subset of connections to join. Calls are allowed to
change dynamically during their lifetime, in terms of the number of endpoints, the number of
connections and the reserved bandwidth of the connections. Another key feature of CMAP is
that it supports leaf-initiated joins. To enable near optimal routing and resource utilization,
when endpoints issue join requests, they are forwarded towards the source and terminated at
the first node which is a member of the multipoint connection. A new branch is added from



that node to the new endpoint to complete the 10IN operation. CMAP defines the interface
between clients and the network which is used to create, manipulate and delete calls.
The following is a brief description of cMAP functions that are used to support AMcCcC.

e open_call
The open_call operation is used by the client to create a call between itself and its access

node. One or more connections can be created as part of the call using this operation and
another client can be added as a second endpoint of the call.

e close_call
The drop_call operation destroys the call, removing all connections and reclaiming any

resources used by the connections.

e add_ep
The add_ep operation requests that an additional client be added to an ongoing call. Once
a client has been successfully added, it can receive and transmit on all connections within

the cali.

e drop_ep
The drop_ep operation removes the specified endpoint from the call.

® open_con
The open_con operation requests that a new connection be added to the ongoing call.
This operation can be initiated by the owner of the call or any client.

e close_con
The close_con operation destroys a specified connection and reclaims all resources used

by the connection.

For large DIs simulation exercises, we propose to use multicast ATM connections for data
transfer. Since the nature of DIS entities is inherently dynamic, it is essential that our underlying
ATM signaling protocols support dynamic change in the call structure in terms of the number of
endpoints, connections, transmitters and receivers. For example, when entities move or change
their perception range, they need to join new multicast connections and/or drop themselves from
old multicast connections. When the number of multicast calls is large, source initiated joins
and drops for endpoints creates a bottleneck which significantly increases signaling overhead.
There are also substantial resource cost savings associated with leaf-initiated joins over source
initiated joins. First, the source of a multicast connection does not need to know or keep
track of all the endpoints in the connection. This leads to savings in processing resources and
memory. Second, a join signaling message to a multipoint connection can be terminated at the
first node in its path towards the SOURCE. This leads to reduced latency in signaling along
with near optimal multipoint connection tree[12]. In [3, 5], further discussions are presented
for the necessity of leaf-initiated joins for a scalable multicast service. Thus another key aspect
required of the signaling protocol is that it support leaf-initiated joins and drops. We believe
that ¢MAP is the only ATM signaling protocol that provides support for fully dynamic call
structure, multipoint calls with multiple transmitters and leaf initiated joins and drops. The
following section describes our multipoint connection caching scheme in detail.
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Figure 2: Sample DIS Application

3 ATM Multipoint Connection Caching

We propose to use an ATM Multipoint Connection Caching (AMcC) scheme on CMAP to sup-
port large battle field simulations using DIs. The key observations that led to our proposal is
the finite perception range of entities and the support for dynamic multicast connections in
ATM. For example, Figure 2 shows a typical mix of entities that would exist in a battlefield
simulation along with their perception ranges. We can see that entities like soldiers with very
small perception ranges do not need many state updates of other entities. We can thus make
substantial gains in reducing network traffic by eliminating unnecessary transmission of data
of entities which are beyond the perception range of the simulated entities. We model entity
movement and their dynamic perception range by dynamic ATM multicast connections. Entities
join multicast connections which are within their perception range and as they move or their
perception range changes, they change their membership to multicast connections accordingly.
The basic idea of this scheme is explained in the following paragraphs.

In general, only a small percentage of the data in a large exercise is needed by any one ap-
plication, the technical challenge is to eliminate unwanted data as soon as possible so unwanted
data will have minimal effect on host performance. If possible, the network itself can be used to
help in this filtering process. The proposed solution is to “grid” the database geographically and
associate each grid square with a unique multipoint connection. A simulated entity joins a set of
multipoint connections based on its location and its perception range. Note that each individual
entity will also be able to define its “perception range”. This allows different types of entities to
customize their area of interest. For example, tanks may only need to know about other entities
within 10KM, but a jet fighter may need data out to 200KM. Typically, an entity will join all the
multipoint connrections associated with grid squares within its perception range. For example,
consider Figure 3 which shows a 2D grid with two entities A and B. M; ; represents a multipoint
connection associated with grid element (¢,7). Entities A and B are the transmitters on the
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M, ; = multipoint connection associated with grid square (i,j)
Entities A and B—Transmitters on connections M3 3 and M 4 respectively

