Metadata, citation and similar papers at core.ac.uk

Provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-94-4

1994-01-01

Reasoning about Places, Times, and Actions in the Presence of
Mobility

C. Donald Wilcox and Gruia-Catalin Roman

The current trend toward portable computing systems (e.g., cellular phones, laptop computers)
brings with it the need for a new paradigm for thinking about designing distributed applications.
We introduce the term mobile to refer to distributed systems that include moving, autonomous
agents which loosely cooperate to accomplish a tastk. The fluid nature of hte interconnections
between components in a mobile system provides new challenges and new opportunities for
the research community. While we do not propsoe to have fully grasped the consequences of
these systems, we believe that the notions of place, time, and action will be central in... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Wilcox, C. Donald and Roman, Gruia-Catalin, "Reasoning about Places, Times, and Actions in the Presence
of Mobility" Report Number: WUCS-94-4 (1994). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/356

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233235008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/356?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/356

Reasoning about Places, Times, and Actions in the Presence of Mobility

C. Donald Wilcox and Gruia-Catalin Roman

Complete Abstract:

The current trend toward portable computing systems (e.g., cellular phones, laptop computers) brings
with it the need for a new paradigm for thinking about designing distributed applications. We introduce
the term mobile to refer to distributed systems that include moving, autonomous agents which loosely
cooperate to accomplish a tastk. The fluid nature of hte interconnections between components in a
mobile system provides new challenges and new opportunities for the research community. While we do
not propsoe to have fully grasped the consequences of these systems, we believe that the notions of
place, time, and action will be central in any model that is developed. In this paper, we show that these
concepts can be expressed and reasoned about in the UNITY logic with a minimal amount of additional
notation. We choose as an example an elevator control system, with minor modifications to give the
system mobile characteristics. We begin with a high-level specification of the control system, one which
does not include any mobile characteristics, and introduce the notions of place, time, and action as they
arise in the specification refinement process. The result of the refinement is an abstract program, a
specification of the local actions of the system along with restrictions on teh cooperation patterns
between the various components.

https://openscholarship.wustl.edu/cse_research/356?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/356?utm_source=openscholarship.wustl.edu%2Fcse_research%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages

[&) °
Washington
WASHINGTON « UNIVERSITY+IN + ST« LOUIS

School of Engineering & Applied Science

Reasoning about Places, Times, and Actions
in the Presence of Mobhility

C. Donald Wilcox
Gruia-Catalin Roman

WUCS-94-04

April 1994

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Printed 4/22/94

Abstract

The current trend toward portable computing systems (e.g., cellular phones, laptop computers) brings with
it the need for a new paradigm for thinking about and designing distributed applications. We introduce the term
mobile to refer to distributed systems that include moving, autonomous agents which loosely cooperate to
accomplish a task. The fluid nature of the interconnections between components in a mobile system provides new
challenges and new opportunities for the research community. While we do not propose to have fully grasped the
consequences of these systems, we believe that the notions of place, time, and action will be central in any model
that is developed. In this paper, we show that these concepts can be expressed and reasoned about in the UNITY
logic with a minimal amount of additional notation. We choose as an example an elevator control system, with
minor modifications to give the system mobile characteristics. We begin with a high-level specification of the
control system, one which does not include any mobile characteristics, and introduce the notions of place, time, and
action as they arise in the specification refinement process. The result of the refinement is an abstract program, a
specification of the local actions of the system along with restrictions on the cooperation patterns between the
various components,

1. Introduction

One of the most exciting recent developments in the computing arena is the trend towards autonomy,
mobility, and global communication. Cellular phone networks, laptop computers, autonomous vehicles, and
intelligent badges are just a few of the application areas benefiting from this new technological revolution. Each of
these applications involve distributed systems that include antonomous agents which change physical location,
communicate intermittently, lack centralized control, exhibit cooperative behavior, and demand customized access to
globally available resources. We choose the term mobile to refer to systems that share these particular
characteristics.

‘While traditional multiprocessor and network architectures have well-established models for use in
algorithm design and performance evaluation (¢.g., shared-variables and message-passing), appropriate models for the
study of mobile computing still need to be developed. Without putting forth at this time any specific proposals, we
contend that place, time, and action are likely to emerge as central concepts in many models of mobile computing.
The very notion of mobility presupposes the ability of a computing agent to alter its location in a manner which is
visible 1o the overall computation. This may take place when communication with a moving vehicle is handed over
to a new cell, when a portable computer enters a new room, or when a person, upon arriving home, reestablishes
contact with some public or private network. In the first two examples computing elements physically travel
through space while in the third case stationary equipment provides mobile users with ubiquitous access to
computing resources. In disiributed computing the notion of process is often used as a surrogate for place—arbitrary
delays in message delivery are used to model (indirectly) the fact that processes occupy possibly distinct locations in
space. In mobile computing, explicit modeling of an agent's location may be required since a location change may
impact the overall behavior of the system. A command ship exiting a broadcast perimeter, for instance, may leave
the rest of the fleet unable to perform its mission.

The proposal to include some notion of time in the model is more controversial, since it seems to imply
that mobile systems are by definition real-time systems. There is some evidence, however, to suggest that time is
of the essence in many mobile computations. First, it is no longer appropriate to assume arbitrary delays in
message delivery, so the relation between time and space requires careful reevaluation, Further, the passage of time
affects the location of computing agents and, therefore, alters the system's behavior. Weather data being broadcast
periodically in a limited area may be missed by a passing train if the interval between broadcasts is greater than the
travel time through the broadcast zone, and incomplete transfer of data may occur if the train exits the zone before the
broadcast is complete. In this example, it is conceivable that, by knowing the movement pattern of an agent,
requested data could be prefeiched and delivered to next cell down the road in anticipation of a hand-off, Finally,
location and velocity data could be used to control the data transmission rate, a high rate for when the agents are near
each other and a low rate when they are far apart.

Because the composition of a mobile system is highly dynamic, the underlying model must permit both the
creation of actions and dynamic changes in the nature of their interactions. The same agent, for instance, may
participate at different times and in different places in point to point, multi-cast, or broadcast communication with a
variety of other agents. The same action may have different consequences depending on when and where it is
executed. The overall repertoire of interactions among actions associated with various agents must be richer than in
the case of traditional architectures. Stationary components of the systems may rely on shared memory and message
passing to communicate among themselves. Wireless communication, on the other hand, may assume the form of
synchronous point-to-point communication or of one-way radio broadcast received only by listening agents.
Furthermore, interactions among agents may not be possible at all times, and while eventual reception of the data
cannot assumed any longer, the delivery order can be taken for granted. These assumptions are quite different from
those typically made about a distributed systems (in the absence of failures).

Despite all these complicating factors, application-oriented models of mobile computing will need to create
the illusion of utmost simplicity, i.e., a clean abstract picture in which place, time, and actions may not appear at
all. Unfortunately, elegant and dependable application interfaces will have to be supported by system software and
communication protocols whose design and verification will necessarily have to consider issues such as those
outlined above. Providing reliable mobile computing systems is likely to entail increased reliance on formal
derivation techniques during design. The goal of this paper is to demonstrate that simple extensions to established
formal specification and design techniques can accommodate the concepts of place, time, and action in a manner
consistent with design requirements for mobile systems. We make no attempt to offer a completely general or

comprehensive treatment of mobile computing, merely a representative illustration of the manner in which several
important concepts can be factored into a formal design process.

Our investigation centers around the specification refinement methods associated with the UNITY logic, a
specialization of linear temporal logic. (The presentation, while of a technical nature, is intended for a relatively
broad audience. All proofs have been omitied and notation is introduced only as needed,) A UNITY specification
consists of assertions over an abstract global state of the system as a whole. Safety properties are expressed in terms
of invariants—properties which hold for all states of the computation—and an unless relation which constrains
the set of permissible state transitions. Progress properties are (usually) captured by the leads-to relation which
expresses the notion that certain states must eventually be reached from certain other specified states. Design is
viewed as a process by which an initial highly-abstract specification is gradually refined into increasingly more
concrete specifications up to a point where constructing a correct program becomes a trivial task.

Faithful to the notion that application-oriented specifications ought to be simple and concise, we assume
the starting point to be a typical UNITY-style high-level specification free of references to places, times, and actions.
The concept of place is captured by introducing an additional attribute for each component of the abstract state.

Locus information i uscd during refinement to guide data partitioning among processes, to distinguish local data
transformations from interprocess communication, and to reason about mobility and its impact on the
communication capabilities of moving system components. Time is inireduced as a distinguished variable not
accessible to the programmer. Timing constraints (or assumptions) are expressed as invariants involving auxiliary
variables which record the time associated with particular state transitions in the system. Such invariants are used to
prove that specific undesirable behaviors (such as missing a needed broadcast) are actually ruled ont when these
temporal conditions are imposed upon the physical realization of the system. The introduction of actions is the first
step towards writing a concrete program. Each action is characterized as a local transformation—intuitively
corresponding to a single statement execution——or as the local effect of some interprocess communication involving
several distinct locations. Ultimately, we generate not a concrete program in some particular programming
language, but an abstract one whose actions capture local effects and synchronization requirements defining non-local
interactions (stated as invariant properties). The former may be realized as simple statements; the latter may involve
system software managing communications across a traditional network or using wireless technology. Modularity
and possible reusability of components provides the motivation for this particular formulation of the abstract

program.

The remainder of the paper illustrates these ideas on an elevator control problem modified to exhibit some
characteristics of a mobile system while preserving the simplicity and familiarity of an easy to understand
application. Mobility comes from the fact that the conirol system is associated with the elevator cabin. Wireless
communication is introduced as a mechanism by which the elevator becomes aware of the existence (but not the
source) of service requests above and below. As the elevator moves, the communication pattern changes with floors
"above" becoming floors "below.” A general specification of the elevator problem appears in Section 2. Several
refinements of the initial specification are described in Section 3. They provide a brief tutorial to UNITY-style
specification refinement. The concept of place and the associated notation are introduced in Section 4 which
continues the refinement process. Section 5 outlines our approach to reasoning about time and related refinements.
The abstract program is generated in Scction 6, which also presents our proposed notation for actions and
synchronization. Related work and methodological implications of our approach are considered at the end of Sections
2 to 6. Conclusions appear in Section 7.

2. Initial Specification

In this section we introduce the elevator problem used to illustrate our methods and we provide an overview
of the UNITY logic underlying our general approach. In order to make the presentation accessible to a broad
audience, we will explain the logic and accompanying notation informally. Our primary objective is to develop, for
the elevator problem, a formal specification that is at once both concise and general. Concise in the sense that it is
expressed in a few simple properties which can be easily understood; and general in the sense that no reasonable
design solutions are being ruled out from the onset. Because this is an exercise intended to introduce and explain
certain narrow technical issues relating to the specification and design of mobile systems, we will occasionally make
simplifying assumptions whose net effect is to reduce the complexity of our example without changing the essence
of the design process.

