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Geodesic grassfire for computing mixed-dimensional skeletons

Figure 1: A 3D input model (a), the discrete medial faces (b) and edges (c) computed using our algorithm (redder color indicates where the
object shape is more suitable to be depicted by medial surfaces (b) or curves (c)), and the final skeleton (d) (shown with geometric fairing).

Abstract1

Skeleton descriptors are commonly used to represent, understand2

and process shapes. While existing methods produce skeletons at a3

fixed dimension, such as surface or curve skeletons for a 3D object,4

often times objects are better described using skeleton geometry at5

a mixture of dimensions. In this paper we present a novel algo-6

rithm for computing mixed-dimensional skeletons. Our method is7

guided by a continuous analogue that extends the classical grassfire8

erosion. This analogue allows us to identify medial geometry at9

multiple dimensions, and to formulate a measure that captures how10

well an object part is described by medial geometry at a particular11

dimension. Guided by this analogue, we devise a discrete algorithm12

that computes a topology-preserving skeleton by iterative thinning.13

The algorithm is simple to implement, and produces robust skele-14

tons that naturally capture shape components.15

1 Introduction16

Describing shapes is an important task in graphics and vision. A17

simple, concise descriptor that captures the essence of an object18

greatly facilitates computer-based understanding of the object and19

applications such as matching and segmentation. For this reason,20

medial descriptors (or skeletons) have been well studied and widely21

used. These descriptors, at lower dimensions, lie interior to the ob-22

jects and capture visually prominent shape features such as protru-23

sions. Typically, medial descriptors consist of geometry at a fixed24

dimension. For example, the medial axes, introduced by Blum25

[1967], generally consist of (n− 1)-dimensional manifolds (e.g.,26

surfaces) in an n-dimensional object (e.g., a 3D solid). Curve skele-27

tons of 3D objects, which are important in animation control, lie on28

an even lower dimension.29

Often times, an object can be better described using skeletons at30

a mixture of dimensions. Consider the toy car example in Figure31

1 (a). The head and crown of the car, which are thin and wide,32

can be well depicted using a medial surface. The back-handle, on33

the other hand, is much more elongated in one direction, and is34

better described as a medial curve rather than a thin band of medial35

surface. For this and many other models that we shall see, a mixed-36

dimensional skeleton serves as a better descriptor than either a 1D37

or 2D skeleton alone.38

In this paper, we propose computing a skeleton that consists of39

medial geometry at a mixture of dimensions based on local shape40

anisotropy. Our algorithm proceeds in two steps. First, we com-41

pute medial geometry at all dimensions k for k < n. Second, for42

each k, we identify parts of the k-dimensional medial geometry that43

describe the shape well.44

Our algorithm is guided by a continuous, conceptual analogue that45

we refer to as geodesic grassfire (Section 3). This analogue extends46

Blum’s grassfire analogy [Blum 1967], which defines the medial47

axes, to identify medial geometry at lower dimensions. In addition,48

the arrival times of the geodesic grassfire front offer an intuitive way49

to measure how well an object part is described by medial geometry50

at a particular dimension. Guided by this conceptual analogue, we51

develop a simple, practical algorithm that extracts a discrete mixed-52

dimensional skeleton by iterative thinning (Section 4). During the53

algorithm, discrete medial elements and their measures are com-54

puted, as shown in Figure 1 (b,c) for the toy car. Note that medial55

faces or edges with high measures lie in regions that, intuitively, can56

be described well by medial surfaces or curves. These elements are57

then combined to form the final skeleton, as shown in Figure 1 (d).58

Contributions In the context of previous work on extracting medial59

shape descriptors, we make the following contributions:60

• We formulate geodesic grassfire, a natural extension of the61

classical grassfire erosion that defines medial geometry at var-62

ious dimensions. We show that the arrival times of the fire63

front intuitively capture how well a object part is represented64

by medial geometry at a particular dimension.65

• We present a discrete algorithm for computing mixed-66

dimensional skeletons based on iterative thinning. The algo-67

rithm is very simple to implement, and produces skeletons68

that capture well the shape components of 3D models.69

2 Previous works70

There has been significant amount of work on defining, computing71

and pruning skeletons. Note that most of these methods are specific72

to the dimension of the object and/or the dimension of the skeleton.73

We will briefly review some representative works, while referring74

readers to excellent survey articles and books such as [Shaked and75

Bruckstein 1998; Cornea and Min 2007; Siddiqi and Pizer 2008]76

for extensive discussions.77

1



Online Submission ID:

