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Abstract

Modern Network Intrusion Detection Systems (NIDS) in-
spect the network packet payload to check if it conforms to
the security policies of the given network. This process, of-
ten referred to as deep packet inspection, involves detec-
tion of predefined signature strings or keywords starting at
an arbitrary location in the payload. String matching is a
computationally intensive task and can become a potential
bottleneck without high-speed processing. Since the con-
ventional software-implemented string matching algorithms
have not kept pace with the increasing network speeds, spe-
cial purpose hardware solutions have been introduced.

In this paper we show how Bloom filters can be used ef-
fectively to perform string matching for thousands of strings
at wire speed. We describe how Bloom filters can be imple-
mented feasibly on commodity FPGA. Our analysis shows
that this approach for string matching is more effective than
the current FPGA-based solutions which use Deterministic
or Non-deterministic Finite Automata (DFA or NFA). Fi-
nally, we give the details of our implementation of string
matching technique on Xilinx XCV 2000E FPGA.

1 INTRODUCTION

Network Intrusion Detection Systems (NIDS) scan the
payload of the Internet packets to look for the presence
of any of the predefined signature strings. Such signature
strings can indicate the presence of an Internet worm or a
computer virus, signify unauthorized login to a server or
access to illegal websites. It is critical for NIDS to scan
each and every byte of the payload and take appropriate ac-
tion on the packets that contain the predefined keywords.
Since the location of such strings in the packet payload is
not deterministic, such applications need the ability to de-
tect strings of different lengths starting at the arbitrary loca-
tions in the packet payload. Moreover, such a NIDS should
be able to process the packets at the wire speed in order to
avoid becoming a network bottleneck. With the networking
speeds doubling every year, it is becoming increasingly dif-

ficult for software based packet scanners to keep up with the
line rates. This has underscored the need for the specialized
hardware-based solutions which are portable and operate at
wire speeds.

Recently, FPGAs have been used to perform high speed
pattern matching [9, 6, 15]. The techniques proposed in
this literature implements DFA or NFA on an FPGA for
the strings to be detected. Reconfigurable logic gives the
ability to add and delete the strings of interest to or from
the FPGA. Thus, due to a high degree of parallelism, such
techniques can detect the predefined patterns at very high
speeds. However, a drawback in these schemes is that the
logic gate consumption is proportional to the total number
of characters in the strings of interest. Hence such schemes
do not scale very well with a large number of strings.

A Bloom filter offers a very attractive choice for string
matching. It is a randomized technique to test membership
of a string in a group of given strings. Using this technique,
first a group of strings is compressed by calculating multi-
ple hash functions over each string. This compressed set of
strings is stored using a small amount of memory. This set
can be queried to find out if a given strings belongs to it.
The two important properties of a Bloom filter that make it
a viable solution for string matching are the following:
1] Scalability: Bloom filters use a constant amount of
memory to compress each string irrespective of the length
of the original string. Thus, very large strings can be stored
with very little memory. This makes it highly scalable in
terms of memory usage.
2] Speed: The amount of computation involved in detecting
a string using Bloom filters is constant. This computation in
fact is calculation of hash functions and the corresponding
memory lookups. Efficient hash functions can be imple-
mented in a hardware very easily with very little resource
consumption. Hence, a hardware implementation of Bloom
filter can do string matching at very high speeds. Our end
result shows that we can look for a set of 10,000 strings at
the rate of more than 2.4 Gbps (OC-48).

As mentioned above, Bloom filters use a small amount
of memory to store the compressed strings. The amount
of memory depends on the number of strings being com-
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pressed and typically is a few megabits. For instance, to
store 10,000 strings, around 200k bits are required. Al-
most all the modern FPGAs come with multi-port embed-
ded memory blocks which can be utilized for constructing
Bloom filters. However, the real reason for using FPGAs
stems from the requirement of memory reconfiguration for
Bloom filters. As will be clear later, we maintain one Bloom
filter for detecting strings of one particular length. If the
database of strings to be detected has non-uniform number
of strings for each unique string-length then the Bloom fil-
ters need to be tuned to accommodate this non-uniformity
and achieve the optimal performance. Moreover, since the
string length distribution can change over time, Bloom fil-
ters need to be re-tuned to maintain optimality which in-
volves reallocation of the Block memories and hash func-
tions. While doing this, the underlying hardware needs to
change. Hence, the FPGAs prove to be extremely effective
in such a scenario.