The elevator system consists of a single cabin servicing an N floor building, The cabin has doors (which
may be opened or closed) and N request buttons, one for each floor. When one of the request buttons is pressed, it is
lighted and remains lit until the cabin arrives at the requested floor with the doors opened. Similarly, at each floor
there is a pair of call buttons, one for up and one for down. Naturally there is no down button on the first floor, nor
is there an up button on the Nth floor. When a call button on a floor is pressed, it is lighted and remains lit until
the elevator arrives at the floor with the doors opened and servicing the direction of the call. For safety reasons, the
elevator doors must be closed while the elevator is moving. To add an element of mobility we will assume that the
computer controlling the elevator movement resides with the cabin itself and has no hard-wired communication links
with the call buttons. Thus, the call buttons may be accessed only when the elevator is in the immediate proximity
of the particular floor. Knowledge about the existence of calls above or below the cabin is received via some
nonspecific wireless signal being broadcast repeatedly by any floor having a lit button. The cabin can differentiate
signals only as originating above or below. More specifically, we allow the cabin to know that there is a call at a
floor f only when the cabin is at f. All that can be known otherwise is that there is a request in a particular
direction, either up or down from the cabin’s current location, but not the exact position of the request.

beeps from fleors above 5

doors doors
floor 5 status available cdosed open

A

stop

location relative to the floors

TR arrive

;

;

E /\
ﬁoﬂr,‘} dddd dgpart /_\

LR m

stop beeps from floors below §

B v T

time {not to scale)

Fig. 1. Representative behavior and interaction pattern

For the sake of simplicity, we treat the cabin and the floor buttons as a single closed system, and for the
time being, we ignore architectural details having to do with mobility and wireless communication. These issues
will be brought back into the picture as we refine the specification towards an implementable program. At this
point we focus on issues of state representation and on high Ievel policies or performance goals governing the
elevator movement. To ensure some minimal level of quality of service, we require that the elevator not change
service direction as long as it has calls and requests still 1o be serviced in the current direction. This requirement
eliminates pathologic behaviors which might cause calls to be unserviced for arbitrarily-long periods of time. Later

-3-

design steps will have to implement this policy by establishing rules which identify the conditions under which the
elevator stops at a floor, moves along the elevator shaft, or changes direction. We model the elevator’s movement
using three states: arrive, stop, depart. In this model, the elevator makes the decision whether or not to stop ata
floor while in the arrive state, and makes the decision on service direction in the stop state. The depart state models
the state in which the elevator has committed to a decision and is moving in accordance with that decision. This
three-state model maps to a two state model in which arrive and depart correspond to the elevator moving.

up(f) The up call button on floor fis lit.

dn(f) The down call button on floor f is.

rg(f) The request butten for floor £ inside the elevator is lit.

dir(6) The service direction is 8. If §equals -1, the elevator is servicing floors below the
cabin; if § equals 1, floors above the cabin are being serviced.

at(f) The cabin is on or departing floor f.

open The doors of the elevator are open.

stop The elevator is stopped.

arrive The elevator has just arrived on a floor, and is still moving.

depart The elevator is heading for the next floor.

Fig. 2. The abstract state space

The state space is outlined in figure 2. The predicates up(f), dn(f), and rq(f} model the up call buttons on the
floors, the down call buttons on the floors, and the request buttons in the cabin, respectively. When one of these
predicates is true, it means not only that the button has been pressed, but that it is lit, and that it is in some way
impacting the elevator’s decision-making process. The current service direction is dir(§), where the parameter & has
the value ~1 or I: dir{1) means that the elevator is servicing requests for floors above its current location; dir{—I)
floors below. There is no implication of movement in the service direction — the elevator has a current service
direction even when stopped. However, if the elevator does move, it will move in the current service direction. We
maodel the elevator cabin’s current Iocation using the predicate a:(f), While it is reasonable to consider the cabin’s
position as a real number between 1 and N, using such a representation introduces complexities into the specification
which have little to do with the behavior of the elevator, but are rather an artifact of the continuity of real numbers.
Since our goal in the initial specification is simplicity and clarity, we opt for 2 model which considers the cabin to
be.always at some floor, so the parameter £ in at assumes only integer values between 1 and N. We model the
elevator cabin doors with a single predicate open, which is true when the doors are opened, and false when they are
closed, since this is the only characteristic of the doors that is of interest to us. Finally, there are the predicates
arrive, stop, and depart, as described in the previous paragraph,

floor(f) =fe {1,...,N}

on{f) = at(f) A (stop v arrive)

move = arrive v depart

closed = —open

fromio(f,6.f) =sign(f-£H)=5

call(f) = up{f) v dn(f)

needed(f,5) =rg(f) v (6=1 A up(D)) v (E=-1 A dn(f))
work(f) =1q{f) v callf)

Fig. 3. Basic definitions

The elevator’s behavior specification is given in figures 4 and 5. To simplify the specification, we make
use of some definitions which are given in figure 3. The type specification (F1-F5) contains predicates which make
explicit the valid range for free variables in the state predicates and formalizes relationships among them, e.g., F3
expresses the mutual exclusivity of the predicates arrive, siop, and depart. While these predicates are important, they
are rarely referenced explicitly in the remainder of the specification refinement. All these predicates are invariant,
i.e., they hold initially and throughout the execution of the program,

Flaa inv. up®=floor(f)af<N

Flb: inv. dn(H=floor(al<f
Fle: inv. rg{f) = floor(f)

F2a: inv. ayf) = floor(f)
F2b: inv. atfaatf)=f=f
F2c: inv. {(3f:zad)

F3a: inv. amive = —depart
F3b: inv. depart = —arrive
F3c: inv. stop & —move

F4: inv. (dir(1} A —dir(-1)) v (dir(~1) A —dir(1))
F5: inv. —(({at(1) A dir(-1)) v {at@) A dir(1))) A depart)

Fig. 4. Properties constraining the form of the state predicates

‘The behavior specification for the elevator system is given in figure 51. When the elevator arrives at a
floor, it must make a decision whether to stop at the floor or to continue on to the next floor (F6). If there is a
request at the floor in the current service direction, it must be serviced before the elevator leaves the floor (F12).
Since we require that the elevator be stopped before the doors can be opened (F9), the elevator will stop, turn off the
appropriate call and request lights (F11), and open the doors, at which time the call is considered serviced. Until the
call is serviced, the call light must remain on (F13); there is no mechanism for canceling a call. If there are
additional calls on other floors in the same service direction, then the elevator must close the doors and depart the
floor without changing service direction (F7, F12). If there are no calls in the current service direction, the elevator
may change service direction only when stopped (F10). Movement between floors is modeled as occurring in the
transition from depart to arrive — when the elevator makes this state transition, it also moves one floor in the
current service direction (F8).

All of these properties are safety properties and they do not require that anything actually happen. The
elevator could satisfy the specification thus far by not doing anything. To gain the desired activity, we need only add
a single progress property to the specification: if there is a call or request for a floor, it will be serviced eventually
(F14)2. At this point we have a specification which is concise, complete, and formal (except for mobility and
wireless communication constraints), We are ready to start the refingment process.

1 Along with invariant properties, this specification makes use of formulas of the form

p unless g
This formula requires that, if the system is in a state in which p is true and ¢ is not, then executing any statement
leaves the system in a state in which either p or ¢ is true. The unless property models constraints on permissible
state transitions.
2 (F13)is aleads-to property (written). It specifies that if the system ever reaches a state in which the left-
hand side is irue, then eventually it must reach a state in which the right-hand side is true. In general, leads-to
properties do not require that the left-hand side remain true in the meantime. The leads-to relation is transitive,
ie., given P — (J and) - R, one can conclude P — R,

-5-

F6: at(f) A arrive unless at(f) A ((stop A closed) v depart)
Having arrived at a floor, the elevator can either stop at the floor or immediately depart

12 H at(f) A stop unless at(f) A depart
Once stopped, the elevator can begin moving away from the floor

F8: at(f) A depart A dir(8) unless at(f+8) A arrive
The elevator moves in the current service direction,
departing one floor and then arriving at the next

Fo: inv. open = stop
The doors are open only if the elevator is stopped

F10: dir(8) unless stop A closed
The elevator changes directions only when stopped with the doors closed

Flla: inv. dir(1) A at(f) A stop A open = —up(f) A —rq(f)
F11b: Inv. dir(-1) A stop A at{f) A open = —dn(f) A —rq(f)
The call lights are not turned on when the elevator is immediately available

F12: dir(d) A needed(f,3) A {3 : at([") :: fromto(f 5,0 v f=f)
unless at(f) » stop A dir(5) A open
The elevator services all calls and requests in the current service direction before changing
directions

Fl3a: up(f) unless at(f} A stop A dir(1) A open
F13b: dn(f) unless at{f} A stop A dir(-1} A open
F13c: rq(f) unless at(f) A stop A open
Calls and requests are not canceled except when actually serviced

Fl4: needed(f,8) —s at(f) A stop A dir(8) A open
Calls and requests are eventually serviced

Fig. 5. Behavior specification

Discussion. Although the number of concurrency models that have been proposed so far is
overwhelming, when it comes to reasoning about concurrent computations the dominant models fall into only two
broad categories: event-based and state-based. Event-based models (such as CSP[8] and CCS[14]) sought their
mathematical foundation in algebra, while state-based models (such as temporal logic[17], TLA[12], and UNITY[2])
turned to logic. Algebraic models favor constructivist approaches to software design; they start with simple
components having known properties and combine them into larger ones whose properties may be computed. The
use of logic, on the other hand, favors starting with an initial highly-abstract specification which is gradually refined
to the point where it contains so much detail that writing a correct program becomes trivial.

Among state-based approaches, UNITY combines the expressive power of the linear-time logic with the
conceptual simplicity of Hoare-style predicates. All properties are expressed in terms of predicates that hold in every
state. Reasoning about execution sequences becomes unnecessary. By considering properties of the global system
state the formulation of the initial abstract specification is simplified 1o a significant extent while design biases and
modeling artifacts are kept to a minimum. This is made evident by the specification proposed in this section, a
specification which ultimately addresses only three issues: abstract state representation, service obligations, and
service policy. Even though the predicate a¢(f) appears in the specification, there is nothing to suggest that the
solution must be a mobile system or that wireless communication must be present in the final design. These
considerations will be factored in as we gradually bias refinements towards compatibility with the physical
constraints the system must eventually meet.

Regardless of the model one uses, achieving simplicity requires a solid understanding of the problem, proper
choice of notation, and elegant modeling of the environment—it is a generally accepted fact that a complete
specification must include the environment. A key decision we took regarding modeling the environment was to
treat the elevator cabin software and its environment (floor buttons) as a closed system. The closed-system

-6-

assumption is motivated by our desire to avoid dealing with conditional properties, which can add a certain degree of
complexity to the specification and verification processes. As long as the assumptions about the environment are
clearly distinguishable from the properties of the cabin software and the envirenment is not unduly restricted, the
design process is simplified without Ioss of generality. The price we pay for this becomes evident only if we
compose the cabin software with some other device and attempt to prove properties of the composite, in such a case
an equivalent open-system specification may need to be developed. This potential penalty may be acceptable if the
design is made simpler by the closed-system assumption—our experience to date leads us to believe that this is
actually the case.

3. Specification Refinement

The goal of this section is to review UNITY -style specification refinement and to set the stage for
introducing the concepts of place, time, and action. These concepts are not present in the initial specification
because the issues which motivate them (in this specific problem) relate primarily to the design rather than to the
essence of the problem. We believe that in some situations such concepts could appear even in the initial
specification. However, for the purposes of this presentation, we prefer a problem where these concepts are
intreduced gradually, ns they becomo relevant 1o the design process. Qur strategy in this scction is to refine the
initial specification to the point where the control logic is revealed and the necessity of considering the distribution
of data and the mobility of the components becomes apparent.

The basic idea behind specification refinement is to massage the initial abstract specification until it
becomes sufficiently concrete to suggest an immediate implementation. Properties are gradually strengthened, with
abstract data representations migrating towards traditional data structures and processing goals being reshaped into
algorithms. In this section, we will focus our attention on refining progress (F14) in order to replace a service
obligation by a decision-making process that govems the elevator and door movements. The motivation behind
these refinements is provided by properties F6-F8, which describe the transitions which are allowed within this
process. Figure 6 presents these transitions graphically. We present the refinements informally, with proofs
omitted for the sake of brevity (the proofs can be found in a related technical report).

..

arrive
-5 4 """

--

Fig. 6. Legal state transitions
(8 represents the current service direction)

Refinement 1: Introduce elevator movement., In the first refinement, we simply observe that
when there is work to do, the elevator must move, and eventually this movement should result in the request being
serviced. We refine F14 to require that, when the elevator is making a decision (in either the arrive or stop states),

then the presence of work to be done must result in the elevator moving. The refined specification (shown in figure
7) encapsulates a decision which for the time being makes use of global information, i.e., the presence of calls at
floors other than the one at which the cabin is located. If such a call exists, then the elevator must eventually grrive
at that floor with the call (F14.1). If the elevator is on a floor needing service (where on implies that the elevator is
in either the arrive or stop states) and heading in the right direction, then the elevator must stop at that floor (F14.2).
Finally, when the elevator is departing one floor (depart state), we require it to arrive at the next floor (arrive state).
The proof that refined properties (F14.1-F14.3) imply the original property (F14) follows from the transitivity of the
leads-to relation.

