
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2008-14

2008-01-01

Faster Optimal State-Space Search with Graph Decomposition Faster Optimal State-Space Search with Graph Decomposition

and Reduced Expansion and Reduced Expansion

Yixin Chen

Traditional AI search methods, such as BFS, DFS, and A*, look for a path from a starting state to

the goal in a state space most typically modelled as a directed graph. Prohibitively large sizes of

the state space graphs make optimal search difficult. A key observation, as manifested by the

SAS+ formalism for planning, is that most commonly a state-space graph is well structured as

the Cartesian product of several small subgraphs. This paper proposes novel search algorithms

that exploit such structure. The results reveal that standard search algorithms may explore

many redundant paths. Our algorithms provide an... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Chen, Yixin, "Faster Optimal State-Space Search with Graph Decomposition and Reduced Expansion"
Report Number: WUCSE-2008-14 (2008). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/225

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/225?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/225

Faster Optimal State-Space Search with Graph Decomposition and Reduced Faster Optimal State-Space Search with Graph Decomposition and Reduced
Expansion Expansion

Yixin Chen

Complete Abstract: Complete Abstract:

Traditional AI search methods, such as BFS, DFS, and A*, look for a path from a starting state to the goal
in a state space most typically modelled as a directed graph. Prohibitively large sizes of the state space
graphs make optimal search difficult. A key observation, as manifested by the SAS+ formalism for
planning, is that most commonly a state-space graph is well structured as the Cartesian product of
several small subgraphs. This paper proposes novel search algorithms that exploit such structure. The
results reveal that standard search algorithms may explore many redundant paths. Our algorithms
provide an automatic and mechanical way to remove such redundancy. Theoretically we prove the
optimality and complexity reduction of the proposed algorithms. We further show that the proposed
framework can accommodate classical planning. Finally, we evaluate our algorithms on various planning
domains and report significant complexity reduction.

https://openscholarship.wustl.edu/cse_research/225?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/225?utm_source=openscholarship.wustl.edu%2Fcse_research%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2008-14

Faster Optimal State-Space Search with Graph Decomposition and
Reduced Expansion

Authors: Yixin Chen

Corresponding Author: chen@cse.wustl.edu

Web Page: http://www.cse.wustl.edu/~chen

Abstract: Traditional AI search methods, such as BFS, DFS, and A*, look
for a path from a starting state to the goal in a state space most
typically modelled as a directed graph. Prohibitively large sizes
of the state space graphs make optimal search difficult.

A key observation, as manifested by the SAS+ formalism for
planning, is that most commonly a state-space graph is well
structured as the Cartesian product of several small subgraphs.
This paper proposes novel search algorithms that exploit such
structure. The results reveal that standard search algorithms may
explore many redundant paths. Our algorithms provide an automatic
and mechanical way to remove such redundancy. Theoretically we
prove the optimality and complexity reduction of the proposed
algorithms. We further show that the proposed framework can
accommodate classical planning. Finally, we evaluate our
algorithms on various planning domains and report significant
complexity reduction.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Faster Optimal State-Space Search with Graph Decomposition and Reduced
Expansion

Yixin Chen
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130
chen@cse.wustl.edu

Abstract

Traditional AI search methods, such as BFS, DFS,
and A∗, look for a path from a starting state to the
goal in a state space most typically modelled as
a directed graph. Prohibitively large sizes of the
state space graphs make optimal search difficult.
A key observation, as manifested by the SAS+
formalism for planning, is that most commonly a
state-space graph is well structured as the Carte-
sian product of several small subgraphs. This pa-
per proposes novel search algorithms that exploit
such structure. The results reveal that standard
search algorithms may explore many redundant
paths. Our algorithms provide an automatic and
mechanical way to remove such redundancy. The-
oretically we prove the optimality and complexity
reduction of the proposed algorithms. We further
show that the proposed framework can accommo-
date classical planning. Finally, we evaluate our
algorithms on various planning domains and report
significant complexity reduction.

Introduction
State-space search is a fundamental approach to plan-
ning. The state space is typically modelled as a directed
graph in which the search tries to find a minimum-cost
path from an initial state to a goal state.

A key observation that motivates this paper is that the
state-space is not a random graph. Rather, in most do-
mains, the state space graph is the Cartesian product of
multiple smaller graphs. This point is best manifested
by the SAS+ formalism (Bäckström & Nebel 1995) of
planning, in which a state is represented by the assign-
ments to a set of variables, and the state-space graph is
composed as the Cartesian product of the domain tran-
sition graphs (DTGs), one for each variable.

For example, in the Airport domain, each plane tra-
verses in a graph modelling the airport runway under
certain non-blocking constraints. If the airport graph
has 50 gates and there are 20 planes, the search graph
has up to 5020 states, as a product of 20 small graphs.

The key question is, if a state-space graph is a Carte-
sian product of graphs, can we make the search faster

by exploiting such structure? We propose novel algo-
rithms to answer this question.

Much research has focused on the search control
mechanisms, such as BFS, DFS, A∗, and the heuris-
tic functions. Our algorithm, however, focuses on an-
other important component, node expansion, of search.
When searching in a Cartesian product of subgraphs,
expanding a node amounts to expanding all the sub-
graphs, which we reveal is often wasteful. Instead, we
find that we can expand only a subset of subgraphs that
form a dependency closure and still guarantee optimal-
ity of search. We prove that the proposed algorithm is
a general, theoretically sound principle that can be used
to speedup search for a wide range of problems.

