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Abstract

Background

Shewanella oneidensis MR-1 is an environmentally important bacterium for metal reduction,
carbon cycling, bioremediation, and microbial fuel cells. Depending on substrate concentrations,
MR-1 can sequentially utilize a carbon source (lactate) and its waste products (pyruvate and
acetate) during batch culture. Therefore, MR-1 demonstrates a dynamic mixed-substrate
metabolism which is an important regulatory mechanism for microbial competition in nutrient-

limited ecosystems [1].

Results

We developed a dynamic flux balance analysis (dFBA) framework by linking two metabolic
models: 1) a Monod-based kinetic model for biomass growth and metabolite production, and
2) a flux balance (FBA) model (incorporating 236 key reactions and 213 metabolites) with
the maximal biomass production rate as the objective function. The Monod kinetics provided
the time-dependent model inputs (i.e., substrate uptake rate and metabolite secretion rates)
for flux balance analysis so that the intracellular metabolism can be resolved via a static
optimization approach. During the entire growth period, the model revealed that the TCA cycle
and anaplerotic pathways had two metabolic peaks: a strong peak during lactate metabolism
and a weak peak during acetate metabolism. Moreover, pyruvate decarboxylation was active
only in the early growth phase, while the glyoxylate shunt was active in the late growth phase.
Gene expression study and enzyme activity detection qualitatively confirmed the variation of

intracellular metabolism during growth. Compared to measured biomass curves, the dynamic



FBA with the objective functions for maximal production of biomass or ATP/flux predicted
30~50% higher growth rates in the late growth stage, which indicated the cellular metabolism
became “sub-optimal” when switching its carbon source to acetate, a less energy-favorable

substrate.

Conclusions

The dFBA model integrates the Shewanella growth kinetics with conventional flux profiling
to quantify the metabolic status during different growth periods. The model links dynamic
regulation of global carbon metabolism with knowledge from gene expressions and enzyme
activities. Such an approach can be a routinely-used strategy to quantitatively study unsteady-

state cellular metabolism in other biological systems.
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Background

Shewanella oneidensis MR-1 is an environmentally important and facultative anaerobic
bacterium which has a versatile metabolism for carbon utilization and metal reduction [2]. MR-
1 can play important role in ecological nutrient cycling, bioremediation, and microbial fuel cells
[3]. To understand MR-1 metabolism, transcription analysis and proteomic profiling have often
been used to reveal the dynamic physiological responses to different cultural conditions (such
as pH, oxygen, and genetic modifications) [4-6]. On the other hand, metabolic flux analysis
reflects the in vivo enzymatic reaction rates and reveals the functional output of genomic,
transcriptional, and post-transcriptional regulation inside the cell [7]. Metabolic flux analysis has
been performed to solve a simplified MR-1 metabolic network via isotopomer tracing [8,9]. For
a cell-wide analysis of MR-1 carbon metabolism, an FBA model (774 reactions and 783 genes)
has been developed, based on reaction stoichiometry in addition to a series of physical, chemical,
and biological characteristics [10]. Such a genome-scale model allows systematic estimation of
cellular ATP requirements, identification of metabolic cycles, prediction of biomass yields, and
quantification of the metabolic fluxes.

Traditional flux analysis is based on a steady metabolic state, in which the intracellular
flux distribution remains approximately stable [11-13]. This assumption avoids difficulties
in developing kinetic models and measuring intracellular metabolite pools. However, MR-
1 metabolism changes with time during batch cultivation with lactate as the initial carbon
substrate. When the medium contains sufficient lactate, MR-1 uses it for growth and produces
extracellular metabolites (acetate and pyruvate). Then, when the lactate concentration has
become insufficient, it uses less energy-favorable pyruvate and acetate [14]. To model this

