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Exploiting Bounds in Operations Research
and Artificial Intelligence

�

Sharlee Climer and Weixiong Zhang

Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis, MO 63130, USA

Abstract. Combinatorial optimization problems are ubiquitous in scientific re-
search, engineering, and even our daily lives. A major research focus in devel-
oping combinatorial search algorithms has been on the attainment of efficient
methods for deriving tight lower and upper bounds. These bounds restrict the
search space of combinatorial optimization problems and facilitate the computa-
tion of what might otherwise be intractable problems. In this paper, we survey
the history of the use of bounds in both AI and OR. While research has been ex-
tensive in both domains, until very recently it has been too narrowly focused and
has overlooked great opportunities to exploit bounds. In the past, the focus has
been on the relaxations of constraints. We present methods for deriving bounds
by tightening constraints, adding or deleting decision variables, and modifying
the objective function. Then a formalization of the use of bounds as a two-step
procedure is introduced. Finally, we discuss recent developments demonstrating
how the use of this framework is conducive for eliciting methods that go beyond
search-tree pruning.

1 Introduction

Combinatorial optimization problems are ubiquitous in scientific research, engineering,
and even our daily lives. For example, we try to devise the best alignment of a set of
DNA or protein sequences, an optimal routing scheme when designing a circuit board,
or a shortest plan or schedule when sequencing a set of tasks. It seems that we are
constantly trying to maximize profit, performance, production, or some other desirable
goal; or to minimize cost, time, energy, or some other valuable resource.

Combinatorial optimization problems are difficult, albeit interesting and satisficing,
as there are frequently a very large number of feasible solutions that satisfy all the
constraints; the challenge lies in searching through this vast solution space and iden-
tifying an optimal solution within the given criteria. When the number of solutions is
large, intelligent enumeration paradigms exist to look at the solutions that have to be
examined in order to guarantee an optimal solution. One such enumeration paradigm
is branch-and-bound (BnB), which was perhaps first used by Dantzig, Fulkerson, and
Johnson [11, 12] for the Traveling Salesman Problem. BnB is in fact a problem solving�
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paradigm that supports many specific search strategies, such as depth-first search [2, 25,
24, 33], best-first search [2, 25, 24, 33], and iterative deepening [28], as special cases.
BnB has also been enhanced, leading to variants such as branch-and-cut. BnB has been
found to be exceptionally powerful for nearly all combinatorial optimization problems
in various disciplines and areas [2, 25, 24]. Even though most of the difficult optimiza-
tion problems belong to the category of NP-hard [18], which is a worst-case complexity
measure, in practice, a BnB algorithm can indeed very often alleviate computational
difficulties and make large and complex problem instances solvable with reasonable
amounts of computational resources.

BnB organizes a systematic enumeration of solutions in a search tree, in which
a leaf node represents a feasible solution. It typically traverses a tree in a depth-first
fashion in order to make it memory efficient and applicable to large problems [38, 35].
At each node of the tree, BnB solves a modified variation of the original problem.
When the modified variation gives rise to a feasible solution better than the current
incumbent solution, it is made the new incumbent. As other solutions of this sort are
encountered, the incumbent is updated as needed so as to always retain the best feasible
solution found thus far. When the search tree is exhausted, the final incumbent must be
an optimal solution.

Most optimization problems have huge search trees which cannot be searched in
entirety. The power of BnB comes from two bound functions and the pruning rule that
it employs. The first bound function computes an upper bound to the cost of an optimal
solution. The incumbent solution provides such a bound. In order to have an immediate
upper bound, it is common to find a simple upper bound prior to starting the search
using an approximation algorithm. The second bound function estimates, at each node
of a search tree, a lower bound on the solution to the modified problem at the node.
When the lower bound exceeds the current upper bound, the node, along with the entire
subtree beneath it, can be pruned with no compromise of optimality. Therefore, the
efficacy of BnB depends on the effectiveness of the lower and upper bound functions
that it uses. It is thus of fundamental importance to develop efficient and tight bound
functions for BnB. This necessity has been reflected by a long history of research in
operations research (OR) and artificial intelligence (AI).

In this paper, we first survey the history of the use of bounds in both AI and OR.
While research has been extensive in both domains, until very recently it has been too
narrowly focused and has overlooked great opportunities to exploit bounds. In the past,
the focus has been on the relaxations of constraints. We discuss methods for deriving
bounds by tightening constraints, adding or deleting decision variables, and modifying
the objective function. Then a formalization of the use of bounds as a two-step proce-
dure is covered. Finally, we discuss recent developments demonstrating how the use of
this framework is conducive for eliciting methods that go beyond search-tree pruning.

