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Effective Loss of Multiplexed ATM Cell Streams

Seyyed M-R Mahdavian and Andreas D. Bovopoulos
Computer and Communications Research Center
Washington University, Saint Louis, USA

Abstract

Cell loss is an inherent problem of ATM networks. The magnitude of the service
degradation caused by cell loss depends on the application and loss distribution. This
paper introduces a new performance criterion, called effective loss, which can quantita-
tively measure this degradation. Effective loss is particularly suitable for block-oriented
transmissions, such as file transfer applications, but can also be applied to a broad range
of other applications. In this paper the effective loss measure is applied to the study
of the effectiveness of bandwidth reservation mechanisms in an ATM multiplexer. Nu-
merical results demonstrate circumstances under which bandwidsth reservation improves
performance as well as circumstances in which it degrades performance.

1. Introduction

The Asynchronous Transfer Mode (ATM) has been recommended by the International Tele-
graph and Telephone Consultative Committee (CCITT) as a suitable transport protocol for
the Broadband Integrated Services Digital Network (B-ISDN). It transfers the information
through fixed length packets of 48 bytes (plus 5 bytes of header information) called cells.
Unlike the synchronous transfer mode, it is able to transfer an arbitrary bit rate (in con-
trast to fixed predetermined rates) and can take advantage of the statistical behavior of the
sources to share communication resources effectively among users.

There are some deficiencies associated with ATM, however. Because of the statistical
nature of the sources, there is a non-zero probability that congestion will occur, i.e. there
will be too many cells requesting transmission at the same time. If there is no place to
store excessive cells, cell loss is inevitable. To prevent cell loss, one should either demand
that user sources transmit at constant rates (which is incompatible with the philosophy of

This work was supported by the Ministry of Culture and Higher Education of Iran, the National Science
Foundation, and an industrial consortium of Ascom Timeplex, Bellcore, BNR, DEC, Goldstar , Faltel SIT,
NEC America, NTT, SynOptics Communications.

Computer & Communications Research Center, Bryan Hall 405 - Campus Box 1115, Washing-
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ATM) or take other measures, such as peak rate allocation, which usually lead to a waste
of communication resources and/or unacceptable delays. Therefore controlling cell loss and
delay has been investigated by a number of researchers. This control aims to reduce, not
eliminate, cell loss and delay problems while maintaining a fair usage of communication
resources. One common way of reducing cell loss is by using buffers at switch elements
or concentrators. Buffers can hold excessive cells until previous ones are processed at the
limited output rate. Incoming cells which find the buffers full are lost.

Cell loss has a detrimental effect on the quality of service, but the scope and extent of
this effect is highly application dependent. A common measure of transmission degradation
caused by cell loss is the cell loss rate or cell loss probability. However this gives only a rough
estimate of the quality of service and thus is not sufficient. Depending on the distribution
of cell loss and the nature of application, the perceived quality of a certain transmission
can vary substantially for a fixed cell loss rate. For a review of different problems and
issues regarding the performance measurement of telecommunication systems, the reader is
referred to [9].

Data information is usually transmitted in the form of blocks. The information within a
block is highly correlated, in the sense that any loss of information in the block results in the
ruin of the information content of the whole block (which usually has to be retransmitted).
For services which result in the transmission of information in blocks (bursts), such as in file
transfers, the emphasis has been in trying to support multiplexing schemes which preserve
bursts. Whereas these approaches aim at addressing the intuitive requirements for integrity
of the burst, none so far has been able to correlate the performance requirements to the
intrinsic information content of the media stream in a general and direct way. In this paper
the fact that cell loss cannot describe the information loss for a particular cell stream is
recognized. To cope with this, a new criterion is introduced. This criterion, called the
effective loss , measures the effect of lost cells to the integrity of the information of the
whole burst.

" To show the effectiveness of this measure, a simple discrete queueing model representing
the operation of a multiplexer is analyzed. Using this model, the performance of a special
protocol called bandwidth reservation is evaluated using effective loss as the performance
measure. The idea of reservation has been used by a number of researchers. Two important
references are (2] and [8]. While it is a fact that reservation always increases the cell loss
rate (compared to plain statistical multiplexing), it is demonstrated that under certain
circumstances, the effective loss is diminished by using a reservation technique.

The rest of the paper is organized as follows. In Sections 2, 3 and 4 the general definition
of effective loss is given. Section 5.1 introduces the multiplexer model. Section 5.2 examines
the performance of the multiplexer when the background traffic is assumed to be non-
random. The effective loss is computed for reservation and non-reservation mechanisms. In
Section 5.3, the previous analysis is extended for the case in which the background traffic is
assumed to be random. An important special case of random traffic, namely the Markovian
traffic, is considered in Section 5.4. Finally Section 5.5 is devoted to numerical results and
interpretations.
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Figure 1: The loss process model in the definition of Effective Loss

2. Definition of Effective Loss

Consider an information flow which is susceptible to impairments caused by the inherent
imperfection of the transmission channel. Suppose that a block of m units of information
is sent by some source, of which v units are lost during the transmission process. Although
m — v units of information are successfully transmitted, in many applications it is not
a useful transmission. The cost of restoring the complete information from the impaired
version may be higher than the cost of retransmitting it. Therefore in some applications,
partial cell loss in a block of cells has the same effect as the loss of a much higher number
of cells, possibly of the whole block. File transfer is an example of such application. While
much less of a problem in voice transmission, the faulty transmission of a phoneme may
result in the misinterpretation of an utterance, and the loss of a word may result in the
corruption of an entire phrase. Similarly in picture transmission, a slight loss of information
may result in the loss of picture details, which in turn may necessitate the retransmission
of the whole picture.

In this paper a random variable is represented by a symbol with a tilde () on top, while
a particular value of a random variable is represented by the symbol alone. For example
represents a random variable, while m represents a particular value of this random variable.

