
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2007-11 

2007 

Extending BPEL for Interoperable Pervasive Computing Extending BPEL for Interoperable Pervasive Computing 

Gregory Hackmann, Christopher Gill, Christopher Gill, and Gruia-Catalin Roman 

The widespread deployment of mobile devices like PDAs and mobile phones has created a vast 

computation and communication platform for pervasive computing applications. However, 

these devices feature an array of incompatible hardware and software architectures, 

discouraging ad-hoc interactions among devices. The Business Process Execution Language 

(BPEL) allows users in wired computing settings to model applications of significant complexity, 

leveraging Web standards to guarantee interoperability. However, BPEL's inflexible 

communication model effectively prohibits its deployment on the kinds of dynamic wireless 

networks used by most pervasive computing devices. This paper presents extensions to BPEL 

that address these restrictions, transforming BPEL into... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Hackmann, Gregory; Gill, Christopher; Gill, Christopher; and Roman, Gruia-Catalin, "Extending BPEL for 
Interoperable Pervasive Computing" Report Number: WUCSE-2007-11 (2007). All Computer Science and 
Engineering Research. 
https://openscholarship.wustl.edu/cse_research/116 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/116?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/116 

Extending BPEL for Interoperable Pervasive Computing Extending BPEL for Interoperable Pervasive Computing 

Gregory Hackmann, Christopher Gill, Christopher Gill, and Gruia-Catalin Roman 

Complete Abstract: Complete Abstract: 

The widespread deployment of mobile devices like PDAs and mobile phones has created a vast 
computation and communication platform for pervasive computing applications. However, these devices 
feature an array of incompatible hardware and software architectures, discouraging ad-hoc interactions 
among devices. The Business Process Execution Language (BPEL) allows users in wired computing 
settings to model applications of significant complexity, leveraging Web standards to guarantee 
interoperability. However, BPEL's inflexible communication model effectively prohibits its deployment on 
the kinds of dynamic wireless networks used by most pervasive computing devices. This paper presents 
extensions to BPEL that address these restrictions, transforming BPEL into a versatile platform for 
interoperable pervasive computing applications. We discuss our implementation of these extensions in 
Sliver, a lightweight BPEL execution engine that we have developed for mobile devices. We also evaluate a 
pervasive computing application prototype implemented in BPEL, running on Sliver. 

https://openscholarship.wustl.edu/cse_research/116?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/116?utm_source=openscholarship.wustl.edu%2Fcse_research%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2007-11

Extending BPEL for Interoperable Pervasive Computing

Authors: Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman

Abstract: The widespread deployment of mobile devices like PDAs and mobile phones has created a vast
computation and communication platform for pervasive computing applications. However, these devices feature
an array of incompatible hardware and software architectures, discouraging ad-hoc interactions among devices.
The Business Process Execution Language (BPEL) allows users in wired computing settings to model
applications of significant complexity, leveraging Web standards to guarantee interoperability. However, BPEL's
inflexible communication model effectively prohibits its deployment on the kinds of dynamic wireless networks
used by most pervasive computing devices. This paper presents extensions to BPEL that address these
restrictions, transforming BPEL into a versatile platform for interoperable pervasive computing applications. We
discuss our implementation of these extensions in Sliver, a lightweight BPEL execution engine that we have
developed for mobile devices. We also evaluate a pervasive computing application prototype implemented in
BPEL, running on Sliver.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



protocol-agnostic, it makes several assumptions about the
underlying network which limit its ability to model perva-
sive computing applications. BPEL assumes that the number
of participants in the application is known at design time,
and cannot be changed at runtime. While this assumption
is reasonable in traditional wired networks, it does not fit
typical pervasive computing settings, where participants may
come and go at any time. Further, BPEL only supports a
small set of communication patterns, which hinders its use
in dynamic networks. Nevertheless, despite BPEL’s limited
communication features, its processing constructs are highly
expressive. Our experience developing the Sliver middleware
[4] shows that BPEL already can be used to develop complex,
standards-based applications on lightweight devices.

In this paper, we show that by augmenting BPEL’s com-
munication capabilities, it can be adapted further into a pow-
erful standard for executing pervasive applications, even in
mobile settings. Section II describes the BPEL standard and
outlines its potential for pervasive computing. In Section III,
we discuss several extensions to BPEL which support group
communication and re-use of partner links in pervasive com-
puting applications. We discuss the Sliver middleware, which
incorporates these extensions, in Section IV. A prototype
over-the-air deployment system using the Sliver middleware
is described in Section V. We evaluate a sample application
deployed using this system in Section VI. Finally, we discuss
work on related systems in Section VII, and give concluding
remarks in Section VIII.

II. PROBLEM STATEMENT

BPEL is a powerful language which leverages software
services to model and execute applications as workflow pro-
cesses. However, current limitations in BPEL’s communication
model hinder its ability to interact with other hosts in a
dynamic network. In this section, we discuss briefly features
of the SOAP and BPEL standards as they relate to pervasive
computing. We also highlight the need for BPEL extensions
to support pervasive computing adequately.

When deploying applications that span multiple hosts, the
need for standardized message formats is paramount. This is
especially true when interactions among hosts are unplanned,
as is the case in many pervasive computing settings. The SOAP
standard addresses this need, by describing a XML-based
encoding for messages. SOAP provides an object serialization
scheme that converts objects into architecture-independent,
language-independent XML strings. Like most object-oriented
languages, SOAP builds complex messages by aggregating
primitive types like integers and strings.

