View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-19

1988-08-01

A Graph Browser with Zoom and Roam for Allegro Common Lisp

Steve B. Cousins and J. Andrew Fingerhut

This report describes an object-oriented tool that has been developed for viewing graphs on a
Macintosh Il computer using Allegro Common Lisp. The tool is useful for visualizing data which
can be represented in tree or graph form. The graphs can be viewed for far away to get a global
view, and from close up so that the labels on the vertices can be discerned. Scrolling can be
performed at a nearly infinite number of resolutions, and a search feature makes it easy to find
any node rapidly. Although the 'information space' on which the graph is logically plotted... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Cousins, Steve B. and Fingerhut, J. Andrew, "A Graph Browser with Zoom and Roam for Allegro Common
Lisp" Report Number: WUCS-88-19 (1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/776

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233235092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/776?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/776

A Graph Browser with Zoom and Roam for Allegro Common Lisp

Steve B. Cousins and J. Andrew Fingerhut

Complete Abstract:

This report describes an object-oriented tool that has been developed for viewing graphs on a Macintosh
Il computer using Allegro Common Lisp. The tool is useful for visualizing data which can be represented
in tree or graph form. The graphs can be viewed for far away to get a global view, and from close up so
that the labels on the vertices can be discerned. Scrolling can be performed at a nearly infinite number of
resolutions, and a search feature makes it easy to find any node rapidly. Although the 'information space'
on which the graph is logically plotted is 2-dimensional, nodes can be arbitrarily large or small, and this
combined with the zooming feature gives somewhat the illusion of 3-dimensions. The tool is
implemented using an object-oriented paradigm, in which the window containing the graph rendering is
an object, and so are each of the vertices in the graph. Operations on vertices of the graph are
implemented as messages to objects, so that specifics objects can choose to respond in individual ways
to various events. This approach makes the tool useful for a wide range of tasks, including browsing the
object system inheritance lattice of the lisp system itself, displaying dependency nets in a belief
maintenance system, and browsing a hypertext network.

https://openscholarship.wustl.edu/cse_research/776?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/776?utm_source=openscholarship.wustl.edu%2Fcse_research%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages

A GRAPH BROWSER WITH ZOOM AND ROAM
FOR ALLEGRO COMMON LISP

Steve B. Cousins and J. Andrew Fingerhut

WUCS-88-19

August 1988

Medical Informatics Group and

Center for Intelligent Computer Systems
Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Lonis, MO 63130-4899

This work was supported by a grant from Apple Computer Corporation and by the Center for Intel-
ligent Computer Systems and the Medical Informatics Group at Washington University.

Revised 9/6/88

Abstract

This report describes an object-oriented tool that has been developed for viewing
graphs on a Macintosh II computer using Allegro Common Lisp. The tool is useful
for visualizing data which can be represented in tree or graph form. The graphs can
be viewed from far away to get a global view, and from close up so that the labels on
the vertices can be discerned. Scrolling can be performed at a nearly infinite number
of resolutions, and a search feature makes it easy to find any node rapidly. Although
the ‘information space’ on which the graph is logically plotted is 2-dimensional, nodes
can be arbitrarily large or small, and this combined with the zooming feature gives
somewhat the illusion of 3-dimensions.

The tool is implemented using an object-oriented paradigm, in which the window
containing the graph rendering is an object, and so are each of the vertices in the
graph. Operations on vertices of the graph are implemented as messages to objects,
so that specific objects can choose to respond in individual ways to various events.
This approach makes the tool useful for a wide range of tasks, including browsing the
object system inheritance lattice of the lisp system itself, displaying dependency nets
in a belief maintenance system, and browsing a hypertext network.

1 Introduction

This report describes an object-oriented tool that has been developed for viewing
graphs on a Macintosh IT computer using Allegro Common Lisp.* A directed graph
is a set of vertices and a set of edges, where edges consist of pairs of vertices. In most
applications of graphs, vertices have information associated with them such as labels.
Edges may also have labels. Formally, a graph is just the sets of vertices and edges,
but graphs are often embedded in a plane so that they can be visualized. This is done
by mapping each vertex in the graph to a location on the plane, and then drawing
lines between vertices corresponding to edges.