metabolic behavior through the entire growth phase, we integrated growth kinetics with FBA
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to illustrate the non-stationary metabolic behavior and the intracellular regulation mechanisms
(Figure 1). A multiple-substrate Monod model was developed first to quantify the kinetics of
cell growth and the dynamic transition between the primary carbon source (lactate) and the
secondary carbon sources (pyruvate and acetate). The kinetics of carbon sources were then
incorporated as time-dependent model inputs for dynamic FBA (dFBA). The dFBA was solved
based on a Static Optimization Approach (SOA) [15], in which the growth period was divided
into numerous time intervals so that a steady-state flux could be assumed at each time interval.
The dFBA model can quantify the metabolic regulations in key pathways and link the dynamic
metabolic status to gene expression and enzyme activity analysis. It has played an important
role in analyzing the metabolic flux of industrial fermentation processes and revealing metabolic
regulations [16,17]. Such an approach can avoid a long cultivation period to achieve a metabolic
steady-state condition and can reduce analytical efforts for intracellular metabolite measurement.
Thus it can be a widely applicable tool for analyzing other unsteady-state biological systems to

gain novel biological insights into less well-characterized microorganisms.

Methods

Culture conditions and analytical methods for extracellular metabolites

MR-1 (ATCC 70050) was first grown in LB medium in shake flasks overnight. A 0.1%
inoculum volume was then cultured into the modified MR-1 defined medium [18] in shaking
flasks (150 mL, shaking 150 rpm) at 30°C. The initial carbon source was 30 mM lactate. The
growth curve was monitored by dried biomass weight. The concentrations of lactate and acetate
in the medium were measured using enzyme kits (r-Biopharm, Darmstadt, Germany). The
concentration of pyruvate in the medium was measured with the enzyme assay developed by
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Marbach and Weli [19]. The concentrations of all carbon sources were below detection limits

after 30 hours.

Monod model and parameter estimation

For the FBA model, the inputs (measured fluxes) were obtained by analysis of the
metabolite concentrations. The slope of extracellular metabolite concentrations during the
cultivation captures the measured fluxes. To avoid measurement of metabolites at a short time
scale, we developed a model, by which one could take the derivative at each time point to obtain
the time-dependent measured fluxes. These “simulated” measured fluxes were used as model
inputs for calculation of intracellular flux distributions. Recently, empirical polynomial fitting
has been used to approximate the experimental data for dynamic flux analysis of E.coli during
transition from carbon to nitrogen limitation conditions [20]. In this study, a multiple-substrate
Monod model was developed to describe the cell growth, lactate consumption, and acetate
and pyruvate secretion and simultaneous reuse (Figure 2). We assumed the pattern of mixed
substrate utilization was generally dependent on their concentrations [21]. The culture displayed
an apparent lag phase after inoculation, which can be described by implementing a unit-step time

delay function in the biological system.
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where X was biomass (g DCW/L); LACT, ACT, and PYR were lactate, acetate, and pyruvate
concentrations (mmol/L), respectively; pp, pa, and pp were the specific growth rates (h'') on
lactate, acetate, and pyruvate, respectively; k. was endogenous metabolism rate constant (h-!)
[1]; Yxr, Yxa, and Yyxp were the biomass yield coefficients (g DCW/mol substrate) of lactate,
acetate, and pyruvate respectively; 1p and ra; were the production rates (mmol/L/h) of acetate
and pyruvate from lactate, respectively. rngr, Tnga, and r,,p were the non-growth-associated
substrate consumption rates (mmol/L/h) for lactate, acetate, and pyruvate, respectively, which
reflected non-growth-associated cell metabolism (e.g., maintenance metabolism) during aerobic
respiration [22]. Introduction of the non-growth associated terms to the kinetic model allowed a
better “fitting” of observed experimental data. S(t-t; ) was the dimensionless unit-step time delay
function (S=0 when t < t;; S = 1 when t = t). The specific cell growth rate was described by

Monod equations:

v T o

(5)

(0)

where [max 1, Mmax.a> and Hmaxp Were the um specific growth rates (h'!) for fully aerobic
(7)

growth on lactate, acetate, and pyruvate, respectively; K, K., and K, were Monod constants
(mmol/L) for lactate, acetate, and pyruvate, respectively. The acetate and pyruvate production
rates were assumed to be proportional to the biomass and lactate concentrations, as indicated by

previous Shewanella kinetic model [21].
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where k, and k, were acetate and pyruvate production rate constants (L- (h-g DCW)1).