The rest of the paper is organized as follows. Section 2
presents an introduction to the Bloom filter. Section 3 gives
an overview of the system. The detailed implementation of
the Bloom filters in FPGA is presented in Section 4. The
implementation results are discussed in 5. A brief summary
of the related work is given in 6 followed by conclusions
and future work in 7.

2 Theory of Bloom Filters

Bloom filter was formulated by Burton H. Bloom in
1970 [1] and is used widely today for different purposes
including web caching, intrusion detection, content based
routing [3]. The theory behind Bloom filters is described
in this section. First we describe the ordinary Bloom filter
and then explain the enhancement to it, known as Counting
Bloom filter.

2.1 Bloom Filters

Given a string
�

, the Bloom filter computes � hash func-
tions on it producing � hash values ranging from 1 to � .
It then sets � bits in a � -bit long vector at the addresses
corresponding to the � hash values. The same procedure
is repeated for all the members of the set. This process is
called “programming” of the filter. Figure 1(a) illustrates
this concept.

In this figure, two messages, X1, X2 are being pro-
grammed in the Bloom filter which has k=4 hash functions
and m=13 bits in the array. Note that different strings can
have overlapping bit patterns as shown in this figure. The
query process is similar to programming, where a string
whose membership is to be verified is input to the filter. The
Bloom filter generates � hash values using the same hash

1 1 1 1 11

X2X1

(a) Programming multiple strings
in the Bloom filter. Strings X1 and
X2 are being programmed. Here
k=4 and m=13

1 1 1 1 11

Y

(b) Querying a Bloom filter with a
string. Bloom filter gives a ‘match’
for string Y since all the hash bits
are set

1 1 1 1 11

Z

(c) False positives. Bloom filter
gives a match for string Z though
it is not programmed in it, since all
the hash bits are set. This is a false
positive

Figure 1. Illustration of Bloom filter

functions it used to program the filter. The bits in the � -
bit long vector at the locations corresponding to the � hash
values are looked up. If at least one of these � bits is found
not set then the string is declared to be a non-member of the
set. If all the bits are found to be set then the string is said to
belong to the set with a certain probability. This uncertainty
in the membership comes from the fact that those � bits in
the m-bit vector can be set by any of the � members. Thus
finding a bit set does not necessarily imply that it was set
by the particular string being queried. However, finding a
bit not set certainly implies that the string does not belong
to the set, since if it did then all the � bits would definitely
have been set when the Bloom filter was programmed with
that string. This explains the presence of false positives in
this scheme, and the absence of any false negatives. The
concept is illustrated in Figures 1(b) and 1(c).

A string Y is input for verifying its membership. The
same hash functions calculate k hash values over Y and all
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the bits corresponding to these hash values are found to be
set. (A further investigation will reveal that Y is the same as
X1). Similarly when another string Z is input for member-
ship verification, all the corresponding bits in the bit array
are found to be set although there is no such string pro-
grammed in the filter, i.e. neither X1 nor X2 has the same
bit pattern as Z. Hence, clearly it is a false positive. The
false positive rate, f, is expressed as [1]

���������
	�������������
(1)

where, � is the number of strings programmed into the
Bloom filter. The value of

�
can be reduced by choosing

appropriate values of � and � for a given size of the mem-
ber set, � . It is clear that the value of � needs to be quite
large compared to the size of the string set i.e., � . Also, for
a given ratio of

�  , the false positive probability can be re-
duced by increasing the number of hash functions � . In the
optimal case, when false positive probability is minimized
with respect to � , we get the following relation

� ��� ��� � ��� ��� (2)

This corresponds to a false positive probability of

������� ��� ��� (3)

The ratio ��� � can be interpreted as the average number
of bits consumed by a single member of the set. It should be
noted that this space requirement is independent of the ac-
tual size of the member. In the optimal case, the false pos-
itive probability decreases exponentially with a linear in-
crease in the ratio ��� � . Secondly, this also implies that the
number of hash functions, � , and hence the number of ran-
dom lookups in the bit vector required to query one mem-
bership is proportional to ��� � .