F14: needed(f,8) — at(f) A stop A dir(5) A open

is refined to

F14.1: needed(f.5) A on(f) A dir(8") A (f2f" v §28) = neaded(f,3) A on(f) A dir(d)
F14.2: needed(f.8) A on(f) A dir(8) +» at{f) A stop A dir(8) A open

F14.3: at(f) » depart A dir@) s at(f+8) A arrive

where

on{f) = at(f} A (stop v arrive)

Fig. 7. Introduce elevator movement

Refinement 2: Define a distance metric. F14.1 is not specific about how the elevator moves. It
simply requires that the elevator arrive at floors which must be serviced. Physically, the elevator moves from one
floor to the next, gradually getting closer to a particular floor requiring service. Some formal definition of “closer”
is useful in measuring (and proving) progress. We choose as a metric the maximum number of floors which the
elevator would have to travel, given its current location and service direction, before it would pass by the given floor
moving in the correct direction (under the assumption that the elevator does not change service directions if there is
work to do in the current direction). For example, if the elevator is currently on the third floor heading down, and
there is a call on the fourth floor to go up, then dis«{(3,~1),(4,1)) is 5, since the elevator can move down at most two
floors, at which time it must change service direction, and will arrive at the fourth floor after traveling three
additional floors. The refinement is detailed in figure 8. The proof of correcmess for this refinement makes use of
the induction principle for leads-to (see [2])—given a well-founded metric which measures how close the current
state is from a desired goal, the fact that in any state the metric eventually decreases guarantees that the goal state is
eventually reached. This refinement still hides the decision making process guiding the elevator movement.
However, we are now at a point where it is possible to expose the process in one simple refinement.

F14.1: needed(f,8) A on(f) A dir(3"} A (f#f' v 5¢8")} - needed(f,5) A on(f) A dir(5)
is refined to

F14.1.1: needed(f,8) A on(f) A dir(8") A dist((f,8),(£8) =k aAk>0
> (needed(f,8) A (31", 8" : on(f) A dir(8") :: dist((f,5),(£,8N <k) v

(needed(ES) A on(D) A dir(8))
where
AN-1)-8(-) if 5=5' A fromto(i,5,j)
dist((,67,(15)) = 21(\2':}(.)i+j) A g:Tm(j’a'i) VD
i+j-2 if 8#8' A 6=1

Fig. 8. Define a distance metric

Refinement 3: Expose the processing logic controlling the elevator. Our final refinement
in this section is motivated by properties F6 and F7, which tell what the elevator might do but not why. Here we
make explicit the movement control logic for the elevator as it pertains to each floor—the refinement is shown in
figure 9. The until property is a leads-to combined with an unless, and unlike leads-to, it requires that the
predicate on the left-hand side remain true up 1o the point when the right-hand side is established. Each of the three
new properties in figure 9 reflect one of the three states in which the elevator can make movement decisions: it is
arriving at a floor (F14.1.1.1), it is stopped with the doors opened (F14.1.1.2), or it is stopped with the doors closed
(F14.1.1.3).

When arriving at a floor, the elevator must decide whether or not to stop. By F14.1.1.1, the elevator does
not stop at the floor if it is not needed there but is needed elsewhere in the current service direction. All other
conditions result in the elevator stopping at the floor. When stopped at a floor with the doors opened (Fi4.1.1.2):
(1) the elevator can continue going in the same service direction if there are calls or requests that must be attended to,
or (2) it can close the door while changing the service direction. The decision is made concurrently with the closing
of the doors, thus making it impossible for the elevator to become held at a floor by repeatedly calling the elevator
to the current floor after the doors are closed but before the elevator departs. Finally, when stopped at a floor with
the doors closed, but with work to be performed (F14.1.1.3): (1) the clevator can open the doors to scrvice a request
at the current floor; (2) it can continue in the current service direction to service a call or request, or (3) it can change
service directions to attend to a call or request in the opposite direction. Note that if there is no work to be done in
any direction, the elevator’s behavior is unconstrained.

The form of these properties is typical of progress properties in a reactive system. The left-hand side of
each property is a predicate which describes that portion of the system’s state which is under the control of the
system itself, in this case the cabin’s location and service direction. The right-hand side of each property is a
disjunction of possible transitions, each of which combines the required transition with those conditions outside of
the direct control of the system which effect the decision of which transition to make. This form is required by the
use of the until property, which requires that the left-hand side of the property remain true up to the point that the
right-hand side is established. If the left-hand side contained predicates which reflected portions of the state space
over which the system has no direct control (in this case the call and request buttons), then it would not be possible
to guarantee that the lefr-hand side was not falsified without placing undesirable constraints on the behavior of the
environment. The form of these properties comes up again when we introduce actions, when the reactive portions of
the right-hand side become enabling conditions for the actions in the abstract program.

F14.1.1: needed(f,8) A on{f) A dir(8") A dist{(T'.8V, (SN =k Ak>0
— (needed(f,8) A {3 ", 8" : on(f) A dir(8" :: dist((f .3V, (L8N <k) v
(needed(f,5) A on{f) A dir{d))

is refined to

F14.1.1.1: work_in(f,8} A at(f) A dir(8) A arrive
until (—meeded(f,8) A must_go(f,5) A at(f) A depart A dir(6}) v
(al(f} A stop A closed A dir(d))

F14.1.1.2: work_in{f,8") » at{f) A stop A open A dir(8)
until (must_go(f,5) A at(f) A depart A dir(8)) v
(—must_go(f,8) A at(f) A stop A closed A dir(-3))

F14.1.1.3: work_in(f,8) A at{f) A stop A closed A dir(8)
uniil {(ai(f) A stop A dir(8} A open) v
(—needed(f,8) » must_go(f,8) A at(f) A depart A dir(5)) v
{(—needed(f,8) A —must_go(f,8) A work_in(f,—8) A
at(f) A stop A closed A dir(-8))

where

must_go(f,6) = {3 ' : fromto(f,5,F) :: work(f))
work_in(f,8) = needed(f,8) v must_go(f.8)

Fig. 9. Expose the processing logic controlling the elevator

The proof that this refinement is correct is more complex. Our approach is to introduce a metric which
measures distance with greater precision than dist, a metric which accounts for movement within the floor as well as
between floors, and to show that the new refinement reduces this metric. It should aiso be noted that this refinement
includes F14.2, which is therefore no longer needed.

Having refined the progress properties to the point that the mechanism by which the elevator makes
movement decisions is explicit, we could generate an executable program from this specification. However, the
decision-making process is dependent upon information about the location of remote calls (in the predicate must_go),
which is incompatible with the assumed underlying architecture. This latter concern will guide the remainder of our
refinements, However, before we can consider this requirement formally we need to formalize the notion that a
particular predicate involves data at some location. This is the subject of the next section.

Discussion. In sequential programming, formal derivation enjoys a prestigious tradition [5, 6, 15, 16].
UNITY [2] builds directly on this formal foundation by extricating proofs from the program text and by advocating a
refinement strategy in which the program emerges only in the last step. The kind of refinements appearing in this
section are illustrative of a process in which a high-level property is replaced by lower-level properties which imply
it. Several case studies involving the application of this methodology to a variety of problems are available in the
literature [2, 9, 23] and an industrial-grade application [24] has been reported recently. ‘The approach was also
integrated in a methodology for the derivation of concurrent rule-based programs [20] and for architecture-directed
refinement [21]. An alternate approach to specification refinement is that of program or action refinement. Lamport
[11] is credited with introducing the notion of refinement mappings which led to much subsequent research along
these lines (see [4] for representative papers). Although the more operational flavor of action refinement appeals to
many researchers, we contend that operational approaches are better suited in the later stages of design,

4. The Concept of Place

One simple approach to introducing the notion of space is to attach location as an additional attribute in the
state representation. Since our specifications characterize states by using predicates over the state space, it is only

-10-

natural to treat the Iocation atiribute as an extra argnment of any of the state predicates. This way one can think of a
property as being true at some particular location. We call these augmented state predicates spatial predicates. Since
the technique is basically one of data refinement, coupling invariants are used to relate the original state predicates to
their spatial counterparts. To facilitate distinguishing spatial predicates from normal state predicates, we will write
spatial predicates using a sans serif font in alf caps, whereas normal state predicates are written in lower case using a
serif font. The new notation and several useful definitions appear in figure 10.

Pl PW#L=P(A, v)

P2: P(W)={3 X 2 P(#\)

P3: PMV)@A=PEM#AA (YA 1A 24 —PHEL)
P4; P(W@ =(3 L P@A)

P5: [P(x) A Q(Y) A r(@)I#A = PWHA A Q(Y)#A A 1(2)

Fig. 10. Spatial notation

A spatial predicate Pis a state predicate which is quantified over some set A, the set of places. We
introduce the notations P#A, read “P is true at least at location A”; and P@A, read “P is true only at location A”
where A4 ranges over A. The new notation (see property P1) is simply a convenient way of writing predicates which
have one additional (distinguished) free variable, and reasoning about spatial predicates follows the rules of first-order
predicate logic. Ordinary predicates may be seen as spatial predicates in which the location is existentially bound
(P2) thus indicating that the predicate is true somewhere (as opposed to everywhere). The shorthand notation @ is
used when a predicate is true in a unique place (P3). If the specific location is not important (P4), it can be omitted,
as in P(v)@. Finally, we allow spatial qualifiers to distribute over other logical operators (P5). When this is done,
the spatial quantification affects only spatial properties. This notation proved very useful in differentiating among
local and global properties since the latter kind involve more than one location.

Refinement 4: Introduce location information. Using our notation, we can now refine the
specification to include explicit references to the places where various state components are located. The set of
places A over which the spatial predicates are quantified is the set of floors, i.e., integers between 1 and N. The
spatial predicates are introduced in figure 11, The assignment of locations to predicates is straightforward; properties
of call buttons are located on the respective floors (F16) and all other properties are co-located with the elevator cabin
(F17, F18). The predicates CABIN##f and ON#f are the spatial counterparts of a:(f) and on(f) (F19).

Fl6a: inv. UP#f < up()
F16b: inv. DN#f < dn(f)
Floc: inv. CALL# < call(f)

Fl7a: inv. ARRIVE#f < at(f) A arrive
F17b: inv. STOP#f < at(f) A stop
Fl7c: inv. DEPARTH#{ < at(f) A depart

F18a: inv. DIR(B)f < at(f) A dir(8)
F18b: inv. RO < at(f) A rq(f)
F18c: inv. OPEN#f ¢ at(f) A open
Fl18¢c: inv. CLOSED#f < ai(f) A closed

F19a: inv. CABIN# < [ARRIVE v STOP v DEPART#f
F19b: inv. ON#{ < on(f)

Fig. 11. Introdacing spatial predicates

Refinement 5: Segregate local and global predicates. Now that we have a convenient notation
for expressing location, we can refine the specification to make explicit those properties which require access to non-
local information. All progress properties (F41.1.1.1-F14.1.1.3) use the predicate work_in, which refers to floors

-11-

other than the one at which the cabin is located. Here we re-write this property to separate its local and non-local
components, as outlined in figure 12,

at(f) A work_in(f,d)

is refined to
LREQ(8)#f v rcall(f,5)
where

LREQ(S)#f = [CABIN A ((8=1 A UP) v (8=1 A DN) v { 3 [: fromto(f,8,f) v f=f :: RQ("))) 1#f
rcall{f,8) = (CABIN#{ A (3 ' : fromto(£,5,1) :: CALL#{ })

Fig. 12, Refining work_in into local and non-local components

The transformation is purely mechanical. Access to information local to the cabin is encapsulated into the
spatial predicate LAEQ, while the predicate rcall reflects the non-local considerations. Naturally, the remainder of the
refinements are motivated by a desire to replace reall with a local predicate while retaining the correct behavior of the
elevator. A similar transformation reveals that the predicate needed(f,5) can be computed using only information
which is located at the floor f. Thus, the predicate needed for a particular floor is local to the cabin if the cabin is
currently located at that floor. This transformation is shown in figure 13, which also serves to define the meaning of
the spatial predicate NEEDED(S)#.

needed(f,0)