To account for the correlation between various components of an information flow, the
first step is to recognize blocks of information within the flow. Each block is assumed to
be independent from all other blocks, but within a single block, any loss of information
affects the informational value of the whole block. A block of information can be thought
of as a block of data in file transfers, an utterance in speech transmission, or a frame in
picture transmission. To a block of m units of information, of which v units are lost, we
assign a cost of f(m, v}, where f is an arbitrary cost function. It is therefore assumed that
the cost depends on the magnitude of loss, regardless of the precise location of the loss
within the block. Now suppose that a source S transmits blocks of information containing
77 units of information which we shall refer to as the size of the block. 7 is assumed to be
a random variable with distribution Pj{m), which is the same distribution for all blocks.
Suppose that each block passes through a noisy channel and loses 7 units of information.
7 is assumed to be a random variable with distribution P;(»). This process is depicted
in Figure 1. For simplicity, the notation P(m,v), P(m) and P(v) will be used instead of
Paps(m,v), Pn(m) and P;(v), and all three distributions will be assumed to be the same



for all blocks. The effective loss of the source S passing through the channel H is then
defined as:
ns g & Ef(m, 7)
' Ef(h, )
where E is the expectation over the probability space of 7 and . To simplify the notation,

we shall however drop the subscript S, H. If /2 and # are discrete random variables, the
effective loss becomes:

Ty fm ) P(m,y) T, f(m,v)P(m, v)
1 Sy Fmm)P(m,2) 5, f(m, m)P(m)

where P(m, v) is the probability that a block has m units of information and v of them are
lost during the transmission process, and P(m) is the marginal probability. Effective loss
has the following properties:

1. If f is a non-decreasing function of » (which is natural because more loss implies more
cost), then 0 € 5 < 1. The first inequality is trivial. The second is true because
f(m,v) < f(m, m) for all m,v and therefore Ef(7n, 7) < Ef(n, ).

2. If one defines the cost function to be f(m,v) = v, i.e. the cost of v losses is just v
regardless of the size of the block, then n = Ef/Em which is simply the loss rate. This
is important because it shows that under the worst case condition where no natural
blocks of information can be identified, an arbitrary block division together with the
above cost function gives the usual loss rate measure.

3. If f represents the amount of information which is effectively lost in a block, e.g. the
size of the block in file transfers when part of the block is lost due to channel im-
pairments, then the effective loss represents the average percentage of the information
flow which is effectively lost. This property will be presented in mathematical form in
Propaosition 1.

ProrosiTiON 1. If the discrete-time process (i, I;), where i represents block number, is
an ergodic process, then the following is true almost surely:

N -
n= fim 2= (i)
N—oo ZE:} f(m’h mz)

Proof:

Ef(7,5) s UMy_soo & 20, flmi, i)
Ef(fm) — imyoeo & N flms, m)
N EE fma ) L T f(me, )

Netoo 5o flmi,mg) — Noeo TN flmy, my)




REMARK 1. N, f(mu,v;) is the total sum of costs caused by losses incurred to N blocks of
transmitted information. 3°%, f(my, m;) is the total cost if all the information content of the
N blocks were lost during transmfsszon Therefore the ratio "%, f(mi, 1)/ TN flmg, ;)
intuitively represents the percentage of the effective loss of information during transmission
through a noisy channel.

Example 1: Suppose that the source transmits blocks of 7 cells through an
ATM network, & of which are lost due to buffer overflow at the nodes. Suppose
that the transmission corresponds to file transfers for which the cost function is

defined as follows:
0 ifr=290
f(m’”)“{ m ifv>0

The effective loss is then computed as follows:

- 2 EyZUP(m)P(V | m)f(m! V)
TS T P m) )
- Zm Eu-_l mP(m)P(y I m) (2)
2om mP(m)
_ ZmmP(m) 3L, Py | m)
- S mP(m() (3)
Yom MP(m)[1—P(# = 0] m)]
= 5 P (m) “

Note that if P(# = 0 | m) is independent of m, then the effective loss is simply
equal to 1 — P(# = 0| m) = 1 — P(? = 0), and this result is independent of
the distribution of 7. The same result holds if 7 is equal to a fixed number M
with probability one. Now suppose that 7 is Poisson distributed with mean A
and that each cell in a block may be lost with equal probalility ¢, independent
of the loss of other cells. Then,

P(v | m) = ( " ) 1l — ™

We wish to compute both the cell loss rate p = E0/E and the effective loss 7
for the above mentioned cost function. .

_ E(?) _ Balaa(d) _ E(me)
T E(Rm) A A
To compute 7 we use P(# = 0| m) = (1 — €)™ in Equation 4:
1 & Ame_’\
- (1-9™]

’?=sz

e,
e

m=0
1 e 1— ¢)]me—1-¢)
- :{: (/\ /\ m—O [ ( )?17" )
= T (A Da-9))
= 1-=(1—¢e™



If Ae € 1, i.e. the average number of lost cells per burst is much smaller than
1, then:
Nl —(1—€)(1— Ae) me{l+A)

This shows that in this case, the effective loss is higher than the loss rate by a
factor of approximately 1+ A, where A is the average burst length.

3. Conditional Effective Loss

Consider the cell loss due to buffer overflow in ATM networks. The state of the buffer and
the traffic condition at the time of the arrival of a block of cells directly affects the loss
distribution, and thus P{v | m) depends on the statistics of the traffic and the state of
the buffer and cannot be defined. In general, if the description of the loss process involves
random variables distinct from 7 and 7, and if these additional random variables have
different distributions for different blocks, then P(m,v) and n cannot be defined for the
transmission. In ¢ases in which additional random variables may affect the loss process, one
needs to consider the conditional effective loss. Conditional effective loss helps in two ways:
First it is an easier step in the computation of the (unconditional) effective loss when the
latter is defined. Second it represents an effective loss for a subsequence of blocks for which
the additional events happen, even if the unconditional effective loss is not defined for the
sequence. Suppose that 7 and 7 depend on another random variable % through the joint
distribution P(m, v, k). Let Eg, , . f(#,7) = oy =k ok, (T4 7). I P(m, v | k=k)
is independent of the block number, then the condltlona,l effective loss is defined as:

 f Eif(, )
Ekf ('fh, ﬁl)
where Ey is the expectation over the probability space of /. and 7 conditioned on & = k.