In the following, we first introduce several con-
strained problems whose search space is a Cartesian
product of graphs. Then, we develop new algorithms
that exploit the structure of search space and prove their
optimality. We further show that the constrained search
problems we study is general enough to model SAS+
classical planning. Finally, we perform experimental
study on planning domains from the recent planning
competitions and show significant improvements.

Graph Models

We consider the following model of state-space search.

Definition 1 A state-space graph is a directed graph
G. We use V (G) to denote the set of vertices and E(G)
the set of edges in G. A search problem defines an initial
state u ∈ V (G) and a goal test π(s) : V (G) �→ {0, 1}
which takes a state s ∈ V (G) as input and outputs 1 if
s is a goal state.

Definition 2 The Cartesian product G × H of two
graphs G and H is a graph such that V (G × H) =
V (G)×V (H) and there is an edge between two vertices
(u, u′) and (v, v′) in G×H if and only if either u = v
and (u′, v′) ∈ E(H), or u′ = v′ and (u, v) ∈ E(G).
An example of the operation is shown in Figure 1.

G x HH

G

Figure 1: Cartesian products of two graphs. Currently most
search algorithms work directly on G×H . We investigate the
problem if the search can be made faster given the decompo-
sition into much smaller subgraphs.

The basic problem P0

Now consider a state-space search on a graph G that is
a Cartesian product of multiple subgraphs:

G = G1 ×G2 × · · · ×GN (1)

The basic problem (P0) is given below. In P0, the
initial state is u = (u1, · · · , uN) ∈ V (G), where
ui ∈ V (Gi) for i = 1, · · · , N . In the paper, we as-
sume that the goal test is decomposable, which means
a state g = (g1, · · · , gN) ∈ V (G) is a goal state if and
only if πi(gi) = 1, ∀i = 1, · · · , N , where πi(·) is the
goal test function for Gi.

A path is a feasible solution path if it contains ver-
tices {v1, v2, · · · , vk}, where vj ∈ V (G), (vj−1, vj) ∈
E(G), j = 2, · · · , k, v1 = u and π(vk) = 1.

The problem P0 is to find an optimal solution path
that minimizes an objective function F (v1, v2, · · · , vk).
We assume that the objective function is separable:

F (v1, v2, · · · , vk) =
k∑

j=2

f(vj−1, vj), (2)

where f : E(G) �→ R+ is a non-negative weight as-
signed to each edge.

We note that each of vj , j = 1, · · · , k is composed
of N subgraph states, written as vj = (vj

1, · · · , vj
N)

where vj
i ∈ V (Gi), ∀i = 1, · · · , N . According to the

definition of Cartesian product, for each j = 2, · · · , k,
vj−1 and vj differ by exactly one of the subgraph states.
We call the edge (vj−1, vj) an l-transition if vj−1 and
vj differ by the lth subgraph state, i.e. vj−1

i = vj
i if

i �= l, i = 1, · · · , N and (vj−1
l , vj

l) ∈ V (Gl).

Definition 3 The contraction mapping operation � :
E(G) �→ E(Gl) is defined as:

�
[
(vj−1, vj)

]
= (vj−1

l , vj
l), (3)

where (vj−1, vj) is an l-transition.

Given an initial vertex u ∈ V (G), we can define the
contraction mapping for a path as:

�[(v1, · · · , vk)] = (e1, · · · , ek−1), (4)

where ei = �[(vi, vi+1)], i = 1, · · · , k − 1.
We further assume the edge weight is context-free in

the sense that the weight of an l-transition e ∈ E(G)
depends only on the transition in G l. That is, each edge
in a subgraph Gi, 1 ≤ i ≤ N has a weight f and we
have: f(e) = f(�[e]) for any e ∈ E(G).

Conversely, given a transition (ul, wl) ∈ E(Gl) in
a subgraph Gl, l = 1, · · · , N , we can map it back to
a state (vertex) in the graph G for a given state v =
(v1, · · · , vN) in G.

Definition 4 The expansion mapping ρ : V (G) ×
E(Gi) �→ V (G) is defined as follows. ρ[v, (ul, wl)]
is undefined when vl �= ul. When vl = ul, we have:

ρ[v, (ul, wl)] = v′, (5)

where v′ ∈ V (G) is the vertex where v′
l = wl, and

v′i = vi for 1 ≤ i ≤ N, i �= l.

Similarly, we can expand a sequence of subgraph
transitions into a path in G. That is, given a number
of edges (e1, · · · , ek−1), where each ei is an edge in
a subgraph, given an initial vertex u ∈ V (G), we can
define the expansion mapping for a path as:

ρ[u, (e1, · · · , ek−1)] = (v1, · · · , vk), (6)

where v1 = u and for j = 2, · · · , k,

vj = ρ[vj−1, ej]. (7)

The operation in (6) is undefined if any of the mappings
in (7) is undefined according to Definition 4.