Defining skeletons Since its introduction by Blum [1967], the me-78

dial axes (MA) has become an important descriptor due to its ability79

in capturing intuitive shape features. The MA is generally (n−1)-80

dimensional within an n-dimensional object, while degenerating to81

lower-dimensional structures in singular cases (e.g., the MA of a82

2D circle is a point). Pizer et al. [2003] reviewed and compared83

a number of alternative, multi-scale definitions to MA designed to84

overcome its instability to boundary irregularity.85

Unlike MA, there is much less consensus in how medial descrip-86

tors at lower dimensions should be defined, and existing definitions87

are scarce. Dey and Sun [2006] proposed one of the first defini-88

tions of the curve skeleton of a 3D object, as the singular points89

of a medial geodesic function (MGF) on the MA. More recently,90

Tagliasacchi et al. [2009] defines the curve skeleton of a set of 3D91

oriented point samples as its rotational symmetric axis (ROSA) in92

a variational sense. Note that, like [Dey and Sun 2006], the medial93

curves resulted from our extended grassfire formulation can also94

be considered as the singular points of a function on the MA sur-95

face, where the function is the arrival time of the geodesic grassfire96

front. In comparison, our formulation is more general and con-97

structs k-dimensional medial geometry in an n-dimensional object98

for all k < n, including the MA (when k = n−1).99

Computing skeletons Numerous methods have been proposed to100

compute or approximate the MA [Siddiqi and Pizer 2008]. Broadly101

speaking, these methods fall in two classes based on their repre-102

sentations of the MA. Geometric methods yield explicit geometric103

representations, such as piece-wise linear curves and surfaces. Ex-104

amples are methods that compute the MA of a polyhedral model105

[Sherbrooke et al. 1996; Culver et al. 1999] or approximate the MA106

as a sub-set of Voroncoi facets induced by a point sampling of the107

object boundary [Amenta et al. 2001; Dey and Zhao 2003]. On108

the other hand, digital methods represent the object and the MA as109

a collection of lattice points (e.g., 2D pixels or 3D voxels) based110

on digital topology [Rosenfeld 1979]. These methods typically in-111

volve a thinning procedure [Lam et al. 1992] guided by a distance112

function [Borgefors et al. 1999], a vector field [Siddiqi et al. 2002],113

or local feature criteria [Tsao and Fu 1981; Bertrand 1995; Ju et al.114

2007].115

Algorithms for computing curve skeletons of 3D objects similarly116

fall into geometric and digital categories [Cornea and Min 2007].117

Examples of geometric methods include eroding a medial surface118

[Dey and Sun 2006], computing the Reeb graph [Pascucci et al.119

2007], decomposing the object into parts [Katz and Tal 2003], sur-120

face inflation [Sharf et al. 2007], or mesh contraction [Au et al.121

2008]. A digital curve skeleton can be computed by thinning from122

a surface skeleton [Svensson et al. 2002; Ju et al. 2007], or guided123

by a force field [Chuang et al. 2000; Brunner and Brunnett 2008].124

In comparison, geometric methods produce skeletons with explicit125

connectivity and dimension that makes them convenient for recog-126

nition and processing, while digital approaches are often simpler127

to implement and can more easily enforce topology preservation128

by thinning. Our algorithm for computing the mixed-dimensional129

skeletons can be considered as a hybrid approach, in that we per-130

form topology-preserving thinning on an explicit geometric struc-131

ture (e.g., a cell complex).132

There are very few algorithms that compute skeletons with both133

curve and surface elements. Goswami et al. [2006] extracts the un-134

stable manifold of index 2 and 1 saddle points in the Euclidean dis-135

tance function, which are respectively 1 and 2 dimensional. While136

the dimension of these manifolds is determined by local shape prop-137

erties (e.g., whether the cross-section is near-circular), the dimen-138

sion of our skeleton elements are chosen by a salience measure that139

reflects global shape property (e.g., anisotropic elongations).140

