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ABSTRACT OF THE PROJECT

Data transport system

by

Dor Rahav

Master of Science in Computer Science

Washington University in St. Louis, Dec. 2014

Research Advisor: Dr. Chenyang Lu

To facilitate the WU Smart Home research [21] we built a system that collects data from

sensors and uploads the data to the cloud. The system supports data collection from multiple

locations (typically apartments) that are independent from each other, endowing the system

with two benefit: distributed data collection and alleviating privacy concerns. Each location

is managed by a local micro-server (µServer) that is responsible for receiving data packets

from sensors and managing their transient storage. Periodically the µServer triggers a data

transport process that moves the data to a cloud server where it is stored in a centralized

database.

In the cloud, the receiving subsystem verifies that the data is coherent and if so, inserts

it to the database for permanent storage. Errors are detected and stored in a designated

table for review and correction when possible. The database is relational and referential

integrity is defined over the schema to force data coherency. The system was designed

to support dynamic module loading allowing system deployers to author their own sensor

specific module to validate the data in any way they want.
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Important features of the system are configured without code changes. For example, users

can define sensor identification rules by editing a configuration file. There is full support for

logging. Input-Output and other expressions that can fail are enclosed within a try-except

clauses and an overarching error handling module controls critical events.

The system is written in Python 2.7.5 [12] and its runs on Linux (on both the µServers

and the cloud server) and the embedded code is written in nesC [18] and runs on TinyOS

2.1.2 [15]. The source code is well documented; each module has introduction section,

descriptive variable names and CONSTANTS are used, when appropriate inline (expression

level) comments are provided. README.txt files are provided for each module. Excluding

Python, the system uses the latest versions of every tool or OS that it rely on.
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Chapter 1

Overall system design

The system we developed is designed to transport data from distributed locations into a

centralized cloud server. The system core service is reliable data transport. In

essence it is an enabler of other applications1 (apps) that use the central database to guide

their functionality and for researchers from the various academic departments in the project

to perform their analysis and design their algorithms.

In the Smart Home initiative the system collects data about power-consumption and time-

of-use from electric appliances connected to ACme [19, 6] power meters (such devices are

often referred to as motes). Other sensors can be supported without changes in the system

as long they use the IEEE 802.15.4 network [20] and the system modular design should allow

for additional networks to be added with minimal coding.

To support distributed data collection we designed the system to be composed of a few

subsystems: The embedded module is installed on multiple ACme motes. Within each loca-

tion (apartment) these motes communicate with the apartment subsystem. Such apartment

subsystem can be deployed in multiple locations. If information from the building itself or

other location (e.g. environmental sensing external to the system) is of interest, then the

location-subsystem can be deployed for it as well. In essence, as long as Internet connection is

available nothing in the system design preclude the location-subsystem from being deployed

in other sites of interest. Lastly, the cloud subsystem is installed once in the cloud or on a

physical computer running Linux. In the Smart Home project we choose to implement it on

Amazon EC2 [1] on which we installed an Ubuntu Linux server [17] created from Amazon

Machine Image (AMI). The system high level component diagram is shown in figure 1.1.

1What these apps do is beyond the scope of this project.
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Figure 1.1: The system high level components. In each apartment, ACme power meters send
usage data to a local microServer (µServer). Multiple such apartments or locations can be
deployed. All apartments upload their data to a single cloud server.

Data from the wireless power meters is collated at each apartment and transported to the

centralized cloud server. The apartment subsystem does not depend on building level ser-

vices, or the cloud subsystem and thus inherently supports privacy between apartments or

locations. To further isolate one apartment wireless data from another we specify the use

of different wireless channel for each apartment. Installers of the system should appropri-

ately perform spacial design in order to not reuse a channel in nearby apartments. With

the indoors range of the 802.15.4 network being about 30 meters and the availability of 16

channels such a layout should be easily attainable. This is of no concern for the WU Smart

Home project which has only six apartments.

The data in the cloud can be used by apps for any desired objective such as algorithms for

smart control of the apartments, or smartphones based surveys that use the data as basis

for driving their functionality. Researchers in the project can use the ready functionality of

the SQL server to query the data for any purpose they may wish.
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1.1 Programming languages

We used Python 2.7 for programming on the µServers and the cloud server. We made efforts

to use the most modern Python expressions without resorting to programming in Python 3.x

constructs2. We used nesC for programming the motes, and PHP for generating dynamic

content for web pages.