In addition to specifying a message encoding scheme,
SOAP provides a simple framework for service invocation.
Traditionally, this invocation framework has been used as a
standards-based RPC mechanism, where each remote method
is exposed as a SOAP service. However, SOAP supports a rich
range of interaction patterns beyond simple request/reply pairs.
In the interest of portability, SOAP does not mandate an un-
derlying network transport. Though SOAP is most frequently

coupled with HTTP, some SOAP implementations support a
wide array of transports ranging from Bluetooth to SMTP.
When coupled with an advertisement mechanism like Zeroconf
[5] or Bluetooth service discovery, users can discover and
invoke remote SOAP services without prior knowledge of their
existence.

At the most abstract level, a BPEL process is essentially
a list of service invocations, with the ability to perform sets
of invocations in parallel or in a specific sequence. Much of
BPEL’s power comes from its ability to store the results of
these invocations in global variables, which processes can pass
as inputs to other Web services. Between service invocations,
BPEL processes optionally may examine or change parts of
these variables using the XPath [6] query language. Processes
also may change their behavior at runtime based on variables’
contents, by using branching constructs and while loops.
Finally, processes may indicate series of actions that should
be carried out asynchronously when events fire, such as when
specific messages arrive at the process or when a timer expires.
Using these simple constructs, workflow designers can string
simple services into complex, adaptive, and interoperable
applications.

Because BPEL is a Turing-complete language [7], the
computations that are performed in between service invo-
cations can be extremely powerful. However, this powerful
computational model is coupled with an inflexible commu-
nication model. BPEL represents all communication links —
whether incoming or outgoing — as abstract partner links.
From the process’s point of view, a partner link is simply
a communication channel which allows the initiator to send
exactly one request, and the recipient to reply with at most
one response. Each partner link is bound to a single remote
endpoint at a time. In the interest of being transport-agnostic,
BPEL processes have very limited control over the bindings
of these partner links: the current version of BPEL does not
allow processes to inspect or modify a partner link’s binding,
except by copying bindings directly between two partner
links. It is also assumed that the BPEL middleware has some
policy for pairing partner links to endpoints; this mechanism
is not exposed to the process. Most BPEL middleware have
an API for mapping outgoing partner links to endpoints at
deployment time, and automatically bind incoming partner
links to the source of the incoming messages. Because partner
links are described in terms of their types and not their
endpoints, workflow designers can model interactions with
remote services that may not be identified until runtime —
an important feature in pervasive computing settings.

Unfortunately, though process designers do not need to
predict the identity of partners at design time, they must
declare a fixed set of partner links with well-known types
nevertheless. So, the process designer must effectively predict
at design time the number and kinds of partners that will
participate in the workflow. In wired network settings, this
assumption is often reasonable. However, in pervasive settings,
many applications assume — and often benefit from — the
dynamic nature of the network. Peers may enter or leave the



network at practically any time. This dynamic behavior is both
an asset and a liability: new peers may provide additional data
or services when they arrive, but existing peers may sever
communication links unexpectedly if they leave the network.

This discrepancy currently forces process designers to use
one of two inadequate options for dealing with interactions
among hosts. First, a designer may estimate the maximum
number of participants during the process’s lifetime, and create
a single-use partner link for each. For example, a workflow for
an auction would have a single partner link for the seller, and
a partner link for each potential bidder. This approach places
artificial constraints on the process’s scope, and quickly leads
to unwieldy code duplication.

Second, a designer may declare one partner link for each
type of interaction. Incoming messages are handled as asyn-
chronous events, so that the process designer does not have to
predict at design time when or how often these interactions
will occur. For example, in the auction application, there
would be two partner links: one for the seller, and one shared
among all the bidders. However, this approach assumes that
the underlying BPEL middleware allows partner links to be
bound to different hosts during the process’s lifespan: e.g.,
that the link shared among the bidders is bound to one host
between the time that a bid is received and a response is sent,
after which another host can be bound to the same link. As
noted above, BPEL provides no guarantees about how partner
links are bound to remote endpoints, much less the lifespan
of these bindings. Moreover, this approach only works if no
two participants will ever issue the same kind of request
concurrently, since each partner link can only be bound to
one endpoint at a time. This constraint effectively prohibits
applications from using long-lived transactions.

BPEL’s simple message interaction patterns further compro-
mise its communication power. Though SOAP allows service
providers to send and receive any number of messages in an ar-
bitrary order, BPEL is much more restrictive. BPEL processes
only support one-way request (the partner sends exactly one
message and immediately disconnects) and request-response
(the partner sends exactly one message and then receives
exactly one message) interaction patterns. As we discuss later
in Section III, these simple interaction patterns are insufficient
in pervasive computing settings.

Despite BPEL’s shortcomings, its characteristics fit many
important needs of pervasive computing applications. When
BPEL is coupled with SOAP, any device equipped with a
standard SOAP middleware can participate in the application.
Because BPEL models applications in a standardized XML
format, new applications can be deployed over-the-air to
devices equipped with a general-purpose BPEL execution
engine. Finally, because of BPEL’s widespread acceptance in
wired settings, many modeling and verification tools (such as
JDeveloper BPEL Designer [8] and NetBeans Enterprise Pack
[9]) exist to assist developers with constructing applications in
BPEL. In the next section, we will describe several extensions
we propose for the BPEL language to permit its deployment
and use in pervasive computing settings.