Pruning skeletons While being an intuitive shape descriptor, the141

MA is known for its instability to small boundary changes. A va-142

riety of salience (or significance, importance, etc.) measures have143

been proposed for identifying and pruning unstable portions of the144

MA, in 2D [Shaked and Bruckstein 1998] and 3D [Sud et al. 2005],145

which can be classified into local or global ones [Reniers et al.146

2008; Siddiqi and Pizer 2008]. Local measures rate a MA point by147

surface geometry in its immediate neighborhood, such as the angle148

formed by the MA point and its two closest surface points [Blum149

1967; Dimitrov et al. 2003; Sud et al. 2005] or the distance be-150

tween the two surface points [Amenta et al. 2001; Dey and Zhao151

2002]. While reflecting stability, local measures cannot capture152

global shape properties such as anisotropy. For example, a point on153

the crown of the toy car in Figure 1 would have a same (high) local154

measure as a point on the back-handle of the toy, even though the155

back-handle exhibits a much greater one-dimensional elongation.156

On the other hand, global measures capture shape properties in157

a larger region. Notable examples of 2D global measures are158

the Maximum Erosion Thickness (MET), which approximates the159

area of the 2D shape eroded in response to the loss of a skele-160

ton branch [Shaked and Bruckstein 1998], and the Feature-distance161

[Ogniewicz and Kübler 1995], which expresses the length of the162

shortest curve on the shape boundary between the closest boundary163

points to the MA point. One of these 2D measures, the Feature-164

Distance (FD), has been extended to evaluate 3D surface skeletons165

using lengths of geodesic curves on surfaces [Dey and Sun 2006;166

Reniers et al. 2008], and even further to evaluate 3D curve skele-167

tons using approximated areas of geodesic patches [Reniers et al.168

2008]. However, as we shall compare in Section 5, the FD measure169

tends to be high in regions that are further away from the border of170

the skeleton. In contrast, our salience measure (part of which ex-171

tends the MET measure) captures more intrinsic shape properties.172

In addition, our formulation is generally applicable to objects and173

their medial geometry in any dimensions.174

3 Geodesic grassfire175

To compute a mixed-dimensional skeleton, our algorithm involves176

computing medial geometry at various dimensions and identifying177

portions of medial geometry at each dimension that is suitable for178

shape description. We shall first describe a conceptual, continuous179

analogue that guides our algorithm design. We will then present the180

discrete algorithm in the next section.181

Our continuous analogy extends the grassfire analogy that Blum182

used to described the medial axes (MA). In the grassfire analogy,183

the object is continuously eroded from its boundary at a uniform184

speed, as if a grassfire is propagating on a field. The erosion stops185

when the grassfire fronts meet and quench, resulting in a thin struc-186

ture – the MA. To construct medial geometry at lower dimensions187

than that of MA, we shall extend Blum’s grassfire onto manifolds188

of low dimensions. We will first describe the formulation of the ex-189

tended grassfire and the resulting medial geometry. We will then de-190

rive a salience measure that, given medial geometry at a particular191

dimension, identifies the parts that are most suitable for describing192

the local shape. Note that our discussion in this section is intended193

to remain at a conceptual level, for the purpose of motivating our194

discrete algorithm in the next section.195

3.1 Formulation196

Consider a continuous erosion of an n-dimensional object by a fire197

that propagates geodesically on manifolds from their boundaries at198

a uniform speed. When the fire fronts on a k-manifold (k ≤ n) meet199

and quench, the object is locally eroded to a thin, (k−1)-manifold,200

which is subject to further erosion. The erosion process terminates201

2
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p

q

t2(p)

t2(q)

Figure 2: Illustration of geodesic grassfire on a 2D shape.