A useful application of computer graphics is to render an embedding of a graph on
a computer screen so that the graph can be viewed interactively by a computer user.
For example, a programmer might find it helpful to see a graph of subroutine calls,
but would probably be unwilling to spend the time to draw one by hand. A tool like
the one described in this report can be used to take the graph and render it on the
computer screen. It may not be possible to render the graph legibly on the available
screen space, so the tool must have the ability to treat the screen as a virtual window
on the graph rendering.

This tool has been used to create object system hierarchy browsers, hypertext
browsers, and dependency network browsers. Of course, any application which has
data organized as a graph or tree could use this tool to help to visualize the data.
Another potential application is a graph of function calls, indicating which functions
are called by which other functions.

In this work, we refer to the virtual space on which the graph resides as informa-
tion space and the screen is viewed as a discrete, imperfect window onto this space.
Information space is a plane with real number axes, in which objects have an arbi-
trary but definite size. The window onto information space is a square which has
sides of length scale (in information space coordinates). The window is mapped onto
a computer screen by taking the ratio of the number of pixels in either direction to
the scale (giving a number of pixels per unit of real space).

The operation of roaming corresponds to moving the window around in informa-
tion space. We use both of the terms scroll and roam to indicate this motion. Scrolling
the screen up corresponds to moving the window down in information space, scrolling
right corresponds to moving left, etc. Roaming is accomplished using the arrow keys
on the keyboard, as the mouse is used for other operations like choosing objects.

The concept of zooming in and out on the screen corresponds to adjusting the
size of the window on information space. Making the window smaller corresponds to
zooming in, while making the window larger corresponds to zooming out. Zooming
way out allows the user to visualize the graph as a whole, while zooming in shows
details of specific nodes. As the user zooms out, the vertices get smaller and the vertex
labels begin to get clipped until at a certain threshold they are no longer drawn (it
is also possible for some to be drawn and some not to be drawn, since nodes can be

*Allegro Common Lisp is also called Coral Lisp, and is marketed by Franz Inc.

different sizes).

The rendition of the graph can be modified interactively (useful for uncovering
partially covered nodes). By simply clicking on a node and dragging it to the desired
location (a standard Macintosh technique), nodes can be placed exactly where the
user wants them. The browser also has a layout algorithm which treats the graph as
a tree and rearranges all nodes which are descendents of a root node. The layouts
are not perfect, of course, but they do give a starting point from which the user can
arrange the nodes to his taste.

With all of the zooming and roaming (scrolling) that is available, it is possible for a
user to get lost. For example, holding down the zoom-in button for a long time causes
the window on information space to become very small. Roaming at that point could
take a long time in just the right direction to find the graph again. Similarly, roaming
off in some direction could leave the window on information space far from any part
of the graph. To help keep the user from getting lost, three functions are included:
Home, Center, and I'ind. The home command sets the window on information space
to be a rectangle that approximately bounds all of the nodes in the graph. It is
the best way to get a big picture of the whole graph quickly. The center command
moves the window on information space so that the selected item (if any) is in the
center of the screen, big enough so that its label can be read. The find command
searches all nodes in the graph for one containing a search string, and centers the first
node found which qualifies. Find is implemented similarly to a search mechanism in
a text editor: calling find repeatedly finds the next instance (of course, the order is
somewhat random because of the 2-dimensional nature of the graph), and eventually
find will loop around to the first instance again.

The browser implements functions to allow the user to add and delete nodes and
edges graphically. Adding a node is as simple as positioning the mouse where you
would like a corner of the node to be, and then dragging until the outline on the
screen is the size you want the node to be. Deleting a node is as simple as selecting it
and hitting the delete key. Edges are similarly added and deleted by dragging from
a source node to a destination node. Nodes and edges can also be edited, so that
attributes such as their label or size or default action (in the case of nodes) can be
modified. The functions for adding and deleting can be disabled by the applications
programmer for applications that require that the graphs not be changed.

Nodes can have actions associated with them, which are arbitrary lisp expressions.
For example, in a hypertext network, choosing a vertex could cause the associated
hypertext window to be displayed. Similarly, in an object hierarchy browser double-
clicking on a node calls the inspector on the object class named by the node.

The network can be saved in its current form and reloaded. This is useful since
users can modify the graph’s layout dynamically. When saving the graph, lisp code
is generated which will reproduce the graph when evaluated. This also allows a
programmer to include the graph directly in his lisp programs, or to modify it using
a text editor.