2.2 Counting Bloom Filters

One property of Bloom filters is that it is not possible to
delete a member stored in the filter. Deleting a particular
entry requires that the corresponding � hashed bits in the
bit vector be set to zero. This could disturb other members
programmed into the filter that hash to any of these bits. In
order to solve this problem, the idea of the Counting Bloom
filters was proposed in [5]. A Counting Bloom filter main-
tains a vector of counters corresponding to each bit in the
bit-vector. Whenever a member is added to or deleted from
the filter, the counters corresponding to the � hash values are
incremented or decremented, respectively. When a counter
changes from zero to one, the corresponding bit in the bit-
vector is set. When a counter changes from one to zero, the
corresponding bit in the bit-vector is cleared.

It is important to note that the counters are changed only
during addition and deletion of strings in a Bloom filter. For

applications like network intrusion detection, these updates
are relatively less frequent than the actual query process it-
self. Hence, counters can be maintained in software and
the bit corresponding to each counter is maintained in hard-
ware. Thus, by avoiding counter implementation in hard-
ware, memory resources can be saved.

3 System Description

b2b3bw
Entering byte Leaving byte

False positive resolver

b1

BF3 BF2 BF1BFw

Hash Table

Figure 2. A single packet scanning engine
consisting of multiple Bloom filters each of
which detects strings of a unique length. The
longest string of interest is ‘w’

b2b3 b1bw+1bw+2bw+3 bw

Entering bytes Leaving bytes

Hash Table

Verification Request Arbiter

Figure 3. Multiple engines used in parallel
each monitoring a window of bytes shifted by
a single byte. In this example, the throughput
will be 4x

We use Bloom filters to store the signature strings to be
detected and query these Bloom filters using all possible
strings in the streaming data to check if any of these strings
is a string of interest. If the Bloom filter does not give a
match then the data can be ignored since a false negative is
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Engine 1

Bloom
Filters

Engine 2

Bloom
Filters

Engine 3

Bloom
Filters

Engine 4

Bloom
Filters

Control
Packet
Processor

Controller

Input

SDRAM

Verification Request Arbiter

Hash Table Interface

Protocol Wrappers

Controller

Output

Figure 4. Block diagram of the architecture.

not possible. When the filter gives a match for the input then
it can be a potential string of interest with a high probability.

To make this possible, we group the strings to be de-
tected by their lengths and store all the strings of one par-
ticular length in one Bloom filter. Depending on how many
different unique lengths exist in the database of strings of
interest, we instantiate an array of parallel Bloom filters
each of which stores strings of a given length and checks the
strings of the same length in the streaming network data.

Figure 3 illustrates this concept. It shows that there are
strings of length ranging from 1 byte to ‘w’ bytes and all the
strings with the same length are stored in the corresponding
Bloom filter. This set of Bloom filters monitors a window
of ‘w’ bytes of network data. This window contains strings
of length one to w bytes. Each of these strings is input to
the corresponding Bloom filter to test for the membership.
When none of the Bloom filters give a match, the data win-
dow is progressed by a single byte and the same procedure
is repeated. If a string is found to be a member of any Bloom
filter then it is declared as a possible matching signature.
Such strings are checked against a hash table which deter-
mines if a string is indeed a member of the set or a false
positive. Thus, the hash table acts as a false positive elim-
inator. When a true string is found, an appropriate action
(drop, forward, log) can be taken on the packet.

Since the false positive rate can be reduced to a desired
small value using ample memory, the probes to the hash
table due to false positives can be reduced. Therefore, the
probes in the hash table will almost always be due to the
true positives. Since the true positive probability is typically
low, very few probes need to be performed in the hash table
and hence normally the data window is progressed every

clock cycle.

Clearly, with only one set of Bloom filters, the data
stream can progress by only one byte per clock cycle. In
order to get more throughput, multiple such engines need to
be deployed in parallel. This is depicted in Figure 3 where
four identical engines containing multiple Bloom filters are
used. Each of these engines scans a data window with an
offset of one byte. Hence all the strings are scanned and the
window can be advanced by four bytes in a single clock cy-
cle giving a throughput 4x that of the single engine. Since
all the Bloom filters in all the engines share the access to the
same hash table, one more level of arbitration needs to be
added above the four engines. In case of multiple matches
within the same window, the arbitration logic will start the
hash table probe with the longest matching string from the
first engine and end with the shortest matching string in the
last engine.