Entity A—Receiver on the following connections
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Figure 3: ATM Multipoint Connection Caching

connection M3 3 and M 4 respectively. Given the perception range of the entity A, shown as a
cloud, it acts as a receiver on multipoint connections: M2, M3, My 4, M3 2, M3 4, My 2, My 3,
and My4. Note that B is a receiver on, among other connections, A’s connection Mj 3, and
so B gets all messages from A as expected. Also note that if there is more than one entity
in a grid square, then all of them become transmitters on the connection associated with the
grid square. As the entity moves in space, it requests to be dropped from certain multipoint
connections (associated with its past perception range) and to join others (associated with its
new perception range). For example, if the entity A moves from location (3,3) to (4,4), it
becomes a transmitter on connection My 4, changes from being the transmitter to a receiver on
the connection M3 3, drops from connections M, 2, M3z 2, My o, My o, My 3, and M, 4, and joins
as a receiver on connections Mg 3, M54, Ms 5, M35, and Mys. Because multipoint connection
manipulation operations, such as join and drop take time, it may be necessary that an entity
join appropriate multipoint connections before it really needs to send or receive any data on
those connections. This requires precomputing expected position of the entity and initiating
the join operatlion(s) on the appropriate connections in anticipation. Again, consider Figure 3.



In anticipation of entity A’s move from location (3, 3) to (4, 4), all the join operations mentioned
above could have been initiated while the entity A was still in location (3,3).

This scheme, called ATM Multipoint Connection Caching, provides the following benefits
which are crucial if the network were to support simulations with very large number of endpoints:

o It will drastically reduce the number of packets (PDUs) to be processed at every endpoint.

o It will also significantly reduce the amount of redundant traffic within the network because
PDUs are sent on only the multipoint connections whose endpoints need them.

The proposed scheme is more complex than simply using a single multipoint connection.
However, a single multipoint connection with as many as 100,000 endpoints is very difficult
to manage and could lead to significant performance degradation because of the amount of
unneeded data that would be transmitted to endpoints. Thus, it is essential that other more
complex solutions be pursued for such cases. Complexity in the aMcc scheme results from
the fact that it requires maintaining more multipoint connections and repeated join and drop
operations on these connections as entities move or as their geographic attention span changes.
The scheme also requires that the underlying connection management system allow a very
generalized multipoint connection: a connection with endpoints (entities) that have different
read and write permissions and join and drop operations initiated by an endpoint. Though the
ATM signaling standards are moving in this direction, Washington University’s ATM signaling
protocols are probably the only ATM protocol suite that meet these requirements today.!

4 Many-to-Many Connections over ATM

Figure 4 illustrates a scenario which has one multicast connection with three endpoints: A,
B and C over an ATM network. Hosts A and B are transmitters in this connection and host
C is a receiver. Consider the case when a single Virtual Circuit (VC) connection (VPI = 0,
VCI = 1) is setup for this multicast call. ATM cells contain only VPI/VCI numbers in their
headers which are used by the switch for routing. The cells from both host A and host B
contain identical VPI/VCI numbers since they are part of the same VC and thus they are not
differentiated at the switch. Due to this, cells from both hosts can get interleaved before they
reach host C which means that host C can no longer use hardware re-assembly which would
lead to severe performance degradation. This problem of source discrimination in a many-to-
many connection over ATM has been discussed in [3, 5, 6]. In [10], the authors propose to use
“packet” switching at nodes which have a multicast connection with multiple transmitters. In
this approach, they take advantage of the fact that AALS5 has an end-of-packet identifier as part
of the ATM header. Cells arriving at different input ports on a switch which belong to a single
multicast connection are packet-switched to the output port, i.e., all the cells from one input
port are switched until an end-of-packet identifier is seen before cells from another input port
are serviced. For our implementation, we used a commercial Bay Networks switch and thus did
not have the luxury to implement the solution outlined above since it requires a change in the
switch architecture. Currently, the ATM Forum [1, 2] has proposed using point-to-multipoint

1Of course, if the revised ATM standard protocols provide the necessary capabilities, we would use them as
opposed to our own non-standard protocols.
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Figure 4: VCs with multiple transmitters

connections only. The problem of source discrimination is addressed by defining a separate
connection for each transmitter but no inherent abstraction, like the cMAP call, is supported
by the network to assist applications in organizing their connections.