<partnerLinks>
<partnerLink ... />*
<ext:partnerGroup name="ncname"
partnerLinkType="qname" />*

</partnerLinks>

Fig. 1. Partner Group Declarations

<ext:add partnerGroup="ncname" partnerLink="ncname"
mustNotBeMember="no|yes"? />

<ext:remove partnerGroup="ncname"
partnerLink="ncname" mustBeMember="no|yes"? />

Fig. 2. <add> and <remove> Activity Semantics for Partner Groups

III. BPEL EXTENSIONS

To address the issues highlighted above, we propose several
extensions to the BPEL language. Briefly, these extensions
make the following changes:

1) Processes may declare partner groups, or partner links
that are bound to multiple incoming endpoints simulta-
neously.

2) Processes may sent multicast messages to all members
in a partner group.

3) Processes may send or receive an arbitrary number of
messages over a partner link or partner group.

4) Processes may make limited changes to the bindings of
partner links, with well-defined behavior.

For the sake of consistency, we describe our extensions with
the same notation used in [2]. Tags with the ext: prefix are
part of our extensions; all other tags are part of the standard
BPEL specification.

A. BPEL Extensions for Partner Groups

As we discussed in Section II, BPEL processes communi-
cate with remote hosts over partner links. These partner links
are declared in a single <partnerLinks> delimited section
located at the beginning of the process description. We extend
this <partnerLinks> section to introduce the notion of partner
groups, as Figure 1 illustrates. We define partner groups to
be unbounded lists of partner links. Like a partner link, each
partner group has a unique name and an associated type (i.e.,
the kinds of services that the links can invoke on the workflow,
and vice versa). Unlike partner links, partner groups can be
bound to any number of endpoints simultaneously, and can
be manipulated by the process at runtime using additional
operations discussed below. These two traits are essential in
mobile settings: they allow a process to refer to any number of
remote hosts, without requiring the process designer to predict
this number at design time.

Initially, partner groups are not bound to any endpoints. Fig-
ure 2 describes two new BPEL activities (add and remove)
which change the membership of partner groups. The add
activity adds an endpoint (taken from a specified partner link)
to a partner group. By default, if the endpoint is already a
member of the group, then the operation will do nothing. If the
mustNotBeMember attribute is set to yes, then the process
will throw a mustNotBeMember fault instead. Likewise, the



<ext:reply
(partnerGroup="ncname" | partnerLink="ncname")
moreMessages="no|yes"? ... />

Fig. 3. Extended <reply> Activity Semantics

remove activity removes an endpoints from a partner group.
If the mustBeMember attribute is set to yes, then attempting
to remove a non-existent member from a group will throw a
mustBeMember fault.

To leverage these partner groups, we extend the definition
of the reply activity, as shown in Figure 3. This extended
reply activity has two additions that differentiate it from a
normal BPEL reply activity. First, the reply may be sent to
a partner group instead of to a partner link. In this case, the
same message is sent to all members of the group. Second, the
moreMessages attribute indicates whether or not the partner
is allowed to continue sending or receiving messages over the
link after this message is sent. By default, moreMessages
is set to no, and the process uses the simple single-request,
single-response interaction pattern normally used by BPEL. If
moreMessages is sent to yes, then the process can continue
to send and receive messages over the link, permitting complex
interaction patterns.

The draft specification for WS-BPEL 2.0 [10] will allow
processes to emulate multicast behavior using standard activ-
ities: processes can declare variables which effectively act as
lists of bindings; copy bindings from partner links into these
variables; and then iterate over the contents of these variables
using a forEach activity. (As of this writing, the current
version of BPEL is WS-BPEL 1.1; WS-BPEL 1.1 does not
allow processes to copy partner link bindings into variables,
and does not support the forEach activity.) Nevertheless, the
extensions proposed here are simpler for process designers
to use, since multicast is treated as a first-order activity.
Moreover, WS-BPEL 2.0 will not address the other issues
highlighted in Section II: namely, BPEL’s inability to support
complex message interaction patterns or to effectively handle
an unbounded number of participants.

B. BPEL Extensions for Partner Link Re-Use

As we discussed in Section II, in order for BPEL processes
to effectively support an unbounded number of participants,
they must expect multiple hosts to use the same incoming
partner link at different times. However, BPEL does not
provide a clear semantics for the lifespan of bindings between
hosts and partner links. To address this issue, we propose the
following semantics for incoming partner links:

1) Partner links can accept incoming connections if and
only if they are not already being used, i.e., if and only
if they are not currently bound to any host.

2) When a reply task is invoked and its moreMessages
attribute is no, the corresponding partner link is un-
bound immediately after the message is sent, and the

<ext:close partnerLink="ncname" />
<ext:unbind partnerLink="ncname" />

Fig. 4. <close> and <unbind> Activity Semantics

communication channel is closed1.
3) Processes may explicitly unbind partner links or close

their underlying communication channels as needed.
These rules permit processes to reuse partner links efficiently,
while allowing process designers to predict and control how
this reuse occurs. Note that many BPEL engines, such as
Sliver and ActiveBPEL, already exhibit the first two behaviors;
but only Sliver (with the extensions presented in this paper)
provides the third behavior.