In initial tests, the rate of non-growth associated substrate consumption was assumed to
be proportional only to the biomass. However, it was found that such a model was not able to
closely predict acetate formation and biomass curves, especially during the late growth phase
when lactate was depleted. Therefore, the non-growth associated substrate consumptions were

subsequently assumed to be proportional to both biomass and substrate concentrations.

(10)
(11)

12
where kyg1, Kng o and ky, ywere non-growug SL?DSII"&[G consumption coefficients (L-(hr-gDCW)!)

for lactate, acetate, and pyruvate, respectively. These coefficients reflected that the maintenance

metabolism was dependent upon both substrate availability and biomass.

The parameters of the kinetic model in Table 1 were obtained by model fitting to
experimental data (Figure 3a and b). The aforementioned kinetic model (Equations 1-12)
contains a total of 16 kinetic parameters. The maximum specific growth rate using lactate (Myax1)
and apparent biomass yield coefficient from lactate (Yx, ) were taken from our previous research
[21]. The lag time for growth was measured directly (10 hrs). The remaining 13 parameters were
determined by minimizing the inverse-variance weighted least squares between the model’s
predictions and the experimentally observed growth and metabolite profiles, as described before
[21]. The “ode23” command and Systems Biology Toolbox 2 [23] in MATLAB (R2009a) were

used to solve differential equations, fit parameters, and obtain model standard deviations.

Dynamic flux balance model and sensitivity analysis



The pathway map for S. oneidensis MR-1 was derived from the KEGG database
(www.genome.jp/kegg), which included the TCA cycle (with the glyoxylate shunt), the ED
pathway, gluconeogenesis pathway, anaplerotic pathway, and the pentose phosphate pathway.
The preliminary FBA model included 236 key reactions and 213 metabolites (Supplementary
Table S1). The solution to the dynamic metabolism for sequential utilization of multiple carbon
sources was based on a static optimization approach, where the entire growth phase was divided
into multiple pseudo-steady-state intervals with instantaneous transitions between the two
adjacent intervals [15]. The time profiles of lactate, acetate, and pyruvate simulated from Monod

model were used as time-dependent inputs for the overflow fluxes in the dFBA model:

4 XX

where Obj was the objective function for FBA in each time interval (note: maximization of
growth rate p was set as the default objective function if not otherwise specified). v and v,
were intracellular and extracellular fluxes, respectively; S and S, were the stoichiometry
matrices for intracellular and extracellular fluxes, respectively; /b and ub were the lower and
upper boundaries for each flux. In the dFBA model, three types of objective function were
chosen to describe the dynamic intracellular metabolism: 1) maximizing optimal growth rate
K; 2) maximizing ATP production per flux; 3) maximizing ATP production [24]. The dynamic
flux balance model was formulated using AMPL (A Modeling Language for Mathematical

Programming) and solved by IPOPT (Interior Point Optimizer, https://projects.coin-or.org/



Ipopt), which is a software package for large-scale nonlinear optimization. The entire time lapse
(30 hours) was divided into 360 segments, with 5 minutes in each segment. Each individual
optimization problem was solved by IPOPT in less than Is.

The analysis of confidence intervals was performed based on the Monte Carlo method
[25]. The confidence intervals for calculated fluxes during the dynamic utilization of carbon
sources were generated by adding the normally distributed measurement noises (assuming 15%
as an average) to the six substrate associated specific growth rates (i.€. HWmax.L, Mmax.A> Hmax.p> Kss
K;q and K;;). The perturbation of parameters in the Monod model led to different simulation
time profiles for lactate, acetate and pyruvate, which provided different constraints for overflow
fluxes in the dFBA model. Confidence limits for each flux value were obtained from the

probability distribution of calculated fluxes resulting from the simulated data sets (n=50).