Finally, the code is in place for graphs to be drawn in color, though using color

causes the system performance to deteriorate severly. Simply drawing the graph in
color can be performed relatively rapidly, but zooming and roaming become a bit
slow. Therefore, the implementation allows color to be turned on and off on the fly
so that browsing can be done in black and white with color used for the final view if
an application calls for it.

The next section of this document describes how a user sees an application of
the browser, including what the specific commands are for zooming, roaming, saving,
etc. The following section documents the browser from a programmer’s perspective,
and follows the style of the Allegro Common Lisp manual, defining each relevant
class and operation and variable of that class. Finally, the last section contains a few
comments about the applications that have been developed using the browser, and
some comments on the efficiency, usefulness, and a wish-list for the tool.

2 User’s Manual

The browser package is designed so that users familiar with the Macintosh user in-
terface will be comfortable with it. The only major exception to this is that in the
current release arrow keys are used for scrolling instead of scroll bars (see the sec-
tion on Roaming). This section describes how to access the features of the browser
(and naturally, of applications which use the browser). Please note that some of the
features can be disabled by an applications programmer, and that applications pro-
grammers may even change the way some of the features work or add new features.
This manual can only serve as a starting point for applications which use the browser.

2.1 Browsing features

One of the main problems with a browser that allows a very wide range of zooming
and roaming is that it is possible to get lost. This section describes how zooming and
roaming are done, and then describes some additional features that help traverse the
graph in other ways and help to avoid becomming lost in [information] space.

All features can be accessed through the browser menu, but typing shortcuts are
almost always available and when they are, they are noted below.

2.1.1 Zoom

Zooming is done by hitting the plus and minus keys. Typing a ‘4’ while the browser
1s the top window will cause the browser to zoom in on the area of the graph that is
centered in the window. Typing a ‘-’ will cause the browser to zoom out.

The operation of zooming corresponds to changing the size of the window on infor-
mation space. It may also slightly adjust the position of the window on information
space in order to center the zoom with respect to the screen window.

2.1.2 Roam

The roam or scrolling feature is accessed by typing the arrow keys. Typing the down
arrow moves the window on information space down and causes the screen window
to scroll up. Typing the left arrow corresponds to looking left, etc.

Unlike standard Macintosh applications, scroll bars are not used. The reason for
this is that scroll bars imply a finite field of view, while the browser does not restrict
the distance one can browse in any direction (or at any scale).

2.1.3 Find

The find feature searches the titles of all of the nodes and edges in the graph looking
for a specific string. When find is activated, a dialog window appears and the user
is asked for a string to find. The first node or edge found containing the string is
selected and centered in the window (the appropriate zooming and roaming is done
automatically). If find is activated again, the search begins from the selected object,

4

so repeated searches for the same string will not always find the same object. Note:
the concept of order in a two dimensional graph is not well defined, but the browser
keeps track of the graph objects internally in a flat list. It is not necessarily true that
objects next to each other internally will be near each other on the screen.

The find function can be activated by typing F, or from the browser menu.

2.1.4 Center

The center function automatically zooms and roams to bring the selected objects to
front and center of the screen window. Center is activated with the C key or from
the browser menu. It will not work if no object is selected (see selecting nodes in the
next section). If multiple objects are selected, center works on the whole set.

2.1.5 Home

The home function puts the whole graph inside of the screen window, attempting to
use all of the space in at least one direction. The function is useful for finding the
graph if you have roamed or zoomed and gotten lost in information space.

2.2 Node Features

This section describes operations on specific nodes. As a user, you can move nodes
around, change their attributes such as name, color, size, or action, and delete nodes
(unless the application has specifically disallowed any of these actions). Finally, it is
also possible to add nodes to the graph.

2.2.1 Move

Moving nodes is the simplest operation. To move a node, simply drag it to its desired
location. As you are dragging it, an outline of the node is moved with the mouse
cursor. When you release the mouse button, the node and all links associated with
it will be redrawn to the new location. It is also possible to move multiple nodes —
see the next section.

2.2.2 Select

Selecting is modeled after the Macintosh finder. The following explanation attempts
to explain in words the concepts, but working with the mouse is best learned by
doing.

Clicking on a node with no modifier keys down will select the node, causing it
to be highlighted and causing any items previously selected to become deselected.
Following the conventions of the finder, holding the shift key down while clicking on a
node will toggle its selectedness and leave any other selected items alone. If the mouse
cursor is not over any node, clicking will deselect the selected nodes and dragging will

form a rectangle. When dragging is finished, any nodes inside of the rectangle will
become selected.