1.2 Operating systems

TinyOS runs on the motes, Linux Darwin version when the µServers is an Apple OS-X

laptop, and Ubuntu Linux server on the cloud server.

1.3 Modular design

The following sub-systems comprise the overall system.

Embedded subsystem There are two parts to this subsystem. One running on ACme

motes that is responsible for activating the sensors at desired intervals and sending the

data packets (by wireless network) towards the µServer. The second part is running on a

BaseStation [16] mote attached to a USB port on the µServer. Its responsibility is to receive

the packets and pass them up from the PHY layer.

Location subsystem The Listen [16] app of TinyOS work with BaseStation to make the

packets available at the application layer. The system bundles the packets into files which

are sealed with appropriate header and footer. The header is later used to identify the source

of the data and the footer is used to verify data completeness. The operation of the module

2We used Python 2.x because we felt that 3.x might run into problems on some µServers, which are a
hot new trend that is still evolving. Using the more modern constructs of 2.x should ease migration to 3.x
once future developers of this system feel that sufficiently many µServers are capable of running it.
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is configurable externally to the code. In desired intervals the µServer triggers an encrypted

upload of new data files to the cloud server.

Cloud subsystem A Linux server we built runs in the cloud (as our cloud provider we

choose Amazon EC2) and hosts the centralized modules of the system. The cloud module

is responsible for parsing, verifying, and inserting the sensory data into the database.
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Chapter 2

Software repository

All of the system artifacts (code, configuration files, documentations, and so on) are main-

tained in a private (by invitation only) git repository hosted on https://github.com. This

cloud repository provides us with code and artifacts revision management, backup, and an

excellent way of being able to pull down code to the diverse number of development envi-

ronment that this project demanded (TinyOS, laptops, µServers, Cloud). The repository

address is https://github.com/rahav/SmartHome and itcontains the following sub-projects

(directories).

BaseStation Contains the original TinyOS basestation software and related toolchain such

as the Java Listen app. The basestation software should be installed on a TelosB [14] (or

any other compatible) mote that will be connected to the µServer. It is the combination of

the basestation mote and Listen that makes the packets available to the rest of the system.

CloudServer Artifacts for the software that runs on the cloud server. Importantly you

can find here: (1) createDB.txt with instructions how to create and give access rights to

the centralized database; (2) DBLoader.py is the module that the server runs periodically

to insert new incoming data files into the database; (3) ParseACme.py which is a specific

parser for ACme packets.

Libs Artifacts and libraries that are useful for all modules of the system (for example a

library that makes error handling uniform across the system).
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berkeley Contains the original ACme software and our modifications to it. The modifica-

tions are identified by directory names having the .WU postfix. We kept the original source

code for any future need.

uServer Contains artifacts for the system software that runs on each location µServer. Im-

portantly PacketReceiver.py which is responsible for accepting packets from the basestation

mote and collating them into files is here.

A few things are worth paying attention to:

The ACMeterAppC.nc in SmartHome/berkeley/acme/apps/ACMeterApp.WU/ is the app

to install on all ACme motes. This directory also holds our annotated ACme instructions.

The ACme original packet receiver can be found here, but it is used only as a guidance to

the ACme packet structure which was not documented elsewhere (this code is written in

Perl).

The uServer and BaseStation sub-projects, together, hold the artifacts that needs to be

installed on any µServer and its attached mote respectively.

As long as the directory structure suggested by the repository is maintained the Python

libraries in Libs do not need to be copied to the directory where a Python app that use a

library is running. This is achieved by adding the expression sys.path.append(”../Libs”) in

any Python code that wants to use a library.

The directory structure under the berkeley sub-project is needed for make dependencies.

6



Chapter 3

Development environment

It turns out that in our modern world, with all of its advanced techology where is it so

easy to develop a lot by composing, or meshing (interfacing) existing services – it is actually

complicated to design and maintain a real system. The complexity originates from the diverse

platforms which today’s systems need to integrate into an orchestrated whole. In our project

for example, which in essence is not large at all, we had to develop software for motes which

required TinyOS. In turn TinyOS is best developed these days on Linux, which requires

either a local (because motes need to be connected to it) Linux server, or a virtual Linux

server running on a local machine. We also had to develop software on µServers, which we

first wanted to check on our laptops. When developing the cloud subsystem we want to have

reliable way of having access, from the cloud, to the artifacts developed on other platforms in

the project. We see that even in this puny project we have four development environments

(namely embedded devices, laptops, µServers, and cloud servers), multiple OS, a diverse set

of display capabilities.

