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of constraints violated, are sufficient. We show that phase transitions are persistent in bounded 3-SAT
and are similar to that of 3-SAT. We then study backbones of MAX 3-SAT, which are critically constrained
variables that have fixed values in all optimal solutions. Our experimental results show that backbones of
MAX 3-SAT emerge abruptly and experience sharp transitions from nonexistence when underconstrained
to almost complete when overconstrained. More interestingly, the phase transitions of MAX 3-SAT
backbones surprisingly concur with the phase transitions of satisfiability of 3-SAT. Specifically, the
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Abstract. Many real-world problems involve constraints that cannot
be all satisfied. The goal toward an overconstrained problem is to find
solutions minimizing the total number of constraints violated. We call
such a problem constraint minimization problem {CMP). We study the
behavior of the phase transitions and backbones of CMP. We first inves-
tigate the relationship between the phase transitions of Boolean satis-
fiability, or precisely 3-SAT {a well-studied NP-complete decision prob-
lem}, and the phase transitions of MAX 3-SAT (an NP-hard optimization
problem). To bridge the gap between the easy-hard-easy phase transi-
tions of 3-SAT and the easy-hard transitions of MAX 3-8AT, we analyze
bounded 3-SAT, in which solutions of bounded quality, e.g., solutions
with at most a constant number of constraints voilated, are sufficient.
We show that phase transitions are persistent in bounded 3-SAT and
are similar to that of 3-SAT. We then study backbones of MAX 3-SAT,
which are critically constrained variables that have fixed values in all
optimal solutions. Our experimental results show that backones of MAX
3-SAT emerge abruptly and experience sharp transitions from nonexis-
tence when underconstrained to almost complete when overconstrained.
More interestingly, the phase transitions of MAX 3-SAT backbones sur-
prisingly concur with the phase transitions of satisfiability of 3-SAT.
Specifically, the backbone of MAX 3-SAT with size 0.5 approximately
collocates with the 0.5 satisfiability of 3-SAT, and the backbone and sat-
isfiability seems to follow a linear correlation near this 0.5-0.5 collocation.

™ This research was funded in part by NSF Grants #IRI-9619554 and #IIS-0196057,
and by DARPA Cooperative Agreements F30602-00-2-0531 and F33615-01-C-1897.
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1 Introduction and Overview

Understanding phase transition phenomena in complex systems and combinato-
rial problems [3,9-11,13, 14, 20, 21] has been an active research focus for more
than a decade. It is now well known that Boolean satisfaction problems typically
exhibit easy-hard-easy phase transitions [3, 14). Specifically, the computational
complexity of 3-SAT, a Boolean satisfaction problem in a conjunctive normal
form with three literals (variable or its negation) per clause, experiences dra-
matic transitions from easy to difficult and then from difficult back to easy
when the ratio of the number of clauses to the number of variables increases.
Note that 3-3AT is a decision problem, which gives a solution when the problem
is satisfiable or an answer NO when it is unsatisfiable.

On the other hand, it has also been shown that the expected complexity
of finding optimal solutions of tree search problems, which include many of
those combinatorial optimization problems that are solved by branch-and-bound,
goes through easy to difficult transitions when the underlying heuristic function
degenerate [11, 13, 20, 21].

In short, the phase transitions of NP-complete decision problems have easy-
hard-easy patterns and the phase transitions of NP-hard optimization problems
follow easy-hard patterns. These phase transition results exhibit a discrepancy
between the phase transitions of decision and optimization problems.

An example of such a discrepancy is explicitly shown in two independent
experimental study of phase transitions of the Traveling Salesman Problem
(TSP) [8,22]. It was shown that there exists a rapid transition between soluble
and insoluble instances of the decision problem of two-dimensional Euclidean
‘ISP, and hard instances are associated with this transition, showing an easy-
hard-easy pattern [8§]. On the other hand, it was shown that the complexity of
finding optimal solutions to the TSP displays an easy-hard pattern [22).

Phase transitions of different probleins have different control or order param-
eters that may be adjusted io alter the phases of the problems. For instance, an
order parameter for 3-SAT is the ratio of the number of clauses to the number
of variables 3, 14] and the number of distinct values of intercity distances is an
order parameter for the TSP [22].

A more profound concept related to phase transitions is that of the backbone,
which has been suggested as a more pertinent order parameter to characterize a
complex problem. A backbone of a combinatorial problem is a set of variables each
of which has the same value among all solutions [15]. In other words, backbone
variables are extremely constrained. A violation to a backbone variable rules out
all optimal solutions.

This research was first motivated by the fact that there are numerous real-
world constraint problems for which not all constraints can be satisfied. Such
problems can be found in application areas such as scheduling, multi-agent co-
operation and coordination, and pattern recognition [2, 4, 6]. Given such an over-
constrained problem, the task of finding an sclution to minimize the total num-
ber of viclated constraints is an optimization problem, which we call constraint
minimization problem (CMP).
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We are also motivated to understand the relationship between the phase
transitions of decision problems and that of their optimization counterparts. In
this study, we will focus our investigation on 3-SAT, which is a decision problem,
and MAX 3-SAT, which is an optimization problem that requires the optimal
solutions minimizing the total number of unsatisfied constraints.

Furthermore, We are motivated to investigate the backbones of optimization
problems, particularly the backbone of MAX 3-SAT. Qur goal is to understand
the characteristics of all optimal solutions and the behavior of finding them.