2 Previous work

In this section, we survey the historical use of bounds in OR and AI. We use linear
programs (LPs) for the problem representation for OR and the STRIPS representation
for AI. It is important to note that the concepts presented in this paper are applicable to



an even broader range of problems than those represented by LPs or STRIPS. However,
we use these models in order to make the discussion concrete.

2.1 Bound functions in operations research

In OR, optimization problems are commonly cast as linear programs (LPs). Without
loss of generality, we only consider minimization problems in the ensuing discussion
(minimization LPs can be converted to maximization LPs and vice-versa [22]). A gen-
eral minimization LP can be written in the following form:

�������
	����� �����
(1)
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where the
� �

values are instance-specific coefficients, the set of

� �
represents the de-

cision variables, and the constraints are linear equalities or inequalities composed of
coefficients, decision variables, and possibly some auxiliary variables. A feasible solu-
tion is one that satisfies all the constraints. The set of all feasible solutions is the solution
space for the problem. An optimal solution is a feasible solution with the least value, as
defined by the objective function (1).

LPs that have one or more decision variables that must have integral values compose
a subset of LPs that are referred to as mixed-integer linear programs (MIPs). MIPs can
be used to model many important combinatorial optimization problems. Unfortunately,
while LPs without any integrality requirements are relatively easy to solve, many MIPs
are NP-hard and are very difficult to solve.

When solving LPs, bounds have been used in different ways. Following is a brief
summary of deriving bounds via constraint modification, using bounds in branch-and-
cut search, and bounds that evolve from duality theory.

Direct constraint modification Lower bound functions can be obtained by modifying
and/or eliminating constraints. We use the Asymmetric Traveling Salesman Problem
(ATSP) to illustrate these modifications. The ATSP is the NP-hard problem of finding
a minimum-cost Hamiltonian cycle for a set of cities in which the cost from city

'
to

city � is not necessarily equal to the cost from � to
'
. The ATSP has numerous signif-

icant applications and has been extensively studied in the fields of computer science,
mathematics, and OR. The ATSP can be defined by the following LP:

243�57698�:<; ���=�
	 ���>�?&�@ >�? �
� @ � � @ (3)

subject to: ���>�? � � @ �BADCE�@ >�?
� � @ �FADC-GH'IC �=JLKNM (4)

��(>�O �@ >�O
��� @QPBR SERUT ADC-G SWV K C SYX��Z M (5)��� @ J\[/] C^AD_,C`GH'IC �=JLK C (6)



for directed graph
: � 8 K C 2a; with vertex set K � [ ADC�b^b�b.Cc)#_ , arc set
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such that
� � @<i ] and
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for all

'
and � inK . Each decision variable,

�H� @ , corresponds to an arc
8 'IC � ; in the graph. The solution

space of this problem is the set of all permutations of the cities and contains
8 ) T A ;�l

distinct complete tours. The objective function (3) demands a tour of minimum cost.
The three types of constraints in (4) to (6) can be directly modified or eliminated to

obtain lower bound functions. Constraints (4) require that each city is entered exactly
once and departed from exactly once. If these constraints are removed from the con-
sideration of the ATSP, the problem becomes the minimum spanning tree (MST) in a
directed graph, called shortest arborescence, which can be solved in m 8 )#n ; , where

)
is

the number of cities, using an efficient implementation [3, 34] of the Chu-Liu/Edmonds
algorithm [6, 13]. In fact, MST on undirected graphs is one of the most effective lower
bound functions for the symmetric TSP (STSP) [20]. (The STSP is a special case of the
ATSP, where the cost from city

'
to city � is equal to the cost from city � to city

'
.)

Constraints (5) are called subtour elimination constraints as they require that no
more than one cycle can exist in the solution. Ignoring these constraints leads to the
Assignment Problem (AP) [31], which is among the most effective lower bound func-
tions for random ATSPs. The AP is the problem of finding a minimum-cost matching
on a bipartite graph constructed by including all of the arcs and two nodes for each city,
where one node is used for the tail of all its outgoing arcs and one is used for the head
of all its incoming arcs. The AP can be solved in m 8 )�o ; time, where

)
is the number of

cities [31].
Constraints (6) require that either an arc

8 'IC � ; is traversed (

��� @ is equal to 1) or is
not traversed (

�H� @ is equal to 0). The ATSP can be relaxed by relaxing the integrality
requirement of constraints (6). This can be accomplished by allowing

�p� @ to be a real
value between 0 and 1 inclusive. This relaxation is the well-known Held-Karp relax-
ation [20, 21], and is solvable in polynomial time. In general, relaxing integrality is
commonly used in branch-and-cut search while solving all types of MIPs.