Figure 4 shows two new BPEL activities (close and
unbind) which support the third behavior. The close activ-
ity allows the process to close a partner link’s communication
channel, and then unbind the partner link programmatically.
The unbind activity unbinds a partner link, but does not
close the underlying connection. As we discuss below, these
activities are useful for implementing multicast and publish-
subscribe communication schemes, which BPEL previously
did not support.

C. Impact of BPEL Extensions

Though these extensions are conceptually simple, they add
substantial power to BPEL’s existing communication model.
In [11], Wohed evaluates BPEL’s capabilities with respect to
six communication patterns commonly used by collaborative
applications. Wohed concludes that BPEL cannot support two
of these six patterns: publish-subscribe and multicast. These
patterns are especially important in pervasive and mobile
applications, since they are the only patterns out of the six
which do not require the process designer to specify a fixed
set of endpoints.

The BPEL extensions described in this section address this
issue. As we illustrate later in Section VI, processes can
implement multicast messaging by maintaining a partner group
whose membership reflects the set of multicast listeners. When
new listeners connect to the process, they are added to this
partner group, and the partner link is explicitly unbound using
the unbind activity. Because the partner link is unbound after
each new listener connects, an unlimited number of listeners
can re-use the same link. Disconnection messages are handled
in a similar fashion, by using the remove activity to remove
the listener from the group, and the close activity to close
the corresponding communication channel. Messages then can
be sent to all the members of this group using the extended
reply activity.

Publish-subscribe behavior can be implemented similarly,
by using a different partner group for each kind of message
subscription (in the interest of brevity, we omit further discus-
sion). Thus, the extensions proposed in this section support

1For the purpose of explanation, we assume in this section that the under-
lying communication protocol is connection-oriented. In situations where this
is not true, attempts to “close” the communication channel are ignored.



the development of sophisticated pervasive and mobile appli-
cations which use any of the six important communication
patterns noted in [11].

IV. SLIVER MIDDLEWARE

We have implemented the extensions described above as
part of the Sliver middleware. Sliver is a lightweight SOAP and
BPEL execution engine designed for deployment on mobile
devices. Sliver supports a wide range of computing platforms,
ranging from mobile phones to desktop PCs. In this section, we
will discuss briefly the design and implementation of Sliver.

Sliver’s architecture features several characteristics moti-
vated by the specific needs of mobile devices. First, Sliver pro-
vides a clean separation between communication and process-
ing. Communication components can be interchanged without
affecting the processing components. This separation allows
Sliver to support a wide variety of communication media
and protocols, ranging from HTTP to Bluetooth. Second,
Sliver only depends on two lightweight external libraries,
which themselves were designed with mobile devices in mind.
This minimizes Sliver’s footprint and ensures that Sliver can
be deployed on a broad range of devices. Third, Sliver’s
SOAP components do not depend on its BPEL components.
Developers can deploy SOAP services on mobile devices
without needing Sliver’s full BPEL engine, further reducing
Sliver’s footprint.

The resulting architecture is shown in Figure 5. At the
lowest level of the architecture, the transport layer wraps var-
ious network media and protocols with a consistent interface.
The transport layer exchanges message objects in the form
of serialized XML strings. These strings are converted to and
from Java objects by the XML and SOAP parser layers.

The SOAP server layer wraps user-provided Java services
with a Web service interface. When deserialized messages ar-
rive from the XML and SOAP layers, the SOAP server directs
them to the corresponding service. The service’s response is
serialized by the XML and SOAP layers, and is then sent over
the network by the transport layer.

Many of these layers are re-used by Sliver’s BPEL server.
The XML parser layer, in conjunction with the BPEL parser
layer, converts user-provided BPEL documents into concrete
executable processes. The BPEL server layer hosts the pro-
cesses that these layers produce. Like the SOAP server, the
BPEL server consumes the requests that arrive from the
transport layer and routes them to the appropriate processes.

In its current version, Sliver supports BPEL’s core feature
set and has a total code base of 190 KB including all dependen-
cies (excluding an optional HTTP library). Most applications
will only use a subset of Sliver (e.g., because they only use
one of Sliver’s included transport providers). Hence, Sliver’s
effective footprint may be reduced by bundling applications
with only the components of Sliver which each application
uses. This procedure can be automated by post-processing
application bundles with utilities such as ProGuard [12], which
remove unused bytecode and assign compact names to classes
and methods.

In the remainder of this section, we will briefly discuss
the design of Sliver’s constituent layers. More detailed design
information, including sample code, may be found in [4].

A. Transport Layer

The transport layer is responsible for the transmission
of messages produced by the upper layers. Because mobile
devices support a wide range of communication media and
protocols, Sliver’s transport layer uses pluggable communi-
cation providers. This design is inspired by the pluggable
protocol layers used by TAO [13] and Apache Axis 2.0 [14].
Sliver’s transport layer features a streamlined API specifically
designed to facilitate the support of new protocol providers.
If a developer wishes to support a new protocol, he must
implement only two public interfaces with a total of eleven
public methods. Currently, Sliver supports raw TCP/IP sockets
and Bluetooth L2CAP on J2SE and MIDP devices, as well as
HTTP on J2SE devices.

B. XML/SOAP Parser

Because Sliver leverages standards like SOAP and BPEL,
all messages exchanged over the transport layer are encoded
in XML form. Sliver uses the third-party kXML [15] and
kSOAP [16] packages to parse XML and SOAP documents.
These packages are designed with mobile devices in mind:
they have a small combined footprint (47 KB of storage space)
and operate on most available Java runtimes.