((5=1 A UP#) v (5=—1 A DN#£} v RQ(D)#f

U

[((6=1 AUP) v (§=—1 A DN) v RQ(D)1#f

Iir

NEEDED(S)#f

Fig. 13. Refining needed into a spatial predicate

Refinement 6: Limit references to remote floors. While there is no way to refine out
references to remote floors, it is possible to separate knowledge about the remote floors from the mechanisms by
which this knowledge is acquired. First, we observe that the use of fromto in work_in is existentially quantified
over all floors in a particular direction; i.e., it is not necessary for the cabin 10 know the exact floor at which a call
exists, only its relative direction. Second, because the elevator only needs to know about the presence of remote
requests when making a service decision, it need only have accurate information when it actually commits to a
decision. With these two observations in mind, we introduce a new spatial predicate LCALL(8), co-located with the
cabin and containing the cabin’s current view of rcall (see figure 14). In keeping with the first observation, the
predicate LCALL is quantified over directions (F20). From the second observation, we require that LCALL exactly
matches reall before the elevator leaves a decision-making state, of which there are three: the eievator can be in the
arrive state (F21), it can be stopped at a floor with the doors opened (F22), or it can be stopped with the doors closed
(F23). Because we wish for the elevator to be able to respond instantly to calls when stopped with the doors closed,
we require that at such times LCALL always exactly match rcall. The problem of guaranteeing that the elevator can
accurately compute rcafl is the motivation behind the remaining refinements,

12 -

F20: inv. LCALL(3)}#f = CABIN#f

F21: ARRIVE#F unless ARRIVE# A (LCALL(S)#f > rcall(£,5))
F22: [STOP A OPENJ#f unless [STOP A OPENJ#f A (LCALL(SWF & rcall(f,5))
F23: inv. [STOP A CLOSEDJ#f = (LCALL(S)#f < rcall(£,5))

Fig. 14. Constraints over the spatial predicate LCALL

This definition of LCALL allows us to replaces rcall with LCALL throughout the specification (figure 15).
The correctness of this refinement follows immediately from observing that in F14.1.1.3, every time LCALL is
referenced, the elevator is stopped with the doors are closed, and so F23 applies; and that in F14.1.1.1 and
F14.1.1.2, the transition from the left-hand side to the right-hand side is constrained by F21 and F22. Additionally,
at this time we perform the mechanical transformation of re-writing the progress properties using spatial predicates.

F14.1.1.1: work_in(f,8") A at(f} A arrive A dir(5)
until (—nceded(f,5) A must_go(f,5) A at(f) A depart A dir(8)) v
(at(f) A stop A closed A dir(8))
F14.1.1.2: work_in{f,3) A at{f) A stop A open A dir(8)
until (must_go(f,d) A at(f) A depart A dir(8)) v
{(—must_go(f,5) A at{f) A stop A closed A dir(-5))
F14.1.1.3: work_in{f,5" A at(f) A stop A closed A dir(8)
until {(at(f) A stop A dir(8) A open) v
(—needed(f,8) A must_go(f,8) A at(f) A depart A dir(8)) v
(—needed(f,8) A —must_go(f,8) A work_in(f—8) A
at(f) stop A closed A dir{-8))

are refined to

F14.1.1.1.1: [(LREQ(S) v LCALL(S") A ARRIVE A DIR(S)}#f
until [—NEEDED(S) A LCALL(S) A DEPART A DIR(S)J#E v
[STOP A CLOSED A DIR(S)J#E
F14.1,1.2.1: [(LREQ(") v LCALL(3")) A STOP A OPEN A DIR(S)JE
until [LCALL(S) A DEPART A DIR(S)J#f v
[LCALL(8) A STOP A CLOSED A DIR(-8)#f
F14.1.1.3.1: [(LREQ(S) v LCALL(S')) A STOP A CLOSED A DIR(8)]#f
until [STOP A OPEN A DIR(G)Hf v
[-NEEDED(S) A LCALL(S) A DEPART A DIR(S)J#f v
[~NEEDED(8) A —~LCALL(S) A (LREQ(-8) v LCALL(-5)) A
STOP A CLOSED A DIR(-8)J#f

Fig. 15. Limit references to remote floors

Refinement 7: Formulate the rules for updating data about remote floors. Without
considering the mechanisms for updating LCALL, we can define the conditions under which the update ought to take
place. This involves a refinement of F21 and F22, shown in figure 16. Here, we require that the elevator not exit
the arrive (F21.1) or open (F22.1) states when there is a remote call but LCALL has not been correctly set. Further,
we teset LCALL when entering either of these states, and in all other states, if LOALL is set, it must remain so (F24).
Finally, LCALL cannot become set if reall is not true (F25). Note that this does not constitute a refinement of F23,
While we can show that this invariant is not invalidated in the transitions into the stop-closed states, we must retain
the requirement that in this state, if rcall becomes true, then LCALL must also immediately become true. The proof
that this is a correct refinement relies on the fact that we can prove that, in the arrive and stopped-open states,
LCALL(8}f is true only if reall(f,8) is true.

-13 -

F21: ARRIVE#f unless ARRIVE#E A (LCALL(S# & rcall(£,5))
F22: [STOP A OPENJ#f unless [STOP A OPENJ# A (LCALL(S)#f > rcall(£,5))

are refined to

F21.1: ARRIVE#f A rcall(f,5) unless [ARRIVE A LCALL(S)J#f

F22.1: [STOP A OPENJ¥f A rcall(f,5) unless [STOP A OPEN A LCALL(S)J#f
F24: LCALL(3) unless (ARRIVE v (STOP A OPEN)) A —LCALL(S)

F25: —LCALL(8)#f unless rcall(f,5)

Fig. 16. Rules for updating data about remote floors

Refinement 8: Model the wireless communication. F21.1, F22.1, and F23 remain difficult to
implement because they require the cabin to be able to test rcall directly. In this refinement, we introduce into the
specification the mechanism for communicating hetween the floors and the cahin, We remind the reader that each
floor having a pending call transmits on a periodic basis a radio signal, a beep; the cabin can detect the direction, but
not exact location, of a beep. The behavior of the beep is described in figure 17. We model the beeps using a
spatial predicate BEEP(Z), where the index { is the total number of beeps issued by the given floor since the elevator
system began execution—because the actual implementation is not concerned with the index #, these unbounded
values pose no difficulties in the generation of the program. A beep on floor f is modeled by a transition from a
state in which BEEP(i}#f is true to a state in which BEEP(i+1)#f is true, The floors beep at regular intervals when
there is a pending call (F28)—this should allow the cabin 1o know about the call. A beep is always associated with
the pressing of a call button (F27) when the cabin is not already at the floor—this should help guarantee that LCALL
and rcall agree when the elevator is in a decision-making state. Finally, a floor does not actually beep when the
cabin is on the floor, allowing the cabin to distinguish between local and remote calls,

F26a: INIT = BEEP(OWf

F26b: inv. BEEP(i}#f = floor(f) Ai20
F26c: inv. BEEP(i{#f A BEEP(#f = i=]
F26d: inv. {3 i:: BEEP@)#f)

F27: [-CALL A BEEP()J#f

unless [CALL A BEEP(i+1) A —ONI#f v [CALL A BEEP(i) A ONI#{
F28: [CALL A BEEP(i)J#f

unless {CALL A BEEP(i+1) A ~ONI# v [-CALL A BEEP(i)J#f

Fig. 17. Definition of spatial predicate BEEP

Having characterized the behavior of the floors, we now turn to formalize the communication that takes
place between the floors and the cabin. This refinement, shown in figure 18 simply requires that whenever there is a
beep, then LCALL is correctly set to reflect it. There are three refined properties, each more-or-less reflecting one of
the three decision-making states. F27.1 requires that, when a call is first made on a floor other than the one at which
the cabin is currently located, then not only must the floor beep immediately, but LCALL must also be set at the
same time. F28.1 and F28.2 require that, if the elevator is in a decision-making state with LCALL not correctly
reflecting rcall, then the cabin cannot leave its current state until it has heard a beep, at which time LCALL will be
correctly updated. F28.3 specifies that in all other states, if the floor beeps, the beep is reflected in LCALL, while
disallowing beeps when the cabin is on the floor. Together, F28.1-F28.3 refine F28,

-14 -

F21.1: ARRIVE#f A rcall(f,8) unless [ARRIVE A LCALL(E)J#f

F22.1: [STOP A OPENJ#f A rcall(f,5) unless [STOP A OPEN A LCALL(8)J#f
F23: inv. [STOP A CLOSEDJf = (LCALL(S)#f &> rcall(£,5))
F27: [~CALL A BEEPG)J#f

unless [CALL A BEEP(i+1) A —ONJ#f v [CALL A BEEP() A ONJ#f
F28: [CALL A BEEP()J#

unless [CALL A BEEP(i+1) A ~ONJ#f v [<CALL A BEEP()J#f

are refined to

F27.1: [CALL A BEEP(i)]#f
unless ([CALL A BEEP(i+1)H#f A (3 8 : fromto(f',8,£) :: LCALL(8)#f)) v
[CALL A BEEP(i) A ONJ#f
F28.1: [ARRIVE A —LCALL(8)J#f A [CALL A BEEPQ)J#I A fromto(£,5,1)
unless [ARRIVE A LCALL{BY#E A BEEP{i+1)#f
F28.2: [STOP A OPEN A —L.CALL(B)J#f A [CALL A BEEP()J#f' A fromto(f,3.1)
unless [STOP A OPEN A LCALL(8)#f A BEEP(i+1)#f
F28.3: [(—ARRIVE A —(STOP A OPEN)) v LCALL{8)J#f A [CALL A BEEP(D# A fromto(f,5,5)
unless ([CALL A BEEP(i+1) A —ONJ#{ A {3 .8 : fromto(f",5,) :: LCALL(SHMH") v
[-CALL A BEEP(I#

Fig. 18. Model wireless communication

We now have in place a mechanism for guaranteeing that the cabin can determine whether there are calls to
service in a particular direction without having to actually detect the presence of calls at remote floor. However,
F28.1 and F28.2 require that the elevator not leave a decision-making state until it knows for sure that there is not
going to be a beep. Formalizing the requirement and the solution in terms of timing constrainis is the subject of the
next section,

Discussion. Most often, the concept of space makes its way into the refinement process in terms of
considerations regarding the allocation (mapping) of data across the underlying architecture. In a network, for
instance, distant processes cannot share data but must exchange information via messages. Arguments about
possible allocations may provide the rational for the refinement steps but are factored in the design process in a
totally informal manner. The introduction of spatial qualifications allows us to give a more formal treatment of the
allocation problem. While this may be beneficial in general, it becomes essential when dealing with mobile
systems where the underlying architecture is in a state of continual flux due to changes in the location of and
interconnection pattern among the components of the network.

Our approach for introducing the concept of place has its inspiration in positional logic [18] and was
accommodated by a minimal amount of notational veneer. While the basic specification model did not change,
additional discipline in the application of the refinement process is required. The first issue we faced was when and
how to introduce space in the refinement process. We chose to discuss spatial qualifications as soon as we had to
consider the notions of local versus remote access to information, i.e., the allocation became a relevant issue.
Coupling invariants provided the mechanics for relating the location-free specifications to the location-explicit
specifications. Because the relationships between the two kinds of specifications are invariant. one could make use
of predicates which are not spatially qualified throughout the remainder of the refinements. This, however, would
defeat the purpose of spatial qualifications and we chose to carry the spatial notation in the subsequent refinements.
The notation allows us to reason formally about and to give syntactic form to several notions important in mobile
computing: location-dependent properties, co-location of properties associated with moving objects, and local versus
global data access. Finally, spatial qualification promises to play an important role in modeling certain aspects of
wireless communication such as broadcast range, distance-dependent transmission rate, etc.

-15-

5. The Concept of Time

Time is represented by a distinguished variable T, not available to the program and referred to as the current
time. In contrast to the way we introduced spatial qualifications, time is not an attribute of state components but an
additional distinguished component of the state, In a given program state, the predicate & holds if the current time
is t(T1). The value of T is always positive (T2), unique (T3), and strictly increasing (T4). A formal definition of
time in our logic is given in figure 19.