Figure 3 shows the detailed block diagram of the system
as implemented on the FPX. The main components of the
system are Bloom filter engines and a hash table. The ar-
chitecture of these blocks is explained in the next section.
Packets on the link are parsed by the protocol wrappers [2]
and the application layer data is presented to the scanner
module. The Control Packet Processor is responsible for de-
coding the control packets and making updates to the hash
table as well as Bloom filter. Whenever a string is added or
deleted from the database, these updates are done. These
updates essentially involve setting or resetting some bits in
the Bloom filter and storing or deleting the strings from the
hash table.

The Input Controller controls the flow of input byte
stream to the Bloom filter. It can receive 4 bytes of an Inter-
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net packet per clock cycle. Hence four parallel Bloom filter
engines are used to maintain the throughput. This data is
buffered in a 2 KB FIFO. When the Bloom filters can ac-
cept data, the Input Controller streams bytes through a se-
ries of flip-flops, composing the window that the Bloom fil-
ters monitor. Whenever Bloom filter finds a matching string
in the streaming data, it asks the Input Controller to pause
the data stream and dispatches a request to the hash table to
verify the presence of the matching string. Once the hash ta-
ble gives a result, the Bloom filter asks the Input Controller
to resume the data stream.

The Output Controller reassembles the input stream.
Once the packet is received completely, it outputs the packet
to the protocol wrappers. However, when the hash table
finds a matching string, it instructs the output controller to
output a warning packet instead of original packet. In that
case the original packet is dropped.

4 Implementation Details

In order to reduce the false positive probability consid-
erably, a long bit vector is required. Even for supporting
the programmability for hundreds of strings, many thousand
bits are required. The cost of using the on-chip flip-flops for
this purpose is too high. However, modern FPGAs have on-
chip RAMs with more than one port (typically dual port)
that can be exploited to create the Bloom Filter vector. For
instance, the Xilinx XCV 2000E chip on the FPX board has
160 on-chip RAMs each with two ports. Each Block RAM
can be configured as a single bit wide and 4096 bits long
vector, giving a bit lookup throughput of 2 bits per clock
cycle. We now describe how these on-chip RAMs can be
used for building the basic Bloom Filter.

4.1 Implementing Bloom Filter

Figure 4.1 shows how a Block RAM can be used to
construct a Bloom filter. The Block RAM is configured
as a single bit wide and 4096 bits long bit array. It has
two read/write ports, both of which can be used to lookup
the bit values corresponding to two distinct hash functions.
Thus, this Bloom filter can support � � � hash func-
tions, � ���������

bits in the array and hence can support
�
� �

��� �
���

��� � ��� ���
strings in it. Apart from doing the

lookups corresponding to the hash values, a control inter-
face is needed through which the bits in the Bloom filter can
be set or reset whenever a string is added or deleted. Hence
one of the two ports of the Block RAM is shared between
the hash lookup interface and control interface as shown in
the figure. When the control interface is not in the use, the
port is used for doing the lookup corresponding to the hash
value. The control interface of this basic Bloom filter con-
sists of four inputs: BlockRAM ID, Bit Address, Bit Value

‘0’

addrB
‘0’

addrA

weA

weB
dinB

Match

Control interface

Request Decoder
dinA

40
96

 b
its

H1

H2

BRAM_ID Valid_Req
Bit_ValueBit_Address

Figure 5. A Partial Bloom filter (PBF) with � � �
hash functions and � �	�
�
���

bits. This filter
can accommodate � ����� ���

strings with false
positive probability

��� � � �� .

H1

H2

H4

H5

H6

H7

H8

H9

H10

MBF

H3

Control Interface

PBF 1

Match

PBF 2

PBF 3

PBF 4

PBF 5

Figure 6. A mini Bloom filter (MBF) con-
structed from five PBFs. This can support,
1419 strings with a false positive probability��� ��� ����� .

and Valid Req. Valid Req is simply a qualifier bit, i.e. all
the other control inputs are valid only if this input is high.
The ������� ��� input specifies which Block RAM is cho-
sen and ����� � ���
! 	#"$" specifies which bit to program in that
Block RAM. Each Block RAM in the system is assigned
an ID. If the �%����� ��� input matches with the ID, the
bit specified by the ����� ���
�
! 	$"$" input is programmed to
the value specified by the ����� &%' �)(�	 input. Since the other
port is used only for lookup of the hash value and never for
writing to the bits, the write enable input (weB) is always
disabled. Likewise, the data input (dinB) too is reset per-
manently.