On the other hand, we can produce an upper-bound modification of the ATSP by
adding additional constraints. For instance, we could force the inclusion of a set of
arcs by adding constraints that their corresponding decision variables are set to one (i.e.
adding

� � @ �qA forces the arc
8 'IC � ; to be included in all solutions). Setting the values

of decision variables reduces the problem size. This method is commonly employed
by BnB branching rules, in which the problem is continually subdivided into smaller
subproblems as the search tree is traversed [2].

Branch-and-cut Branch-and-cut (BnC) is essentially the same as BnB search except
that the modified problem that is solved at each node of the search is sometimes tight-
ened by the addition of cutting planes [19]. A cutting plane is an added constraint that
tightens the modified problem without eliminating any feasible solutions to the original
problem. An example of a cutting plane follows. Assume we are given three binary de-
cision variables,

�pr
,

� n ,
� o , a constraint

A ] �1r7s Aut � n s Auv � o P v ] , and the integrality
relaxation is solved at each node ( ] P

��� P A is substituted for the binary constraints). It
is observed that the following cut could be added to the problem:

��r,sw� n sw� o P A with-
out removing any of the solutions to the original problem. However, solutions would be



removed from the modified problem, such as

�xr � ]y z ,
� n � ]hy v z , and

� o � ]hy{z .
Note that while a cutting plane tightens the relaxation, the problem is still strictly a
relaxation. The cutting planes only make it a tighter relaxation.

Concorde [1] is a branch-and-cut algorithm designed for solving the STSP. This
code has been used to solve STSP instances with as many as 15,112 cities [1]. This
success was made possible by the design of a number of clever cutting planes custom
tailored for this problem. In general, branch-and-cut is a powerful tool that is commonly
used in the field of OR, and this power springs from the use of bounds.

Duality theory Associated with any minimization LP is its dual problem, which is a
maximization LP [22]. After solving an LP, the dual supplies bounds on changes that
can be made to coefficients in the original problem without affecting optimality. These
bounds are used for sensitivity analysis, an important process in practical applications,
where sensitive coefficients are identified and insensitive coefficients are sometimes
adjusted, without affecting optimality.

These bounds have also been used in more creative ways. For example, Carpaneto,
Dell’Amico, and Toth [5] developed a pre-processing tool for graph reduction, or spar-
sification, for the ATSP using these bounds. First, a simple upper bound is determined
by finding a feasible, though not necessarily optimal, solution. Then, each arc

8 'IC � ; is
eliminated if the lower bound when forcing

8 'IC � ; into the solution exceeds the simple
upper bound. This lower bound is derived from the dual problem.

In addition to bounds used in sensitivity analysis, the dual provides another useful
bound. It is known that any feasible, though not necessarily optimal, solution to the
dual provides a lower bound for the optimal value of the original (primal) problem [22].
This bound can be used to determine the quality of an approximate solution for the
primal problem. If the lower bound provided by the dual is close to the value of the
approximate solution, then the approximate solution is close to optimal.

2.2 Heuristic evaluation functions in artificial intelligence

Most AI systems are symbolic (or logic) and are very often concerned with finding
shortest or cheapest sequences of actions to transform the systems from initial states
(e.g., before starting to solve a combinatorial puzzle) to goal states (e.g., when the
puzzle is solved). Thus, solving such a problem involves searching for a sequence of
actions. Formally, let

51|
and

51}
be the initial and goal states of a problem, and ~ the

set of all possible sequences of operations that can turn
5 |

into
5 }

. Finding a cheapest
sequence of operations to change

5 |
into

5 }
is equivalent to solving the minimization

problem of

m �����d������	��x�
�7�
�I�d� �����{�{�{� � �
>�� � � [ � � R � � is the cost of operator

� � _
(7)

subject to the constraints that operator
� �

is applicable to the corresponding state. The
success in solving such a problem depends mainly on the performance of the search
method used; the performance of the search is in turn determined by the bound functions
adopted.