In the following discussion we present several strategies which can be used to overcome
this problem of source discrimination in a many-to-many connection over ATM along with their
merits and demerits, and finally we present the scheme we adopted for our project.

4.1 VP based Solution

One solution for source discrimination is to use Virtual Paths (VPs) for multicast calls. Each
transmitter in the multicast call can use a different VCI to allow source discrimination at
the receivers. Figure 5 shows an example using VPs for multicast calls. Unfortunately, we
discovered that the existing host interface cards do not support Virtual Paths [9] . They only
accept V. PI =0 and a 16 bit VCI field for setting up virtual circuits. Thus, we could not use
this approach in our solution.

VPs have been originally designed to be used for trunk routing or at the network back-
bones and the range of available VPs is extremely scarce. Hence, the use of VPs for source
discrimination would incur the liability of being able to setup only a smali number of multipoint
connections. It would also raise political problems, since VPs have not been designed to be
used for this purpose.

4.2 Distribute Entities based on Multicast Group

All transmitting entities within a multicast group must be simulated on a single host. This would
ensure that there would be no interleaving of packets from different entities in any multicast
connection since the operating system (or the network driver) serializes packets arriving from an
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Figure 5: Using VPs for multicast calls

application. Initially, this would entail dividing the geographical area among the host running
the simulation and making sure that all entities reside on the host serving the corresponding
location. When an entity crosses a grid boundary, if the new group it joins already has another
transmitter on a different host, the entity must be physically moved to the other host.

This strategy is straightforward in terms of adding or deleting members from groups. How-
ever, it involves a significant modification to DIs simulation engines. Implementation of this
scheme would require all DIS applications to be tailored to allow movement of entities across
different hosts on demand. This will increase the complexity of the simulations exorbitantly
making this scheme infeasible for practical implementations. Also, DIS is a standard and an
implementation as described above would not be considered by the community to be a standard
implementation.

4.3 Software Re-assembly

In this scheme, if there are multiple transmitting entities within a group on different hosts, we
can use “raw” ATM mode and software reassembly at the receivers. This would allow entities
within a group to be simulated by different hosts. This strategy again adds minimal overhead
to the maintenance of multicast groups after entity motion across group boundaries. However,
this scheme will suffer from a severe performance degradation due to the much slower speeds
of software reassembly.

4.4 Point-to-Multipoint connections within a Multicast Call

We recall from Section 2, that CMAP supports a multicast CALL that can have multiple endpoints
and multiple connections. Also, the number of endpoints and connections within a call are
dynamic, allowing endpoints to join or leave calls and add or drop connections within a call.
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We use the feature of multiple connections with a multicast call to address the problem of
source discrimination. Transmitting entities within the same group on different hosts establish
new point-multipoint connections within the same multicast call. Only one point-multipoint
connection is required per host per group. If there are multiple entities in a single multicast call
being simulated on the same host, they can transmit on the same connection. The application
will sequentially send data packets to the network interface which performs the segmentation
into ATM cells thus precluding any interleaving of cells.

This strategy increases the overhead of establishing and maintaining multicast groups by
causing transmitting entities on different hosts within a single group to set-up new point-
multipoint connections instead of being able to simply add the entity as a new member of
the existing group. Another overhead is maintaining tables listing entity/group pairs on each
host. We note, however, that the maximum number of connections summed over all groups
cannot exceed m X n, where m is the number of hosts running the IS exercise and n is the
total number of grid squares in the area. We also note that the additional signaling overhead
incurred due to the use of this scheme is significantly lower than using software re-assembly for
all data packets,

Given our constraints regarding lack of support for VPIs and the excessive overhead needed
for the other schemes, we decided to use point-to-multipoint connections within our multicast
calls to solve the problem of source discrimination. Another big advantage of CMAP is that it
provides us the capability to create abstract multicast calls among all the participating hosts
in a grid square and within each call create multiple point-to-multipoint connections. Without
this feature, we would have had no choice but to revert to software re-assembly.