when the remainder of the object consists only of manifolds without202

boundaries.203

We illustrate this geodesic grassfire on a 2D object in Figure 2. As204

in Blum’s grassfire, erosion begins on the boundary of the object,205

which is a 2-manifold. As the fire fronts meet (in (b)), the object206

is locally eroded to a thin curve, which is a 1-manifold (e.g., red207

and blue points in (b)). The erosion on the curve starts as soon as208

the 2D fire reaches a curve end-point (e.g., blue point in (b)), and209

the fire propagates along the curve at a same uniform speed (c).210

A fire front on the curve (e.g., the top left branch) is annihilated211

when it comes to a junction (e.g., red point in (d)), as the curve212

end-point disappears. The erosion terminates when either the fire213

fronts on the curve meet and quench at a point (as in (e)), which is a214

0-manifold, or when the remaining curve forms closed rings, which215

are boundary-less 1-manifolds.216

Similarly, geodesic grassfire on a 3D object begins on the boundary217

of the object (a 3-manifold). The quench sites of the fire front form218

a surface (a 2-manifold), and erosion starts from the boundary of219

this surface as soon as the 3D fire reaches there. The quench sites of220

this surface fire form a curve (a 1-manifold), which is in turn eroded221

from its end points when the surface fire reaches there. The erosion222

terminates when the object is eroded to a point, a set of closed rings,223

or a set of hollow shells (2-manifolds without boundary).224

The recursive nature of geodesic grassfire leads to a recursive defi-225

nition of medial geometry. The k-dimensional medial geometry of226

an n-dimensional object (k ≤ n) is the k-manifold formed during227

geodesic grassfire by fire quenching on (k +1)-manifolds. By con-228

struction, the medial axes (MA) is the (n− 1)-dimensional medial229

geometry, whereas lower-dimensional medial geometry are sub-230

sets of the MA. Note that, since the erosion by geodesic grassfire231

is topology-preserving, medial geometry at some dimensions may232

not exist for some shapes by our definition. For example, the medial233

point does not exist for a 2D annulus or a high-genus 3D solid.234

3.2 Medial salience235

Medial geometry at different dimensions may be good at describing236

different types of shapes. For example, while a medial surface can237

describe well a plate-like object in 3D, a medial curve can capture238

the essence of a tube-like object. Intuitively, a k-dimensional me-239

dial geometry is suitable for representing a shape that has a promi-240

nent elongation along a k-manifold, a property that we refer to as a241

k-anisotropy. For example, a long tube has a strong 1-anisotropy as242

its dominant elongation is along a 1D curve, while a wide plate has243

a strong 2-anisotropy as its primary elongation is isotropic on a 2D244

surface. To evaluate the “suitability” of medial geometry for shape245

description, we will measure, at each point on a k-dimensional me-246

dial geometry, the strength of k-anisotropy in the local shape.247

Here we show that shape anisotropy is well captured by the differ-248

ence in arrival times of the fire fronts along manifolds of different249

dimensions. Take a 2D object, for example, and consider a point p250

on the medial curve (Figure 2 (f)). The time at which the fire front251

from the object boundary reaches p, denoted as t2(p) (2 means the252

fire front comes from a 2-manifold), measures the shortest distance253

from p to the object boundary, or the maximum isotropic elonga-254

tion of the shape centered at p. Since p lies on the medial curve, it255

will be later reached by the fire front along the curve at some time256

t1(p)≥ t2(p). Note that t1(p) is the sum of two terms, the geodesic257

distance from p to some end-point of the medial curve q, and t2(q).258

This sum measures the elongation of the shape along the medial259

curve segment [p,q]. In fact, q is chosen by erosion such that t1(p)260

measures (half of) the maximum elongation of the shape along any261

medial curve segments centered at p. As a result, the larger the262

time t1(p) in comparison to t2(p), the more the shape is elongated263

along a 1D curve than in other directions at p, and hence there is a264

stronger 1-anisotropy at p.265

We can measure 2- and 1-anisotropy similarly on the medial sur-266

faces and curves of a 3D object. Consider a point p on the medial267

surface. The arrival time of the fire front from the object bound-268

ary, t3(p), measures the maximum isotropic elongation at p, while269

the arrival time of the surface fire front, t2(p) (t2(p) ≥ t3(p)), mea-270

sures the maximum isotropic elongation of the shape along the me-271

dial surface. A larger difference between t2(p) and t3(p) reflects272

a more pronounced “side-ways” elongation of the shape along a273

2-manifold at p, and hence a stronger 2-anisotropy. Similarly, 1-274

anisotropy at a point p on the medial curve can be measured by275

comparing the arrival time of the surface fire front, t2(p), with the276

arrival time of the curve fire front, t1(p) (t1(p) ≥ t2(p)).277

Based on these observations, we formulate a unified salience mea-278

sure for any k-dimensional medial geometry in an n-dimensional279

object (k ≤ n), assessing its suitability for shape description. The280

salience at a point p consists of two terms, which capture the abso-281

lute and relative strength of k-anisotropy of the local shape,282

Ak(p) = tk(p)− tk+1(p), and Rk(p) = 1− tk+1(p)
tk(p)