Developing lower bound functions has been and still remains a core problem in
AI. Lower bound functions are termed as admissible heuristic evaluation functions, or
evaluation function for short. Here, admissibility means a function will never over-
estimate the cost of the best solution. The research on developing evaluation functions
can be traced back to the early days of AI. When Herb Simon, a Nobel laureate and a
founding father of AI, and his colleagues were building their General Problem Solving
(GPS) system and chess program, and Samuel was developing his checkers program,
these pioneers were fully aware of the importance of evaluation functions and made
great strides in developing effective evaluation functions. In early computer board game
programs, they introduced evaluation functions that sum up the positions and strengths
of individual pieces on the board. These concepts form the basis of evaluation functions
of modern computer game programs such as Deep Blue [4], which beat Kasporov, the
human champion, in a tournament setting.

Abstraction and pattern databases Automatic, problem-independent approaches for
deriving evaluation functions have been pursued over the past decades. An early re-
lated work was the development of macro operators by Korf [29, 30], which essentially
worked on an abstract search space. Problem abstraction is a general method for devel-
oping evaluation functions, and has been studied and applied to planning and combi-
natorial games and puzzles as well as many other AI problems [23, 39]. The goal here
is to construct an abstraction, or a simplified version, of the problem by ignoring some
of its constraints. The optimal solution to the abstraction then constitutes an evaluation
function.

Another line of work is pattern databases [10]. The main idea is to consider only a
partial problem, e.g., an end game in chess, where many entries and constraints do not
exist or are ignored. A partition to the original problem is then considered; a combi-
nation of the costs of optimal solutions to these partial problems is then an evaluation
function [14]. The pattern database method has been studied on many combinatorial
puzzles, such as sliding-tile puzzles, 4-peg Towers of Hanoi and Rubik’s cube, as well
as the well-known NP-hard vertex cover problem [14].

In short, the central scheme of deriving evaluation functions by abstraction and
pattern databases is constraint relaxation and elimination.

Pearl’s insight Based on the work in OR, e.g., those described in Section 2.1, Pearl had
the insight that evaluation functions can be obtained by eliminating some constraints to
a problem [33]. As most AI systems are logic, he suggested following the STRIPS
representation [15] to formulate an operator, in the form of a set of preconditions (con-
straints) that must be satisfied before the operator can be applied, a set of positive effects
(add list), and a set of negative effects (delete list) that the operator will result in, all
represented in predicates. For example, in a planning problem in which shipping cargo
from one place to another using airplanes can be represented as

Operator
���Q%(� 8(�=���
� fD�uC � ��� ����� fpC �N� ���*� � f � � � � fpC �N�0� � � � ; T (8)

Precondition
� 2 � 8(�=�.��� fD�/C � �c� ����� f ; Md  ) � '0¡ � 8��N�0� � � � C �w���
� fD� ; M � ��� % 8(�w�.��� fD� ; M (9)

Add-list
� 2 � 8��w�.��� fD�/C �N� ���*� � f � � � � f ; M (10)



Delete-list
� 2 � 8��w�.��� fD�/C � �c� ����� f ; M � �H� % 8(�w�.��� fD� ; y (11)

where variables
�w�.��� f,�/C � ��� ����� f1C �N� ���*� � f � � � � f

and
�N�0� � � �

need be substituted by air-
plane, a place where the airplane is currently located, a destination for the flight, and a
piece of cargo to be shipped. In this example, to ship the cargo, it must be inside of the
airplane, which must be fueled and at the origin of the trip. After the flight, the airplane
will be at the destination (with the cargo still inside) and the fuel consumed. These new
properties are properly captured by the Add-list and Delete-list.

Pearl’s idea is to ignore some of the constraints (preconditions) of the operators,
giving rise to a simplified problem. The cost of an optimal solution to the modified
problem is an underestimate of the optimal cost to the original problem. Pearl’s ideas
can evidently lead to a systematic approach to deriving lower bound functions within
the STRIPS paradigm. Unfortunately, these ideas have not been pursued.

2.3 Differences and commonalities

To summarize the existing work using both LP and STRIPS representations, we point
out differences and commonalities. The first difference lies in the objectives that they
attempt to capture. For most combinatorial optimization problems in OR, the objectives
demand optimal solutions that satisfy global constraints such as those in (4-6). On the
other hand, for most problems in AI, the objectives are shortest sequences of actions
to transform initial states to goal states. The second difference is the locality of the
constraints involved. The constraints in an LP are global, while the constraints for a
STRIPS operator are local to the operator and the states on which the operator can
apply. Another difference is that OR problems are usually numerical, while most AI
problems are logic. Finally, the LP formulation is richer in content than the STRIPS
formulation, as the former also has a dual representation.