5 Implementation Details

Figure 6 is a block diagram of our implementation on each machine. On the signaling path, the
DIS application sends entity location and perception range updates to AMCC. Based on these
updates, AMCC changes the multicast connection membership for the entity and returns new file
descriptors which the DIs application uses to send and receive data. The multicast connection
management is done by AMCC using CMAP to add, delete and modify existing multicast calls
and connections within calls. On the data transfer path, the application receives and sends
data directly from the ATM host adaptor driver using read and write calls. We used AAL5
as our ATM Adaptation Layer and the Aruba network driver over the ENI host adaptor for
our network interface. All our implementation work was done in the Solaris operating system.
The following sections describe in detail the implementation of the different components of our
system.

5.1 DIS Application

The DIs application developed for this effort is a simple Entity Generator and a Plan View
Display (PVD) as shown in Figure 7. The Entity Generator creates and manages up to a
maximum of 64 entities per machine. We have three different entity type classes: Aircraft,
Tank, and Infantry. Each entity type is then further subdivided into specific aircraft and tank
models. All entities can be placed on one of four motion path types: stationary, linear, circular,
or waypoint. In waypoint motion paths, we specify a list of locations or waypoints along which
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Figure 6: Implementation within each host

the entity must traverse. Upon reaching the final waypoint, the entity moves back towards the
first waypoint and traces the same route. For simulation runs, we create initial configuration
files which list the entities, types, motion paths and error criteria. The error criteria define
the threshold difference between entity locations which would generate an entity state Protocol
Data Units (PDU).

The PVD is a 2-dimensional display developed using X-windows and Motif. Entities and
their perception ranges are displayed in the simulation area of the PVD along with the overlaid
grid squares. The Entity Generator shares information about entity state with the PVD using
a shared memory entity database. Entity updates from local and remote entities are stored in
the entity database which is used by PVD for updating the display. The PVD can also be used
to choose an entity of interest and change its perception range. Further details about the PVD
layout are laid out in Section 7 along with screen dumps of the display.

The McDonnell Douglas Training Systems DIS Interface Unit (MDTS DiU) handles sending
and receiving data from the network. The DIU comnsists of the DIU Engine, the DIU Interface
Library, and the Hardware Interface Package. The Engine and Interface Library consist of li-
braries of highly portable C code and together perform the required pIs specific processing. All
machine specific processing (with the exception of endian conversion) is performed in the Hard-
ware Interface Package. This facilitates the porting of the DIU to various processor, operating
system, and network platforms. For this effort, we created a Hardware Interface Package which
interfaced directly with the ATM host adaptor via the ATM device drivers. Virtual circuits are
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created by AMCC and assigned their own unique file descriptor. The DIU then uses UNIX? read
and write calls to fetch and place packets on the network.

5.2 Interface between AMCC and DIS Application

The pis application provides AMCC with entity location, velocity and range of regard (perception
range) whenever entities surpass their specified error criteria (i.e., the difference in their current
and previous location is greater than the value specified in the configuration file). Based on
these parameters, AMCC joins new multicast calls (creating them if necessary) and drops out
of calls that no longer have any local entities participating. It then opens new data channels
if required for transmission and reception of data and provides the pDIU with a transmit file
descriptor for transmission of entity updates for current entity along with a list of receive file
descriptors for reception of entity updates within its perception range.

5.3 Interface between AMCC and CMAP

The following discussion describes in detail, via an example, implementation of the interface
between AMcc and CMAP. As described in Section 2, cMAP provides a flexible multicast call
management model to a user application. The following example will discuss how CMAP was
used by AMCC to maintain the list of multicast calls in each host required for the pIs application.

*Unix is a trademark of AT&T.
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Entity .
Position Host CMAP calls Mulitcast groups
Initial Host 1 open__call M2’2 . M2!3 . M2,4 . M3’2 , M3’3 s M3,4 . M4,2 ,
M4z, Mgy

add_con M;;

Initial Host 2 open_call M2, M3, M4
add_ep M2, Mz3, M4, M35, M35, M3y
add_con M4

Eﬂtity 1\_ Host 1 o drop_ep ﬁzz , M2‘3 . M2’4 . 1\73,2 |

moves

from M3,3

fo M4'4
drop_con M;,
open_call | Ms3,Ms4,Mss5, M35, My;s
add_con M, 4

Figure 8: Example of AMCC call management using CMAP

For our test setup, we do not create any multicast calls apriori but only create them on demand
as entities move into the particular grid squares.