(1)

where tk(p) ≥ tk+1(p) are the arrival times of the fire fronts along283

the k- and (k + 1)-dimensional medial geometry. Note that some284

points on the medial geometry may not be reached by the grassfire285

when the object has a non-trivial topology (e.g., consider a point286

on a medial curve that forms a closed ring). For these points, tk(p)287

would be infinity, and both salience terms are maximized. Intu-288

itively, the object has infinite k-anisotropy there as the elongation289

can “wrap around”.290

Interestingly, in 2D, the first term A1(p) is identical to the well-291

known Maximum Erosion Thickness (MET) [Shaked and Bruck-292

stein 1998] for measuring the significance on a MA curve. The293

MET is low on parts of the MA that respond to small boundary294

perturbations, which can be explained using our formulation since295

small bumps on the boundary only introduce small amounts of ab-296

solute variation in how much the local shape elongates in different297

directions. Our formulation further extends MET to medial geom-298

etry in higher dimensions, and evaluates high for medial geometry299

parts corresponding to larger, more stable shape features. On the300

other hand, the second term Rk(p) is scale-independent and eval-301

uates high for medial geometry that lies in “sharply” anisotropic302

3
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Figure 3: Algorithm flow: given a discrete object represented as a
cell complex (a), we first compute medial 2-cells (b) and 1-cells (c)
with salience measures using iterative thinning, and then extract, in
a second thinning pass, a topology-preserving skeleton containing
salient medial curves (blue) and surfaces (red) (d).

parts, such as a flat plate (k = 2) or thin tube (k = 1), even if their303

sizes may be small. As a result, we consider a medial geometry304

to be salient if both terms are high (i.e., describing large and sharp305

anisotropy).306

4 The discrete algorithm307

Guided by the our formulation of geodesic grassfire, we now308

present an algorithm for extracting a discrete skeleton containing309

salient medial geometry at various dimensions. The algorithm pro-310

ceeds in two steps. First, we introduce an iterative thinning proce-311

dure on a discrete object representation that mimics the continuous312

erosion process by the geodesic grassfire. Applying thinning on313

a object (e.g., Figure 3 (a)) results in a set of discrete medial ele-314

ments each with salience measures (Figure 3 (b,c)). Next, given a315

user-specified salience threshold, we compute a skeleton containing316

salient medial elements that additionally preserves the topology of317

the original object (Figure 3 (d)).318

The propagation of geodesic grassfire requires identifying mani-319

folds at different dimensions and their boundaries. As a result, we320

represent a solid object discretely as a cell complex, which consists321

of geometric elements (cells) at various dimensions. As we shall322

see, cell complexes admit a simple thinning procedure that closely323

resembles geodesic grassfire. Using this procedure, discrete medial324

cells and their salience measures can be similarly defined as in the325

continuous analogue.326

4.1 Cell complexes327

A cell complex is a closed set of k-cells, each homotopy equivalent328

to an open ball in k-dimensions. For example, a point is a 0-cell,329

an edge without its end points is a 1-cell, and a triangle without its330

border is a 2-cell. By definition, if a cell δ (e.g., a triangle) is in331

a cell complex, all cells on the boundary of δ (e.g., corner points332

and edges) are also in the same complex. A 2D example of a cell333

complex is shown in Figure 4 (a). A cell complex can be created334

from other object representations either by triangulating the object335

interior, or by first voxelizing the model on a grid and constructing336

cells from grid elements [Zhou et al. 2007]. While the execution of337

our algorithm is not limited by the type or dimension of the cells, a338

cell complex with uniform and isotropic cells is preferred for sim-339

ulating uniform-speed erosion (discussed next).340

A manifold and its open boundary can be easily identified on a cell341

complex. First, let us define an isolated cell as one that does not lie342

on the boundary of any other higher-dimensional cells in the com-343

plex (that is, it is “thin”). Furthermore, if a k-cell borders exactly344

one (k+1)-cell, the former is called a witness cell while the latter is345

called a simple cell. In the example of Figure 4 (b), the edge γ is an346

isolated edge, while edge σ is a witness edge that borders a simple347

quad δ . Note that a simple cell is necessarily isolated. Intuitively,348

a k-manifold consists of isolated k-cells, and the boundary of the349

manifold consists of witness (k−1)-cells.350

Figure 4: Two iterations of thinning (b,c) on a cell complex (a).