Similarly if k1, ks, ... are random variables and P(m,v | k1,ks,...) is independent of the
block number, then the multiply conditioned effective loss is defined as:

- Ex, ks,...f (71, D)
Rz Ekl,kz,---f(ﬁl? ﬁ"’)

where Ep, 1,,.. is the expectation over the probability space of M and © conditioned on
ki=ki ko =k, ...

PROPOSITION 2. If n is defined, P(k) is independent of the block number, and if for every
block, k& and % are independent random variables, then 7 exists and n = E; RUAL

Proof: If k and 77 are independent, then P(m | k) = P(m) and therefore
Ex f(m, @) = Ef(h, Mm). From the definition of n, P(m, v | k) is independent

" of the block number. If further P(k) is independent of the block number, so are
P(m,v, k) = P(m,v | k)P(k) and P(m,v) = Y3 P(m, v, k). Therefore:

Ef(f,5) _ BEef(i,5) _ ./ Ef(i, )\ _ o
Ef(f,m) Epf(m,m) E (Ekf(ﬁl’ 'ﬁ’a)) = Ez(n;)

T'?m



"The result of Proposition 2 can be easily extended to the multiply conditioned effective loss.
The following proposition generalizes the effective loss, when conditioned on two random
variables.

PROPOSITION 3. If k; and ky are two random variables independent of m and ny, g, is
defined and P(k; | k1) is independent of the block number, then m, = Bt My 1) I
P(ky, k2) is independent of the block number, then = Ep (m,) = Eg, (mg,) = Er 5 (5, 7,)-

Proof:
Bty Bruke S, 7)) = B B ol =k, iy (0 7)

= Ef‘fl.,ff|}:1 =k f(m’ ﬂ)
= By, f(, D)

Since 17 is independent from k; and k1,

Eklykz f(ﬁb, 'ﬁ‘L) = Ek; f(ﬁl, Th) = Ef(ﬁ’t, Th)
v = B0 BoBh il 7
l Ekl f(ﬁ‘b, ﬁ.”) Ek1 ,sz(ﬁ?‘) ‘ﬁ?,)

Eyg Sk f(?:h': i}) —_
ol (Ekf,k:f(m, my) = il e )

7 = Ef(, b) _ EEI,EzEkhsz(ﬁ"a 7)
Ef(ﬁ?" ) Eky ko f(ﬁ"": )
. Eg, .k, f (0, f’) _
- Ei&l,iéz (Ek; ,sz(’ﬁl’ ﬁl,) - EEI J;2 (?7]-;1,[-2)
n = Bg (17,;1) from Proposition 2. Similarly, one obtains n = Eg, ("?Eg) and
Ty = Efcl [k2 (nﬁhkz)'

REMARK 2. A proposition similar to Proposition 1 can be written for M, except that one
has to take the summation with respect to the subsequence of blocks for which k = k.

Example 2: Consider the transmission model of Example 1 with the following
difference: The source transmits two types of blocks, low priority blocks and high
priority blocks, according to a Bernoulli random variable k independent from
7%, such that k£ = 1 with probability p indicates a high priority block, and & = 0
with probability 1 — p indicates a low priority block. The channel parameter ¢
depends on the type of the transmitted block. € = ¢g for & = 0 and ¢ = €y for
k= 1. Applying the result of Example 1 and Proposition 2:

g = 1-— (1 - EU)B—AEO
m o= 1—(1—¢)e™™
n = (I-pmo+pm

One can interpret 7y as the effective loss for low priority cells, 7; as the effective
loss for high priority cells, and 5 as the overall effective loss.



4. Unit Effective Loss

If different blocks in a transmission process have totally different statistics in terms of the
information content of the block and the amount of lost information, then an overall effective
loss for the transmission process might not make any sense. Yet the effective loss can help to
study the transmission quality of a single block. Knowing the statistics of the information
content and the lost information of a particular block, the effective loss can be computed
as before:
_ Bi(m,7)

Ef{n, m)
Where m and 7 are random variables representing the information content and loss of the
block under observation. We shall call this a unit effective loss.

i

5. Effective Loss of an ATM Cell Stream

In this section, a simple discrete queneing model representing the operation of a multiplexer
is presented. Using this model, the performance of a special protocol called bandwidth
reservation is evaluated using the effective loss as the performance measure. The idea of
reservation has been used by a number of researchers [2] and [8]. While reservation always
increases the cell loss rate (compared to plain statistical multiplexing), in the subsequent
subsections it is demonstrated that under certain circumstances, the effective loss is dimin-
ished by using a reservation technique. The model used enables us to compute the joint
probability distribution of the number of cell arrivals and cell losses. Cell loss probability
has been computed before by many researchers for a number of models ([7, 6, 5]). By
assuming independence between the loss of different cells, one can use these results to com-
pute the cell loss distribution in a block of m arriving cells. However it is proven in [3, 4]
that this is not always a good assumption, and a method is presented there to compute
the exact cell loss distribution in a certain block. An exact cell loss distribution in a fixed
time duration is also presented in [1]. However in these references, cell loss is computed
for the aggregated input, not for individual channels. For the computation of the effective
loss, the cell loss distribution for cells belonging to one channel under observation needs
to be computed. All remaining channels are treated as background traffic (noise). The
model presented in this paper makes it possible to compute the cell loss distribution on
a per-channel basis, while all the other channels constitute some predetermined stochastic
process with specified parameters.