Consider Figure 3 which shows a simple application with two entities A and B being simu-
lated on hosts 1 and 2 respectively. For this example we shall assume that the simulation on
host 1 of entity A started prior to that of entity B on host 2.3 The table shown in Figure 8 lists
the cMAP calls made by aMcc for each machine given the position of two entities. The first
two columns show the entity position and the machine number respectively. The third column
lists the CMAP calls made by AMCC to join and drop from multicast groups and to add or drop
connections within them. We can see from the table that initially host 2 receives entity updates
from host 1 since it is a member of M35 and host 1 is transmitting on a connection in Mj 3.
When entity A moves from Mz 3 to My 4, host 2 will no longer receive any entity updates from
host 1 since host 1 is transmitting on a connection in M, 4 and host 2 is not a member of group
M,,4. This is exactly the behavior that we require, since entity A is no longer in the perception

8If the simulations start together, requests for call creation are sequentialized at the global call database which
will be discussed in the next section.
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range of entity B and thus B should not receive any updates from A.

54 AMCC

In implementing aMcc, we were faced with a number of challenges. The first one was to
choose a data structure which would be efficient and allow fast access for call management.
We decided to create a 2-dimensional array which would model the grid square layout of our
actual simulation space and store a transmit file descriptor along with the number of entities
currently transmitting and receiving in each grid square. Although the actual grid layout may
be large, we store the minimal required data in each cell in the array and we have the advantage
of very fast indexed array access.

Another challenge we faced was creating a global database of all the multicast calls in the
simulation. This database is accessed when determining if a call already exists for a particular
multicast group, or if it needs to be created. Accesses to the database had to be mutually
exclusive among the different hosts to maintain consistency. Since we did not have the luxury
of distributed shared memory, we used an RPC server with locking for mutual exclusion to serve
as a global repository of multicast calls. However, using RPC calls did lead to a degradation in
performance. We found that the time spent in AMCC per entity update was about 100 ms due
to the RPC overhead (this is excluding the time spent in cMAP for setting up and modifying
calls). We realize that this limits our ability to handle 10 entity updates/s, but since we did
not have distributed shared memory, this was a cost we had to accept.

For quantitative results, we have introduced a probe into the DIU which keeps track of
aggregate data transmitted and received during the length of the simulation. To keep an
account of the signaling overhead we timestamp every call to AMcc by the DIU along with
its return. We also have a monitor which is used to display the entire simulation grid space.
It maintains default VC connections with all the other simulating host and receives all entity
updates. This monitor is used only for debugging and demonstrating and plays no integral part
in the actual simulation. We present the results we have obtained in the following section.

6 Experimentation and Results

Figure 9 shows our overall experimental setup for evaluating the benefits against the costs of
amcc. All the machines used are Sun SPARCs running Solaris. Hosts A through D run the
DIS application. The monitor is used to provide a global view of the entire simulation.

6.1 Display of DIS Application over ATM Multicast

Figures 12 and 13 show the displays generated by a simple DIS application running over our
ATM testbed using our experimental setup. This simulation was used to verify the correct
operation of the components of our system. Figure 12 shows the initial state of the simulation
where there are two entities on two different machines. The perception ranges are shown in
white circles, the labels indicate the current grid square that they are in and their identity.
Green entities are local entities (simulated by the local machine) and red entities are external
entities simulated on other machines. The labels and the multicast grids can be turned on or off
using the buttons seen on the left side of the display. The larger button labeled “Point” is used
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Monitor

Figure 9: Overall Experimental Setup

to select whether we want the display centered on a particular location or on an entity. If we
choose to center the display on an entity, the entity we select becomes the entity of interest and
we can change its perception range using the lower slide bar on the right. The upper slide bar
on the display is used to change the scale of the display area thus enabling the user to zoom in
or out as desired. Currently, none of the entities can perceive the other since they are out of the
other’s perception ranges. Both the entities on the monitor are red, since they are externally
simulated. As the simulation progresses, entity 35.2.1 (the one on the right) moves within the
perception range of 35.1.1 and thus, as seen in Figure 13, it appears on the display of host A.
This occurs as a result of entity 35.1.1 joining, as a receiver, the multicast connection on which
entity 35.2.1 is currently transmitting. An entity will transmit on the multicast connection that
corresponds to the grid square in which it is located and an entity will join a connection as a
receiver when its perception range moves into the corresponding grid square.