Moving multiple nodes Clicking on a selected node will move it; if multiple nodes
are sclected, all will be moved together.

Edit Choosing the edit option with the menu or by typing E when a node is selected
allows you to modify some attributes of the selected node. If more than one node is
selected, an arbitrary one is edited.

¢ Name: The text that appears in the node (and that is searched on).

o Shape: Currently a choice of Rect (rectangle), Round-Rect (rectangle with
rounded corners), or Oval,

o Location: Exactly where the node is in information space, for fine adjustments
of position.

o Action: A lisp expression to be evaluated when the node is double-clicked on.

e Size: The size of the node in information space.

Delete Removes the selected nodes, and all edges in or out of them, from the graph.
Be careful: undo is not implemented yet.

Set Color The color of an individual node can be set by choosing the set color
option from the menu. The set color option sets the color of the selected nodes (but
edges do not have color currently). This feature is only useful if the color option is
enabled.

2.2.3 Add

The option key is the add key. Holding down the option key while the mouse is not
over a node and dragging will outline a node. When the mouse is released, the new
node exists and can be given a label with edit, removed with delete, or moved by
dragging.

2.3 Edge Features

This section describes the operations available to a user of a browser on edges. Edges
are lines between nodes, which can be drawn with different patterns and may have
labels and/or arrowheads. Currently, arrowheads are implemented as boxes 4/5ths
of the way from the source to the destination. Edges can be added in much the
same way that nodes are added (by holding the option key). Edges are automatically
deleted when either node they are adjacent to is deleted, or they can be explicitely
deleted.

2.3.1 Move

Moving an edge causes the two nodes connected to the edge to be moved also. Cur-
rently, there is no way to click on an edge directly (see selecting an edge, below), so
an edge can only be moved as part of a multiple-item move: Select the edge and some
other node, and drag the node.

2.3.2 Add

An edge is added by holding the option (add) key down and dragging from the source
node to the destination node. While dragging, an outline of the edge is shown from
the source node to the mouse. When the mouse button is released, the edge is in
place. The operation is cancelled if the mouse button is released while the mouse
cursor is over the source node or over no node.

2.3.3 Select

Edges can be selected in one of three ways:
1. By using the command key to draw a box completely around them
2. By using the option key as though to re-add them

3. By holding down the command key and dragging from the source to the desti-
nation.

The last way is the preferred way. A selected edge is wide and black: it should be
easy to visually identify the selected edges.

Edit Editing edges is done by selecting the edge and activating the edit operation
(typing E or choosing Edit from the browser ment). The source and destination of a
node cannot be edited; only the label and appearance of the edge may be changed.

The label is the text that appears near the destination of the edge when the option
to draw labels is turned on. The appearance is very wide if the edge is selected. When
not selected, the edge can currently have one of the following forms:

e a plain edge pattern, the default
® a black edge pattern, slightly thicker than plain but less thick than selected
® 3 gray edge pattern
e a light edge pattern
Delete Deleting an edge is done in exactly the same way as deleting a node: the

edge is selected and then the delete operation is activated with either the menn option
or the delete key.

2.4 Miscellaneous
2.4.1 Layout

‘The layout operation changes the way the graph appears on the screen. It moves the
nodes in information space and attempts to make the whole look nice. Sometimes
it succeeds. It is impossible to lay a general graph out in such a way that no edges
cross (think about a complete graph on 4 nodes). Graphs can take many forms, and
often there are multiple (or no) good ways to display them.

The default layout algorithm starts with a single selected node as the root, and
holds it constant while moving all nodes which are descendents of that node. A level
graph is created to determine how far from the root each node will be placed, and
then the nodes are placed in rows based on their distance.

If the graph to be layed out is a tree or simple DAG, laying out from the root
may do a reasonable job. The layout can be enhanced by dragging interior nodes to
other positions and calling layout again with the interior node selected.

2.4.2 Speed options

Some features, such as color, are simply too expensive to use while browsing. However,
rather than simply not provide features which may be expensive, we have chosen to
provide them and allow them to be disabled. The options submenu of the browser
menu contains features that may be enabled or disabled for speed.