Quantitative Reverse Transcription PCR (qRT-PCR) and Enzyme Activity Measurement

To analyze the dynamic change of expressions in eight key genes (aceE, gltA, aceB,
ppsA, sfcA, ppc, pckA, and icd) for carbon metabolisms, qRT-PCR was performed for the
culture samples at early-log (13 hr), mid-log (19 hr), late-log (23 hr), and stationary phase (27
hr) (Figure 3c). RNA extraction was performed using a PureLink™ RNA Mini Kit (Invitrogen).
cDNA was synthesized from 1~2 pg RNA and random primers using Superscript III reverse
transcriptase (Invitrogen). The qRT-PCR reactions were performed via ABI 7500 Real-Time
PCR System (Applied Biosystems). qRT-PCR used the primers shown in Table 2. The SYBR
Green Master Mix (Promega) was used for amplifying DNA. The cycle threshold (Ct) was
determined as the cycle number at which the fluorescence threshold crossed the baseline. Data

were normalized by analyzing:
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ACt = Ct of the target gene — Ct of the internal control gene (16S rRNA)

Each relative gene expression value was calculated with 27(A¢), Three biological replicates, with
six technical replicates for each biological sample were performed. The PCR products were
verified by 2% agarose gel electrophoresis.

To analyze the enzyme activity as a function of time, the samples were taken at early-
log (13 hr), mid-log (19 hr), late-log (23 hr), and in the stationary phase (27 hr) (Figure 3d). The
harvested cells were centrifuged and re-suspended in 100 mM Tris buffer. The samples were
then ultra-sonicated for 5 min to release the enzymes. The activity of isocitrate dehyrogenase
was detected by Kornberg’s assay [26], which measured the enzyme activity based on the
increase in absorbance at 340 nm associated with the reduction of NADP* to NADPH. The
activity of citrate synthase was detected by quantification of the CoA production, using the
increase in absorbance associated with DTNB (5,5'-Dithio-bis(2-nitrobenzoic acid)) at 412 nm
[27]. The malate synthase activity was detected based on reaction of CoASH with DTNB, as
described by Dixon and Kornberg [28]. The activity of malic enzyme was detected based on
increased absorbance at 340 nm due to the reduction of NAD* to NADH [29]. For all samples,

three biological replicates were performed.

Results

Growth Kinetics and dynamic intracellular fluxes

Model fitting of kinetic parameters (Table 1) was based on comparing the assumed model
with experimental data. Figure 3a and b showed that the kinetic model well described the growth
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and metabolite curves: initially MR-1 showed minimal growth during the lag phase, followed
by a rapid population increase after 15 hrs; in parallel with this, the acetate and pyruvate rapidly
produced and reached their maxima around 20 hrs. The kinetic model estimated model inputs for
dynamic FBA at each discrete time interval. Figure 4 shows the metabolism profile of MR-1 at
four different growth phases (13, 19, 23, 27 hrs). In the first and second sub-phase, lactate was
quickly consumed, with overflows of pyruvate and acetate as waste products. In the 3 and 4t
sub-phase, the carbon source switched from lactate to a mixture of substrates (lactate, pyruvate
and acetate). A recent report indicates that E.coli uses available substrates from a mixture of
five carbon sources (glucose, galactose, maltose, glycerol, and lactate) either preferentially or
simultaneously depending on the growth stages [30]. Similarly, in this study the growth of S.
oneidensis MR-1 in multiple carbon substrates consumed its metabolic “overflow” products.
During the periods of sequential utilization/production of carbon sources, the fluxes between

intracellular and extracellular pyruvate and acetate were bi-directional (Figure 4).