If we apply a complete search directly to the space
modelled by G, the worst-case time complexity will be

Θ(|V (G)|+ |E(G)|)

= Θ(
N∏

i=1

|V (Gi)|+
N∏

i=1

|E(Gi)|). (8)

P0 can be solved faster by a decomposed search that
finds an optimal path from ui to gi, πi(gi) = 1, in sub-
graph Gi, for i = 1, · · · , N . The solution to P0 is to
simply merge all the paths in an arbitrary way. The
complexity of the decomposed search is

Θ(
N∑

i=1

|V (Gi)|+
N∑

i=1

|E(Gi)|). (9)

Comparing (9) against (8), we see that the complex-
ity of the decomposed search is much lower than direct
search. P0 is simple to solve since there is no inter-
graph constraints so that the search can be completely
decomposed. Inter-graph constraints are essential for
modeling complex real-world problems.

2

a) Transition constraints

G1

G2

G1

G2

b) State−transition constraints

Figure 2: Illustration of constrained problems on Cartesian
products of two subgraphs G1 and G2. In a) the dashed ar-
rows show the partial orders among subgraph edges. In b) the
arrows show the preconditions of subgraph edges.

Constrained problems P1-P3

We comment that there could be many types of inter-
graph constraints. The goal of this paper is not to find
which type of constraints is the best in practice, as there
is always the trade-off between expressiveness and effi-
ciency. Rather, we present three what we believe to be
representative constraint models and show that: 1) the
structure of a search space being a Cartesian product
of subgraphs can provide a fundamental mechanism for
reducing the search complexity, and 2) The models we
consider here are expressive enough to encode classical
planning.

P1 with transition constraints. On top of P0, P1 de-
fines a set of transition constraints, which specify partial
orders between edges in different subgraphs.

Formally, there is a set Φ of partial orders:

Φ = {((v, v′), (u, u′))}, (10)

where (v, v′) ∈ E(Gi), (u, u′) ∈ E(Gj), 1 ≤ i, j ≤
N, i �= j. The problem is to find an optimal path
(v1, · · · , vk) for which there does not exist i, j, 2 ≤ i <
j ≤ k such that(

�[(vj−1, vj)], �[(vi−1, vi)]
)
∈ Φ. (11)

Figure 2a illustrates the problem.

P2 with state-transition constraints.
On top of P0, P2 defines a set of preconditioning sub-

graph states for some edges in the subgraphs. For each
subgraph Gi, i = 1, · · · , N , each transition (v, u) ∈
E(Gi), we define a precondition vector

Ω[(v, u)] = (w1, · · · , wN), (12)

where each wl, 1 ≤ l ≤ N is either a vertex in V (Gl)
or NULL when l �= i, and wi = NULL.

For an edge (v, u) ∈ E(Gi), i = 1, · · · , N , we de-
fine its precondition set pre(v, u) to be the set of sub-
graph vertices in Ω[(v, u)] that are not NULL.

Algorithm 1: Subpath composition search (SCS)

Input: a constrained problem P1, P2, or P3

Output: an optimal solution path
for i = 1, · · · , N do1

find the transition path set Pi of subgraph Gi;2

foreach (p1, · · · , pN), pi ∈ Pi, i = 1, · · · , N do3

if compose feasible plan(p1, · · · , pN) then4

update the incumbent solution path;5

return the best solution path;6

The problem is to find an optimal path (v1, · · · , vk)
such that, for each 2 ≤ j ≤ k, let vector w =
Ω[(vj−1, vj)], ∀i = 1, · · · , N ,

vj−1
i = wi or wi = NULL . (13)

As shown in Figure 2b, those non-NULL elements
in a precondition vector define a set of ”preconditions”
that have to be satisfied when an edge in a subgraph is
”executed” in a path.

P3 with state constraints. P3 is an extension of P0.
On top of P0, P3 defines a set of mutual exclusion con-
straints between two nodes in different subgraphs. For-
mally, there is a set χ of mutual exclusion pairs:

χ =
{
(v, u)

}
, v ∈ V (Gi), u ∈ V (Gj), (14)

where 1 ≤ i, j ≤ N, i �= j.
A state v ∈ V (G) = (v1, · · · , vN) is an invalid state

if and only if there exist 1 ≤ i, j ≤ N, i �= j such that
(vi, vj) ∈ χ. The problem is to find an optimal solution
path with no invalid state in it.

Fast Search Algorithms for P1-P3

We note that P2 and P3 can be solved by a direct search
on the overall graph G. The complexity of a standard
search algorithm, such as BFS, DFS, or A∗, will be
bounded by (8).

To exploit the space structure, we propose two algo-
rithms. The first algorithm, subpath composition search
(SCS), has certain limitations, but offers insight into
why graphs composed by subgraphs can be searched
faster. The second algorithm, reduced expansion search
(RES), is our main contribution which safely prunes the
search space without sacrificing optimality.

Subpath composition search (SCS)
We outline the framework of the SCS algorithm in Al-
gorithm 1. The idea of the algorithm is simply to find
all subpaths from the initial state to a goal state for each
individual subgraph and merge them.

For each subgraph Gi, i = 1, · · ·N , the transition
path set Pi in Line 2 of Algorithm 1 contains all such

3

subpaths that starts from the initial state ui to a goal
state. Namely, we have:

Pi = {p|p is a path in Gi from ui to a goal state}.
The compose feasible plan() procedure tries to

merge the N subpaths into a single solution path to the
original problem. The procedure depends on the con-
straints. We give an algorithm for each of P1 and P2.