We refer to this Bloom filter as a Partial Bloom filter
(PBF) since multiple such Bloom filters are needed to create
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Control
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Input String

Match 

Hash Matrix 
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M
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F 
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MBF  Selector

Figure 7. A large Bloom filter (LBF) con-
structed by using multiple mini-Bloom filters
(MBF). The signatures are distributed uni-
formly randomly among all the MBFs. With
! MBFs, !�� ��� ��� strings can be stored in this
LBF

a Bloom filter with smaller false positive probability.

By using multiple PBF to store the same set of strings,
the false positive probability can be reduced. For instance,
if two PBFs are used then the false positive probability will
be
����� � � � � � � ����� ��� ��� , if three PBFs are used then the false

positive probability will be
����� � � � � ��� � ��� ��� ��� and so on.

For this work, five PBFs are used to achieve a false positive
probability of

��� � � ����� � �	� �
������
 and a storage capacity of
1419 strings. This set of five PBFs is called a mini-Bloom
filter (MBF). The PBFs in a MBF receive the same control
signals coming from a controller. This MBF is shown in
Figure 4.1. Note that the hash function matrix is not shown
in the figure yet.

A MBF can support only a small number of strings. To
create a Bloom filter with a bigger capacity, multiple MBFs
are used in parallel. This set of MBFs is called Large Bloom
Filter (LBF). Figure 4.1 shows the schematic of the LBF
constructed using ! MBFs. This LBF has a capacity of !����� ���

. A string is stored in only one of the MBFs. The
MBF for storing a particular string is chosen randomly by
calculating a hash value over the input string. During the
query process, the same hash value is will be calculated and
hence the same MBF will be probed for the presence of
the string. For probing a particular MBF, � hash values are
calculated and they are routed through a MUX to the MBF
chosen for probing. The output of the same MBF is routed
out.

4.2 Hash Functions

A class of universal hash functions described in [12]
were found to be suitable for hardware implementation. It
should be recalled that � hash functions are generated. Fol-
lowing is the description of how this hash matrix is calcu-
lated. For any bit string

�
with  bits represented as

� ����� ��� � ��� � ��� ����� � �����

the ����� hash function over
�

, ��� � � �
is calculated as,

� � � � � � � � � � � �! � � � � � �" � � � � � �" ���������  � � �#� �$� (4)

where ‘.’ is a bitwise AND operator and ‘  ’ is a bitwise
XOR operator. �%�'& is a predetermined random number in
the range [0. . . m-1]. Note that the hash value can be out
of the range [0. . . m-1] if m is not a power of 2. Hence m
must be a power of 2. For this implementation m= 4096,
which is a power of 2. It can be observed that the hash
functions are calculated cumulatively and hence the results
calculated over the first � bits can be used for calculating
the hash function over the first �"( �

bits. This property
of the hash functions results in a regular and less resource
consuming hash function matrix.

4.3 Hash Table

A hash table is used to resolve false positives from
Bloom filters. Two versions of the hash table have been
implemented. The first uses Synchronous Dynamic Ran-
dom Access Memory(SDRAM), and the second uses Syn-
chronous Random Access Memory (SRAM). More strings
may be stored in the SDRAM version. However, SDRAM
has more latency for a hash probe than SRAM. With 64
Megabytes commodity SDRAM there are � � � � ��� �%)+*+
 �
slots to store 32 byte signatures. With merely 10,000 sig-
natures stored randomly in these slots, the occupancy of the
hash table is 1/100, making the hash collision probability
negligible. In our current implementation, the latency in
probing a hash slot in the SDRAM (with a 8 byte wide data
bus) based hash table is 20 clock cycles. Likewise, using a
2 Megabytes commodity ZBT SRAM (with a 4 byte wide
data bus), there are � ��� � �+*+*�,�� slots to store 32 Byte sig-
natures with a latency of 14 clock cycles.

A block diagram of the hash table is shown in Figure 4.3.
The hash value calculator is similar to that used for each
hash function for the Bloom filters. In order to resolve hash
collisions, quadratic probing is implemented. Two extra bits
make this possible. An occupied bit is maintained to signify
that an entry exists at a specific location. A deleted bit is
maintained to specify that an entry existed at one time in
this location, but it has since been deleted. This allows the
search to continue in case an entry has been deleted.
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Figure 8. The hash table consists of a hash
calculator, a finite state machine, and a com-
parator. The hash table resolves collisions by
performing quadratic probing.