TIL: inv. &t=(T=1)

T2: inv.(Jt:t20:: &)

T3: inv, &tA &t'= t=t¢

T4: &tunless {3t : >t &t')

Fig. 19. Basic properties of time

In the specific case of the elevator problem, time appears as a constraint over the frequency with which
beeps must be generated so as to guarantee that the cabin does not take certain decisions prematurely. Timing
assumptions simply eliminate certain kinds of behaviors. One way of thinking about this approach is to assume
that we have available a history of all the events (state transitions) happening in the system and the timestamps
associated with each occurrence. Any ordering that violates the timing assumptions is thrown out. For a specific
problem we do not need to consider all events, only a selected subset. The timing assumptions become invariant
properties that make reference 10 the recorded timestamps.

The sequence of time values representing the successive, individual occurrences of some event is called a
timestamp. A timestamp records the time values associated with each transition from false to true for some given
predicate. If we have a timestamp S which is used to held this sequence for some property P(x), we write:

S.x stamps P(x)

which is defined by the specification found in figure 20. To distinguish fimestamps from other predicates, we will
use a bold, fixed-width font when writing the names of timestamps. The initial value of a timestamp is dependent
upon the initial state of the property it records: if that property is initially true, then the timestamp starts with a
single 0, otherwise the timestamp is initially empty (T6). The timestamp is changed only by appending to the
sequence the value of T' when the stamped property changes from false to true (T7); otherwise the timestamp remains
unchanged (T8).

-16 -

Té: INIT = PEIASX=[0]) v (-P(x} A8x=¢g)

T —P(x} A 8.x=C unless P(x) A {3 t: &t :: S.x=0)
TS: P(x) A 8.x=0 unless —P(X) A S.x=06

S(x) = <0> S(x) = <0, 7>

P{x} is true

|

o
PPN TR
-~
e
‘o
1]
H
H
H
=
L2
3
:(D

L.

P(x) is false

with the added notational conventions

s[i] denotes the i'th element of the sequence

S[17 denotes the first element of the sequence

53 denotes the last element of the sequence; S alone is used when the context is clear
te S denotes the presence of some element with value ¢ in the sequence

Is! denotes the number of entries in the sequence S.

Fig. 20. Definition of a timestamp

A timing constraint is an invariant property relating one or more timestamps to the current system state,
Timing constraints can be used to express restrictions on when an event takes place, on the order in which events
occur, or on the separation (in time) between successive events. Since timing constraints are safety properties, they
do not require that an event occur: rather they state restrictions on the times at which the event may occur. In our
example, we will use timing constraints to express the requirements that the beeps occur at regular intervals of no
more than b seconds, that the cabin doors remain open for at least seconds, and that the elevator remain in the
arrive state for at least b seconds. We can then show that properties F28.1 and F28.2 are satisfied in the presence of
the timing properties.

Refinement 9: Guarantee timely broadcast reception. We first require that the interval between
beeps be no more than & seconds if the elevator is not currently sitting on the floor. The timing constraint (F29,
shown in figure 21) is written as an invariant relationship between the current system state, the current time, and the
value of the timestamp. It requires that, in all cases, either less than b seconds have elapsed since the last beep, there
is no call at the current floor, or the cabin is currently on the floor.

Timestamp definitions
BEEP. i. £ stamps beep(i)#f

Timing constraint
F29: inv. &t A BEEP(M#f = (BEEP.i.£$ +b>) v ~CALL#f v ON#f

Fig. 21. Timing constraint on beep

The two timing constraints on the behavior of the cabin are similar in form, and so we present them
together. They require that the cabin remain in the arrive or stop-open states for at least b seconds; i.e., long enough
to hear at least one beep. In both cases, the formal requirement (F30, F31, in figure 22) states that, if less than b
seconds have elapsed since the elevator entered one of these two states, then the elevator is still in the given state,

-17-

Timestamp definitions

OPEN stamps open
ARRIVE stamps arrive

Timing constraint
F30: inv, &t A OPENS + b >t = open
F31: inv. &t A ARRIVES + b >t = arrive

Fig, 22, Timing constraint on the cabin

At this point, it is possible to show that these timing constraints (F29-F31) represent a refinement of
F28.1 and F28.2. The refinement is shown in figure 23, which simply puts the pieces of the refinement together in
one place.

F28.1: [ARRIVE A —LCALL(S)J# A [CALL A BEEP(1)J#f A fromto{f.5,0)
unless [ARRIVE A LCALL(S)J#f A BEEP(i+1)#f

F28.2: [STOP A OPEN A —LCALL(8)I#f A [CALL A BEEP(I)J#f A fromto(f,3,{")
unless [STOP A OPEN A LCALL(B)J#f A BEEP(i+1)#"

open

arrive beep

detection
|....jgb__)(....|-..|.+ TR S O V.0

maximum interval
between beeps

are refined to

F29: inv. &i A BEEP(i}#f = (BEEP.i.£$ + b >t} v ~CALL#f v ON#F
F30: inv. &t A OPENS +b>1= open

Fil: inv. &t AABRRIVES +b>t= arrive

F32: BEEP(i#f unless BEEP(i+1)#f A {3 .5 : fromto(f,§,f) :: LCALL(8)}#f)

Fig. 23. Replace global knowledge with timing constraints

It should be noted that the exact means whereby the timing constraints will be implemented is of no
concern to us here: they could represent engineering constraints on the design of the elevator hardware, they could be
built-in as constraints on the scheduler for the software that is used (o control the elevator, or they could be
implemented in the actual control software using timers and flags. What matters here is that, with these constraints
in place, we are able to guarantee the desired behavior.

There remains one open issue in the specification. F32 requires that programs which will ultimately be
located at two distinct locations interact with each other. While we understand the mechanism whereby this
communication will take place, i.e., the beeps, the continued presence of predicates which reference information
having multiple locations is uncomfortable, especially since we know that the programs which perform the separate
actions of beeping and setting LCALL will not be co-located. The mechanisms used to separate local transformations
from remote communication will be the subject of the next section.

Discussion. Several real-time models that relate to our work include timed transition systems [7], timed
automata [13], and event-based systems [22]. Our approach, however, was influenced primarily by Abadi and

- 18-

Lamport [1] who argued successfully that real-time can be accommodated by existing formal systems in simple ways
and demonstrated it using TLA. It is simplicity that we sought in our strategy for reasoning about real-time
properties. The TLA approach relies on introducing a clock and absolute timers which prevent the clock from
advancing prematurely and actions from executing too early. All timing properties assume the form of safety
properties. Because UNITY specifications are given in terms of properties of states rather than actions, we turned to
an analogous but less procedural approach. The clock action is no longer necessary, we just need to make sure that
it is not disallowed by the specification. The deadlines set by timers in TLA are replaced by timestamps which
establish baselines relative to which deadlines are specified; rather than scheduling actions, invariants impose
restrictions on the permissible system states in the interval between the baseline and the deadline. All the timing
constraints appearing in this section assume this special form and are used to express lower- and upper-bounds on the
occurrence time for selected events. Many other kinds of constraints can be formulated by imposing any desired
constraints among timestamps—our choice in this section was ultimately based how easy was 1o prove the
correctness of the associated refinements.

Our approach has several attractive features. The mechanism for advancing time is left completely
undefined which attests to one of the advantages of abstract non-operational specifications. Time can advance
separate from or simultancousty with other stale transitions—many modcls require time to advance between
actions—and all causal dependencies are preserved by the timestamp recordings. Timestamps are associated only
with events that are actually involved in timing constraints. Timing constraints are maintained separately from the
rest of the specification and, as shown later, are incorporated without change in the abstract program generated at the
end of the refinement process. Finally, the notation used to express timing constraints is intuitive, consistent with
the UNITY style, and minimal.

6. Actions

The next logical step in a UNITY-style refinement is the generation of a concrete program, i.e., a set of
conditional maltiple-assignment statements. However, this would introduce both a new notation and a dependence
upon the particular implementation strategy imposed by the computational model of UNITY. For these reasons, we
prefer to focus our attention on developing yet another specification from which concrete statements could be
trivially derived. We call such a specification an abstract program. Formally, an abstract program consists of a
collection of actions along with data representation invariants which define the state space, timing constraints which
capture timing assumptions about the program behavior, and spatial invariants which relate properties of the system
to the location-independent initial specification. An action, in turn, consists of a name, a count of the number of
times the corresponding statement executed, and a logic specification of the state transitions it entails,

In the abstract sense, an action always exists even though it may not always be enabled. When executed, an
action which is local to one component may execute asynchronously with respect to actions in other components, or
it may act synchronously with one or more other actions. In the latter case, the result is a global action {one
involving multiple locations). The approach introduced in this section allows us to specifly such location-dependent
global interactions in a modular fashion by separating the specification of the local effects of actions from the
specification of the conditions under which the synchronization occurs, The net result is a reduction in the
complexity of the resulting abstract program when compared against a corresponding UNITY program—the number
of statements in a mobile system would increase combinatorially as the number of possible interactions among
actions increases. (For the purpose of this paper it is convenient to think of each independent action and each
possible interaction as corresponding directly to a UNITY statement.) Beside wireless communication we also allow
components to share data when they happen o be present at the same location. This provides a way of modeling
interactions one might observe when a mobile component (e.g., a laptop) is directly connected via a cable to some
other (possibly stationary) component. In such cases the corresponding action continues to be treated as being local.

Figure 24 summarizes the action notation used in this section. Each action has a name A(x)#f which
includes instantiated parameters and a specific location. Associated with each action there is a counter %A(x)#f
which is incremented only if the action takes a step. The purpose for the counter is to allow us to specify
synchronization requirements among actions and it does not appear explicitly in the abstract program. The state
transitions associated with a specific action are captured by the takes-to relation which is defined directly in terms

-19-

of the UNITY ensures3 property. By employing the takes-to relation as in definition Ala (A(x)#f takes P(x) to
Q(x) when R(x)) we accomplish three things: we hide the use of the action counter; we make implicit the
requirement that an action has a local effect by requiring that both the enabling condition, P(x} A R(x), and the
consequence of the action, Qfx), involve the same location as the action itself; and, finally, we account for the
possibility that the component may exist in a reactive environment which may disable the action without it being
executed. This last condition is necessary because the ensures property requires that there is a statement in the
program which is guaranteed to make the desired transition if executed in a state in which the left-hand side is true,
and that once the left-hand side becomes true, it must remain so until the transition is made. It is generally difficult
to write ensures properties in a reactive system, since the enabling conditions are typically out of the control of the
program itself (and are instead under the control of the environment). Thus, it is necessary to formulate (as we have
done here), a property which allows for either the execution or the disabling of the statement to occur once the
statement becomes enabled—in one case the counter is incremented while in the other it is not. If the environment
cannot disable the action, R(x) is always true and the when clause can be omitted.

The variant of takes-to appearing in A1b is less restrictive with regard to the effect of a particular action,
allowing it to involve two distinct spatial Iocations: the one where the component is currently positioned and the
ong where the component moves to after the execution of the action, Without this we would nul Le able (o eapress
the notion of mobility, e.g., the elevator traveling from one floor to the next. The last definition, tracks,
formalizes the meaning of one action, A(x), executing in synchrony with one of several other distant actions B;(x;).
The synchronization is conditional on a global predicate §. In modeling wireless communication the predicate S
may be used to capture the conditions under which the communication is feasible, e.g., the distance between the
transmitter and the receiver is within some specified range.

It is our intent to express abstract programs in terms of these newly introduced relations, which are specific
to the modeling of mobile systems, and without any explicit use of any ensures properties. The latter are to be
used only to prove inference rules that relate takes-to and tracks to unless and leads-to properties used up to
this point in the refinement process.

A %A=k unless BA)#I=k+1

Ala: A takes P(x) to Q(x) when R{x) =
[P() A BAQC)=k A RGO
ensures (Q(x)#f A BAMH=k+1) v [P(X) A BAK)=k A —R)I#

Alb: A(x)H takes P(x) to Q(x,f,f') when R(x) =
[P(x) A BAG)=k A R)J#T
ensures (Q(c L.} A BAXMH=k+1) v [PR) A BAX)=k A —R{x)J#
A2: A(xo)#f0 tracks {i: 1<i<n :: Bi(xi)#fi Y when S("'xi""’fi"") =
S(...xi,...,fi,...) A %A(XO)#f0=k0 AV i:1gign %Bi(xi)#fi=ki)
unless (%A(XG)#foﬂkoﬂ A{3i:1<i<n %Bi(xi)#fizki-i-l Nv
—-.S(...xi,...,fi,...)