In the following, we assume the input to com-
pose feasible plan() is (p1, · · · , pN), pi ∈ Pi, i =
1, · · · , N , where each pi a subpath in Gi. Let

pi = (ξi,1, ξi,2, · · · , ξi,ki). (15)

We also assume that any subpath in Pi is canonical, i.e.
each vertex appears at most once in a subpath.

Compose subpaths for P1. For P1, a possible imple-
mentation of compose feasible plan() is the following.
Given (p1, · · · , pN), pi ∈ Pi, i = 1, · · · , N , we con-
struct a directed graph H in which there is one vertex
for each edge (ξi,j−1, ξi,j), for all 1 ≤ i ≤ N and
j = 2, · · · , ki. In H , there is an edge from (ξi,j−1, ξi,j)
to (ξi,j , ξi,j+1) for all 1 ≤ i ≤ N and j = 2, · · · , ki−1.
Plus, as illustrated in Figure 3b, for each partial order
pair in the Φ set defined in (10), there is an edge from
(v, v′) to (u, u′).

Next, we perform a topological sort on the graph
H to get a sorted list of subgraph transitions. Finally,
we use the expansion mapping defined in (6) to get
a solution path. The time complexity of topological
sort on a graph H is Θ(|V (H)| + |E(H)|). Let L be
the maximum length of the subpaths p1 to pN . Since
in H there are no more than NL vertices and N 2L2

edges, the time complexity of compose feasible plan()
is Tcomp = Θ(N2L2). Note that L cannot exceed the
maximum |V (Gi)| for 1 ≤ i ≤ N .

Compose subpaths for P2. For P2, a possible imple-
mentation of compose feasible plan() is the following.
Given (p1, · · · , pN), pi ∈ Pi, i = 1, · · · , N , we con-
struct a directed graph H in which there is one vertex
for each edge (ξi,j−1, ξi,j), for all 1 ≤ i ≤ N and
j = 2, · · · , ki. In H , there is an edge from (ξi,j−1, ξi,j)
to (ξi,j , ξi,j+1) for all 1 ≤ i ≤ N and j = 2, · · · , ki−1.

In addition, for each edge (u, v) with an nonempty
precondition set, for each vertex w in pre(u, v), sup-
pose w ∈ Gi, we check if w is on pi. If not, then com-
pose feasible plan() returns no solution. Otherwise, let
w = ξi,j , we add an edge from (ξi,j−1, ξi,j) to (u, v)
(if j > 1) and an edge from (u, v) to (ξi,j , ξi,j+1) (if
j < ki) in H . It is illustrated in Figure 3d.

Finally, we perform a topological sort on the graph
H to get a sorted list of subgraph transitions and use
the expansion mapping defined in (6) to get a solution
path. The way that H is constructed ensures that ev-
ery edge has all their preconditions satisfied when the

c) Set of subpaths

p1

p2
b) The H graph

p1

p2
d) The H graph

a) Set of subpaths

Figure 3: Illustration of the H graphs generated for com-
pose feasible plan(). a) and c) show example subpaths for P1

and P2, respectively. b) and d) show the corresponding H
graphs. Note that the vertices in the H graphs correspond to
edges in subpaths. The dashed lines in a) and c) show transi-
tion constraints and state-transition constraints, respectively.

solution path is followed. Like P1, the cost of com-
pose feasible plan() for P2 is bounded by Tcomp =
Θ(N2L2).

Compose subpaths for P3. For P3, given
(p1, · · · , pN), pi ∈ Pi, i = 1, · · · , N , we con-
struct a directed graph H in which there is one vertex
for each edge (ξi,j−1, ξi,j), for all 1 ≤ i ≤ N
and j = 2, · · · , ki. In H , there is an edge from
(ξi,j−1, ξi,j) to (ξi,j , ξi,j+1) for all 1 ≤ i ≤ N and
j = 2, · · · , ki − 1. Further, for any two edges (v, v ′)
and (u, u′) at different subgraphs, there is an edge from
(v, v′) to (u, u′) in H if (v′, u′) /∈ χ. Finally, in H ,
introduce a new vertex v0, add edges from v0 to the first
edge in each subpath, and add edges from the last edge
in each subgraph to v0. Compose feasible plan() then
tries to find a Hamiltonian path in H . The complexity
Tcomp is exponential in NL.

Complexity analysis for P1 and P2. SCS is not ef-
ficient for solving P3 since it requires finding Hamilto-
nian paths. Now let us check the overall complexity of
SCS on P1 and P2. The complexity for finding all the
subpaths in subgraph Gi is Θ(|V (Gi)|+ |E(Gi)|). The
total complexity of SCS is

Θ
(N∑

i=1

(|V (Gi)|+ |E(Gi)|) + Tcomp

N∏
i=1

|Pi|
)

. (16)

We compare the complexity of SCS in (16) to that
of (8), the complexity of searching directly on the full
graph G. We see that the complexity in (16) is better
than (8) when the number of paths in each subgraph is

4

less than the size of the subgraph. For each subgraph
Gi, define the ratio

Ri =
|Pi|

|V (Gi)|+ |E(Gi)| . (17)

We see that, ignoring the first term of ((16) since it is
asymptotically negligible comparing to (8), we have:

(16)
(8)

= Tcomp

N∏
i=1

Ri (18)

We see that if Ri < 1 then SCS saves time for large
N , as Tcomp is only polynomial in N for P1 and P2 but∏N

i=1 Ri is exponential in N . For example, if there are
N = 30 subgraphs, each subgraph has 50 vertices and
150 edges, each subgraph generates 10 subpaths from
the initial state to the goal state, then Ri = 1/20 and the
time reduction is of the order 2030, which is significant
and dominates Tcomp (which is of the order 502·302). In
fact, SCS is effective in reducing the time when Ri < 1.
Such a property is observed in some planning domains,
such as Airport in which each plane has only a few pos-
sible routes to reach the destination and the number of
subpaths is much less than the number of edges and ver-
tices in the airport topology graph.