In the interest of brevity, we do not discuss here how
SOAP encapsulates data in XML form; the interested reader
may consult [3] for more information. However, it is worth
noting that, like many other object-oriented languages, SOAP
constructs objects out of primitive types (integers, strings, etc.)
and other well-known objects. Each type of object has an
associated name and namespace. SOAP namespaces are used
to differentiate between different types with the same base
name, and are roughly analogous to Java packages or C++
namespaces.

C. SOAP Server

The SOAP protocol provides a standard for service invoca-
tion in addition to message encoding. Sliver’s SOAPServer
class implements a SOAP service handler, which dispatches in-
coming service invocations to the corresponding user-provider
service. Again, in the interest of brevity, we do not discuss in
detail how these service invocations are encoded. We note that
requests and responses are encapsulated as SOAP objects, and
that these objects contain the call’s parameters/return values as
nested children. Like any other SOAP object, request messages
have an associated type name and namespace, which are used
to direct requests to the appropriate service.

D. BPEL Parser

Unlike standard SOAP services — which are generally
stand-alone entities implemented in any of a wide variety of
languages — BPEL processes use a standardized XML schema
to describe interactions among other SOAP services. Sliver



XML Parser

SOAP Parser

SOAP 
Service

SOAP Server

Transport

BPEL Parser

BPEL Server

BPEL 
Process

Provided by userSliverThird-party library

BPEL Documents

Service Discovery

Fig. 5. The architecture of the Sliver execution engine

represents each BPEL tag with a corresponding Java class;
e.g., the reply tag is represented by the Reply class. Each
class has a constructor which uses the kXML library described
in Section IV-B to tokenize and parse the corresponding part of
process descriptions. These constructors make local validation
decisions which verify the BPEL document’s validity; e.g., the
Reply class’s constructor throws an exception if it encounters
a reply tag without a partnerLink or partnerGroup
attribute. These local decisions eliminate much of the need for
a heavy-weight, fully-validating XML parser library.

BPEL subdivides processes into nested scopes; state in-
formation (like variables and communication links to Web
services) is shared among all the activities within a scope.
Sliver maintains all the information known about each scope
at parse time (e.g., the types and names of variables) in
ScopeData objects. A ProcessInstance object is also
instantiated for each workflow instance; it tracks information
which varies across instances (e.g., the values of variables).
[4] discusses how these constructs are maintained and used in
further detail.

Sliver supports all of the basic and structured activity
constructs in BPEL, with the exception of the compensate
activity, and supports basic data queries and transformations
expressed using the XPath language [6]. Sliver also supports
the use of BPEL Scopes and allows for local variables, fault
handlers, and event handlers to be defined within them.

E. BPEL Server

The BPELServer class hosts the BPEL processes that the
BPEL parser generates. BPELServer extends SOAPServer
to invoke these processes in place of SOAP services. It
also adds several additional methods to its public API. The
addProcess method creates a BPEL process in the specified
namespace; it reads the processs BPEL specification from the
provided InputStream. This method invokes the BPEL parser
described above, which encapsulates the entire workflow in a
Process object.

The bindIncomingLink method maps incoming partner
links to the kinds of messages that they accept as input.

Likewise, the bindOutgoingLink method maps outgoing
partner links to concrete endpoints. These methods allow
applications which embed Sliver to apply a wide variety of
partner link mapping policies flexibly, according to the appli-
cation’s needs. Such policies may range in complexity from
using simple hard-coded mappings, to dynamically remapping
partner links at runtime using the service discovery layer
described below.

Sliver’s BPEL server layer is able to host a wide variety of
useful workflow processes. A framework has been proposed
which allows for the analysis of workflow languages in terms
of a set of 20 commonly recurring workflow patterns [17].
Sliver currently supports 14 of these 20 patterns in full, and
partially supports one other pattern. Even on resource-limited
PDA and mobile phone hardware, the cost of executing most
patterns in Sliver is on the order of 100 ms. The interested
reader may consult [4] for a full performance evaluation.

F. Service Discovery

In pervasive computing environments, remote services occa-
sionally may connect and disconnect as their hosts move in and
out of range. To support such environments, Sliver includes a
framework for discovering remote services at runtime using
Bluetooth service discovery. The services discovered using
this mechanism can be used to update the BPEL server’s
service bindings programmatically as new service providers
are discovered at runtime. Though this framework currently
only provides service discovery using Bluetooth, it could be
adapted easily to support other discovery protocols, such as
Zeroconf.

V. OVER-THE-AIR PROCESS DEPLOYMENT

Apart from middleware suitability, software provisioning
is another key concern in mobile and pervasive applications.
In these environments, interactions among devices may occur
both frequently and unexpectedly. It is unreasonable to expect
each device to store all of the software that it may ever need, or
for device owners to predict which software to deploy ahead-
of-time. For example, consider the auction scenario described
in Section I. Though the artist will likely have had foresight to



deploy an auction application on his phone, it is unlikely that
the art collectors would have deployed a compatible client for
this auction application ahead-of-time.