Node Labels Drawing node labels takes extra time, especially if the number of
nodes is large. Node labels are not drawn when the nodes are very small, but this
option allows you to turn them off all of the time. Default: enabled.

Color As mentioned above, color is expensive. This option allows you to disable
color for speed. Default: disabled.

Edge labels The labels on the edges will probably often crowd the display, in
addition to being pretty slow. Default: disabled

Edge arrows Edge arrows are implemented as small rectangles four-fifths of the
way from the source to the destination. They indicate the direction of the edge.
Default: enabled.

Multiple Edge Patterns This option determines whether or not the edges are all
displayed as simple lines or as lines with patterns. In practice, enabling this option
does not seem to have much effect on the system performance. Default: enabled.

3 Programmer’s Manual

Browser

A browser is a specialized kind of window that contains browser-items connected
by lines representing a graph. Browser-items are implemented as objects, and have
the property that when clicked on they can perform some action.

Browsers inherit from windows and can perform all window operations. However,
some window operations are redefined or shadowed by the browser. Browsers can
be saved and loaded similar to text files (the saved form is lisp code to recreate the
browser), and save some window information such as the location and size along with
the other information more specific to browsers. The save functions are not compiled
along with the browser. Instead, source code is provided so that it can be customized
for an application.

This manual describes the functions available to an applications programmer to
create a browser for a specific application. Each available function and variable is
described here. Of course, other functions and variables may have been used in the
implementation, but if they are not documented here they are subject to change and
should not be used. This manual attempts to follow the style of the Allegro Common
Lisp manual as closely as possible.

browser [variable]
Contains the browser class object.

exist init-list [*browser™ function]
Initializes the browser. The browser will take up space on the Macintosh heap until
it is destroyed (with the function self-destruct).

keyword type default meaning

:window-title string "Untitled Browser” the window title of the
browser

:window-position point #@(5 50) initial position

:window-size point #@(500 150) size of browser

:window-show boolean t Whether the browser is ini-

tially shown. It is useful to
set this to nil if many items
will be added to the graph,
to avoid the overhead of re-
drawing each item.

:browser-wx number 0.0 initial x position of the win-
dow on information space

:browser-wy number 0.0 initial y position of the win-
dow on information space

:scale number 20 size of window on informa-
tion space

:zoom-factor nurmmber 1.5 amount to multiply scale by
on each zoom in or out

:scroll-steps number 20 number of scrolling steps

it would take to cross the

screen
:window-filename pathname nil Place window should be

saved to with window-save
:allow-additions boolean t whether the user can add

nodes and edges to the
graph

:allow-deletions boolean t whether the user can delete
nodes and edges from the
graph

:default-item-action expression nil default action to take when
browser-items are double-

clicked on
:my-ment menu menu displayed when

browser is on top

add-browser-items items {key :check-permissions :notify :allow-redraw [*browser* function]
browser-item-addable item [*browser™ function]

These functions allow you to add to the graph. Add-browser-items adds objects

of class *browser-item* (or a sub-class) to the graph. The keyword parameters

are used to decide whether or not to call browser-item-addable, browser-item-added

and window-redraw. The default is not to check permissions but to notify through
browser-item-added. Browser-item-addable is called each time an item is being added

to the browser. If it returns nil, the item is not added. The default version always
returns t, but can be shadowed.

10

make-browser-item x y size-x size-y [*browser™ function]
This function is called by the browser when the user creates a node. The usual version
returns an instance of *browser-item®, but it may be shadowed by an application
to return an instance of a subclass of *browser-item*. The shadowing function is
responsible for setting the location and size according to the parameters (since the
usual make-browser-item would create a *browser-item* different from the item being
created by the application program).

delete-selected-items &key :check-permissions mmotify :allow-redraw [*browser* function]
browser-item-deleted item [*browser* function]
Delete-selected-item provides a mechanism for getting rid of nodes (select them and

call delete-selected-items). The default for the keyword parameters is to not check
permissions but to notify. Browser-item-deleted is called once for each item deleted.