Further complex simulation scenarios have been tested and proven to work over ATM using
AMcCcC and this simple scenario was picked purely for ease of demonstration. Figures 14 and
15 show the monitor and the display on one host of a complex simulation involving a much
larger number of entities. With a complex simulation such as this, the dynamic nature of the
DIS application tests the utilization of dynamic connections by AMccC.
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Figure 10: Reduction in Endpoint Traffic

6.2 Experimental Results

We conducted several experiments to evaluate the reduction in traffic at the endpoints by using
multicast connections. For our experiments, we used a fixed set of configuration files to start
the simulations and varied the grid sizes. We started by using a grid square size equal to one
degree latitude and longitude. Qur final run was done using 64 grid squares to cover the same
area as a degree of latitude and longitude. Each simulation was run for 360 seconds which
allowed time for the transients to stabilize. A typical simulation would consist of 16 entities
distributed across 4 hosts.

Figure 10 depicts the change in network load at each endpoint due to changes in grid size.
The X-axis shows the number of divisions per degree latitude (longitude). We ran four sets
of experiments with grid square sizes ranging from one grid square per latitude/longitude to
64 grids per latitude/longitude. We can see that even with very large grid square sizes, we
get a reduction of about 41% in endpoint load. When we moved to very small grid squares
(64 grids/degree latitude(longitude)) we get a 76% reduction in network load. This significant
reduction in network usage will be a key factor in allowing larger simulations to be run. Without
it, scaling to large numbers of entities would be impossible.

Figure 11 shows the overhead incurred by aAMcc while setting up, modifying and tearing
down multicast calls on demand. When grid square sizes decrease, an entity’s perception range
will cover a much greater number of grid squares leading to an increase in number of multicast
calls. The signaling overhead is presented as the average number of CMAP operations per host
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Figure 11: Signaling overhead

per simulation. We have evaluated that each cMAP operation takes about 40 ms and thus at
very small grid square sizes, the amount of time spent in signaling is very high. Our signaling
overhead is too high and this limited us in both the number of entities that we could simulate
and the granularity of the grid squares. From both the graphs, we see that even with large
grid squares which give us a relatively low signaling overhead, we get a significant reduction in
network load.

The reason for the steep slope of the plot of signaling operations versus grid size is that
as the grid squares get smaller, entities are moving across grid boundaries more frequently. It
is the crossing of boundaries, or perception ranges crossing boundaries, that cause signaling
operations to be performed.

We have identified problems that we need to address in our signaling software which will
help us reduce the signaling overhead and thus improve the performance of the simulation. The
first implementation of the signaling system was done as a set of heavyweight Unix processes.
We are investigating the performance improvements that can be gained by reducing the number
of processes necessary to implement the system. We believe that we can reduce the time per
operation to below 10ms.
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7 Conclusion

We have demonstrated the capability of running DIS applications over an ATM network. With
the implementation of AMCC to support the DIS applications, we have shown that the significant
reduction of network traffic realized through the use of dynamic ATM multicast connections
can make a real difference in running large DIS simulations. This is an important result for
future DIS applications that will be simulating on the order of 100,000 entities and use various
media streams which require a much higher network bandwidth.

Our implementation and experimentation has helped us gain further insights into problems
that have yet to be addressed. The next issue that we propose to pursue is the reduction of
signaling overhead. One possible approach to this is the use of background anticipatory joins.
This will allow signaling operations to be performed prior to the time at which they are required.
We will also be investigating modifications to our signaling protocols to allow easier and more
efficient management of the DIS global call database,
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Figure 13: Display on Host A after entity movement
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Figure 14: Display on Monitor

Figure 15: Display on Host A
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