During the entire growth phase, fluxes into the pentose phosphate pathway and Entner-
Doudoroff (ED) pathway were below 0.1 mmol/g DCW/hr and were used for biomass synthesis
(Figure 4). Fluxes into central pathways including the TCA cycle, anaplerotic pathways, and
the gluconeogensis pathway demonstrated similar dynamic patterns. In general, two peaks can
be observed in the time profile of intracellular fluxes through the TCA cycle and anaplerotic
pathways. The first peak was achieved in the early-log phase, followed by a slow decrease of
intracellular fluxes into a pseudo steady-state (Figure 5), concurrent with the consumption of
lactate and accumulation of waste products (pyruvate and acetate). Then the activity of central

pathways was slightly up-regulated, and forming the second flux peak (much smaller than the
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first one) when waste products became utilized as carbon sources. The glyoxylate shunt bypass
was inactive (i.e., flux reached the lower bound in dFBA) until the late growth phase when
lactate was depleted. Such characteristics of the glyoxylate shunt agreed with the prediction of
genome-scale FBA [10] and observations from 3C-assisted metabolic flux analysis [14]. In the
early growth phase, the pyruvate dehydrogenase pathway became highly active, generating the
acetyl-CoA from lactate. In the late growth phase, acetyl-CoA was completely replenished from
extracellular acetate, and thus pyruvate decarboxylation was inactive (Figure 5).

In the dynamic metabolism, more ATP was produced than needed for cell growth,
thus sustaining the non-growth associated metabolism (e.g., maintenance). This non-growth
associated ATP production was dependent on the growth rates (Figure 6). The ATP over-
production increased with the elevation of growth rate p. However, the slope for ATP-p was not
identical in the slow-growth phase (0.1<u<0.3 h-!, slope = 206.9 mmol ATP/g DCW) and the
high-growth phase (0.5<u<0.9 h!, slope = 678.9 mmol ATP/g DCW). This observation indicates
that high growth cells could over-produce ATP for their maintenance or other non-growth

associated activities, while reducing the “optimal” biomass yield and product synthesis [31].

Temporal gene expression and enzyme activity

The temporal expression levels of several key genes in the central metabolism
also demonstrated dynamic patterns during the growth period (Figure 3c). The expressions of
tested genes were first down-regulated during the transition of carbon sources in the mid-log
phase and then up-regulated when pyruvate and acetate were utilized in the late growth phase.
With the depletion of carbon sources, the genes’ expressions were again down-regulated in the

stationary phase. In general, the transcriptional level of genes in the central metabolism was one
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order of magnitude higher in the late growth phase than in the early growth phase. This
observation could be explained by the gene expressions for the central pathways becoming
enhanced to adapt to conditions when the favorable carbon source (lactate) was insufficient
and “over-flow” products were used as substitute carbon sources. The temporal gene expressions
of key pathways in the central metabolism were changed with time, which were qualitatively
consistent with the dynamic flux distributions simulated by dFBA (Figure 5), but there were still
discrepancies. For example, the transcriptional analysis indicated the presence of pyruvate
dehydrogenase expression during early and late growth phases, respectively. In contrast, the
dFBA showed that such a metabolic reaction was not active in the late growth phase when
substrate (pyruvate or lactate) was unavailable (even associated genes had high expression
levels). The temporal activities of TCA cycle enzymes (citrate synthase, isocitrate
dehydrogenase, malate synthase, and malic enzyme) are also shown in Figure 3d. One interesting
observation is that in vitro activity of isocitrate dehydrogenase was relative stable in the late
growth phase (acetate metabolism), in contrast to up-regulation of malate synthase activity
(acetyl-CoA+H,O+glyoxylate>malate). This observation indicated that malate synthase
controls the split ratio of the glyoxylate shunt to the isocitrate dehydrogenase pathway (oxidative

TCA branch).

Discussion

The multiple-substrate Monod model described the physiological behavior in dynamic

growth of S. oneidensis MR-1with the kinetic transition of carbon sources. Based on the kinetic
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model of providing the extracellular fluxes as the function of time, a steady-state flux balance
model was conducted to investigate the dynamics of intracellular flux at individual short-
time intervals. The integration of the Monod model and dFBA provides a general platform for
characterizing the unsteady-state microbial systems.