Even though LP and STRIPS representations were developed in different fields of
study and for different types of problems, they both have constraints as the main com-
ponents. In other words, both representations share a similar syntax of optimizing an
objective function under a set of constraints, even if the constraints have different se-
mantics. Note that it is through modifications to some constraints in both formulations
that lower bound functions were derived, as we discussed above. These observations
motivated us to explore systematic ways to manipulate constraints and other elements
in these representations to develop effective bound functions, which is the central theme
of this paper.

3 Bounding framework

In this section we develop systematic bounding techniques for combinatorial optimiza-
tion problems in OR and AI. First, we explore various ways that bounds can be derived.
We then present a two-step procedure for using these bounds.

3.1 Systematic bounding techniques

We explore in this section the multitude of ways that problems in LP and STRIPS for-
mulations can be modified and manipulated to obtain upper and lower bounds. Note that



LP and STRIPS representations in spirit have similar syntax and the LP formulation is
richer than the STRIPS formulation as the former has a dual representation. To simplify
our discussion and without loss of generality, we will refer to the LP formulation in the
discussion.

Note that, unlike modifications made in sensitivity analysis, these modifications
may result in problems that have completely different optimal solutions than the original
problem. The purpose of these modifications is to identify a problem whose solution is
an upper or lower bound on the original optimal solution, so preserving optimality is of
no consequence.

Producing upper bounds An LP can be modified to produce a new problem that has
a solution value

�-¢
that is an upper bound on the original optimal solution

�
using the

following seven different types of modifications.
Tightening or adding constraints: An upper-bound modification can be made by

adding new constraints to (2) and/or tightening the original constraints. For instance, if
a constraint is an inequality with a constant for its right hand side, this constant can be
appropriately increased or decreased to achieve a tightening of the original constraint.
In general, tightening constraints usually causes the deletion of a number of feasible
solutions and cannot create new feasible solutions.

Modifying objective function coefficients: This modification manipulates the instance-
specific coefficients,

� �
’s, in the objective function (1). An upper-bound modification

can be made by increasing any of these coefficients. Furthermore, if we decrease and/or
increase any number of these coefficients, solve the problem, and then substitute the
original

� �
values when calculating

�-¢
, this

�`¢
would be an upper bound on the optimal

solution for the original problem as it would be the actual cost of a feasible, though not
necessarily optimal, solution.

Deleting decision variables: Assuming that zero is in the allowable range of a de-
cision variable, its deletion is an upper-bounding modification. This is equivalent to
adding a constraint that sets the variable’s value to zero, which reduces the number of
feasible solutions without creating new solutions.

Relaxing optimality: This type of modification is simple and commonly used. An
upper-bound modification can be made by relaxing the minimization requirement in
the objective function (1). This modification is very useful as it yields solutions that are
feasible, though not necessarily optimal. Many polynomial approximation algorithms
for NP-hard problems fall into this category.

Relaxing constraints in the dual problem: Relaxing constraints in the dual, which
is a maximization problem, is an upper-bounding modification. This relaxation may
increase the value of the dual problem and this new value is an upper bound for the
primal problem. This modification may increase the number of feasible solutions for
the dual.

Adding decision variables to the dual problem: Assuming that a new decision vari-
able has zero in its allowable range, adding such a variable leads to an upper-bounding
modification for the primal problem. For this revised problem, there is a subset of the
solution space for the dual in which the new variable has a value of zero. This sub-
set is identical to the entire solution space of the dual before the addition of the new



variable. Among the new solutions created by this variable addition there may exist a
solution whose cost is greater than the cost of the original optimal solution for the dual.
Thus, this modification is upper bounding for the dual, and consequently, for the primal
problem.

Increasing objective function coefficients in the dual: Increasing the objective func-
tion coefficients for the dual is an upper-bounding modification for both the dual and
the primal problem.

Producing lower bounds Similarly, lower-bounding modifications can be obtained by
using the following seven modifications.

Relaxing constraints: The relaxation, or the complete omission, of one or more of
the constraints in (2) is a lower-bound modification for a minimization LP. In general,
relaxing constraints maintains the original feasible solutions and usually yields addi-
tional feasible solutions.