One of the main challenges is not simply to support the various hardware you develop on,

but also to support the different (Integrated Development Environments) IDEs and editors.

Of prime importance is to make sure that as we switch from one development environment

to the other the most recent source code is being edited.

There are three decision milestones that we made and aided much of this complexity. The

first was the decision to use Virtual Machines (running on our local development laptops)

to any extent possible. ACme development for example was highly sensitive to how TinyOS

was installed. TinyOS in and of itself was hard to install with no problems. Installing Linux

on a local virtual machine, and then installing TinyOS on Linux allowed us to incrementally

7



Figure 3.1: The overall system development environment support distributed development
on multiple and diverse hardware platforms, using many desired IDEs and editors.

install this specific development environment, from the right sources, and the right cross-

compilers. Each time we had a properly installed environment is was easy to save the virtual

machine as a backup to which we could revert to if the next step introduced errors.

The second milestones was the decision to use the git repository system, which was designed

for distributed development. Git made it easy to work in any of the development environ-

ment, at the end of the work session commit and push to the git cloud, and then switch to

any of the other development environments and pull the latest code.

The last decision may seem trivial but taken together yield a well covered solution for

authoring source code and other software artifacts. It is the decision of using vim (other

editors will do equally well) as our editor of choice within ssh login shells, TextMate when the

editing session is a bit more involved (note that TextMate also has an excellent solution for

providing full WYSIWYG editing during an ssh login, as well as local editing), and Eclipse

full IDE was desired. The overall development environment design is shown in figure 3.1.
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Chapter 4

Added value services

To provide a complete turn-key system we also installed3 on the server a handful of additional

services:

• MySQL [7] as the research’s centralized SQL database.

• OpenSSH server [9] for remote server administration and access for other needs.

• Apache web server [2] to serve web content, including dynamic content generated by

PHP.

• PHP [11] for writing web server-side code.

• vim for a better editing than what the default vi provides.

3The best installation process we are aware of can be found in http://research.engineering.wustl.

edu/~todd/cse330/index.html, just follow first few modules under the course calendar.
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Chapter 5

Location (apartment) subsystem

The system defines a location as any physical site within which all sensors have some logical

relationship to each other. In the case of the smart home each apartment is a location.

There are a few artifacts in a location: One or more ACme motes send their packets to a

basestation mote attached to a µServer. The basestation mote forward the packets from the

PHY layer to the application layer. At the application layer (in fact at the OS shell) the

Listen app consume the packets and makes them available to the rest of the system, in our

case this would be PacketListener.py which bundles the packets into files that the µServer

will periodically upload to the cloud.

Note that there are two parts to the embedded software, one running on ACme motes and

the other running on the basestation mote. Both motes run the TinyOS operating system.

The basestation mote can be any mote that has an IEEE 802.15.4 PHY and can connect to

a USB port. We have tested the system with the TelosB motes.

To protect the privacy within each location (apartment) the ACme motes and basestation

mote of each location are made to communicate on their own network channel. This is done

by editing the Makefile of both apps and modifying the nn value on the following line before

compiling and installing these apps for each location.

PFLAGS += –DCC2420 DEF CHANNEL=nn

10



5.1 ACme software

The ACme embedded software is completely based on the code provided by the Berkeley

research group that developed the ACme hardware. When needed, the original directory was

copied to a new directory (in the same parent directory) and given the same basename with

an added .WU postfix. In the git repository this code reside under the berkeley directory,

which we recommend to keep in its original structure for Make dependencies. The ACme

code runs on the TinyOS operating system.

The app to be installed on ACme motes is discussed in section 2. ACme provides installation

instructions for this code but they are wrong in a few places places, so we recommend to use

the annotated acme quickstart.pdf that we saved in the repository and not the one available

from www.moteware.com site.

5.2 Packet receiving

Receiving packets in a Wireless Sensor Network follows a common pattern. Packets are sent

in a agreed upon structure that TinyOS basestations adhere to. Moreover, TinyOS provide

tools to automatically generates Java or Python code to handle the incoming packets, or use

ready made listeners. In this system we used the original TinyOS basestation app and the

Java based Listen app with no modifications.

Listen forwards its packets using a Linux pipe to our PacketReceiver.py app, which process

and bundles the packets into a file for transmission to the cloud.