4.2 Computing medial cells and salience351

Recall that geodesic grassfire erodes an object from all manifold352

boundaries simultaneously at a uniform speed. The following iter-353

ative thinning procedure mimics this process on a cell complex:354

Geodesic grassfire thinning: At each iteration, identify all simple355

cells, then remove, in parallel, each identified cell with a witness356

cell on its boundary.357

Like geodesic grassfire, this thinning erodes a cell complex simul-358

taneously from all its manifold boundaries. The combined removal359

of simple and witness cells guarantees that the remaining cells after360

each iteration form a valid cell complex that maintains the topology361

of the original complex – just like the grassfire erosion. To explain362

this, we first note that removal of a single pair of simple and wit-363

ness cells is a simplicial collapse [Matveev 2003], which preserves364

the homotopy and validity of the cell complex. Next, the remaining365

pairs of simple and witness cells after the removal of one pair are366

still simple and witness cells. Hence simultaneous removal of all367

pairs will not jeopardize the topology or validity of the complex.368

Figure 4 (b,c) illustrates two iterations of thinning in 2D. Note that369

if multiple witness cells exist on the boundary of a simple cell, an370

arbitrary one is selected to remove.371

Using the thinning procedure, we can define medial geometry and372

formulate medial salience similarly to geodesic grassfire. The k-373

dimensional medial geometry (k < n) is the k-manifold formed dur-374

ing thinning, which consists of all k-cells in the original cell com-375

plex that become isolated at some thinning iteration, referred to as376

medial cells. The salience at a medial k-cell δ can be similarly377

defined as in Equation 1:378

A(δ ) = Isim(δ )− Iiso(δ ), and R(δ ) = 1− Iiso(δ )
Isim(δ )

(2)

Here, Iiso and Isim are respectively the number of iterations after379

which the cell δ becomes isolated or gets removed as a simple cell,380

indicating the arrival times of the thinning fronts along the (k +1)-381

manifold and k-manifold. Note that Isim(δ ) > Iiso(δ ).382
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Figure 5: Comparing our salience measures on medial faces (b) and edges (c) with the extended FD measure in [Reniers et al. 2008] on
surface (e) and curve (f) skeletons. Skeletons computed using our method at low (0.5) and high (0.7) salience thresholds ε2

R are shown in (d,g)