MIDP addresses this issue using over-the-air provisioning
(OTA), as described in [18]. Using this mechanism, developers
can package software as self-contained applications, which
mobile devices can download and deploy over a wireless
connection. Unfortunately, MIDP’s existing OTA scheme has
significant infrastructure requirements which are impractical to
fulfill in most pervasive environments. Notably, MIDP requires
developers to host their applications on an HTTP server; it
also assumes that clients can somehow locate this server at
runtime, but does not specify a concrete discovery mechanism.
Moreover, MIDP does not permit applications to share code:
any common libraries must be duplicated in each application.
This policy is especially wasteful in pervasive computing
applications, where communication middleware comprises a
substantial portion of the codebase, and bandwidth and storage
space are limited.

BPEL processes, on the other hand, are highly compact:
complex applications can be modeled in a few kilobytes
of text. A general-purpose BPEL execution platform would
offer considerable storage and bandwidth savings: though the
initial cost of deploying the engine would be relatively high,
the incremental cost of each additional application would be
negligible. Moreover, since BPEL relies on Web standards like
SOAP, it would be possible to create a single, general-purpose
client for interacting with these applications. As a proof-of-
concept, we have created a prototype system which provisions
BPEL processes over-the-air using Sliver. In the remainder of
this section, we will discuss the key components of this system
in further detail.

A. Process Repository

The first major component of our system is the process
repository. This component advertises and distributes user-
provided BPEL process files. The repository is exposed to
other devices in the local Bluetooth network as a SOAP
service. Other devices can connect to the SOAP service using
the Bluetooth L2CAP protocol, and invoke methods which list
the available processes and retrieve the corresponding BPEL
code from the repository.

To support runtime discovery, this SOAP service is also
advertised as a Bluetooth service. Bluetooth services are ad-
vertised using a well-known 128-bit identifier. This identifier is
unique for each type of service, but shared across all providers
of that service: i.e., there is a single 128-bit ID which all
process repositories share. Interested devices can locate any
number of process repositories in the network at runtime by
searching for this 128-bit ID, and then interact with them using
the well-known SOAP interface.

Figure 6 shows a screenshot from the process repository
application. Using a simple graphical interface, users can
browse the local device’s filesystem and select which BPEL
processes to advertise. As we discuss later in this section, each
BPEL process must also have a corresponding user-provided

WSDL definition file. On demand, the user can also start and
stop the SOAP service which exposes the repository to the
Bluetooth network.

B. Process Server

The second component of the OTA system is the server
which executes BPEL processes. This application uses Blue-
tooth service discovery to compile a list of all service reposi-
tories in range, as described above. The user is presented with
a GUI which lists all the repositories that were discovered.

Once the user selects a repository to explore, the server
application uses the SOAP interface described above to obtain
a list of processes stored in the repository. The user is
presented this list, from which she may select the process to
download. After a process is selected, the server application
uses the repository’s SOAP service to download the process’s
BPEL code. Once the BPEL code is downloaded, it is parsed
and executed by Sliver’s BPEL server. The server application
GUI includes a subset of the client GUI described below, so
that the user can interact with processes hosted on the local
device. This procedure is illustrated in Figure 7.

As we discussed in Section II, the BPEL code does not indi-
cate how to map partner links to concrete endpoints. However,
these mappings can be defined using a separate WSDL spec-
ification file. Hence, the process server advertises each pro-
cess’s user-supplied WSDL specification along with its BPEL
markup. After submitting the BPEL code to the Sliver mid-
dleware, the server application parses the WSDL file to obtain
the links’ mappings. It then programmatically maps these links
using the BPELServer’s bindIncomingLinks method,
allowing the process to be deployed without any extra user
input. Note that for the sake of simplicity, our server ap-
plication does not currently handle outgoing link bindings.
It is conceptually straightforward to add this support, by
using Sliver’s service discovery framework to locate external
services.

As with the repository service, these processes are exposed
to the Bluetooth network as SOAP services and advertised
using Bluetooth service advertisements. The process server
also creates a separate SOAP service which allows the client
to retrieve the WSDL description of processes with which it
wishes to interact. Like the repository’s SOAP service, this
SOAP service has a well-known ID and interface.

C. Process Client

The final major component of this system is the client
application. This client is fully generic: users can discover and
participate in workflow processes without any prior knowledge
of them. On startup, processes hosted on local servers are dis-
covered using Bluetooth service discovery and are presented
to the user in a list. Once the user selects a process from a list,
he may select a message type to send to the process and input
the message’s contents. After the initial message has been sent,
any responses from the process are displayed on the screen.

As we described in Section II, BPEL uses SOAP as its
underlying message-passing mechanism. This trait allows the



Fig. 6. Sliver Process Repository application Fig. 7. Sliver Process Server application Fig. 8. Sliver Client application

client application to be fully generic. SOAP defines a consis-
tent structural representation for all messages that the BPEL
process will produce and consume. Hence, Sliver’s SOAP
serialization components are suitable for interacting with any
remote BPEL process.

However, the client not only must consider the structure
of the messages, but also their contents. That is, SOAP stan-
dardizes how to express a message object as structured XML;
but it does not mandate which data types are composed to
create that message. The latter is expressed using the process’s
WSDL description, which describes message contents using
an embedded XSD schema. Using this WSDL document, the
client application can assemble a customized form-style UI on
the fly for each process, as is shown in Figure 8.