5.1. Description of the Model

Consider a cell stream #(n) passing through a buffer of size M, as depicted in Figure 2. #(n)
is a discrete-time stochastic process with values shown by letters B, R, N. If #(n) = B, a
Blue cell enters the buffer at time n, provided that the buffer is not full, or else the cell is
considered lost. A blue cell is a cell coming from the channel under observation. Similarly
if #(n) = R, a Red cell enters the buffer provided that the buffer is not full. A red cell is
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Figure 2: Tllustration of the Model

a cell coming from a channel other than the channel under observation. From the point of
view of this model, a red cell can be considered to be coming from the background traffic.
If #(n) = N, no cell enters the buffer. We assume that the channel under observation is
bursty, with two states active and idle. One active period is considered one block and the
cell loss process is studied during an active period, beginning at time n = 1. The length L,
of the active period is in general a random variable with distribution G,. During an active
period, it is assumed that #(n) is independent from #(m) for m # n, and can take different
values according to the following table:

f(n) Probability
B a(n)

R 7(n)

N 1 — an) — 7(n)

To simplify notation, we define p(n) 4 a(n) +7(n). If at time n, the buffer is not empty, a

cell will be served (leave the buffer) with probability o(n) independent of other events. a(n),
7(n), and o{n) can be deterministic functions or stochastic processes. Different cases will
be investigated in the sequel. a(n), T(n), p(n), and o(n) are time dependent probabilities
representing the rate of the channel under observation, the rate of the background traffic,
the total rate entering the buffer, and the service (departure) rate respectively.

5.2. Nonrandom Rates

Here we assume that a(n), 7(n) and o(n) are nonrandom fixed functions of time n. Since
there is no stationary or cyclo-stationary assumption about the functions (or stochastic
processes), there may not be an equilibrium queue length distribution. So we will assume
(or condition on) the state of the queue at a time n; and compute parameters such as the
number of cells lost or the state of the queue at a later time n;.

5.2.1. Queue Length Distribution. Of interest is the quantity Aning (Gny | ni),
which is the probability that the queue length is ¢, ; at time ny given that the queue length



I8 gn; at time n; for n; < ny. Let A, (4, 5) def An—_1,(7|%). Then:

An(0,0) = p(njo(n)+ (1 - p(n))
A,(0,1) = pn)(1-o(n) fori=10
An(0,5) = 0 i>1

2 e (= s - (o)

altyt = p(n)o(n)+ (1-p(n))(1—c(n .
An(iri+1) = pn)(1-o(n)) for0<i<M
A2, 7) = 0 i>it+lorj<i—1
An(M, M) = p(n)+ (1-p(n))(1 - o(n))
Ay(M,M—-1) = (1-p(n))e(n) fori=M
An(M, 7) =0 J<M-1

To simplify the representation of the transition matrix, define:

s(m) & p(r)a(n) + (1 - p(n))(1 - o(n))
zo(n) = p(n)o(n)+(1-p(n)
2e(n) € p(m)+ (1 - p(n))(1 - o(n))
y(n) £ pn)(1-o(n)
2n) ¥ (1-p@)o(n)
Let Ay be the (M + 1) x (M + 1) matrix [4,(¢,)]. Then:
| [ zo(n) y(n)

) o) ym O
. () a(r)
0 L a(m) y(n)
\ 2(n) Ta(n)

Ani g (Gng | @n;) in matrix form is computed using the above matrix as follows:

dny =TT s

n=n;+1

If the channel under observation produces a bursty stream with burst length (time) being
a random variable L, with general distribution G,, and we wish to know the queue length
distribution at the end of the burst, its transition matrix can be found as follows:

oo {
=> G.(O]] A
{=1 n=1
In the above formula the burst of length L, starts at time 1.

10



5.2.2. Cell Loss Distribution. Let Ppim,(m, v, gn; | gn;) be the probability that
from time n; to ny (including =y but not n;) the channel under observation sends m cells
to the buffer, v of which are lost, and that the number cells in the buffer at time n 718 Gny,
given that at time n; the number of cells in the buffer is ¢,.. This joint distribution can be
computed recursively by first computing Pn_12(m, ¥, ¢u | gn—1). The latter is found easily
for all values of m, v and ¢, and is tabulated below. Any combination of m, v and g, which
is not listed in the tables has probability zero.

for0<gu1 <M

m vV (n Pn—l,n(m1 Vygn | Q'n—l)
0 0 g (1= p(n))(1 = o(n)) + r(n)o(n)
0 0 go1+1]|7(n)(1~o(n)
0 0 gn1—1}(1-p(n))o(n)
1 0 gn a(n)o(n)
1 0 go1+1|a@)(l~o(n)
forg,_y =0
m VvV gn Pn—-l,n (m} U,y f Qn-—l)
00 0 | (1= p(n) +r(wo(n)
0 0 1 |r(n)(-o(n)
1 0 0 |a(n)o(n)
1 0 1 |an)(l-on)
for gy = M
m v gy Pn—l,n(mJV: an I QR—w-l)
0 0 M (1 - pm)}(1 - a(n)) + 7(n)
0 0 M-1}(1-p(n)o(n)
1 0 M a(n)o(n)
1 1 M a(n)(1 — o(n))
It suffices now to find the general recursion formula, Py, 5, (-, -, - | -} in terms of Primo—1(y ]
}and Pryo1m, (50| +)- Form,v > 1

P'ﬂl,nz (m? V,yGn, I qnl) =
Z Pﬂl .nz—l(m$ v, q | ny )Pna—-l,nz (Oa 0: Gnp I Q)
q

+ ZPﬂx,nz—l(m - 1: wvq I ‘fm)Pnz—l,nz (la 0: Iny I 9')
q

+ ZPm.nz“l(m -Lr~1,q | qn;)Pnzml,nz (1,1, Ony | ‘])
q

Form>1,v=0:
Pﬂl.ﬂz (ml 0, n, ] qﬂ-:) - ZPm,nz—l(m: 0,¢ E 9111)Pn-2w1.n2 (0; 0, Tny I Q)
)

+ ZPnhnz—l(m - 11 an I in)Png—l,ng (1,01 q‘n.2 l Q’)
q
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Form=v=>0:

Pﬂl.nz (0? 01 ng | qﬂq) = ZPm,ﬂz—l(O: 0: q E qm)Pﬂz—l,nz (01 G:Qng | Q)
q

which completes the recursion formula, and therefore Py, ,, (m, v, gn, | gn, ) can be computed
for any my, e, m, v, Gnyy Gy, (1 < mas ¥ <My 0 < gy, Gy, < M).