When a signature is added, the hash address is calcu-
lated. This address is checked for occupancy. If an entry
does not exist at that location (the occupied bit is cleared)
or the deleted bit has been set, the new string is added to
the address. If an entry exists at that location (the occupied
bit is set and the signature stored does not match the query
signature), the next location will be checked. The next ad-
dress is calculated by adding an offset equal to a power of 2
in the base address. Thus, the locations to be checked upon
collisions will have offsets of

� � � � � � ) � ��� � � �#� . This is con-
tinued until an empty slot is found. As can be seen, offset
calculation is easily implemented in hardware via a left shift
addition term.

When a signature is queried, the same process is re-
peated, stopping when a signature match occurs or the oc-
cupied bit and deleted bit are found to both be cleared (in-
dicating that the string was not in the hash table). Deleting
a signature consists of performing a query, followed by set-
ting the deleted bit if the signature was found.

5 Implementation Results

A single Bloom filter engine and the rest of the compo-
nents as shown in the Figure 3 have been implemented and
tested on the FPX [] board. The system was designed to eas-
ily change the number of MBFs and PBFs to accommodate
the particular database of signatures. In addition, different
length Bloom filters may also be instantiated. This allowed
several different systems to be built for testing purposes.
All of the following systems were implemented in the Xil-
inx Virtex 2000E FPGA and tested in the test environment
to be described.

Component LUTs Flip Block
Flops RAMs

Single 10-byte
Bloom Filter 1495 (3%) 1297 5
Single 32-byte
Bloom Filter 4438 (11%) 3372 5
24 to 32 byte
Bloom Filters ? (?%) ? ?
CPP 144 (0%) 315 0
Hash Table 1540 (4%) 1484 0
Input Processor 34 (0%) 81 5
Output Processor 230 (0%) 251 2
Protocol Wrappers 3487 (7%) 2694 22

Table 1. A summary of the resources con-
sumed by each component in a single engine
system. Three variations were implemented.
First with a single 10-byte Bloom filter. Sec-
ond with a single 32-byte Bloom filter and
third with multiple Bloom filters for 24 to 32
bytes signatures inclusive

5.1 Resource Consumption and Throughput

A single engine consisting of just one Bloom filter which
scans strings of only one length was built. Such a system is
useful for copyright protection applications where the files
to be protected can be characterized by a randomly chosen
fixed length string.

Two separate single length engines were built to observe
the LUT resource consumption due to hash functions. The
first system monitored a 10-byte window. The second sys-
tem used a 32-byte window instead. The Bloom filter in
both the systems contained five PBFs allowing 1419 10-
byte signatures to be stored.

The 10-byte system operates at 73.513 MHz, corre-
sponding to a throughput of 588 Megabits per second. and
the 32-byte system operates at 66.353 MHz, corresponding
to a throughput of 531 Megabits per second. A summary
of the resource usage by component is given in Table 5.1.
The increase in LUT consumption and slice utilization are
due to the 176 new bits that are included in hash function
calculation and the need to extend the byte-sized flip-flops
in the byte stream.

A system has been built and tested that searches for sig-
natures of lengths 24 bytes to 32 bytes, inclusive. Each
Bloom filter in this engine had five PBFs. Since each Bloom
filter can support 1419 signatures, the collective capacity
of this engine is 12771 signatures. This circuit operates at
64.75 MHz, corresponding to a throughput of 518 Megabits
per second. With a larger FPGA, this system could use a

7



Figure 9. Laboratory test configuration.

quad-engine to improve the throughput to 2.12 Gigabits per
second.

5.2 Experiments and Results

The three systems described above were implemented
and tested in the lab configuration shown in Figure 5.2.
First, the FPGA on the FPX board is programmed with the
Bloom filter circuit. Next, a control PC writes UDP control
packets to set bits in the Bloom filter(s) and add the spe-
cific signature to the hash table. These UDP packets travel
from the control PC through the local Intranet to a Power-
hub multilayer backbone switch. The Powerhub transforms
the UDP packets to ATM cells, which transverse through
the WUGS 20 ATM switch. The ATM cells enter the Proto-
col Wrappers, are decoded as UDP packets, and are fed to
Control Packet Processor for programming the Bloom fil-
ter(s). Signatures are added and deleted via these control
packets at any time.