Different FBA objective functions can describe the intracellular metabolism under
different cultivation modes [24]. We compared three objective functions for predicting dynamic
biomass growth in Figure 7. In the early growth phase when lactate was sufficient, objective
functions (optimal biomass production or maximal ATP production per flux) predicted biomass
rates relatively close to the measured growth data, while the biomass yield was underestimated
when assuming the maximization ATP production in the intracellular dynamic metabolism.
In the late growth phase, both maximizing growth rate and ATP production per flux led to
overestimation of biomass yield by 30~50%. This differences indicates that the metabolisms
might be under significantly “suboptimal” condition during the switching of carbon sources from
energy-favorable lactate to less energy efficient acetate [32]. Consistent with previous report
[24], the maximization of the ATP yield per flux best characterized the dynamic intracellular
metabolism for batch cultures of MR-1, though it is still difficult for a single objective function
to precisely predict the biomass production through cultivation period by dFBA. When growing
in mixed substrates, the bacteria may display clear stress responses during the change of
metabolic status from one carbon substrate to another [30]. Such suboptimal operation of
cellular metabolism may give difficulties for FBA model to describe the actual metabolism.
Therefore, 1*C-based dynamic metabolic flux analysis needs to be integrated in future research to
understand sub-optimal metabolism.

The kinetics of intracellular fluxes in central pathways was qualitatively confirmed

15



by comparing gene expression levels and enzyme activities at different time intervals. Post-
transcriptional regulation could explain the adjustment of intracellular metabolism in adapting
to the dynamic availability of substrates. The pseudo steady-state that was normally chosen for
metabolic flux analysis (e.g., 3C-MFA or FBA) was observed only in the early log phases (12-
20 h, Figure 8) during MR-1 growth, when most key intracellular fluxes remained the same.
Furthermore, energy metabolism in MR-1 is also dynamic regulated. The over-production of
non-growth associated ATP was associated with the growth rates (Figure 6), which could be
explained by the fact that the metabolic dormant cell population was higher under slow-growth
phase (e.g. lag phase or stationary phase) so that the ATP requirement for maintaining active

metabolism was not as strong as for high-growing cells [33].
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Figure Legends

Figure 1. Flowchart of integrated growth kinetics and dynamic flux balance analysis.

Figure 2. Monod model for growth kinetics of S. oneidensis MR-1. The mixed substrates are
used for both biomass synthesis and non-growth associated maintenance metabolisms (i.e., CO,

production).
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Figure 3. Physiological study for S. oneidensis MR-1. (A) Carbon source consumption: ®
lactate; ® acetate; Apyruvate. The simulated curves based on revised dFBA model for each
carbon source are plotted in solid lines respectively; (B) Growth curve of S. oneidensis MR-1:
® cxperimental observed cell growth; the simulated growth curve by revised dFBA is plotted

in solid line; (C) Temporal expression levels of key genes in the central carbon metabolism.
Gene name (encoding enzyme, EC number): glt4 (citrate synthase, EC 2.3.3.1), icd (isocitrate
dehydrogenase, EC 1.1.1.42), sfcA (malic enzyme, EC 1.1.1.38), aceB (malate synthase, EC
2.3.3.9), aceE (pyruvate dehydrogenase E1 component, EC 1.2.4.1), pck4 (phosphoenolpyruvate
carboxykinase (ATP), EC 4.1.1.49), ppc (phosphoenolpyruvate carboxylase, EC 4.1.1.31), ppsA
(phosphoenolpyruvate synthase, EC 2.7.9.2). Black column, sample time at 13 hr; red column,
sample time at 19 hr; green column, sample time at 23 hr; yellow column, sample time at 27 hr;
(D) Activity of key enzymes in central metabolic pathways. Black column, sample time at 13 hr;
red column, sample time at 19 hr; green column, sample time at 23 hr. CS, citrate synthase; IDH,
isocitrate dehydrogenase; MS, malate synthase; ME, malic enzyme.