5.2.3. Effective Loss Conditioned on the Background Traffic and the Queue
State. Assume that the channel transmits blocks (or bursts) of cells of time duration L,
where L, is a random variable with distribution G,. Further, assume that the transmlsswn
period is followed by a period of ‘no transmission’ of duration s, where L; is a random
variable with distribution G. The “transmission’ and ‘no transmission’ durations are as-
sumed to be independent from each other and from the duration of other blocks. Suppose
that the background traffic rate is a fixed function 7(n) during each block, where £ is an
index indicating that the traffic rate may not be the same function for every sample of time
and every block. For each block, &k can be thought of as a sample of a random variable k.
To account for the dependence on this new variable k, we shall add a superscript & to the
previous joint distribution which becomes: P¥, mg (M ¥, 0n; | gn;)- The state of the queue
at time zero (go) can also be thought of as a sample of a random variable . Note that the
time n is assumed to be reset to zero at the beginning of every block. Let i be a random
variable representing the number of cells in a block, and 7 a random variable representing
the number of cells in that block. Then given k and g¢q, the joint distribution of 7 and 7 is
clearly independent of the block number and is given by:

co M
P(m:V | 40, k) = ZGG(I) ZPEJ("”:% Q| qo)

I=1 g=0

Define:

def 3
Piim,v,q] q0) = P i(m,v,q| )

M
Pz(m,v[qg) d:ef ZP[(TR,V,(]IQO)
q=0

Py(m | g0) < > Pi(m,v | q)
r=0

Then the conditional effective loss 7,4, « is computed as:

2im1 Ga(l) Zl =0 2o Pi(m, v | g0) f(m, v)
3721 Gall) Tinmo Pi(m | go) £ (m, m)

Mok =

5.3. Random Background Traffic Rate

The analysis of the previous section can be extended to the case where 7(n), a(n) and
a(n) are not fixed functions, but are stochastic processes. However, for practical reasons,

12



in this section we are interested only in the case where T(n), i.e. the rate of the background
traffic, is a stochastic process, and a(n) and o(n) are again fixed functions of time (just a
constant in most practical applications). This case is particularly suitable for the analysis
of reservation mechanisms.

5.3.1. Generalization of the Previous Results. Define k to be a random variable
to account for the randomness of 7(n) (which will be denoted hereafter by 7 (n)), i.e. each
value k of k defines a sample path Tk(n). We shall assume that ks mdependent from all
other random variables. In general k can assume any real value but for practical purposes
can be constrained to take values in a finite set. The matrix A, defined previously will
be a function of k¥ and denoted by A, . Then the transition matrix for the queue length
distribution, conditioned on k&, will be:

nf
‘Aﬁ;,nf = H An,k
n=n;+41
co H
Asr = 3 GaDI] Ans
=1 n=I1

We then take the expectation of the above matrices over % on a element by element basis
as follows:

Ancns (7). = Bpg Ak L G 5)]
AO,E.. (5,7) = EE|§0=£[A§,EQ (¢, 7)]
which gives the transitions matrices averaged over k. The cell loss distribution is:
Poiing (M3 ny | Gn) = By, Prony (1,2, 4ny | @i, F)

If the distribution of % | gy is the same for all blocks in a sequence of block transmission,
the conditional effective loss can be computed as follows:

B Ep  Bf (2, D) Efigo Ef(m, )
o S B Bl () | Ef(m,m)

Efc| (7? 0. i)

The transition matrix of the Markov chain representing the queue length at the beginning
of each block, conditioned on k, is:

%] ]
oL.,+L (ZG () H An k) (EG!;U) 11 Bn,k)
=1 n=1 .

n=l

where B, is the same as An , except that a(n) = 0 is used in its computation (because
there is no transmission during Ly). A, 7 . 7., 1.e. the transition matrix averaged over k is

found by taking the expectation over the elements of Ag' Lo+L, 2 follows:
C o i .
Ao,fm-}-f,b(zvj) = Ekl%:i[Ao,[',a.;_f,b (%, 7)]

13



The equilibrium queue length distribution is then the solution of the equation:

where = is the row vector containing the equilibrium probabilities. The unconditional effec-
tive loss can then be computed using the indicated equilibrium distribution for the queue
length, and taking the expectation of the conditional effective loss using that equilibrium
distribution:

n=Eg(np) = Z T

5.3.2. Bandwidth Reservation Mechanism. In this section a bandwidth reserva-
tion mechanism is described. The channel under observation generates a burst of cells that
lasts for L, units of time, where L, is a random variable with distribution G,. During
the burst the channel generates cells with fixed cell rate a(n) = o. With the bandwidth
reservation scheme,

1. The total rate p(n) entering the queue should not exceed certain fixed level p; which
is called the rate threshold, with 0 < p(n) < p; < 1.

2. I, at the beginning of the bursts of the observed channel, the total background rate
is less than p; — ¢, the burst is accepted, and bandwidth equal to « is reserved for
its service for as long as the burst lasts. On the other hand, if, at the beginning of
the burst, the total background rate exceeds p; — ¢, then all the cells in the burst are
rejected.