Fig. 24. Properties related to actions

Refinement 1G¢: Introduce floor actions. We begin by defining the actions located at each floor.
They are shown in figure 25. The actions PressUp and PressDn model the pressing of the call buttons. There are
two properties for each, since the action must not only turn on the call lights (e.g., =UP to UP), but must also
cause the floor to beep when the cabin is not on the floor (F33a and F33c). When the cabin is on the floor,
however, turning on the call light can take place if the cabin is not currently stopped with its doors open servicing

3 Anensures property is a progress property which is intended to describe a single, atomic transformation,
Formally, ensures is an unless along with the requirement that there is at least one statement in the program
which will always make the transformation if executed in a state satisfying the left-hand side.

-0 -

the correct direction {F33b and F33d), but the beep is inhibited. Note that the actions access the current service
direction, which is clearly data that is local to the cabin, This is possible because the cabin is located on the floor
and we permit components that are co-located to share data. This type of data sharing is unique to mobile systems
and its exploitation will likely be a central issue in the design of these systems. The last action associated with the
floors is the independent beep that occurs every b seconds when there is a call on the floor (F34). The enabling
condition reflects the requirement that a floor not beep when the cabin is on the floor.

F33a: PressUp#f takes
—=UP A 1<f<N A BEEP(i) to UP A BEEP(i+1) when —ON

F33b: PressUp#f takes
—UP A 1<f<N A BEEP(i) to UP A BEEP(i) when ON A —(DIR(1) A OPEN)

F33c: PressDo#f takes

—DN A 1<f<N A BEEP(i) to DN A BEEP(i+1) when —ON
F33d: PressDn#f takes

—DN A [<iSN A BEEP(1) to DN A BEEP(1) when ON A —{DIR(~1) A OPEN)
F34: Beepiif takes CALL A BEEP(i) to BEEP(i+1) when —ON

Fig. 25. Floor actions

Refinement 11: Introduce cabin actions. The cabin is involved in four kinds of actions, depicted
in figure 26. First, a request button may be turned on (F35). The request may be for any floor except for the one on
which the doors are open—the reader should recall that all the predicates appearing in this action definition are
spatially qualified by implication, i.e., ~OPEN refers to ~OPEN#f. As in the case of pressing the call buttons on
the floor, there are some subtleties involved in modeling indeterminate environmental events as actions or program
statements in a closed system. It may appear, for instance, that cur abstract program requires each button to be
pressed infinitely often in any infinite execution of the system {due to the fairness requirements of UNITY). In fact
this is not the case since the action PressRg(f’) might be selected for execution only when the doors are open on £

The second group of actions involves the control logic of the elevator (F36-42) which determines when
doors are opened and closed, when to stop or go, and when to change direction. Since all these actions are disjoint,
they could acmally be grouped under a single name. They all involve local data and no change of position, The
third kind of actions deal with the movement of the cabin from one floor to the next (F43). The specification for
Arrivefff is deceivingly simple and compact. In reality, the change of Iocation involves the invalidation of all the
predicates that held at the previous location. This need not reflected in the specification we give here since we plan
to carry over into the abstract program all the spatial invariants which were designed to co-locate the cabin and its
state components. For the sake of brevity we will not actually repeat these invariants in this section. Neither will
we repeat the timing assumptions associated with the door closing and the beeping frequency, We recognize,
however, that in the future it may turn out to be advantageous to reformulate all such spatial and temporal predicates
in terms of actions and their execution counters.

Finally, we can specify the action which monitors the beeps to set LCALL, and define the synchronization
between the floors and the cabin which is necessary to implement F37, There are two actions to monitor the beeps,
one which listens up (F44a) and one which listens down (F44b), Taken alone, these actions could set LCALL
without any attending beep. To prevent this, we synchronize the actions with all the actions that can beep in the
proper direction. Thus, MonitorUp#f is synchronized with the PressUp, PressDn, and Beep actions for all floors
above f. As the cabin moves away from floor f, MonitorUp#f is disabled by the when clause. Although the
semantics of our notation introduce different MonitorUp and MonitorDn actions for each floor, it is easier to think of
the system as consisting of exactly one copy of each action, with the actions moving with the elevator cabin.,

221 -

F335:

F36:

F37:

F38:

F39:

F40:

F41:

F42:

F43:

Fid4a:
F44b;

F45a:

F45b:

PressRq(f#f takes —RQ(f) to RQ(") when —OPEN

ArriveDepart#f takes
ARRIVE A DIR(5) to DEPART A DIR(8)
when —NEEDED(3) A LCALL()

Stop#f takes
ARRIVE A DIR(S) to STOP A CLOSED A DIR(S)
when NEEDED(8) v —LCALL(8)

OpenDoors#f takes

STOP A CLOSED A DIR()

to STOP A OPEN A DIR(8) A —LCALL(8) A —RQ(f) A
{(DIR{1} A =UP) v (DIR(~1) A =DN))

when NFFDFED(S)

CloseDoorsi#f takes
STOP A OPEN A DIR(S) to STOP A CLOSED A DIR(-8)
when —LCALL(G) A (LCALL(-8) v LREQ(-8))

CloseDepart#f takes
STOP A CLOSED A DIR(®) to DEPART A DIR(S)
when —NEEDED(8) A LCALL(S)

ChangeDir#f takes
STOP A CLOSED A DIR(S) to STOP A CLOSED A DIR(-5)
when —NEEDED(8) A —~LCALL(S) A (LCALL(S) v LREQ(S))

OpenDeparti#f takes
STOP A OPEN A DIR(8) to DEPART A CLOSED A DIR(S)
when LCALL(S)

Arrive#f takes
DEPART A DIR(S) to [ARRIVE A DIR(8) A —LCALL(®)#(f+3)

MonitorUp#f takes true to LCALL(1) when CABIN
MonitorDn#f takes true to LCALL(-1) when CABIN

MonitorUp#f tracks { £ : fromto(f,1.{") :: Beep#f, PressUp#f, PressDn#f")
when CABIN#f

MonitorDnif tracks { f : fromto{f,~1,f) :: Beep#f', PressUp#f, PressDn#[)
when CABIN#{

Fig. 26. Cabin actions

Discussion. Our treatment of actions deliberately avoided any attempt to introduce new formalisms or
theory. The objective was simply 1o show that an elegant treatment of actions and their interactions in mobile
systems is possible within the specification notation provided by the UNITY logic. The proposed notation is novel
only in its tailoring to the specific context of mobile systems and is designed as an aid in the specification process.
It simply imposes a specific structuring of the specifications and there is some evidence [24] that such structuring is
essential as we make the eventual transition to industrial grade problems.

-27.

Also, out of the desire to stay as closely as possible within the realm of UNITY, we chose to treat each
independent action and each possible interaction among actions as corresponding directly to statements in UNITY,
This approach, which has the advantage of simplifying the presentation, is made possible because the number of
locations involved in the problem is finite. If this is not the case, one has 10 consider alternative views of the
underlying computation. One option is to turn to Swarm [3], a model which employs the UNITY logic but makes
use of tuples and transactions in place of variables and assignment statements. An action would correspond directly
to a dynamically created Swarm transaction. Swarm also provides certain forms of dynamic synchrony nseful in
realizing the tracks relation [19].

While the association with spatial considerations is unique to our work, the concept of action (event) is
well established in the literature. Without going into a comprehensive discussion of the different ways actions are
treated by others, we will try to draw some comparisons with some closely related work. Our A takes P to O
formulation bears some resemblance to the proposed P leads-to Q via A relation [10] where P and Q are predicates
and A is an action (event) name for a system transition. While leads-to-via defines a system property which may
be derived from the definition of A, takes-to is employed as a mechanism for actually defining the action, Both
relations impose constraints on other actions by requiring them 1o either preserve P or establish 0. However, the
when clausc is specifically designed to accommodate an indeterminate reaclive envitonment and leads-lo-via has
no notion of location associated with its semantics. Another model in which actions play a central role is TLA [12].
In TLA a state transition is associated with one and only one action. By contrast, our actions are designed to allow
for state transitions potentially involving multiple, simultaneous interference-free actions. Indeed, our approach of
making the actions local and using synchronization to implement global actions guarantees that the actions are
interference-free. This is expected to be an asset as we move on beyond this feasibility demonstration to formulating
a general theory of mobile systems. We view modularity and dynamic synchrony to be central concepts in such a

theory.
7. Conclusions

In this paper we have presented a methodology for specifying, designing, and reasoning about mobile
systems. Qur goal was to demonstrate that existing models of concurrency can accommodate mobile computing and
1o illustrate ways to accomplish this. We used the UNITY logic and a simple elevator control problem to make our
point but we believe that the fundamental ideas have immediate applicability to other models as well as to a broad
class of problems. While some of the notation is novel, its main role is to encapsulate and make obvious certain
fundamental or pragmatically important concepts; ail reasoning is carried out within the established UNITY logic.
Prototypical usage of the notation has been illustrated in the context of designing a specific system,

The notions of space, time, and actions are central to our thinking about mobile systems. We used space o
capture formally the notions of mobility, locality, and distant interactions. The desire 1o separaie local effects from
global interactions guided the refinement process and the notation for spatial qualification of predicates made obvious
the places where further refinements were needed. Explicit reasoning about space is not common in the formal
methods community and this is the first attempt to factor it in the UNITY context.

Time, on the other hand, is a major research concern for the distributed computing community, as evidenced
by a voluminous literature on this topic. We used timing constraints 10 prove that programs that meet them are
guaranteed to behave in certain desirable ways. The introduction of time into UNITY is not a first but our particular
strategy is novel and proved to be both minimalist and simple to use. Another attractive feature is the fact that it
succeeds in keeping functional and timing considerations separate both at the specification and program levels.
Finally, although not shown in this paper, one can relate timing and spatial properties and factor velocity into the
reasoning process.

Much work remains to be done with actions. The primary motivation for actions is to avoid generating a
concrete UNITY program and allow for a much broader set of implementation alternatives. Actions are simply
abstract specifications for program statements having local effects. An interesting new idea is the introduction of
abstract synchronization constraints for modeling distant interactions among actions. This promises 10 be an elegant
mechanism for reasoning about interactions among agents and for dealing with system modularization. However,
further study is required to evaluate the generality of the approach with respect to various classes of common
interactions among mobile agents. Also, since this paper dealt with closed system specifications, the applicability
to open system specifications has not yet been established.

-23.

A definitive model for mobile computing is unlikely to emerge soon, and many proposals will be put forth
and evaluated in the years to come. This paper argues for a pragmatic approach that minimizes formal development
and centers con the application of existing knowledge to the design task. Even though our specifications and
refinements are formal, our ultimate goal is to develop a design methodology that embodies the discipline of formal
thinking but may be applied in a less tedious manner.

References

[1} Abadi, M., and Lamport, L., *“An old-fashioned recipe for real-time,” in Lecture Notes in Computer
Science, I. W. d. Bakker, C. Huizing, W. P. Roever, G. Rosenberg, Eds., Springer-Verlag, vol. 600, pp.
1-27, 1991.

23 Chandy, K. M., and Mista, 1., Parallel Program Design: A Foundation, Addison-Wesley, New York, NY,
1988.

[31 Cunningham, H. C., and Roman, G.-C., “A UNITY-Style Programming Logic for a Shared Dataspace
Language,” IEEE T'ransactions on Parallel and Distributed Systems, vol. 1, no. 3, pp. 365-376, 1990.

[4] de Bakker, I. W., de Roever, W.-P., and Rozenberg, G., Eds., Stepwise Refinement of Distributed Systems
, 430, Springer-Verlag, Berlin, 1989,

[5] Dijkstra, E. D., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NI, 1976.
[6] Gries, D., The Science of Programming, Springer-Verlag, New York, NY, 1981,
[7] Henzinger, T. A., Manna, Z., and Pnueli, A., “Timed Transition Systems,” in Real-Time: Theory in

Practice, J. W, De Bakker, C. Huizing, W. P. de Rocver, G. Rozenberg, Eds., Springer-Verlag, Berlin,
vol. 600, pp. 226-251, 1991.

8] Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall International, Englewood Cliffs, New
Jersey, 1985.
9 Knapp, E., “An Exercise in the Formal Derivation of Parallel Programs: Maximum Flows in Graphs,”

ACM Transactions on Programming Languages and Systems, vol. 12, no, 2, pp. 203-223, 1990.

[20] Lam, S. 8., and Shankar, A. U., “A Relational Notation for State Transition Systems,” IEEE Transactions
on Software Engineering, vol. 16, no. 7, pp. 755-775, 1990.

{113 Lamport, L., “Reasoning about nonatomic actions,” 10th ACM Conference on Principles of Programming
Languages, ACM, pp. 28-37, 1983,

f12] Lamport, L., “The temporal logic of actions,” Digital Equipment Corporation, Systems Research Center,
79, 1991,

[13] Lynch, N., and Vaandrager, F., “Forward and Backward Simulations for Timing-Based Systems,” in Real-
Time: Theory in Practice, J. W. De Bakker, C. Huizing, W. P. de Roever, G. Rozenberg, Eds., Springer-
Verlag, Berlin, vol. 600, pp. 397-446, 1991.

[14] Milner, R., A Calculus for Communicating Systems, G. Goos, J. Hartmanis, Eds., Lecture Notes in
Computer Science, Springer-Verlag, New York, NY, vol. 92, 1980,

[15] Morgan, C. C., “The Specification Statement,” ACM TOPLAS, vol. 10, pp. 403-419, 1988.
[16] Morris, J. M., “Laws of Data Refinement,” Acta Informatica, vol. 26, pp. 287-308, 1989,

[17] Owicki, S., and Lamport, L., “Proving Liveness Properties of Concurrent Programs,” ACM Transactions
on Programming Languages and Systems, vol. 4, no. 3, pp. 455-495, 1982,

-4 -

[18]

(19

[20]

[21]

22

[23]

[24]

Rescher, N., and Urquhart, A., Temporal Logic, Springer-Verlag, New York, 1971.

Roman, G.-C., and Cunningham, H. C., “Reasoning about Synchronic Groups,” in Research Directions in
High-Level Parallel Programming Languages,J. P. Bantre, D, L, Métayer, Eds., Springer-Verlag, New
York, NY, vol. 574, pp. 21-38, 1992,

Roman, G.-C., Gamble, R, F,, and Ball, W. E,, “Formal Derivation of Rule-Based Programs,” IEEE
Transactions on Software Engineering, vol. 19, no. 3, pp. 227-296, 1993.

Roman, G.-C., and Wilcox, C. D., “Architecture-Directed Refinement,” JEEE Transactions on Software
Engineering, vol. 20, no. 4, pp. 239-258, 1994,

Shankar, A, U, and Lam, S. S., “Time-dependent distributed systems: proving safety, liveness and real-
time properties,” Distributed Computing, vol. 2, pp. 61-79, 1987,

Staskauskas, M., “A Formal Specification and Design of a Distributed Electronic Funds-Transfer Network,”
IEEE Transactions on Computers, vol. 37, no. 12, pp. 1515-1528, 1988.

Staskauskas, M., “Formal Derivation of Concurrent Programs: An example from Industry,” IEEE
Transactions on Software Engineering, vol. 19, no. 5, pp. 503-528, 1993,

225 -

RAATP April 22, 1994 01:06 PM

Appendix 1. Proofs
Notes on proving leads-to

The transitivity of leads-to is typically the center of any proof of a progress refinement. Thus, when
proving leads-to properties, we format the proof as a series of steps, each making use of either an implication or a
leads-to property, with the resulting proof following from the transitivity of leads-to and the fact that implication
is leads-to,

Notes on proving unless

In the proofs that follow, unless properties are, for the most part, proven using the conjunction or
disjunction rules for unless. However, in a number of cases, the proof takes on a form that is superficially similar
to our proofs for leads-to, this in spite of the fact that unless is not wransitive. That is, we start the with lhs of
the property o be proven, massage it into a form that matches the ths of some refined property, use the unless
from that retined property to get its rhs, which we then massage into the shs of the original property. This form of
proof relies on two properties of unless which are not explicitly mentioned in these proofs. The first property is

p' = p, punless g
p' unless g

which allows us to massage the 1hs of an unless using equivalence relations. The second property is the
consequence weakening rule for unless, which allows us to massage the rhs of an unless using implications.
Thus, our “transitive” proofs for unless start with the lhs of the property to be proven, massage it using only
equivalance properties into the lhs of a refined unless property, the rhs of which is then massaged via implications
into the form of the ths of the original property. That is, we utilize the proof rule:

p=p,punlessq,q=q'
p' unless q'

when proving unless.
Some Lemmas

needed remains true across most movements,

L3.1: needed(f,5) unless at(f) A stop A dir(8) A open

L3.2: needed(f,8) at{f) A depart A dir(5") unless needed(f,8) A at(F+3") A arrive

L3.3: needed(f.8) A at{f) A arrive unless needed(f,8) A at(f) A ((stop A closed) v depart)
L3.4: needed(f.5) A at(f') A stop A f2f" unless needed(f,8) A at(f) A depart

Similar lemmas hold for call and rcall,
Refinement 1

F14 needed(S)
= (F3}
needed(f,8) A {3 f :: on(f) v depart(f))
= {F4}
needed(f,8) A ({3 £,8' :: on(f") A dir(8)) v (T 1,0' :: depart(f) A dir(d)))
= [disjunction }

needed(f,5) A
{3 £8 5 on(f) A dir(d) A (fA1 v 628) v §))
{on(f) A dir(8)) v @
{318 :: depart(f) A dir(8") ¥) 3)

-9 -

RAATP

®
[d

@

!

3

L

April 22, 1954 01:06 PM

needed(f,8) A ((3 £,8' 2 on(f) A dir(8) A (ff' v 5287)
{F14.1}

needed(f,6) A on(f) A dir(d)
{F14.2}

stopped(f) A dir(8) A open

needed(f,6) A on(f) A dir(8)
{F142}
stopped(f) A dir(8) A open

neaded(f,8) A (3 £,8' :: depart([) A dir(d"))
{L3.2,F14.3)

needed(f.3) A arrive(f'+3"
{ definition on)

needed(f,8) A on{f'+5)
{ disjunction)

needed(f,5) A ((O(L+5) A T+5'=L A §'=8) v (On(C+8) A ([+5'L v 52E))

{ proofs of part 1, and 2)
stopped() A dir{d) A open

Refinement 2

The proof is immediate from the induction principle for leads-to.

Refinement 3

QED 1

QED2

QED 3, F14

We introduce the following metric, which measures distance not only between floors, but within floors as
well. The proof follows immediately from the observation that every transition in F14 decreases this new metric,
and from the induction principle for leads-to,

4*dist((3,8),(1,0)) if s = stop A open
4*dist((j,6,(1,8)+1 if s = stop A closed

dist2(s, (5,9),(1,5)) = § 4*dist((,8),(1,8))+2 if s = arrive

4*dist((j,80,(1,8))-1 if s = depart A (izj v 823"
2(N-1)-1 if s = depart A i=j A 6=5'

Refinement 4

No proof is required.

-7

RAATP

Aprif 22, 1994 61:12 PM

Refinement 5

Refinement of work_in.

at(f) A work_in{f,8)

CABIN#f A (needed(f,8) v (3 ' : fromto(f,3,F) :: RQ(C)#f v CALL#E)
 CABIN#EA

(rg(f) v (8=1 A up(D)) v (8=—1 A dn(f)) v {3 ' : fromto(f,8,f) :: RQIEWE) v

(31 : fromto(f,3,f7 :; CALL#))

CABIN#E A
((6=1 A UP#{) v (§=—1 A DN#f) v {31 : fromto(£,5,0) v {=f :: RQ(F)#f) v
{3 f: fromto(f,6,f) :: CALL#)

CABINH# A
([(=1 AUP) v (8=-1 ADN) v {3 ' : fromto(f,5,f) v £=F :: RQ(f} Y v
{31 fromto(f,8,f7) :: CALL#))

[CABIN A ((6=1 A UP) v (8=—1 ADN)} v {3 " : fromto(f,8,f) v F=f ;: RQ([") })
v
(CABIN#f A {3 f : fromio(f,8,£) :: CALLH#))

LREQ(S}E v rcall(f,8)

Refinement 6

Fi4.1.1,

1

work_in(f,8") A at(f} A arrive A dir(8)
{ definition of work in)
(LREQ(S"H v rcall(f,8") A at(f) A arrive A dir(5)
= { math }
(LREQ(S"MH A al(f) A arrive A dir(8)) v
(rcall{f,8") A at(f) A arrive A dir(5))

LREQ(&ME A at(f) A arrive A dir(8)
= { definitions of spatial predicates }
[LREQ(8") A ARRIVE A DIR(8)J#f
unless { F14,1.1,1.1 }
[-NEEDED{8) A LCALL(8) A DERPART A DIR(8)#f v [STOP A CLOSED A DIR(8)]#
{ definitions of spatial predicates }
(—needed(f,5) A must_go(f,8) A at(f) A depart A dir(5)) v (at(f) A stop A closed A dir(8))

rcall(f,8") A at(f) A arrive A dir(3)
{ definitions of spatial predicates)

reall(f,5") A [ARRIVE A DIR(5)14f
unless { conjunction with F21 }

rcall(f,3') A [ARRIVE A DIR()I#f A (LCALL(S}f < rcall(£,5))
= { math }

[ARRIVE A DIR(8) A LCALL(8"J#f
unless { F14.1.1.1.1. and cancellation }

[-NEEDED(8) A LCALL(8) A DEPART A DIR(8)]#f v [STOP A CLOSED A DIR(S)J#f
= { definition of spatial predicates }

oy
@

QED 1

(—needed(f,8) A must_go(f,5) A at(f) A depart A dir(8)) v QED 2, Fl4.1.1.1

(at(f) A stop A closed A dir(8))

-28 -

RAATP

April 22, 1994 01:12 PM

F14.1.1.2

work_in(f,8") A at(f) A stop A open A dir(8)
{ definition of work_in }
(LREQ(SYE v reall(f,§)) A at{f) A stop A open A dir(5)
{ math }
(LREQ(8)#f A at(f) A stop A open A dir(8)) v n
(rcall(f.8" A at{f) A stop A open A dir(@)) ()]

]

1 LREQ(8) A at(f) A stop A open A dix(8)
= { definitions of spatial predicates }
[LREQ(8") A STOP A OPEN A DIR(G)]#f
unless { F14.1.1.2.1)
[LCALL(8) A DEPART A DIR(E)I#f v [-LCALL(S) A STOP A CLOSED A DIR(-8)J#f
{ definition of spatial predicates }
(must_go(f,8) A at(f) A depart A dir(8)) v (—must_go(f,8) A at(f) A stop A closed A dir(-8)) QED1

2 rcall(f,8") A at(f) A stop A open A dir(8)
= { definitions of spatial predicates)
rcall(f, &) A ISTOP A OPEN A DIR(G)#f
unless { conjunction with F21 }
rcall(f,3") A [STOP A OPEN A DIR(8)J#f A (LCALL(S)#f & rcall(f,5))
= { math }
[STOP A OPEN A DIR(S) A LCALL(8)J#f
unless { F14.1.1.1.1, and cancellation }
[-NEEDED(8) A LCALL(8) A DEPART A DIR(S)J#f v [STOP A CLOSED A DIR(-8)1#{
{ definition of spatial predicates }
(—needed(f,5) A must_go(f.5) A au(f) A depart A dir(8)) v QED 2, F14.1.1.2
(at{f) A stop A closed A dir(-8))

F14.1.1.3

work_in(f,8") A at(f} A stop A closed A dir(8)
= { definition of work_in }
(LREQ(S'M#H v rcall{f,8") A at(f) A stop A closed A dir(&)
= { definition of spatial predicates }
(LREQS)Hf v rcall{f,3)) A [STOP A CLOSED A DIR@)J#E
= {F23)
(LREQ(SMWH v LCALL(8"W) A [STOP A CLOSED A DIR(S)J#f
unless { F14.1.1.3.1 }
[STOP A OPEN A DIR(B)1#{ v
[~NEEDED(8) A LCALL(3) A DEPART A DIR(S)J#f v
[~NEEDED(8) A —LCALL(8) A (LREQ(-5) v LCALL(-5)) A STOP A CLOSED A DIR(-8))4f
{ definition of spatial predicates }
(al(f) A stop A dir(8) A open) v QED F14.1.1.3
(~needed(f,5) A must_go(f,5) A at{f) A depart A dir(8)) v
{(—needed(f,8) A —maust_go(f,5) A work_in{f,—5} at(f) A stop A closed A dir(-8))

i}

Refinement 7

Key invariant

I7 inv. [ARRIVE v (STOP A OPEN)H = (LCALL(S)#f = rcall{f,5))

The proof is by contradiction. We present here the proof for the arrive state, the proof for the stopped-open

state is identical. Assume we have;

ARRIVE#{ A LCALL(BME A —rcall(f,5)

- 20 -

RAATP April 22, 1994 61:12 PM

Then there are three possibilities: either LCALL was true immediately upon entering the arrive state, or it became true
while in the arrive state, or rcall became false. The first is not possible by F21.1, since LCALL is reset upon
entering the arrive state. The second is impossible by F235, since LCALL can only become true is rcall is true.
Finally, the third is impossible, since rcall(f,5} can only go from true to false when a request is serviced, and requests
are not serviced in the arrive state, by F14. We have a contradiction, so the invariant holds.