Unfortunately, WSDL and XSD are complex standards, and
mobile devices cannot reasonably be expected to host a full
WSDL and XSD parser. We address this issue by deploying
a custom WSDL parser, which includes a lightweight XSD
parser adapted from Xydra [19]. These two lightweight parsers
support a useful subset of WSDL and XSD. Namely, the
combination does not support WSDL imports; XSD derived
types; or XSD restrictions. All three features are convenient,
but are significantly more complex to parse than other parts
of the standards. Also, the first two features do not offer
any additional expressive power, and could be removed from
WSDL documents using a series of static transformations. We
feel this trade-off is reasonable: while these omissions may
create a slight burden for the process developer, they also make
OTA deployment feasible, greatly increasing the processes’
utility.

VI. SAMPLE APPLICATION

To demonstrate the effectiveness of our BPEL deployment
and execution environment in pervasive computing settings,
we have used Sliver to implement the auction application

described in Section I. We have deployed this application on
a Linux PC using Sun’s Java Wireless Toolkit [20], and a
Nokia 6682 mobile phone2. Each component of our applica-
tion is distributed as monolithic .JAR file, which has been
post-processed with ProGuard in order to reduce bytecode
size. In this section, we discuss how this auction application
leverages the BPEL extensions described in Section III and the
deployment mechanism described in Section V to interact with
hosts in a pervasive computing environment. This application,
along with the Sliver middleware which it embeds, is available
as open-source software at [21].

The auction workflow consists of a 4.5KB BPEL document
and a 4.2KB WSDL descriptor. Despite the application’s small
size, it offers a considerable amount of functionality. Sellers
may create a new auction with a user-specified description,
price, and length. Interested buyers may submit bids for the
auction, or simply request information about the auction’s
status (e.g., the item’s current price). The seller and all buyers
are automatically notified when the auction’s price changes,
and when the auction ends.

The process’s functionality and compactness draws heavily
from the extensions described in Section III. As new buyers
participate in the auction, they are collected into a single
partner group. This permits an unbounded number of buyers
to participate in the auction, and allows the process to send
multicast updates to all buyers with a single line of BPEL
code. The process also takes advantage of the ability to specify
when partner links close, in order to send an unlimited number
of update messages back to the seller and buyers. The code
snippet in Figure 9 illustrates the use of these extensions in the
auction process. In all, the entire process is modeled in under
130 lines of BPEL code, including abundant whitespace.

2This particular application uses the MIDP UI toolkit, which prevents its
native deployment on J2SE devices. This is not a limitation of Sliver, which
natively supports both J2SE and MIDP devices.



<partnerLinks>
<ext:partnerLink name="buyer" ... />
<ext:partnerGroup name="buyers" ... />
...

</partnerLinks>
...
<eventHandlers>

<onMessage operation="bid" partnerLink="buyer" ...>
<sequence name="handleBid">

<ext:add partnerGroup="buyers"
partnerLink="buyer" />

...
<ext:reply partnerGroup="buyers"

operation="bid" variable="auctionStatus"
moreMessages="yes" />

<ext:unbind partnerLink="buyer" />
</onMessage>
...

</eventHandlers>

Fig. 9. Code Fragment to Send Multicast Auction Updates

Owing to Sliver’s compactness and modularity, the entire
system can be deployed with low storage space and bandwidth
impact. The auction process is initially deployed using the
repository application discussed in Section V-A. This reposi-
tory application requires 48KB of storage space initially, and
an additional 8.7KB of space to store the process.

After being deployed on the repository application, the
auction process can be discovered and downloaded by the
process server application described in Section V-B. The
process server application consumes 181KB of storage space,
and uses 8.7KB of bandwidth to download the auction process.
Once the auction process is deployed, the client described
in Section V-C can discover and interact with it. The client
application consumes 88KB of storage space, and only needs
to download the 4.2KB WSDL file in order to participate in the
auction. Though this system is lightweight, it is not specific to
the auction application: it can be reused for any other BPEL
process stored in the process repository.

Our implementation currently assumes that the repository,
server, and clients are all located on different devices. As we
discussed in Section V-B, we also assume that the processes
hosted on the server will not initiate outgoing connections to
other services. These assumptions do not represent inherent
limitations of Sliver’s design or of BPEL: rather, they were
made to streamline the user interface, and could be lifted with
additional UI code.

VII. RELATED WORK

[22] proposes HSN-SOA, a decentralized system for man-
aging networked appliances in pervasive computing settings.
Using the service scenario scripting (S3) editor, users generate
workflow graphs which describe reactive interactions among
appliances (e.g., when the user turns on the TV, the TV
turns on the speakers and dims the lights). The S3 editor
autonomously subdivides these graphs and distributes the plan
fragments to the corresponding devices in the local network.
After the plan is fragmented and distributed, no centralized
coordinating server is required to execute the plan. Though

HSN-SOA does not use BPEL, it relies heavily on other
Web standards: appliances are exposed to the local network
as SOAP services, and their capabilities are advertised using
WSDL descriptions. However, HSN-SOA implicitly assumes
a stable network, and requires users to describe plans in terms
of specific appliances. Hence, it does not address environments
where devices are added to or removed from the network after
the plans have been written.