The above definition of bandwidth reservation can be formulated as follows. Let:

F(n) & n(n) o mi(n) <pi— o
k T pr—e ifre(n) > - o

Further, let:
A {k: 7(0) < pt ~ a}

and ot
B= {k:7(0) > pt — o}

The burst is accepted if ¥ € A. In this case the incoming burst will enter the queue, and
the traffic 7 (n) will be changed to 7f(n) < 7(n) to account for the bandwidth reserved
for the incoming burst. The burst is rejected if ¥ € B. In this case the incoming burst
will not enter the queue and all its cells will be lost at a cost f(7n, 7). 7(n) will remain
unchanged. With the above reservation model, the following questions arise: How efficient
is this technique? Under what circumstances does it work and when does it fail? Here the
performance of the reservation scheme is evaluated by computing the conditional effective
loss:
(B Enf (i, 9)P(k € A) + [BgzBf (i, m)P(k € B)
g = E f(ﬁ’b, m)
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where Ef(m, M) is the expectation of the cost f(m, ), Egf(, ) is the expectation of
the cost f(i, ) when the traffic is 7f¥(n) (given k), Ej4 1s the expectation over those
k’s belonging to A and EIE]B is the expectation over &’s belonging to B. Since the arrival

process is independent of %, so is f(m, M) and the above formula can be simplified to yield:

By Erf(m, 2)P(k € A) + [Ef(m, m)]P(k € B)
T = Ef (7, )

P(k € A)E} Er/f(h, )
Ef(rm, i)
EFE[AERf(Thv )
Ef(h, i)

+P(k e B)

+P(k e B)

Usually P(ﬁ‘ € B} is small so that the above upper bound is a good approximation. The
effect on 7,, of the reservation scheme is now examined. First there is an additional P(k € B)
term added to the effective loss. This comes from the fact that some bursts are denied
entrance to the queue and therefore are lost. On the other hand, El’;g 4 replaces Eg, and
Erf(i, ¥) replaces Ef(, ), both of which tend to decrease 7go- Lhe reason is that given
that & € A, because of correlation in the traffic Tx(n), it is likely that the traffic is low for
n > 1. Also in the calculation of Er f(7, 7) the traffic is rf*(n) which is less than the 73, (n)
used to compute Ef (7, #). With reservation introducing terms that tend both to increase
and to decrease the effective loss, it is not clear whether the overall effective loss will increase
or decrease by using a reservation technique. The result depends on P(k € B), 7i.(n), 7(n)
and also on f(7n, ¥); although a small decrease in 7x(n) does not decrease dramatically the
number of lost cells in a burst, it may or may not decrease drastically Ef (n, 7), depending
on the cost function. In fact the gain obtained from reservation (if any) comes from the
fact that Erf(/, 7) can be much smaller than Ef(, #) for an appropriate cost function
and a suitable traffic. If Eg f(#, U} = Ef(, &}, then from the first equation for oo’

[EzaBf (2, 2)IP(k € A) + [EgpEf (2, )P (k € B)

Mg == Ef('rﬁ1 Th)
(Ef4Ef(m, D)IP(k € A) + Bz 5ES (7, 7)]P(k € B)
- Ef(mn, )
= %‘l = effective loss without reservation

Thus in this case, reservation increases 1, and therefore is not desirable. Intuitively, if the
frequency of variation of 7(n) is low, Eg f(7h, D) is close to Ef(7h, I), because given that
k € A, the traffic is low at n = 0 and will remain low most likely during the whole burst
length; thus r{*(n) & 74(n) and Egf(#, ) ~ Ef(/,5). Therefore reservation is desirable
only if the frequency of variation of the traffic is sufficiently high. In applications such as file
transfers, the cost function f is a sharp (discontinuous) function of v. f(m,v) = ml{v > v}
is such an example (‘I’ is the indicator function). In such cases, if p; is properly chosen,
Epf(, 7) can be much smaller than Ef{#, #) and reservation can be quite effective.
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5.4. Markovian Background Traffic Rate

This section describes the case in which the channel generates bursts of cells at a constant
rate ¢, the server has a fixed rate o, and the background traffic generates cells at a rate
7(n) which is a Markov chain. Let S be the set of all possible values for #(n), and T its
transition matrix. It is assumed that this Markov chain is homogeneous. Let:

T =Pr(F(n) =7 | #(n~ 1) = 74) € P (| 1)

be the one step transition probability. Let e be the vector representing the equilibrium
probabilities for the Markov chain 7(n), i.e. ¢ = e-T. It is assumed that the channel is
bursty with burst length Z,, a random variable with distribution G,.

5.4.1. Cell Loss Distribution. Assuming that an incoming burst of length  at time
n, is able to observe the state of the queue at time n — 1 and the state of the traffic at time
n, it is interesting to know what is the probability that v out of m cells will be lost. So we
are interested in computing:

Pi(m,v| g, ) Ll The probability that given that §(n—1) =
g1 and 7(n) = 7y (and the channel is ac-
tive, transmitting cells at rate a), m cells
come during [ discrete times (from n to
n+{— 1) and v of them are lost.

Similar notation will be used for other probabilities. P;(m, v, ga, 72 | g1, 71) is the probability
that given that the queue length and traffic are ¢; and 7y respectively, ! units of time later
they will be g2 and 73, m cells from the channel will come and v of them will be lost. To
find P;(m,v | q1,71), we use again a recursive approach.

Pl(mayanaTZiQth) = Pl(m;V:QBJQI,Tl)Pl(ﬁI""I:Q'l:QZ,m:V)
Pi(m,v,q2 | 1, 1) Pi(72 | 71)
= Pl(m'l Y, qq I qliTl)TTE:T2

Pi1(m,v,q; | ¢1,71) is found by elementary analysis of the queueing process and is tabulated
below:

for0< g <M
m v q Pi(m,v, @2 | g1, 1)
0 0 ¢ (l—-a-n)1-0)+no
0 0 o—-1|(l—a-m)o
0 0 q+1|n(l—-o)
1 0 ¢ oo
1 0 gi+1]ea(l-09)
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for g =0

m v @z Pl(m'l U, g2 [ 71, Tl)
0 00 |(l-a=-7)+mnc
0 g 1 Tl(l-“o‘)
I 0 0 |ao
1 0 1 |afl-0)
forgy=M
m Vg Pi(m,v,q2| g1,71)
0 0 M l—a—-—m)}l-0)+n
0 0 M-1|(l-a-n)o
1 0 M Qo
1 1 M ol — o)

Py(m,v | q1,71) is computed as:

Pi(m,v| q,m) =Y Pi(m,v,q| g1, m)
q

and the general recursion formula is computed as follows:

P;(m,v | Q’1,7'1) = ZPI(O:O:erl QI:TI)PI——l(may | q’T)

a7

+ ZPI(Lan’T l QI:TI)P!—l(m -1,v | q, T)
q,7 .