Decreasing objective function coefficients: This modification manipulates the instance-
specific coefficients,

� �
’s, in the objective function (1). A lower-bound modification can

be created by decreasing any number of these coefficients.
Adding decision variables: Assuming that zero is in the allowable range for a new

decision variable, its addition is a lower-bounding modification. As with adding vari-
ables to the dual, adding them to the primal problem creates additional feasible solutions
without excluding any of the feasible solutions to the original problem.

Relaxing optimality for the dual: As discussed in Section 2.1, a lower bound is
produced by relaxing the maximization requirement of the dual to derive a feasible,
though not necessarily optimal, solution to the dual.

Tightening constraints for the dual: Tightening and/or adding constraints for the
dual is a lower-bounding modification for the dual as well as the primal problem.

Deleting decision variables in the dual: Assuming that zero is in the allowable range
for a variable, its deletion has the same effect as adding a constraint setting its value to
zero. When this modification is made to the dual, it yields a lower bound for the dual as
well as the primal problem.

Modifying objective function coefficients for the dual: Decreasing the objective
function coefficients for the dual is a lower-bounding modification for the dual as well
as the primal problem. Decreasing and/or increasing these coefficients, solving the mod-
ified dual problem, and substituting the original coefficients when computing the value
of the dual’s objective function yield a feasible, though not necessarily optimal, solu-
tion for the dual. Since the dual is a maximization problem, this new solution is a lower
bound for the dual as well as the primal problem.

Summary of modifications and discussion Relaxing the minimization requirement
of the objective function yields an upper bound, while relaxing the maximization re-
quirement of the dual problem produces a lower bound. Constraints can be modified
in any number of ways. One or more constraints can be relaxed, additional constraints
can be introduced, and/or coefficients in the constraints can be altered. For the primal
problem, modifications that result in the elimination of feasible solutions generate an
upper bound, while modifications that increase the number of feasible solutions give



rise to a lower bound. For the dual, the reverse is true. Deleting decision variables
in the primal or adding variables in the dual produces an upper bound. Conversely,
adding more decision variables to the primal or deleting variables in the dual provides
a lower bound. Finally, the instance-specific coefficients in the objective function can
be increased and/or decreased. For both the primal and dual problems, increasing these
coefficients is upper bounding, while decreasing them is lower bounding. However, if
the original

� �
values are substituted back in after the problem has been solved, then the

resulting solution value is strictly an upper bound when the primal problem is modified
and a lower bound when the dual problem is modified.

Some of these modifications have been extensively used for deriving bounds while
others have been overlooked. Relaxing the minimization of the objective function and/or
relaxing the maximization requirement for the dual is commonly used for deriving
bounds. Furthermore, relaxing constraints to derive bounds is extensively used in BnB
search. On the other hand, tightening constraints for bounds has a very limited history.
The only common tightening is the addition of constraints that set values of particular
decision variables. These types of constraints are essentially the branching rules used in
BnB search. Finally, the modification of objective function coefficients, to our knowl-
edge, has not been previously used to derive bounds. In this paper, we demonstrate ways
that these overlooked modifications can produce effective bounds.

3.2 Limit crossing

The previous discussion describes a variety of ways that upper-bounding and lower-
bounding modifications can be made to an LP. In this section, a two-step procedure for
using these bounds is synopsized. For convenience, we refer to this procedure as limit
crossing.

The first step is to find a simple upper bound for a problem using one of the mod-
ifications described. The second step is to simultaneously combine upper- and lower-
bounding modifications and solve the resultant doubly-modified problem. If the solution
cost is greater than the simple upper bound, it can be concluded that the upper-bounding
modification of the second step cannot hold for any optimal solution. Similarly, if the
solution cost is less than the simple lower bound, then the lower-bounding modification
of the second step cannot hold for any optimal solution.

These conclusions are easy to justify. Consider the first case, when the simple upper
bound is exceeded. Since the combined modifications result in the simple upper bound
being exceeded, at least one of those modifications must be invalid for every optimal
solution. The lower-bounding modification cannot contribute to any increase in the so-
lution cost, therefore, for each optimal solution, the upper-bounding modification must
contain at least one part that is invalid.

Now, consider the case when the doubly-modified problem solution is equal to the
simple upper-bound value. The

�a¢
value derived from the doubly-modified problem is

the least possible value that can be derived given its upper-bounding modification. If
this value is equal to a simple upper bound that has already been found, then the double
modifications cannot lead to a better solution value than the simple upper-bound value.
Here again, the upper-bounding portion of the double modification must be the cause of
this situation. Conversely, if the doubly-modified problem solution is equal to a simple



lower bound, then the lower-bounding portion of the double modifications cannot lead
to a solution with a better value than the simple lower bound.