5.3 Packet bundling

We wanted to separate concerns between receiving packets and communicating with the

cloud. Therefore PacketReceiver core functionality is to receive packets and periodically

(the period is user configurable) bundle them into a file. Asynchronous to the bundling

period the µServer which runs Linux wakes up an OS processes that upload all ready files to

11



the cloud. It is left to the system deployers to decide whether the files are kept locally after

they are successfully uploaded to the cloud. A simple change in a shell script can work one

way or another. For disk space conservation purposes we recommend deleting the files after

a successful upload.

A configuration file accompanies this program. All modules support this approach with the

configuration file having the same basename as the app and the .cfg extension. In each

apartment the system deployers need to define the apartment name, the desired bundling

period, decide the free disk space below a warning will be issued, and whether the subsystem

works in interactive mode or not. The interactive mode displays messages on the µServer

monitor and allows a human operator to see what is going on.

The system logs interesting events. All modules do that with the log file having the same

basename as the app and the .log extension. The system was designed to be as autonomous

as possible and that led us to the problem of dealing with critical errors. We did not

want errors to compound after a first critical error occurred. Therefore all modules use the

ErrorHandler.py library we authored, which provides functions to prevent any work following

such an error. Such a shutdown event is logged. The system maintainers can then view all

the information in the log that led to this error condition, fix the root cause, and turn the

system back ON. To support this re-ignition we made ErrorHandler.py by able to run from

the command line.

12



Chapter 6

Cloud subsystem

The cloud subsystem is the locus point for all things research. The core service of our system

is to provide data transport from multiple locations to the cloud and deposit valid data into

a centralized research database.

To support high quality research data the cloud system provide coherency at various levels.

The system deployers can author their own data verification modules and configure the

system to use them without changing the core service of the system – data transport. A fully

implemented such module, named ParseACme.py is provided. It processes ACme packets

and should be used as a template for adding new sensors. Each packet can be identified by

rules that deployers author by editing the configuration file. The database is relational and

referential integrity between the tables is defined. Every batch of data packets is contained

in a file and a transaction is maintained over the file. Any critical error in processing will

lead to a rollback to the previously coherent state of the database. Lastly, I/O and other

operations that can fail are enclosed in a try-except clause and critical errors will cause the

system to stop further processing to avoid compounding errors. Processing errors that the

system categorize as possibly recoverable do not trigger the transaction rollback and are

inserted into an reading error table from which they may be examined and moved to the

reading table after attending to the error; In this case the valid packets from this file will be

inserted to reading table.

The cloud provider we choose for this project is Amazon EC2. The instance is named

SmartHome and its instance ID is i-97331db7. We used EC2 Elastic IP (an EC2 service

for keeping a permanent IP address). The server address is 54.83.14.180. The firewall is

provided by EC2 as part of their hosting, for which we defined the WUSTL Green Home

13



security group. We configured the security group to allow SSH (port 22), HTTP (port 80),

and MySQL remote access (port 3306). Other than that all ports are closed to reduce the

risk of malicious attacks.

On the cloud space provided by EC2 we installed a Ubuntu 64 bit Linux server version

13.x (Ubuntu codename saucy). The source for this OS is an Amazon AMI. On this OS

we installed SSH to allow remote administration and access to the server, VIM for easier

(that VI) editing, Apache to enable any researcher access to the system status4. MySQL

version 5.x is the database server we installed; it is the permanent store of all of the sensory

data send from all locations. For additional security we configured the SQL server to not

accept anonymous users. In this project PHP is our language of choice for responding to

web service requests, so PHP version 5.x was installed.

Additional utilities that were installed is the zip package, gedit to support some developers

that prefer that over vim, and apparmor-utils which eventually was not needed.

6.1 Cloud sub-system architecture

The architecture is shown in figure 6.1. Data files arrive to the cloud server asynchronously

from the various locations. They are deposited in a designated directory that can either be

protected in a Linux jail or other restricted access schemes, for example the µServers can

be given a restricted certificate to access the server, limiting their ssh access to a particular

directory and precluding them from establishing a login shell. Other schemes are also possible

and is left to the preference of the implementors. Periodically a cron process wakes up

DBLoader.py module which will check if files are ready in the incoming data directory.

When files exist this module will process them according to the configuration parameters

and log interesting events. Files with packets that adhere to all of the coherency rules will

be inserted into the reading table in the database. Packets parsed with errors or any other

malfunction, but does not present a critical error will be inserted into the reading error table.