There are possible ways to further improve SCS. For
example, the search for a solution path in Lines 3-5
in Algorithm 1 can be replaced by a branch-and-bound
style algorithm which branches on the selection of p i se-
quentially. For some given subpaths p1, · · · , pi, i < N ,
if there is a loop in the partially constructed graph H ,
then there is no valid solution to the topological sort, re-
gardless of the choice of pi+1, · · · , pN . Therefore, we
can prune the search. Another technique is to use the
cost of the incumbent solution to prune branches that
can not yield better solution paths. Finally, it is possi-
ble to use existing heuristics to order the subpaths, with
the hope that high-quality solution paths can be found
earlier and provide stronger pruning.

Limitations of SCS. The SCS algorithm and the
above analysis give insights as to how a Cartesian-
product structure of a state-space graph may lead to sig-
nificant reduction of search complexity. However, the
SCS algorithm is not very practical for two reasons.

First, for some problems with dense subgraphs, the
number of subpaths in each subgraph may be larger than
the size of the subgraph, leading to Ri > 1 for some i
so that SCS becomes less favorable.

Second, SCS makes the canonicality assumption that
any subpath can pass each vertex at most once, which
can be restrictive for some real-world problems, espe-
cially those with cycles in the subgraphs.

To overcome the limitations of SCS, we next propose
a practical algorithm, reduced expansion search (RES),

Algorithm 2: State space search
Input: State space graph G
Output: p, an optimal solution path
closed← an empty set;1

insert the initial vertex u into open;2

while open is not empty do3

v← remove-first(open);4

if π(v) = 1 then process solution path(v);5

if v is not in closed then6

add v to closed;7

open← insert(expand(v), open);8

that still exploits the Cartesian-product structure and re-
duces the complexity for both dense and sparse sub-
graphs, without requiring the canonicality assumption.

Reduced expansion search (RES)
The idea of RES is to safely prune the search space
by recognizing the structure of Cartesian products. We
need the following definition first.

Definition 5 Given a state-space graph G defined in
Definition 1, for a vertex v ∈ V (G), an edge e ∈ E(G)
(resp. vertex w ∈ V (G)) is a potential descendent
edge (resp. vertex) of v if there exists a feasible solu-
tion path from v to a goal state that contains e (resp.
w). We denote this relationship as v � e (resp. v � w).

In a preprocessing phase, for each subgraph G i, we
may decide for all vertex-edge pair (v, e), v ∈ V (G i),
e ∈ E(G), whether v � e in time polynomial to
|V (Gi)| + |E(Gi)|. An algorithm is to check, for each
(v, e), e = (u, w), whether v can reach u and w can
reach a goal state. We have v�e if both can be achieved.
The v�w relationship of all vertex pairs can be decided
similarly.

Node expansion. We characterize a wide range of
standard search algorithms by Algorithm 2. Different
search algorithms differ by the remove-first() operation
which gets one node from the open list. Algorithm 2
is DFS when open is a FIFO queue, BFS when open
is a FILO queue, best-first search (including A∗) when
open is a priority queue ordered by a heuristic function.

Algorithm 2 is always optimal if we record all solu-
tion paths and finally report the best path. However, in
some cases, the first solution is optimal. For example,
BFS is optimal when all edges have a same cost and
A∗ is optimal when the heuristic is admissible. In the
following, we regard Algorithm 2 as optimal, assum-
ing appropriate schemes are adopted according to the
remove-first() implementation.

The RES algorithm we propose modifies the ex-
pand() operation. So it can be combined with any imple-
mentation of remove-first() and any heuristic function

5

Dependency closure

G3

G1

G4

v1

v2

v3

v4

v=(v1, v2, v3, v4)

G2

dependencyPotential

G3

G2

G4

G1

graph: PDG(v)

Figure 4: Illustration of expand() on G = G1 × G2 × G3 ×
G4. The dashed arrows show preconditions of edges.

to form various algorithms. The idea is, by recognizing
the structure of G, we reduce the nodes that expand()
will generate for some states.

Given a vertex v ∈ V (G), its set of children ch(v) is
defined as ch(v) = {u|(v, u) ∈ E(G)}.

We define expand(v) as a subset of ch(v) that only
expands feasible children with respect to given con-
straints. For P2, we check if all the preconditions of
an edge are in v and only expand those valid edges.

We examine closely the expand() operation on a
graph G = G1 × · · · × GN . For a current vertex
v = (v1, · · · , vN), the next child vertex only differs
from v by one of the vi, i = 1, · · · , N . Let expand(vi)
be the set of valid children of vi in Gi, we have:

expand(v) =
N⋃

i=1

{
ρ[v, (vi, ui)]

∣∣∣∣ui ∈ expand(vi)
}

, (19)

which is illustrated in Figure 4.

Reduced expansion for P2. Now we consider P2.