3.3 Selections of modifications

There are numerous possibilities for selecting modifications. However, there are a cou-
ple of considerations to contemplate when making these choices for effective modifica-
tions. When selecting a modification for the simple upper or lower bound, the tightest
bound that can be achieved in the allotted time is desirable as this will increase the
possibility for the bounds to cross. For the doubly-modified problem, the modifications
should be selected so as to maximize the usefulness of the information gained. It is im-
portant to observe that while either of these modifications may yield difficult problems,
the combination of the two modifications must render a relatively easy problem for the
method to be efficient.

It is easy to see how modifying constraints and deleting decision variables can lead
to a new problem that is relatively easy to solve. Following are examples demonstrating
how modifying objective function coefficients and adding decision variables can also
lead to relatively easy problems.

Modifications by exploiting phase transitions An exciting new area of development
in the study of combinatorial problems concerns the existence of phase transitions in
which the difficulty in solving a problem changes dramatically when a parameter is
increased beyond a distinct value [27, 32, 37]. When optimally solving random ATSPs,
it has been shown that the cost range affects average-case performance of BnB searches.
Indeed, evidence of dramatic jumps from difficult instances to easy instances when the
range of values in the

� � @ matrix falls below a certain value are demonstrated in [37].
Phase transitions may be the root of Frieze’s ability to introduce a polynomial-time

algorithm [17] that solves the STSP exactly with a probability that tends to 1 as the
number of cities,

)
, tends to infinity, for instances with random cost values drawn from

a range of zero to £ 8 ) ; T A , where £ 8 ) ; ��� 8 f¤ ¥�¦§¤ ¥d¦ f ; .
In our recent work [36], we exploit phase transitions using an unusual upper-bounding

technique. We modify the objective function coefficients of “hard” problems with large
cost ranges, in order to reduce the range of values and derive an “easy” problem on the
other side of the phase transition. After quickly solving this modified problem, we sub-
stitute the original coefficients into the objective function when calculating

�¨¢
, yielding

an upper bound as well as a feasible approximate solution. In addition to being a practi-
cal tool for finding approximate solutions and for deriving upper bounds, this technique
demonstrates how modifications of objective function coefficients can yield relatively
easy problems to solve.

Converting ATSPs to STSPs Deleting decision variables reduces the size of the prob-
lem, so it can be expected that the removal of a portion of the decision variables would
yield an easier problem to solve. It is not so apparent how the addition of decision vari-
ables can yield an easier problem. Yet, the ATSP again offers an example of such a



case. ATSP instances can be transformed into STSP instances using a 2-node transfor-
mation [26]. While the number of arcs after this transformation is increased to © )ªn T vU) ,
the number of arcs that have neither a zero nor infinite cost is

) n T ) , as in the original
problem. Once the problem is converted to an STSP, it can be solved by STSP solvers,
such as Concorde [1]. It is shown in [16] that the computation time to solve five 100-
city ATSPs that correspond to tilted drilling machine problems (with additive norms) is
on average faster using the STSP conversion than using state-of-the-art ATSP solvers
on the original instances. Furthermore, similar results are shown in [9, 7], where a total
of 800 100-city instances were solved. In these cases, the number of decision variables
were more than quadrupled, yet the resulting modified problems were generally easier
to solve than the original instances.

3.4 Previous use of limit crossing

This limit crossing method has not been previously formalized, but a less general, pre-
liminary technique was made explicit and analyzed in our recent work on finding back-
bone and fat variables for the ATSP[8]. Furthermore, the limit crossing method has been
implicitly used in previous work by others. A prevalent example is the pruning rules of
BnB search. The simple upper bound used in this strategy is the incumbent solution.
The doubly modified problem is composed of the relaxation that is solved at each node
(the lower-bounding modification), while the upper-bounding modification is due to the
branching rules (e.g., those in [2]), where decision variables are fixed. When the value
of this doubly-modified problem exceeds the simple upper bound, the entire subtree can
be pruned as every node in this subtree is subject to the upper-bounding modifications
of the double modifications. Another example is Carpaneto, Dell’Amico, and Toth’s
sparsification technique that is summarized in Section 2.1. After finding a simple upper
bound, the doubly-modified problem consists of determining a lower bound while forc-
ing the inclusion of an arc

8 'IC � ; . If the limits cross, the inclusion of
8 'IC � ; cannot lead

to any optimal solution.
While many spontaneous “discoveries” that use the limit crossing concept have been

previously made, formalizing this strategy is conducive for eliciting novel methods that
go beyond search tree pruning.