It normally does nothing.

browser-scale [*browser® function]
set-browser-scale new-scale &key :allow-redraw [*browser® function]
browser-scale-in &optional zoom-factor [*browser* function]

browser-scale-out &optional zoom-factor [*browser® function]
These functions manipulate the current scale of the browser. Scale is just the size of
the window on information space, in information space. The default scale is 20, but
scale can be set to any real number. Scale-in and scale-out adjust scale by dividing
or multiplying it by the zoom-factor (if none is given, the default is used).

browser-zoom-factor [*browser* function]
set-browser-zoom-factor new-zoom-factor [*browser* function]
These functions allow you to adjust the zoom factor. The zoom factor is a real value,
but should be greater than 1. Its initial value is 1.5.

browser-wx [*browser* function]
browser-wy [*browser* function]
set-browser-wx new-wx [

browser function]
set-browser-wy new-wy [*browser® function]
These functions all you to directly examine or set the position of the window on infor-
mation space. The point {(browser-wx, browser-wy) in information space corresponds
to the upper left hand corner of the screen window.

browser-scroll-steps [*browser* function]
set-browser-scroll-steps new-scroll-steps [*browser* function]
These functions allow you to adjust the scroll-steps. The scroll-steps is a real value,
which indicates how many steps it would take to scroll across the screen. Its initial
value is 20.

11

browser-scroll-left &optional scroll-steps [*browser* function]
browser-scroll-right &optional scroll-steps [*browser® function]
browser-scroll-up &optional scroll-steps [*browser* function]
browser-scroll-down &optional scroll-steps [*browser* function]
These functions force the browser o scroll in the appropriate direction.

selected-items [*browser* function]
select choices &key :allow-redraw [*browser® function]
deselect choices [*browser* function]

These functions allow the programmer to determine which things (nodes or edges)
are selected, and to select or deselect any nodes or edges. Of course, nodes should be
selected before being deselected.

home [*browser* function]
center-selected-items [*browser* function]
find-item [*browser* function]
center-items items [*browser* function]

‘These functions adjust the window on information space to give a new perspective on
the graph. Home sets the window on information space so that it includes the whole
graph. It is useful to avoid getting lost in [information) space. Center-selected-items
moves the selected items to the center of the screen, and adjusts the scale so that the
label on the item can be read. Find item displays a dialog box to get a string from
the user, and then selects and centers the first node it inds which contains the string
in its label (if one exists}. These functions all call center-items, which is the generic
item-centering function. The argument items is a list of nodes and/or edges.

info-to-screen x y [*browser* function]
screen-to-info p [*browser* function]
Mechanism for translating between information space coordinates and screen coordi-
nates. These functions are probably not necessary for the programmer, but then we
don’t know what you may want to do someday...

info-to-screen returns a point unless either of the screen coordinates would be out
of the range [-32768, 32767), in which case NIL is returned.

Given a screen point p, screen-to-info converts this point into its equivalent place
in information space. These coordinates are returned as multiple values from this
function, with the x-coordinate first and y-coordinate second. If p is nil, then (0,0)
is returned.

self-destruct [*browser™ function]
Window-close is shadowed to call window-hide, so that clicking in the close box does
not destroy the browser. Therefore, self-destruct is included to call window-close and
reclaim the space taken up by the window.

12

browser-colored? default=nil [*browser™ variable]
browser-draw-labels? default=t [*browser* variable]
browser-fancy-edges? default=t [*browser* variable]
browser-draw-arrows? default=t [*browser™ variable]
browser-draw-edge-labels? default=nil [*browser* variable]
Variables which control the browser efficiency options (see the user’s manual).

default-item-action [*browser® variable]
This variable is funcall’ed with the node double-clicked as the argument. It therefore
defines the default action when a node is double clicked. The default default is to
print a message to the listener saying that no default is defined. For example, to
make the default action for browser b to print the browser item text, you could do:

(ask b (setq default-item-action
#’(lambda (x) (print (ask x (browser-item-text))))))

In the future, this may be replaced with a *browser-item™ function which could
be shadowed.

my-imenu [*browser* variable]
This variable is bound to the browser menu that appears whenever the browser is the
front window.

browser-items [*browser® function]
Returns a list of all of the browser-items in the browser.

edge-exists-p source dest [*browser® function]
Provides an easy way to determine whether or not an edge is in the graph. If the
edge exists, it is returned.

layout root &key :motify [*browser* function]
Layout potentially modifies the positions of any nodes which are descendents of the
root node. root must be a *browser-item*. The default layout algorithm is tailored
for acyclic graphs, and is not claimed to be optimal by any means. If you don’t like
it, shadow it. In the usual version, when the notify key is T (the default), layout will
call browser-item-moved for each node that is moved.

window-redraw [*window™® function]

This function forces a call to window-draw-contents, and is used any time the screen
needs to be redrawn.