Figure 3 (b,c) visualizes the medial faces and edges with their383

salience for an input cell complex (a). In this and other figures,384

the salience is visualized as follows: cells are colored by their385

R(δ ) values (the redder the higher), while cells with small A(δ )386

are shrunk in size. Observe that, due to its scale-dependent for-387

mulation, the A(δ ) term (i.e., extension of 2D MET [Shaked and388

Bruckstein 1998]) is high in regions that are “deeper” into the ob-389

ject, even if the regions do not exhibit a “sharp” feature, such as the390

column and the diagonal sheets at the edge of the box in (b) and the391

diagonal curves in the box in (c). On the other hand, the R(δ ) term392

reflects the “sharpness” of the feature and is low (e.g., in green or393

blue color) in those regions. The combination of the two measures394

identify features that are both sharp and at a larger scale, which we395

next use for computing the skeleton.396

4.3 Computing a skeleton397

A collection of medial cells at various dimensions with high398

salience can capture the various types of shape anisotropy. How-399

ever, a connected skeleton is often desired for practical applications,400

and some applications further require that the skeleton preserves the401

topology of the object. Furthermore, for more compact representa-402

tion, the skeleton should consist of fewer, larger pieces.403

To compute a clean, topology-preserving skeleton, we proceed as404

follows. Given a user-specified salience threshold (for both A,R405

terms), we identify the set of medial k-cells with high salience at406

each dimension, and obtain a subset that forms connected com-407

ponents whose sizes are greater than a user-provided number sk.408

Next, we re-run the thinning procedure in the previous step, this409

time preserving the identified set of salient cells. Since thinning410

is topology-preserving, the remainder after thinning maintains the411

same topology as the original object. A 2D skeleton computed this412

way is shown in Figure 3 (d).413

Memory-efficient implementation Straight-forward implementa-414

tion of our algorithm may not be able to handle models at high415

resolutions (> 2563 voxels), which consume a prohibitive amount416

of space when represented as a cell complex with uniform cells. To417

address this issue, both thinning passes in our algorithm are imple-418

mented on an adaptive octree grid where only the layer of cells at419

the current thinning front as well as salient medial cells are main-420

tained at the finest resolution. Octree cells are dynamically col-421

lapsed and refined as the thinning proceeds inward.422

5 Comparisons and examples423

Here we demonstrate our method on a suite of 3D models. All424

models are constructed from triangular meshes by first converting425

a mesh into a binary volume [Ju 2004] followed by conversion into426

a cell complex. Note that the computation of medial cells and their427

salience is completely parameter-free. Computing the final skele-428

ton is controlled by thresholds εk
A,εk

R of the two salience terms for429

medial k-cells, and the size of minimum component sk. Unless oth-430

erwise stated, we use εk
A = 0.05L,εk

R = 0.5,sk = (0.05L)k for both431

k = 1,2 in all our examples, where L is the dimension of the bound-432

ing box. The test is performed on a PC with 2GB of main memory433

and 2.2GHz CPU, and time and memory consumption is reported434

in Figure 9.435

We first compare, in Figure 5, our salience measures with those436

of [Reniers et al. 2008], which extends the 2D Feature-Distance437

(FD) measure. As observed in (e,f), the FD measures tend to fa-438

vor regions on the skeleton that are further away from the skeleton439

boundary. In contrast, our salience measure, particularly the R(δ )440

term (e.g., the color), captures well the object parts that have strong441

anisotropic elongations in two dimensions (e.g., the wings and the442

tail) or one dimension (e.g., the wings, head, and tail), as seen in443

(b,c). Using a higher threshold of R(δ ), we are able to obtain a444

skeleton as in (g) that semantically separates the bird into parts that445

would not be possible using the FD measures.446

We next examine the stability of our salience measures and skele-447

ton under a noisy setting. In Figure 6, we compare the result on a448

hand model (a) and a synthetically damaged model (e) by apply-449

ing two iterations of thinning on (a) during which pairs of simple450

and witness cells are randomly removed. Observe that although the451

smoothness of the medial cells are affected, due to the nature of452

thinning, the salience measures are not significantly affected, and453

the combination of the two salience terms yield skeletons with very454

similar structures (d,h).455

Our discrete thinning algorithm is guided by a continuous analogue.456

Ideally, the result of our algorithm would converge to that of the457

continuous analogue as the size of the discrete cells become in-458

finitesimal. Although we do not have any formal proof, we did ob-459

serve in all our examples, such as that in Figure 7, that the skeleton460

computed using our method on the same model under the same set461

of parameters visually converges to a smooth limit as the resolution462

of the cell complex increases.463

Finally, we show a gallery of models and our computed skeletons in464

Figure 1 and 8. For visual appeal, the skeletons in these examples465

are smoothed geometrically. Observe that our skeletons naturally466

capture the varying shape anisotropy on these models using skele-467

ton geometry at different dimensions.468
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Figure 6: Salience measures and the resulting skeleton of an original model (top row) and one with synthetically added noise (bottom row).

Figure 7: Skeletons computed for a fish model represented by cell complexes on grid resolutions 2563 (b), 5123 (c), and 10243 (d).

6 Conclusion and discussion469

We have presented a novel approach for computing skeleton de-470

scriptors that consist of medial geometry at a mixture of dimen-471

sions. The k-dimensional medial geometry depicts object parts with472

a strong anisotropic elongation in k dimensions. Our algorithm is473

guided by a continuous analogue that extends the grassfire erosion474

of medial axes to construct medial geometry at lower dimensions,475

which additionally offers an intuitive salience measure that captures476

shape anisotropy. We present a discrete thinning algorithm on cell477

complexes that mimics the continuous erosion, and extracts the fi-478

nal skeleton as the collection of discrete, salient medial elements.479

Limitations and future works Our thinning algorithm relies on the480

isotropy and uniformity of the cells in the cell complex to simulate a481

uniform-speed erosion. The use of non-uniform cells would not re-482

sult in skeletons that lie medial to or reflect the intrinsic anisotropy483

of the shape. We will investigate means to alleviate the problem,484

possibly by varying the speed of thinning based on local cell sizes485

and anisotropy. Other interesting venues for future research include486

investigating theoretical properties of the geodesic grassfire and its487

resulting medial geometry, and GPU-accelerated thinning that har-488

vests its highly parallel nature.489
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