4 Applications

In this section, we present two recent developments that are direct products of the limit
crossing strategy to demonstrate how the use of our new framework is conducive for
eliciting methods that go beyond search-tree pruning.

4.1 Cut-and-solve

In this section, we discuss a linear search strategy which we refer to as cut-and-solve [9,
7]. This method is based on the limit crossing concept and exploits an unusual upper-
bounding modification in the doubly-modified problem. This modification is the addi-
tion of constraints that require that the sum of a set of decision variables be less than or
equal to a constant.



Cut-and-solve is different from traditional tree search as there is no branching. At
each node in the search path, a relaxed problem and a sparse problem are solved and
a constraint is added to the relaxed problem. The sparse problems provide incumbent
solutions. When the constraining of the relaxed problem becomes tight enough, its so-
lution cost becomes no better than the incumbent solution cost. At this point, the in-
cumbent solution is declared to be optimal.

To avoid branching, cut-and-solve uses cutting planes, as its name implies. How-
ever, unlike the cutting planes in branch-and-cut, cut-and-solve uses what we call pierc-
ing cuts that intentionally cut out at least one feasible solution from the solution space
of the original (unrelaxed) problem. The addition of piercing cuts to a relaxation doesn’t
just tighten the relaxation, as is the case for conventional cutting planes.

Cut-and-solve enjoys a few favorable properties. First, its memory requirements are
insignificant as only the current incumbent solution and the current doubly-modified
problem need to be saved as the search path is traversed. Second, since there is no
branching, there is no “wrong” subtree in which the search may get lost. A tree search
method such as BnB, on the other hand, is commonly solved using depth-first search or
best-first search. Depth-first search may very often search fruitlessly in a subtree with
no optimal solution. Best-first search can overcome this aimless search problem, but
requires a large amount of memory. Cut-and-solve is free from both of these difficul-
ties. Third, it can be easily adapted to an anytime algorithm as an incumbent solution
is found at the root node and continuously updated during the search. The algorithm
can be terminated at any time during its execution with the current incumbent as an
approximate solution.

We have had excellent results using cut-and-solve for solving difficult, real-world
instances of the ATSP [9, 7]. Many real-world ATSP instances have intrinsic structures
that make them relatively difficult to solve using conventional algorithms. While state-
of-the-art implementations outperform cut-and-solve for instances that are relatively
easy to solve, cut-and-solve was faster, on average, for the difficult real-world problems.

4.2 Finding backbones and fat

Another project that explicitly uses the limit-crossing strategy is a tool for identifying
backbones and fat [8]. Here, a backbone variable is a binary decision variable that has
a value of one for all optimal solutions, and a fat variable is one that has a value of
zero for all optimal solutions. Finding backbone variables is useful as they are critical
components of a system and it may be desirable to reduce their number and derive a
more redundant system. It is useful to identify fat variables as they can be completely
eliminated from the system without any loss. In addition to being beneficial for im-
proving physical systems, identification of backbones and fat can reduce the problem
size and this reduction is especially valuable when enumerating all optimal solutions.
These problems are #P problems and harder than the original ATSP. In the limit cross-
ing method we used in [8], we used the relaxation of the subtour elimination constraints
coupled with the elimination of arcs eminating from a particular city to identify back-
bone and fat variables. This procedure uses polynomial time and we were able to iden-
tify roughly half of the backbones and 99% of the fat variables for random ATSPs.



5 Conclusions

In this paper, we introduce a framework for exploiting bounds in OR and AI. New tech-
niques for deriving bounds are explored and a two-step procedure, called limit crossing,
is formalized. A goal of this paper is to shed light on potential limit-crossing opportu-
nities that may have been previously overlooked by pure discovery. Within the realm
of linear programs, we have identified numerous ways in which limit crossing might be
invoked.

Limit crossing is a powerful technique, as demonstrated by previous instantiations
that resulted from spontaneous discoveries as well as recent projects that are the direct
product of utilizing this formalized approach. Nevertheless, these implementations have
only scraped the surface of the vast possibilities that may be exploited. Future work is
needed to reveal the full potential of this intriguing methodology.
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