Figure 4. Flux distribution (mmol/gDCW/hr) of S. oneidensis MR-1 at (A) T=13 hr; (B) T=19
hr; (C) T=23 hr and (D) T=27 hr.

Figure 5. Time profiles of selected intracellular fluxes. The shaded area indicates the confidence
intervals of intracellular fluxes (flux£SD).

Figure 6. ATP production for non-growth associated usage.

Figure 7. Comparison of growth curve simulated by different objective functions applied in
dynamic flux balance analysis. Red line, simulated growth curve by maximizing p; blue line,

simulated growth curve by maximizing ATP production per flux; green line, simulated growth
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curve by maximizing ATP production; circles, measured data.

Figure 8. Compare of key intracellular fluxes at different time points. Black bar, fluxes at T=13

hr; red bar, fluxes at T=19 hr; green bar, fluxes at T=23 hr; blue bar, fluxes at T=27 hr.

Table.1 Parameters of Monod model for S. oneidensis MR-1 growth

Symbols Notation Unit Value
pmax,L Maximum specific growth rate using lactate h-1 0.47[21]
pmax,P Maximum specific growth rate using pyruvate h-1 0.43+0.02
pmax,A Maximum specific growth rate using acetate h-1 0.37+0.04
YX/L Apparent biomass yield coefficient from lactate g DCW/mol lactate 19.1[21]
YX/P Apparent biomass yield coefficient from pyruvate g DCW/mol pyruvate 17.8+£2.3
YX/A Apparent biomass yield coefficient from acetate =~ g DCW/mol actate 12.4+1.6
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Ks,l Monod lactate saturation constant mM 8.3+1.2
Ks,p Monod pyruvate saturation constant mM 8.1£1.4
Ks,a Monod actate saturation constant mM 9.3£1.5
kng,1 Non-growth lactate consumption coefficient L- (h-g DCW)-1 1.0+0.2
kng,p Non-growth pyruvate consumption coefficient L- (h-g DCW)-1 2.1+0.3
kng,a Non-growth acetate consumption coefficient L- (h-g DCW)-1 1.1£0.2
ka Acetate production coefficient L- (h-g DCW)-1 1.7£0.3
kp Pyruvate production coefficient L- (h-g DCW)-1 0.9+0.2
ke Endogenous metabolism rate constant h-1 0.009+0.010
tL Lag time in growth h 10.0
Table.2 Primers used in qRT-PCR
Forward Primer/Reverse Primer
Enzyme Gene s~
(5°—>3)
pyruvate dehydrogenase, E1 aceE TATGGTGCTTCGTGGTTC
(EC1.2.4.1) CCTGATAAATCGCTTGGA
citrate synthase ItA TTAGAGGCTTCCGTCGTG
(EC2.3.3.1) & AATACCCGCAGCGATACA
malate synthase aceB AAGCGTAAAGATAGACAAGC
(EC2.3.3.9) CAAACCTCCAGGGATAGA
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PEP synthase A CTGCCGTTGTAGGTTGTG
(EC 2.7.9.2) PP TTCTTGTAAAGCCGCATC
Malic enzyme oA AAGGAACGCTACTGCTGC
(EC 1.1.1.38) AACGGTCAACCATACAAACT
PEP carboxylase c ATTCTGTCGCAACCACCC
(EC 4.1.1.31) PP TGACTCCTCAGCAATACGC
PEP carboxylase (ATP) A CGGCTTACCACTTCCTCT
(EC 4.1.1.49) P CACTTGGCTACCGAATGAC
isocitrate dehydrogenase ied TGCGTGACTATTTGACTGA
(EC 1.1.1.42) TACCCACTGTTTGGCTTA
GGGAGCAAACAGGATTAGA

165 riRNA I6STDNA - \ CAACACGAGCTGACGA

Figure 1

Figure 2
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