Definition 6 For an instance of P2, given a vertex v ∈
V (G), let v = (v1, · · · , vN). For any 1 ≤ i, j ≤ N, i �=
j, we call vi a potential precondition of Gj if there ex-
ists e ∈ E(Gj) such that

vj � e and vi ∈ pre(e) (20)

Definition 7 For an instance of P2, given a vertex v ∈
V (G), let v = (v1, · · · , vN). For any 1 ≤ i, j ≤ N, i �=
j, we call vi a potential dependent of Gj if there exists
e = (vi, u) ∈ E(Gi) and w ∈ V (Gj) such that

vj � w and w ∈ pre(e) (21)

Definition 8 For an instance of P2, for a vertex
v ∈ V (G), its associated potential dependency graph
PDG(v) is a directed graph in which each of the sub-
graphs Gi, i = 1, · · · , N corresponds to a vertex, and
there is an edge from Gi to Gj , i �= j, if and only if vi is
a potential precondition or potential dependent of G j .

Definition 9 For a directed graph H , a subset C of
V (H) is a dependency closure if there do not exist
v ∈ C and u ∈ V (H)− C such that (v, u) ∈ H .

50

a d

e

b c

1
2

3
4

5

G1

G2

20 30 15

5

25

30

10

40

Figure 5: An example problem P2 with weights on edges.

Figure 4 shows the above definitions. In PDG(v), G1

points to G2 as v1 is a potential precondition of G2 and
G2 points to G1 as v2 is a potential dependent of G1.
We see that G1 and G2 form a dependency closure.

The RES algorithm can be described as follows. In
the expand(v) operation, instead of expanding all the
children as in (19), we only expand the subgraphs that
belong to a dependency closure of PDG(v) under the
condition that not all subgraphs in the dependency clo-
sure are at a goal state and at least one subgraph in the
closure has a valid child. If there are more than one
such dependency closure, we choose the one with the
minimum branching factor. More precisely, we find an
index subset C(v) ⊆ {1, · · · , N} such that the sub-
graph formed by Gi, i ∈ C(v) is a dependency clo-
sure in PDG(v) and that not every vi, i ∈ C(v) satisfies
π(vi) = 1. Such a C(v) can always be found for any
non-goal state v since PDG(v) itself is always a depen-
dency closure. When the set C(v) is found, the RES
algorithm modifies the expand(v) operation to:

expandr(v) =
⋃

i∈C(v)

{
ρ[v, (vi, ui))]

∣∣∣∣ui ∈ expand(vi)
}

,

An example of RES is shown in Figures 5 and 6. Fig-
ure 5 shows two subgraphs and the precondition con-
straints, where a1 is the initial state and d5 and e5 are
goal states. In Figure 6, a) and b) show the original and
reduced search graph, respectively. We see that RES
significantly reduces the space. For example, at node
a1, since a is not a potential dependent or precondition
of G2, we can only expand G1 instead of expanding
both subgraphs. As another example, at b4, 4 is a po-
tential precondition of G1, but b is a not potential depen-
dent or precondition of G2. So at b4 G1 is a dependency
closure and we only expand G1.

We see that the optimal path cost is 140. In the orig-
inal space, there is redundancy since there are multiple
paths with cost 140. In the RES-reduced space we can
still find an optimal path (in bold) with cost 140, which
shows the correctness of RES pruning.

Theorem 1 Algorithm 2 using the expandr() opera-
tion can optimally solve P2.

Proof. We consider the directed graph G ′ where
V (G′) = V (G). For each vertex v, there is an edge

6

b1

a1a1

b2

b3

b4b1 c4

d4

d5 e5

e4

a) Original space G = G1 X G2 b) RES−reduced space G’

20

20

20

25

25

30

30 30

25
20

40

40
40

10 10

20

50

5050

50

20

30 3015

15

50

50

50

5

5

5

15
a1

a2

a3 a4

b2

b3

b4

a5

c4

b5

d4

e4

c5

d5

e5

b1

a2

a3 a4

b2

b3

b4

a5

c4

b5

d4

e4

c5

d5

e5

Figure 6: Comparison of the original and RES-reduced search space for solving the problem in Figure 5.

(v, w) if and only if w ∈ expandr(v). Using Algo-
rithm 2 with expandr() to search on G is equivalent to
using Algorithm 2 with expand() to search on G ′.

Since Algorithm 2 with expand() is optimal, we only
need to show that for any initial state u, the cost of an
optimal path in G′ is the same as the cost of an optimal
path in G. We prove this fact by induction on k, the
length of the optimal path from the initial state u to a
goal state in G.

When k = 1, the optimal path in G is (u, g) where g
is a goal state. There exists i, 1 ≤ i ≤ N such that ui

and gi are different. According to the definition of C(u),
we have i ∈ C(u). Thus, we have that g ∈ expandr(u)
and that the optimal path (u, g) is also in G′.

When k > 1, let an optimal path from u to a goal
state g in G be p∗ = (v0 = u, v1, · · · , vk = g). Let
(u, v1) be an l-transition, i.e. v1 = ρ[u, (ul, v

1
l)].

We consider two cases. 1) If l ∈ C(u), then v1 ∈
expandr(u) and (u, v1) ∈ E(G′). According to the
Principle of Optimality, p = (v1, · · · , vk) is an optimal
path from v1 to a goal state in G. According to the
induction assumption, there exists a path p ′ from v1 to
vk in G′ with the same cost as p. From (2), (u, v1)
followed by p′ is a path in G′ and has the same cost as
p∗.