+ Zpl(lu 11 47T I QIiTi)Pl—l(m - 111" -1 l q, T)
q.T

with the convention that whenever ¢ or § are negative, P;_1(¢,6 | ¢,7) = 0. Therefore
Pi(m,v | g,7) can be computed for all m,»,q,7 with 0 < m <, 0<v < m, 0<qg<
M, TeS§.

5.4.2. Effective Loss and Equilibrium Probabilities. It is assumed that at time
1 the under observation channel generates a burst for a time period of L,. To find the
equilibrium joint distribution of the queue size and the rate of the background traffic, the
distribution of the active period L, and idle period I of the under observation channel must
be utilized. If the under observation channel cell stream constitutes only a small part of the
whole cell stream entering the main buffer queue, it is a good approximation to assume that
the equilibrium distribution of § and ¥ is only a function of the traffic #(n). This is true
specially if Ly » L,, because under this condition, between two activity periods of the under
observation channel, the channel remains in the idle time for an amount of time sufficiently
long to allow the queue to return to its equilibrium state as if only the background traffic
were present. Under this assumption, the couple (§(n — 1),7(n)) is a Markov chain over
the time n. The transition probability matrix is defined by Py{ge, 72 | ¢1,71) for all possible
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values of ¢y, 71, g9, 7.

Pi(aasm2 lq,m) = Pilgzlq, 7)Pi(me | 1, g2, 1)
= Pilg | g1, 7)Pi(m2 | 71)
= Pi{g2 | @, )T oy,
= (Z Pl(m: v, gz I QI:TI)) T‘P‘I:T2

Let 7(g, ) be the equilibrium probability that the Markov chain is in state (g, 7). Then,

e A7) Fig Ga(l) Som=0 Ypeo Pi(m, ) f(m, v)
E_f(’ﬁ?., ﬁ”) Z?;l Ga (l) _qu-n=0 Py (m)f(m1 m)

w-)vhere
Pl(m: V) - ZPI(m’V | qs T)W(Q:T)
q,7T

- and Py(m) = 370 o Pi(m, v).

5.4.3. Bandwidth Reservation. We model bandwidth reservation in the presence
of a Markovian background traffic as follows:

1. The total rate p(n) entering the queue should not exceed a fixed value p;.

2. A burst is accepted if (1) < p; — o and rejected otherwise. If a burst is accepted,
then #(n) changes to #%(n) with transition matrix T® which is a lower dimension
matrix obtained from T as follows:

TR def Thm form # 7
T2 Tnm + ZVj>m—-a T'rlsj form =m

where 0 < 7,72 < py — a.

3. Define A = {w : 7(1) < p; — @} be the set of outcomes that a burst is accepted and
B = {w:7(1) > p; — o} the event that it is rejected.

Now the effective loss is:
e E (1, i)

_ P(AERf(m, D)

= T EBfmm 1B
ERf(ﬁz': E’)
—— 1+ P(B
Bf(m,m) T
In these formulas, E refers to the expectation assuming background traffic #(n), and Eg
means expectation assuming background traffic #7(n).

i

Again note that for the reservation to be effective, Egpf(, #) must be considerably
smaller than Ef(#, 7). In the case where o is small compared to py, this can happen only
if the loss of a few cells is quite expensive (as expressed by the function f(m, v)).
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5.5. Numerical Results

A few computer programs have been run to compute the conditional effective loss g for
a random shifted phase sinewave as the background traffic rate, and the unconditional
effective loss 7 for a couple case of Markovian background traffic rate. The sine wave and
the Markovian background traffic rate will each be discussed in a seperate section.

5.5.1. Random Phase Sinewave Background Traffic Rate. In this example, it
is assumed that the background traffic rate is a sine wave which is randomly shifted in time.
More precisely, the traffic rate is the following process:

: A . [ 2rnF o
Ti(n) = 3 (1 - sin (—N—— + 27r!c))

where & is a uniform random variable over the interval [0, 1)}. This case is interesting because
it represents variation in the amount of traffic (sometimes high, sometimes low), with the
frequency of the wave representing how fast the traffic changes. The amplitude of the traffic
rate can also be varied to see the effect on the effective loss. To simplify the computations,
the following assumptions are made:

¢ The time duration of a burst is a deterministic constant V.

* o(n) and o(n) are constant functions of time.

While it has not been proven, it is reasonable to assume that these assumptions do not
have a significant effect on the conclusions implied by the numerical results. The effective
loss is a function of traffic rate amplitude, traffic rate frequency, and rate threshold. Two
different cost functions are used:

index cost function
C=40 flmv)=m-u(v-1)
C=1|f(mv)=m- -u(10-v—m)

where u(n) is the step function defined as follows:

(n) = 0 ifn<0
wun) = 1 otherwise

The first cost function could be useful for data transmissions and the second cost function
could work in the case of forward error correction, or the transmission of information such
as a picture, which can tolerate up to a certain degree of cell loss. The first set of results
are shown in Figures 3 through 5. These.are obtained for go = M/2. The second set of
results are obtained for larger buffer sizes, but only with the first cost function (C' = 0).
These are shown in Figures 6 through 9. Paremeters not shown on the second set of figures
are the same as those of the first set of figures.
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Figure 3: Effective loss as a function of traffic rate amplitude, for different cost functions.
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As can be seen from Figure 3, the effective loss always increases when the traffic rate
amplitude increases. However, in the case in which reservation is used, the effective loss
is less than the effective loss in ordinary statistical multiplexing at high traffic intensity
only. Note that when the traffic intensity is very low, the total bandwidth never crosses the
reservation threshold py, and thus the reservation request is always successful. In this case,
as shown in the figure, both non-reservation and reservation result in the same effective
loss.