Some lemmas

We need to show that rcqll remains true across the unless in both F21.1 and F22.1. The proofs follow
from F14 and the definition of rcall.

L7.1 ARRIVE#f A rcall(f,5) unless ~ARRIVE#f
L72 [STOP A OPENTH A rcall{f,5) unless —[STOP A OPENIH

F21

ARRIVE# A —(LCALL{EMH < rcall(f,5))
= [math)
(ARRIVE#E A LCALL(SH# A —rcall(f,5)) v (ARRIVE#f A —LCALL(8)#f A rcall(f,5))
= {17, first disjunct is false }
ARRIVE#f A —LCALL(B}H A rcali(f,3)
= { consequence weakening }
ARRIVE#f A rcall(f,5)
unless { F21.1, L7.1 }
[ARRIVE A LCALL(Q)H# A reall(f,8)

The other possibility, that both LCALL and rcall are false, follows immediately from 17, so we have the if-and-only-
if. The proof for F22 is identical.

Refinement 8
F21.1

[ARRIVE A —LCALL{S)}#f A rcall(f,5)
{ definition of reatl }
[ARRIVE A —LCALL{B)J#f A (3 [: fromto(f,8,) :: CALL#{)
{F26d }
[ARRIVE A —LCALL(8)J#f A (3 £,i : fromto(f,5,f) :: [CALL A BEEP@)J#f)
unless { F28.1 }
[ARRIVE A LCALL(G)#f A BEEP(i+1)#f
=» { consequence weakening }
[ARRIVE A LCALL(S)1#(QED F21.1

F22.1

[STOP A OPENJ#f A rcall(f,5)
{ definition of rcall)
[STOP A OPEN A —LCALL(8)J#f A {3 ' : fromto(f,5,7) :: CALL#{)
{F26d }
[STOP A OPEN A —LCALL(®)Hf A (I f,i : fromto(f,5,) :: [CALL A BEEP()J#f)
unless {F28.2)
[STOP A OPEN A LCALL(S)J# A BEEP(i+1)#f
= { consequence weakening)
[STOP A OPEN A LCALL(S)J#f QED F22.1

-30-

RAATP

F23

April 22, 1994 01:12 PM

[STOP A CLOSEDJ#f = (LCALL(SWH & rcall(f,8))

The proof, which is by contradiction, goes as follows. Assume that we have:

[STOP A CLOSEDM A ((—LCALL(SY A rcall(f,8)) v (LCALL(8)#f A —rcall(f,))

In order for the first disjunct to be true, either the system entered the stopped-closed state with rcall and not LCALL,
or reall became true in this state without LCALLalso becoming true. The first option is impossible by F21.1 and
F24, which require that LCALL and rcall match when exiting the arrive state, and the second is disallowed by F28.3,
which guarantees that when rcall becomes true, then LCALL will simultaneously become true. If the second disjunct
is true, then it must be the case that LCALL became true after entering the stopped-closed state, since again F21.1 and
F24 guarantee that upon entering the stopped-closed state, reall and LCALL match. But by F23, if LCALL is false, it
will remain so until rcall becomes true, so the second disjunct can never be true, giving us our contradiction.

[-CALL A BEEPG)J#f

unless { F27.1 }
([CALL A BEEP(i+1)J#f A (3 £,8 : fromto(f,8,f) :: LCALL(G}#f }) v [CALL A BEEP(i) A ONJ#f

{ consequence weakening, definition of fromto)
[CALL A BEEP(i+1) A —ONJi#f v [CALL A BEEP(i) A ON]#f

F28.1 A F28.2 A F28.3

F27
=
F28
=
=
=
=

{ simple disjunction }
[CALL A BEEP()J#" A fromto(f,6,67)
unless {[ARRIVE A LCALL(B)J#f A BEEP(i+1)#f) v
([STOP A OPEN A LCALL{G)J#{ A BEEP@+1)#) v
([CALL A BEEP(i+1) A —ONJ#F A {3 ",8': fromto(f",5' f) :: LCALL(SY#") v
[-CALL A BEEP@)J#f
{ by F14, calls remain until the cabin stops at the floor }
[CALL A BEEP(i)YJ#' A fromto(f,8,f")
unless (JARRIVE A LCALL(8)M# A [CALL A BEEP(i+1)[#{") v
([STOP A OPEN A LCALL(S)H A [CALL A BEEP(i+1)J4f) v
(ICALL A BEEP(i+1) A —ONI#f A {3 ",8" : fromeo(f",6',1") :: LCALL W) v
[CALL A BEEPG)J#f
{f+f,F2b}
[CALL A BEEP@)I#F A fromto(f,5,)
uniess ([ARRIVE A LCALL(B)J#f A [CALL A BEEP(i+1) A ~ONJ#£) v
{[STOP A OPEN A LCALL(8)J#{ A [CALL A BEEP(i+1) A —ONJ#f) v
{[CALL A BEEP(i+1) A ~ONJ{ A {3 {8 : fromto(f",3' .} :: LCALL(SM) v
[~CALL A BEEP(i)J#f
{ consequence wegkening }
[CALL A BEEP()I#f A fromto(f,5,1)
unless [CALL A BEEP(i+1)} A —ONJ#f v
[CALL A BEEP(i+1) A —ONI#f v
[CALL A BEEP(i+1) A —ONJ#f v
[-CALL A BEEP()J#f
{ math }
[CALL A BEEP@)HT A fromio{f,5,)
unless [CALL A BEEP(i+1) A ~ONJ#f v [—CALL A BEEP(D)]#f"
{ fand & are not used }
[CALL A BEEP@)J#F
unless [CALL A BEEP(i+1) A —ONJ#f v [—CALL A BEEP()J#f

-31-

QED F27

QED F28

RAATP April 22, 1994 01:12 PM

Refinement ¢
F28.1

[ARRIVE A —LCALL(8)M#f A [CALL A BEEP()J#f A fromto(f,5,f)
unless [ARRIVE A LCALL(B)J#f A BEEP(i+1)#f

Our appoach to this proof is to show that, whenever the system is in a state satisfying the Ieft-hand side of
F28.1, then the only transitions allowed by the remainder of the specification will satisfy the right-hand side of
F28.1. To begin the proof, we include in the formulation the current time, with the assumption that less than b
seconds have elapsed since the cabin entered the arrive state:

{3 t: &t:: [ARRIVE A —LCALL(S)J#f A CALL#' A fromto(f,5,f) A t <ARRIVES+D)
Th negation of this property is then:

{V t: —&t v —(JARRIVE A —~LCALL(8)J#f A CALL#f A fromto(f,5,f) A t > ARRIVES+b))
By T2, there is always a time £, so the first disjunct is always false, leaving us with:

(dt: &t:: (ARRIVE#f v LCALL(B)#f v —CALL#{ v —fromto(f,3,f) v t > ARRIVES+b))
Because f, 6, and £ are all constants, the fourth disjunct is always false, so we the get:

(3 t: &t (-ARRIVE# v LCALL(8)#f v —CALL#f v t > ARRIVES$+b) A fromto(f,5.0))

Finally, because the cabin will not arrive at the floor with the call (since fromio(f,5,f) remaing true), then the call
must remain by F13, which means the 3rd disjunct is always false:

(I t: &t (-ARRIVE# v LCALL(S# v 1 > ARRIVES$+b) A fromto(f,5,F))
This gives us the following property, which is true because P unless —P is always true:

[ARRIVE A —LCALL(8)Mf A [CALL A BEEP)J#f A fromto(f,3,)
unless (3 t: &t::
(—ARRIVE# v LCALL(§)#f v t > ARRIVES$+b) A fromto(f,5,0))

To finish the proof, we must show that of the 8 possible combinations for the right-hand side, only those
which satisfy F28.1 are possible.

—ARRIVE#T A LCALL(S)#f A t > ARRIVES+b A fromto(£,S,f)
—ARRIVE#f A LCALL(SW A t < ARRIVES+b A fromto(f,3,F)
—ARRIVE#f A —LCALL(8Y A t > ARRIVES+b A fromto(f,5,f)
—ARRIVE#f A —LCALL(8Mf A t <ARRIVES+D A fromto(f,3,17)
ARRIVE#f A LCALL(8)f A t > ARRIVES+b A fromto(f,5,f)
ARRIVE#f A LCALL(8)#f A t < ARRIVES+b A Tromto(f,5,0)
ARRIVE#f A —LCALL(3)f A t > ARRIVES+b A fromio(f,5,0)
ARRIVE#f A —LCALL(&MH A t £ ARRIVES+b A fromto(f,5,f)

HQImoows

Properties A, E, F, and H satisfy F28.1. By F31, it is not possible for ARRIVE 10 be false if b seconds have not
elapsed, so 2 of the options are eliminated (B, D), leaving only C and G, which are eliminated by F30 and F32,
since after b seconds have elapsed, a beep will have occurred, and so LCALL must have been established.

-32-

RAATP

April 22, 1994 01:12 PM

Appendix B. Intermediate programs.

program clevator1(N)

definitions
(ff8:1<f<N, 1< <N, de {-1,1}

»

needed(f,5) = 1q(H) v (=1 A up())) v (5=-1 A dn(N));
fromto(£,8,1) = sign(f-H)=8;

must_go(f,8) ={ 3 £,8': fromto(f,5.1") :: needed(f,5")
work_in(f,8) = needed(f,8) v must_go(f,d)

tuple types

(f:
{f:
{[.

1<f<Nrgf))
l<f<N:udn{h),
18l<Nzupl))

transaction types
{(f8:1<f<N,8e {-1,1]) =

Arrive(f,5) =
| —needed(f,5), must_go(f,8) — Depart(f,5)
I NOR — StoppedClosed(f,5);

StoppedOpen(f,8) =
must_go(f,8) — Depart(£,5), opent
| —must_go(f,8), work_in(f,-5) — StoppedClosed(f,-8)
| —must_go(f,8), ~work_in(f,-§) — StoppedClosed(f,5);

StoppedClosed(f,5) =
| needed(£,5), 8=1 — StoppedOpen(,8), rq(D)+, up(f)
Il needed(f,8), 8=-1— StoppedOpen(f,5), rq(D, dn(f)t
I —needed(f,3), musi_go(f,3) — Depart(f,5)
[—needed(f,), ~must_go(f,5), work_in(f,-8) — StoppedClosed(f,-5);

Depart(f,6) =
true — Arrive{f+8,8);

t1€f<N::

Up(f) =
f+#N, —on{f) - up(f);

Dn(f) =
f# 1, —on(f) - dn(f);

Rq(f) =
—on() —»rq(f);

initialization
StoppedOpen(1,1);

end

-33.

(F14.1.1a)
(F14.1.1b)

(Fl14.1.2a)
(F14.1.2b)

{(F14.1.3a, F9a)
(F14.1.3a, F9b)
(F14.1.3b)
(F14.1.3¢)

(F14.3)

	Reasoning about Places, Times, and Actions in the Presence of Mobility
	Recommended Citation
	Reasoning about Places, Times, and Actions in the Presence of Mobility

	tmp.1439928365.pdf.t0Mw5