Critical errors will cause all inserts from this file to the database to rollback. The system

4What web pages or services will be authored is beyond the scope of this project, our scope was to enable
such provision (in fact there was already another MS project that used the centralized database over apache
to provide access to the database and sensors status).
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will stop processing further files until the root cause error is solved. While processing, the

system can check the general health of the server itself by invoking Linux system calls. For

example we already implemented a service that monitors if the server has sufficient disk

space because the storage requirements are expected to grow and we wanted to be judicious

with our EC2 expense.

Figure 6.1: The cloud system components (the red brackets denote apps that can be de-
veloped but are beyond the scope of this project). Data arrives to EC2 from distributed
µServers over the Internet cloud. The subsystem parse the data, verifies that it is coherent,
and insert it to the MySQL database.

6.2 Database

MySQL database server version 5.5 was installed on the server. Access from Python is

achieved by using the Connector/Python [8] by Oracle. Moreover, to further simplify access

to the database we developed a Library with common idioms, which can interchangeably be

used along with using direct calls to Connector/Python.

The database schema is designed to be fully rational, but in addition (with this being a

school project and wanting to support new SQL developers) a single, non-normalized table

is maintained. Its name is reading nn acme and it stores only valid readings. In all tables

appropriate column types were used and only reasonable values are allowed at the schema
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level (so future coders are forced to write appropriate code). Referential integrity is defined

over the tables and the relationships between them. Security wise users and applications are

restricted to access only the tables they need and are allowed to do only the operations that

are reasonable for their role. The database Entity Relational Diagram (ERD) is shown in

figure 6.2.

6.3 Server added-value services

Apache, via PHP, can access the database for any desired purpose, such as editing the

database tables via web UI, developing an app for viewing processing errors, or give re-

searchers status about the system conditions. Such apps were beyond the scope of this

project, but another MS student already developed a very nice system http://54.83.14.

180/SmartHome/ for accessing the database to configure buildings, apartments, install and

manage sensors, as well as see if the sensors are working properly by determining if their

valid sensory data arrives to the server.
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Figure 6.2: Entity Relational Diagram (ERD) for the research project database. The building
table gathers one or more apartments defined in the appt table. Each sensor is defined once
in the device table and then can be installed by using the deployed table, a relationships that
allow the system maintainers to move sensors from location to location while keeping their
audit trail. Deployed sensors send sensory data that is stored in the reading table if it is valid;
otherwise it is stored in the reading error table. The reading nn acme is a None-Normalized
table that store only valid ACme packets and can be used by novice programmers, while still
having access to all valid sensory data.
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Chapter 7

Future work

In this last chapter we summarize what could be the next steps of the system. Starting our

discussion at the µServer, the current system was deployed on a laptop and it should be

deployed on a Raspberry Pi [13] class of µServers. While the system itself would not change

this could be a nice project for an undergraduate independent study, taking an holistic

approach of deploying an end-to-end system. The key tasks will be: considering how Linux

scripting is kept generic across operating systems, possible issues of the TinyOS Listen app,

buffering compatibility when piping between Java (Listen app) and Python (PacketReceiver

app), and configuring Linux schedulers. As part of this project we also recommend that

once Python 3.x is verified to work well on this class of µServers (e.g. the Raspberry Pi

mentioned above, BeagleBoard [4], CubieBoard [5], pcDuino [10]) the switch to Python 3.x

be made across the system.

There could be benefits to replacing the Listen app with SerialForwarder. The subsystem

running on the µServer could be made to run as a daemon and listen on a port instead of

getting its input by Linux pipe. When using ports more than one module can consume the

packets.

Completely corrupted packets (often these are not even packets, just error messages) are

currently not sent to the cloud. With the core service of the system being reliable transport

of well-formed packets, we did not pay much attention to how many packets are not even

formed. Currently, visibility into how often malformed packets occur can be calculated by

counting how many packets are missing from the centralized database and knowing a priory

the expected sensor period. It may be worth while to consider an improvement to how this

kind of errors are accounted for.
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The infrastructure that flows alerts to the Twitter module is in place but messages are being

printed instead of twitted. It should be an small effort to activate a Twitter account and

Tweet the message instead of printing it to the console.

Currently the cloud server enjoys a static IP address by using EC2 Elastic IP service. It

would be nicer to give it a domain name.

In development we did not need to backup the cloud database as our important artifacts

where source code related, and their backup is likely taken care of by git. We do recommend

that backup of the project data will be configured in production deployments of the system.

Finally, since the system development started, Ubuntu version 14.x was released and the

next system administrator should consider switching to this release.
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