[23] describes a prototype system that autonomously gen-
erates BPEL workflows in pervasive computing settings. The
user issues a description of a goal or task to a Task Selection
Service residing on his mobile device. This service invokes a
Task Planner Service on a centralized server, which generates
and executes a customized BPEL process. In turn, this custom-
generated process invokes Web services on the local network,
including services which reside on the user’s device, in order
to carry out the plan. The server also generates a Web front-
end to the process, so that the user may monitor its execution
from his mobile device using a Web browser. This approach
avoids many of the shortcomings in BPEL’s communication
scheme, since processes can be generated on-the-fly based on
what devices are available at the time. However, it requires that
a heavyweight centralized server be available to all devices in
the network, which may be unreasonable in many pervasive
networks. Scalability is also a concern, since all processes are
hosted and executed on the centralized server rather than on
the mobile devices.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a series of BPEL exten-
sions that support the creation of flexible, standards-based
pervasive computing applications, even when the devices
involved are mobile. As a proof-of-concept, we have used
the Sliver middleware to implement a system for deploying,
executing, and participating in BPEL processes over-the-air.
This system comprises three Java applications ranging from
48KB to 181KB in size, and has been deployed on MIDP-
compatible devices. Sliver does not currently support some
of BPEL’s most advanced features, including Compensation.
Many of these advanced features are intended for long-running
business transactions and will be used rarely in pervasive
and mobile applications. Nevertheless, we plan to address
Sliver’s remaining BPEL compliance issues in future work,
and consider ways to further modularize Sliver.

Standardization efforts like BPEL play a significant role in
developing pervasive computing applications. These standards
are one part of a larger effort to deploy robust collabora-
tive applications in mobile settings. This effort encompasses
other important topics, ranging from user interface design to
data routing mechanisms, that have yet to be fully resolved.
However, standards-based middleware like Sliver demonstrate
the feasibility of deploying sophisticated collaborative appli-
cations on mobile devices, and offer a concrete platform on
which these other challenges can be explored.



REFERENCES

[1] C. E. Ortiz, “J2ME technology turns 5!” http://developers.sun.com/
techtopics/mobility/j2me/articles/5anniversary.html, 2004.

[2] OASIS Open, “OASIS web services business process execution lan-
guage (WSBPEL) TC,” http://www.oasis-open.org/committees/tc home.
php?wg abbrev=wsbpel, 2006.

[3] D. Box and et. al., “Simple object access protocol (SOAP)
1.1,” W3C, Tech. Rep. 08 May 2000, 2000. [Online]. Available:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[4] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman, “Sliver: A BPEL
workflow process execution engine for mobile devices,” Washington
University, Department of Computer Science and Engineering, Tech.
Rep. WUCSE-06-37, 2006.

[5] E. Guttman, “Autoconfiguration for IP networking: Enabling local
communication,” IEEE Internet Computing, vol. 05, no. 3, pp. 81–86,
2001.

[6] J. Clark and S. DeRose, “XML path language (XPath) version 1.0,”
W3C, Tech. Rep. 16 November 1999, 1999. [Online]. Available:
http://www.w3.org/TR/1999/REC-xpath-19991116

[7] W. Emmerich and et. al., “Grid service orchestration using the business
process execution language (BPEL),” Journal of Grid Computing, vol. 3,
no. 3, pp. 283–304, 2005.

[8] Oracle, “Oracle BPEL process manager,” http://www.oracle.com/
technology/products/ias/bpel/index.html, 2006.

[9] Sun Microsystems, Inc., “NetBeans enterprise pack,” http://www.
netbeans.org/products/enterprise/, 2006.

[10] OASIS Open, “Web services business process execution
language version 2.0 public review draft,” http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.html, August 2006.

[11] P. Wohed and et. al., “Pattern based analysis of BPEL4WS,” Queensland
University of Technology, Tech. Rep. FIT-TR-2002-04, 2002.

[12] E. Lafortune, “ProGuard,” http://proguard.sourceforge.net/, 2006.
[13] F. Kuhns and et. al., “The design and performance of a pluggable

protocols framework for CORBA middleware,” in Proceedings of the
Sixth International Workshop on Protocols for High Speed Networks
(PfHSN ’99). Kluwer, B.V., 2000, pp. 81–98.

[14] Apache Software Foundation, “Axis 2.0 - axis2 architecture guide,” http:
//ws.apache.org/axis2/1 0/Axis2ArchitectureGuide.html, 2006.

[15] S. Haustein, “kXML 2,” http://kxml.sourceforge.net/kxml2/, 2005.
[16] S. Haustein and J. Seigel, “kSOAP 2,” http://ksoap.org/, 2006.
[17] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and

A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[18] C. E. Ortiz, “Introduction to OTA application provisioning,”
http://developers.sun.com/techtopics/mobility/midp/articles/ota/,
November 2002.

[19] O. Chipara and A. Slominski, “Xydra — an automatic form generator
for web services,” http://www.extreme.indiana.edu/xgws/xydra/, 2003.

[20] I. Sun Microsystems, “Sun Java wireless toolkit for CLDC,” http://java.
sun.com/products/sjwtoolkit/, 2006.

[21] G. Hackmann, “Sliver,” http://mobilab.wustl.edu/projects/sliver/, 2006.
[22] M. Nakamura and et. al., “Implementing integrated services of net-

worked home appliances using service oriented architecture,” in Pro-
ceedings of the 2nd International Conference on Service Oriented
Computing (ICSOC ’04), 2004, pp. 269–278.

[23] A. Ranganathan and S. McFaddin, “Using workflows to coordinate web
services in pervasive computing environments,” in Proceedings of the
2004 IEEE International Conference on Web Services (ICWS 2004),
2004.


	Extending BPEL for Interoperable Pervasive Computing
	Recommended Citation
	Extending BPEL for Interoperable Pervasive Computing

	tmp.1415913124.pdf.hEiiu