The lab configuration was set up such that the Bloom fil-
ter circuit was placed on the border of the local Intranet and
the Internet. In this way, Internet traffic coming from and
going to PCs on the local network went through the Bloom

Figure 10. A alert message graphing applica-
tion which plots the number of occurrences
per second of a specified signature.

filter circuit. Several test signatures, associated with known
signatures on web pages and in files, were programmed
into the circuit. These web pages were viewed and files
were accessed from the laboratory computers. Upon detec-
tion of these signatures, the Bloom filter circuit created an
alert message. The alert message was sent to the control
PC, informing it that a specified signature was found. For
example, in the 10-byte system, the 10-byte signature of
???? was programmed from the SoBigF virus that recently
hit. This signature was programmed into the Bloom filter,
scanned for, and detected. As another example, the signa-
ture “Double, double toil and trouble” from Macbeth was
programmed into the Bloom filter system that scans 24 to
32 byte windows. One of the laboratory PCs then went to
download Macbeth from a web page. Three alert messages
were received by the control PC, since this signature occurs
three times in Macbeth. Alert messages received at the con-
trol PC can be sent to a simple graphing application, as can
be seen in Figure 5.2. This application plots the number of
occurrences per second of a specified signature.

6 Related Work

Jason et al. in [4] explore the benefits of using Aho-
Corasick Boyer-Moore (AC BM) algorithm to improve the
performance of SNORT [13]. This algorithm is faster than
the Boyer-Moore algorithm currently used by the current
version of SNORT engine. Varghese and Fisk in [7] an-
alyze set-wise implementation of Boyer-Moore algorithm
which has average-case performance that is better than the
Aho-Corasick algorithm. These algorithms are primar-
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ily geared toward software implementation. Commercial
hardware implementations of some packet content inspec-
tion [8, 10, 11] are available, however, few details about
these proprietary systems was available.

Advent of the modern reconfigurable hardware technol-
ogy, particularly FPGAs, has added a new dimension to
hardware based packet inspection techniques. Literature
[9, 6, 15] shows that new approaches using reconfigurable
hardware essentially involve building an automaton for a
string to be searched, generating a specialized hardware cir-
cuit using gates and flip-flops for this automaton, and then
instantiating multiple such automata in the reconfigurable
chip to search the streaming data in parallel. The common
characteristic of these approaches is that the on-chip hard-
ware resource consumption (gates and flip-flops) grows lin-
early with the number of characters to be searched. Sec-
ondly, these methods require the FPGA to be reprogrammed
to add or delete individual strings from the database. Any
change in the database requires the recompilation, regener-
ation of the automaton, re-synthesis, re-place and route of
the circuits.

In contrast, the Bloom filter-based system is able to a
handle a larger database with reasonable resources, and sup-
ports fast updates to the database. The latter is an important
feature in network intrusion detection system which require
immediate action to certain attacks like an Internet-worm
outbreak.

7 Conclusion

An FPGA-based technique for detecting predefined sig-
nature strings in packet payload at wire speed has been pre-
sented. This technique uses Bloom filter which is a ran-
domized algorithm for storing and matching strings. Since
Bloom filters consume a small amount of memory and can
perform string matching with a constant amount of compu-
tation, it can be used effectively for real-time deep packet
inspection. Bloom filters can be implemented easily in FP-
GAs using the embedded memory blocks. For optimal per-
formance, the memory blocks need to be allocated to Bloom
filters in proportion to the number of strings they contain.
Since this string distribution can change over time, block
memories need to be reallocated. Hence FPGA is an at-
tractive choice for the implementation of Bloom filters. An
implementation in a Xilinx Virtex 2000E FPGA on the FPX
platform can support packet scanning at 2.4 Gbps for 10,000
strings.

The components of this system can be used to implement
a complete Snort-like NIDS on a FPGA. Since Snort rules
involve header rules and payload rules, we need to integrate
a scalable, hardware-based technique for header rule match-
ing with this payload scanner. These two coupled with the
TCP/IP processor developed in Washington University [14]

can give the ability to do stateful packet inspection, in which
rule matching can be done on per-flow basis in addition to
per-packet basis.
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