As the frequency of variation of the traffic rate is changed, the reservation mechanism
results in a lower effective loss in a certain frequency range, namely the range for which
the period of variation is comparable to the burst length (see Figure 4). Note that the
unit for the frequency of the traffic rate is cycles per burst duration. At low frequencies,
there is no need for reservation, because if, at the time the channel burst is generated, the
background traffic rate is low (implying the acceptance of the burst), it will most probably
remain low during the whole duration of the burst. On the other hand if the frequency is
sufficiently high, the rate variation will be easily absorbed by the buffer and the loss will
be low. Recall that in both the above cases the reservation mechanism contributes a fixed
amount of effective loss which is related to the probability of rejecting a burst. Only when
the traffic variation is comparable to the burst length is reservation useful, because when a
burst is accepted, it is protected for the duration of the burst.

When the rate threshold p; is varied, the effective loss reaches a minimum value (see
Figure 5). For the particular example for which the computations were carried out, the
optimum value for the rate threshold was 20% less than the output rate of the multiplexer, -
If the threshold is very low, almost all bursts are rejected and the effective loss is almost
‘1’. If the rate threshold is too high, the reservation request is always successful, and the
effective loss is the same as the non-reservation case.

The final important result of these numerical computations is the effect of the cost
function on effective loss. If the cost function is such that the loss of one cell is equal to
the cost of losing the entire burst, reservation incurs a lower effective loss. But if cell loss
can be tolerated up to a certain level (in our example, 10% of the total number of cells),
then the performance of the reservation method deteriorates. In fact in our example, it was
always worse than plain statistical multiplexing. Therefore in applications in which some
cell loss can be tolerated, or if other measures such as forward error correction coding are
used, reservation may not be beneficial.

5.5.2. Markovian Background Traffic Rate. In this example, it is assumed that
the background traffic rate is a Markov chain as explained in Section 5.4. As in the previous
example, it is assumed that the time duration of a burst is a deterministic constant N , and
that a(n) and o(n} are constant functions of time with the same values as in the previous
example.

Before computations can be performed, a transition matrix for the Markov chain repre-
senting the rate of the background traffic must be specied. Consider a 2-state (idle, active)
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Markov chain 7 (n) with transistion matrix:

1—¢, €y
Tl_( €4 I—Ed)

1 can be thought of as a background traffic consisting of a single on-off source. While in
active state, the source generates traffic with rate §. Now suppose that

K
F(n) & 3 ()
i=1
is a background traffic consisting of the sum of K i.i.d. processes, all with the same transition
matrix 71. ¥(n) is a (X + 1)-state Markov chain with transition matrix 7. Let QE, 7 k)
be the probability that from time n — 1 to time n, i sources become active and 7 sources
become idle, given that k; sources are active at time n — 1. Then:

Q(i,j I kl) _ ( _K';-"kl )Eui(lm Eﬂ)I(—-k;-—i ) ( k-;l )Edj(l_ed)kj.—j

and
min{K —k; kz)

T(ks | k1) = S QUi+ ki —ky | k)

i=max(0,k2—k1)

"The results in Figure 10 are obtained for K = 5 and ¢, = ¢; = 0.1. The effective loss is
computed as a function of the amplitude A & K . § which is the maximun possible rate of
the background traffic.

One can see again that the effective loss of the non-reservation scheme is lower than
the reservation scheme, except at high traffic amplitude in which case the effective loss is
prohibitively high (more than 50%).

The second traffic behaviour we want to evaluate is the one in which the background
traffic is low most of the time and very high during some limited time periods. To simulate
this type of background traffic, the following transition matrix is used:

1—¢, €q 0 0
€ Pit— €& P12 Pi3
T e 0 P2 P2z Pos3
0 P31 P32 Pas

where
Py Piz ™3
P21 P22 Pa3
P31 P32 P33
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is the transition matrix of a Markov chain consisting of K on-off i.i.d. sources, each with
transition matrix T;.

Figures 11, 12 and 13 show the results corresponding to this type of background traffic.
These numerical results have been obtained for ¢, = 107° and ¢; = 10~2 and ¢, = ¢; = 0.1.
Figure 11 again shows the effective loss as a function of the traffic amplitude, which is
the maximum possible rate of the background traffic. Figure 12 shows the variation of the
effective loss as the rate threshold p, is varied. Again it is observed that there is an optimum
value for p; which minimizes the loss when the reservation scheme is used. Finally Figure
13 shows the variation of the effective loss as the ¢’s are varied by multiplying them by a
scale factor. This simulates the change of frequency of variation of the background traffic.
In the top figure, the scales of ¢, €;, €, and €4 are varied all at the same time according to
€. — € X scale, ¢; —+ ¢; X scale, €, — €, X scale, g —+ ¢; X scale. In the bottom figure, the
scales of ¢, and ¢; are varied according to €, — ¢, X scale, ¢; — ¢; X scale, and ¢, = ¢5 = 0.1.

To summarize, these numerical results show that reservation is indeed a useful method
to protect the channel and improve the transmission efficiency, but only under certain
conditions. These conditions include:

o The traffic (and therefore the loss) at the multiplexer being high.

¢ The frequency of variation of the background traffic being comparable to that of the
channel under consideration.

o In the case of bursty Markovian background traffic, the occurrence rate of the burst
being low.

e The rate threshold being properly chosen.

It is suggested that in an adaptive algorithm, these conditions be evaluated before reserva-
tion is used.
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