2) If l /∈ C(u), let (vj−1, vj) be the first edge in p∗
such that (vj−1, vj) is an m-transition and m ∈ C(u).
Apply the contraction mapping to p∗ and let �[p∗] =
(e1, · · · , ek). Consider the path

p∗∗ = ρ[u, (ej, e1, · · · , ej−1, ej+1, · · · , ek)].

Since C(u) is a dependency closure, um is not a poten-
tial dependent of any Gi, i /∈ C(u). That is, none of
the preconditions of ej is in Gi, i /∈ C(u). On the other
hand, ui = vj−1

i , ∀i ∈ C(u) and all the preconditions
of ej are satisfied at at vj−1. Thus, all the preconditions
of ej are satisfied at u.

Let v′ = ρ[u, ej]. We know (e1, · · · , ej−1) is a
valid transition sequence starting from v ′. This is true
because none of e1, · · · , ej−1 has um as a precondi-
tion (according to the definition of dependency closure),
thus moving ej before (e1, · · · , ej−1) will not make
their preconditions unsatisfied. Further, since executing
(e1, · · · , ej) and (ej , e1, · · · , ej−1) from u lead to the
same state, ej+1, · · · , ek are still valid transitions after
(ej , e1, · · · , ej−1) are executed.

From the above, we know p∗∗ is a valid
and optimal path from u in G. According
to the Principle of Optimality, we have p =
ρ[v′, (e1, · · · , ej−1, ej+1, · · · , ek)] is an optimal path
from v′ in G. From the induction assumption, we know
there is a path p′, from v′ to vk in G′ with the same cost
as p. Since (u, v′) ∈ E(G′), we have that (u, v′) fol-
lowed by p′ is an optimal path in G′ with the same cost
as p∗ and p∗∗. �

A note on the complexity reduction. In effect, the
RES algorithm searches on the reduced graph G ′ de-
fined in the above proof. Since expandr() is always a
subset of expand(), we have |E(G′)| ≤ |E(G)|. Fur-
ther, although |V (G′)| = |V (G)|, the vertices reachable
from the initial state may be much less in G′, as shown
in Figures 5 and 6. The number of vertices is reduced
from 16 to 10 and number of edges from 22 to 10.

Theorem 2 For an A∗ search on P2, if the heuristic
function is admissible, then using expandr() always ex-
pands less nodes than using expand().

Theorem 2 can be easily seen. For each node v that
A∗ with expand r() expands, since its f+h is less than
the optimal cost, it must also be expanded by the orig-
inal A∗, but not vice versa. Comparing to SCS, RES
does not need the canonicality assumption and can han-
dle cycles in subgraphs.

RES for P1 and P3. P1 cannot be solved by a graph
search with a closed list since the previous edges along
a path need to be remembered. A tree search has to be
employed. For the tree search, a RES pruning technique
can be used. Given a vertex v ∈ V (G), there is an edge
(Gi, Gj) in PDG(v) iff there exist (vi, u) ∈ E(Gi) and
e ∈ E(Gj) such that vj � e and (e, (vi, u)) ∈ Φ.

For P3, for a vertex v ∈ V (G), there is an edge
(Gi, Gj) in PDG(v) iff there exist (vi, v

′) ∈ E(Gj) and
(u, w) ∈ E(Gj) such that vj � (u, w) and (v′, u) ∈ χ.

For both P1 and P3, with the modified ways to gen-
erate PDGs, the same way to form dependency closures
and reduce expansions as for P2 can apply. The opti-
mality can be proved using a similar argument as that
for Theorem 1.

7

Reducing Classical Planning to P′
2

Now we show that the proposed graph model is general
enough to encode classical planning problems. There
have been recent studies on automatically transform-
ing STRIPS planning tasks into a SAS+ representa-
tion (Bäckström & Nebel 1995; Helmert 2006). We
sketch the basic definition of SAS+.

A SAS+ planning task is defined over a set of multi-
valued state variables X = {x1, · · · , xN}, each with
an associated finite domain Dx; and a set of actions O,
where each action o ∈ O is a triple (pre, add, del) of
partial assignments to state variables. The planning task
to is find a shortest sequence of actions from a complete
assignment to state variables (s0) to a partial assignment
to state variables (a goal state), under the well-known
semantics of actions.

We can map a SAS+ planning task into P′
2, a slight

extension of P2. Each state variable xi, i = 1, · · · , N
is associated with a domain transition graph (DTG)
Gi, a directed graph with vertex set Dx and edge set
Ax. An edge (v, v′) belongs to Ax if and only if there
is an action o with v ∈ del(o), v ∈ pre(o) and v ′ ∈
add(o). Thus, the SAS+ task maps to an instance of P ′

2
where the subgraphs are Gi, i = 1, · · · , N , and each
edge (v, v′) ∈ Gi corresponding to action o has a set
of preconditions as defined in pre(o). It is easy to see
that the goal test is decomposable and the plan cost is
separable and context free, as assumed by P2.

We note that P′
2 has two subtle extensions to P2.