13

Browser-items

browser-item [variable]
‘I'he browser-item class. *browser-item*’s include all of the information needed by
the browser of “things to be browsed”.

exist init-list [*browser-item* function]
Initializes a browser-item. The browser-item still needs to be added to a browser after
being created.

keyword type default meaning

:browser-item-name atom (gentemp "BI-") The name used to refer to
the object. The atom will
be bound to the object, so
it should not be already
bound.

:browser-item-text string nn Text that will appear as a la-
bel on the node. Also used
by the find command of the
browser.

:browser-item-x number 0 X location of the item in in-
formation space.

:browser-item-y number 0 Y location of the item in in-
formation space.

:browser-item-size-x number 0.5 The width of the object in
information space.

:browser-item-size-y number 0.5 The height of the object in
information space.

:browser-item-shape atom rect The shape of the item, one
of (rect ’round-rect ’oval).

:browser-item-action expression nil The action to be taken when
this item is double-clicked

:hrowser-item-color list (000) The color of the item (only
used when color is turned
on).

draw [*browser-item* function)

The function used to draw the node. May be allowed to be shadowed in the future,
but would be risky at this point.

edit &key :notify [*browser-item* function]
browser-item-edited [*browser-item* function]
‘The function called when a node is edited. The default version displays a window
allowing the text, action, size, and location to be changed. May be shadowed for
specific applications. The usual version examines the value of notify (default t) to

14

determine whether or not to call browser-item-edited when edit is called.

select-self [*browser-item™ function]
deselect-self [*browser-item™* function]
These functions are called when the item is selected or deselected; they should not
be directly called. They can be shadowed, but should be called by the shadowing
function (as usual-select-self or usual-deselect-self). They are provided as a hook for
detecting selections.

browser-item-name [*browser-item* function]
Returns the name of the browser item. The name is different from the browser item
text — the name is a unique atom. The name cannot be changed once the item is
created.

browser-item-text [*browser-item* function]
set-browser-item-text new-text &key motify [*browser-item* function]
browser-item-text-set [*browser-item™ function]

These functions allow you to access the text field which is displayed in the graph nodes
and used by the find function. When the notify key on set-browser-item-text is set to
T (the default), browser-item-text-set is called by set-browser-item-text. Normally,
browser-item-text-set does nothing.

browser-item-x [*browser-item™ function)]
set-browser-item-x new-x &key :notify [*browser-item* function]
browser-item-y [*browser-item* function]
set-browser-item-y new-y &key :notify [*browser-item™ function]
browser-item-size-x [*browser-item* function]
set-browser-item-size-x new-size-x [*browser-item* function)]
browser-item-size-y [*browser-item™ function)]
set-browser-item-size-y new-size-y [*browser-item™ function)]
These functions give you examine and modify the location and size of a node. The
parameters are all real numbers. The notify keyword parameter determines whether

or not the function will cause browser-item-moved to be called (default t).

browser-item-moved [*browser-item* function]
Called whenever the position of the item in information space is changed by dragging
the node. The usual version does nothing.

browser-item-shape [*browser-iterm* function]
set-browser-item-shape new-shape [*browser-item* function)
These functions allow you to change the shape of the browser item. The new-shape
should be one of the keywords :rect, :round-rect, or :oval.

15

browser-item-color [*browser-item* function)]
set-browser-item-color new-color [*browser-item* function]
The color of an item is a list of three integers: red, green, and blue. An item’s color
can be examined or changed with these functions.

browser-item-action [*browser-item* variable]
This variable is bound to the action to be taken when the node is double-clicked.

browser-item-added [*browser-item* function)]
Notifies the item that it has been added to the browser pointed to by my-browser.

browser-item-deletable [*browser-item™* function)]
Inquires whether the item can be deleted. The usual version just returns t.

delete-self &key :check-permissions :motify [*browser-item* function]
Removes this browser item from the browser, as well as all edges going into or out of it.
The defaults for the keyword permissions are to notify but not to check permissions.

children [*browser-item* function)]
This function returns a list of nodes which are directly connected by edges out of this
node.

child-addable dest [*browser-item* function)]
child-deletable dest [*browser-item™ function]
These predicates are checked before edges are added or deleted. They always return
T, but may be shadowed to inhibit some or all additions or deletions.

add-child dest &key :check-permissions :notify :allow-redraw [*browser-item™ function]

child-added dest [*browser-item* function]
delete-child dest &key :check-permissions motify :allow-redraw [*browser-item* function]
child-deleted dest [*browser-item* function]

These functions are hooks to allow the programmer to add or delete edges, and
to know when the user adds or deletes edges with the mouse. An edge from this
*browser-item™ to some other *browser-item* can be added with add-child or deleted
with delete-child. The keyword parameters determine whether the check functions
(such as child-addable) or notification functions (such as child-added) are called. The
defaults are not check-permissions but do notify. child-added and child-deleted are
called whenever an edge is added or deleted, respectively (including when add-child
or delete-child are called).

edges-out [*browser-item* function]
edges-in [*browser-item™ function]

16

These functions return a list of objects of type *browser-edge* which are the edges
out of or into the node, respectively. They are provided to give you a handle to the
edge itself, instead of just to the next node.

my-browser [*browser-item* variable]
Holds a pointer to the browser this *browser-item* exists in, if any.

17

Browser-edges

browser-edge [variable]
The class of objects which can connect browser items in a browser. Browser edges
cannot be directly added to the browser; instead, they are added indirectly with calls
to add-child (*browser-item* function). The standard way to operate on edges is
to create them indirectly, and then modify them with the functions below. Browser
edges should not be created with calls to exist.

edge-label [*browser-edge* function]
set-edge-label new-label [*browser-edge* function)]
These functions allow the programmer to access and modify the label of the edge
from source to destination.

edge-pattern [*browser-edge* function]
set-edge-pattern new-pattern [*browser-edge™ function)]
These functions allow you to access the edge pattern of the edge. The pattern is one
of :plain-edge-pattern, :black-edge-pattern, :gray-edge-pattern, or :light-edge-pattern.

select-edge [*browser-edge* function]
deselect-edge [*browser-edge* function)
Edges can be selected just as browser items can. Once selected, edges can be deleted
with delete-selected-items (*browser* function). Selected edges are displayed as much
thicker lines than normal edges.

edit-edge [*browser-edge* function)
The usual version of edit-edge displays a modal dialog which allows the user to modify
the features of the edge such as its label or pattern. This function may be shadowed
by an application program.

18

4 Conclusion

The browser is a useful tool for many aspects of computer science research. It allows
the visualization of graphs and tree structures without spending a lot of time writing
graphics code. For many applications such as the object-system inheritance lattice
browser, the actual application lisp code is less than one page.

The performance of the system also seems reasonable. Screens with many nodes
and edges on them can be redrawn in well under a second, and turning off some
options from the menu can reduce the time necessary to render graphs with a very
large number of nodes or edges.

The browser is not perfect as it is, and the following is our “wish list” of improve-
ments for future versions:

® The draw browser-item function should be shadowable, and should allow arbi-
trary icons to be used for nodes.

o Nodes should be able to be resized with just the mouse instead of the editor.

The layout routine can always be enhanced.

Edit currently does not allow a cancel to revert to the version before changes.
It probably should.

When moving multiple objects, only the outline of the node under the mouse
is drawn. Eventually, the outline of the whole block should be drawn.

The authors appreciate any comments, criticisms or enhancements. Please let us
know what you think.t

Acknowledgements

This work was supported by a generous computer hardware grant to the Washing-
ton University Medical Informatics Group from the Advanced Technology Group at
Apple Computer, Inc. We cannot say enough good things about the programming en-
vironment provided by the Macintosh and Allegro Common Lisp. We are grateful for
the support of Mark Frisse, M.D. from the Medical Informatics Group and William
Ball, Ph.D. from the Department of Computer Science. We also wish to thank Dan
Kimura, Ph.D. from the Department of Computer Science. Dr. Kimura repeatedly
asked for features which we had not yet implemented, and he was not satisfied until
our program’s interface worked like a Macintosh program should!

'Both authors can be reached at Department of Computer Science, Campus Box 1045,
Washington University, St. Louis, MO 63130, or by electronic mail at sbc@wucsl.wustledu or
jaf@wucsl.wustl.edu.

19

	A Graph Browser with Zoom and Roam for Allegro Common Lisp
	Recommended Citation
	A Graph Browser with Zoom and Roam for Allegro Common Lisp

	tmp.1460750766.pdf.XUVfP