First, between each vertex pair (v, v ′) in a subgraph Gi

there may be multiple edges, corresponding to differ-
ent actions. No change is required to make RES work
on such graphs, so long as we expand all the edges be-
tween a vertex pair in expandr() and consider all edges
when finding dependency closures. Second, an action
o in Gi may also appear in other subgraphs, requiring
simultaneous transitions. However, expandr() in RES
still works correctly without compromising optimality.
Suppose a subgraph Gj also contains o, then (Gi, Gj)
and (Gj , Gi) are both in the PDG, and thus, Gi and Gj

are in the same dependency closure. The proof to The-
orem 1 still works since all subgraphs containing o are
in a dependency closure. The details are omitted here.

Experimental Results
Using the reduction described in the last section, we ap-
ply RES to solve STRIPS planning problems in the re-
cent International Planning Competitions (IPCs). We
use a preprocessor in Fast Downward (FD) (Helmert
2006) to convert a STRIPS problem into a SAS+ in-
stance with multiple DTGs.

FD contains its own heuristic which is not admissi-
ble. To test the effect of RES, we implement a BFS
search by setting h = 0 in FD. Due to lack of available
admissible heuristics, we also implement an A∗ search
based on f + 0.2h, where h is the FF heuristic in FD.

Problem-ID BFS BFS+RES Problem-ID BFS BFS+RES
pathway2 17582 2770 pathway3 1.2e7 10046

pipesworld1 1103 1103 pipesworld2 4425 4425
rovers3 35684 5942 rovers4 11428 3152
storage5 1346 1272 storage6 3715 3322
trucks2 39317 19951 trucks3 639121 39317
TPP4 1275 14 TPP5 126322 5692

openstacks4 16389 16353 openstacks5 16389 16353
airport6 1483 1192 Airport7 1475 1188
depot1 2603 2212 depot3 - 153318

driverlog4 - 72891 driverlog5 - 222062
zenotravel2 391 148 zenotravel4 103630 7700

Table 1: Numbers of nodes expanded by BFS and RES on
IPC domains. ”-” means no solution is found in 30 minutes.

ID A∗ A∗+RES ID A∗ A∗+RES
open4 4937 (1) 1369 (2) open8 - 33850 (225)
open9 - 31080(233) path3 - 5023 (16)
path4 9.8e4 (83) 4225 (17) pipe9 - 1197 (133)

pipe10 - 1953 (196) rover4 11428 (1) 486 (1)
rover5 - 28724 (11) rover6 - 27631 (13)
stor12 - 9.1e4 (723) stor13 - 6.2e5 (820)
TPP5 26771 (4) 2124 (3) TPP6 - 82181 (34)
TPP7 - 9.1e4 (44) TPP9 - 2.6e5 (193)
airp8 685 (1) 334 (10) airp9 2.2e4 (29) 840 (35)
psr19 5092(2) 3198 (5) psr20 135 (1) 50 (1)

depot6 - 17014 (384) depot9 - 4853 (315)
driver5 81630 (1) 23474 (44) driver7 - 37582 (82)
driver9 - 61300 (152) zeno5 24282 (2) 1818 (21)
zeno6 87812 (10) 3282 (41) zeno7 24527 (2) 799 (9)

Table 2: Comparison of A∗ and RES. ”-” means timeout af-
ter 30 minutes. We give both number of expanded nodes and
the CPU time in seconds (in parentheses). We use some ab-
breviated domain names.

We have validated that 0.2h gives an admissible heuris-
tics in the cases we study. Then we implement the RES
algorithm, in which we only expand DTGs in a depen-
dency closure at each state.

We test STRIPS domains in recent IPCs and report
the results in Table 1. For each domain, we report the
two highest numbered instances that can be solved by
BFS or RES in 30 minutes. Currently, we use a simple
enumeration-based implementation and have not opti-
mized the efficiency of our code. It takes much more
time to process a node in RES than BFS. However,
finding the dependency closure can be done efficiently
by finding strongly connected components (SCC) in the
PDG, contracting each SCC into a node and finding zero
in-degree nodes. We believe an efficient implementa-
tion will lead to little overhead in RES, which will be
dominated by the computation of admissible heuristics.

From Table 1, we see that RES can reduce the search
space very significantly for most domains. Moreover,
for all the problems, RES can find a plan in the reduced
space with the same length as the optimal plan found by
BFS, which confirms Theorem 1.

In Table 2, we list the results of several highest num-

8

bered instances either solver can solve. We see that RES
can dramatically reduce node expansion. Although due
to the inefficiency of our simple implementation, ex-
panding a node using RES is often much more expen-
sive than before, A∗ with RES can still solve much more
problems within 30 minutes than without. For example,
in the storage domain, A∗ can only solve 3 instances
while A∗+RES can solve 13.

We believe that RES is of significance because it
is theoretically optimal and provides an automatic and
mechanical way to reduce the space for optimal search.
RES is a general principle for removing redundancy in
search and does not require any parameter tuning. RES
is orthogonal to and can be combined with the develop-
ment of better admissible heuristics.

References
Bäckström, C., and Nebel, B. 1995. Complexity re-
sults for SAS+ planning. Computational Intelligence
11:17–29.
Helmert, M. 2006. The Fast Downward planning sys-
tem. J. Artificial Intelligence Research 26:191–246.

9

	Faster Optimal State-Space Search with Graph Decomposition and Reduced Expansion
	Recommended Citation
	Faster Optimal State-Space Search with Graph Decomposition and Reduced Expansion

	tmp.1418338203.pdf.v8jae