The paper is organized as follows. After a brief review of 3-SAT and MAX
3-SAT, we examine the phase transitions of 3-SAT and MAX 3-SAT by show-
ing their different phase transition patterns {Section 2.2). We then generalize
the notion of satisfiability to different decision problems with various bounds
on decision quality (Section 2.3). We then study the backbone of MAX 3-SAT
(Section 3). We discuss related work in Section 4 and conelude in Section 5.

2 Decision vs. Optimization Phase Transitions

In this section, we experimentally analyze the relationship between the phase
transitions of decision problems and that of optimization problems. Qur discus-
sion will focus on 3-SAT and MAX 3-SAT.

In our experiments on 3-SAT and MAX 3-SAT, we used 25 variables and var-
ied the number of clauses to generate random problem instances. In generating
a clause, a randomly chosen variable has a 50 percent chance to be negated. No
duplicate clause is allowed in a problem instance. We varied the clause /variable
ratio from 1 to 20, with an increment of 0.2. For each clause/variable ratio, we
generated 1,000 problem instances. We collected the median value or computed
an averaged value of the results on these instances as needed.

In this study, we used the well-known Davis-Putman method, a backtracking
method with unit resolution [5]. This algorithm is a special case of depth-first
branch-and-bound where one variable is instantiated at each step.

2.1 3-5AT and MAX 3-SAT problems

A Boolean satisfiability, or SAT for short, is a constraint satisfaction problem
(CSP) that involves a Boolean formula consisting of a set of Boolean variables
and a conjunction of a set of disjunctive clauses of literals, which are variables
and their negations. A clause is satisfied if a literal within it takes a true value,
and a Boolean formula is satisfied if all the clauses are satisfied. The conjunction
defines constraints on the possible combinations of variable assignments. A 8-
SAT is a special Boolean satisfiability where each clause has three literals. 3-
SAT is NP-complete [7], and it is unlike to have a polynormial algorithm for the
problem. Many practical problems can be cast as SAT [6, 19)].

Furthermore, there are also practical SAT problem in whick no variable as-
signments can be found which does not violate a constraint [6]. In this case, it
is required to find an assignment such that the total number of satisfied clauses
is maximized. This is called mazimum 3-Sat.
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2.2 Discrepancy of phase transitions

As discussed in Section 1, there is a discrepancy between the phase transitions of
decision problems and the phase transitions of their corresponding optimization
versions. We investigate this discrepancy in detail.

We first consider 3-SAT. Figure 1 shows two types of phase transitions, a tran-
sition between satisflability and unsatisfiability and easy-hard-easy transitions of
computation cost. The order parameter that determines the phase transitions is
the ratio of the number of clauses to the number of variables. The critical value
of this order parameter for 3-SAT is around 4.13 [14]. A 3-SAT is almost always
satisflable when the clause/variable ratio is below this critical value and is almost
always unsatisfiable when the ratio is beyond the critical value, making a sharp
transition from satisfiability to unsatisfiability. Furthermore, the computational
complexity required to decide the satisfiability is low when the probability of
satisfiability is close to one or zero; while the complexity is the highest when
this probability is 0.5, a value taken when the clause/variable ratio is around
4.13.
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Fig. 1. Phase transitions of 3-SAT.

We now consider MAX 3-SAT. The only property we need to consider is
its computational complexity, since an optimal solution is required throughout
the whole spectrum of consideration so that there is no notion of satisfiability
for the problem. Figure 2 shows the complexity of solving random MAX 3-SAT
with 25 variables and various numbers of clauses. The problem instances used
in Figure 2 are the same as that in Figure 1. To contrast the result with 3-SAT,
we also include the complexity curve for 3-SAT. Figure 2 shows that starting



Phase Transitions and Backbones of CMP 5

at point A in the figure, MAX 3-SAT follows 3-SAT to enter computationally
difficult region. However, MAX 3-SAT becomes more and more difficult when the
clause/variable ratio increases even when 3-SAT enters its second easy region.
In other words, the complexity of MAX 3-SAT follows an easy-hard pattern as
the clause/variable ratio increases.
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Fig. 2. Phase transitions of MAX 3-SAT.

The discrepancy between the different patterns of the complexity phase tran-
sitions of 3-SAT and MAX 3-SAT indicates that optimization is more difficult
than decision. The optimal solution to a MAX 3-SAT can be obviously used
to answer the question if the corresponding 3-SAT is satisfiable or not. Thus a
MAX 3-SAT, a minimization problem, is at least as hard as its corresponding
3-SAT, a decision problem. This discrepancy also indicates that constraints play
different roles in an optimization problem and in its decision counterpart. When
a problem instance is satisflable, deciding if it is satisfiable is to find a variable
assignment satisfying all the constraints, which is also an optimal solution to
the optimization version of the problem. When a constraint problem is overcon-
strained, a stnall subset of the problem is very likely to be overconstrained as
well, so that the problem can be declared unsatisfiable when such an overcon-
strained subproblem is detected unsatisfiable. The more constrained the problem
is, the more quickly the decision process can conclude that no solution exists.
However, in an overconstrained case, finding an optimal solution to minimize
the total number of violated constraints is typically hard since every possible
variable assignment can be a candidate of a optimal solution.
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2.3 Quality-bounded decision problems

The discrepancy between the two different phase transition patterns of 3-SAT
and MAX 3-SAT has motivated us fo investigate the relationship of the phase
transitions of these two closely related problems.

In between a decision problem and its optimization counterpart there are
many middle grounds that consist of decision problems with different decision
objectives and quality. Such a decision problem may ask if there exists a variable
assignment that violates no more than B constraints for an integer bound B.
We call such a general decision problem gquality-bounded decision problem, or
bounded decision problems for short, and note it as 3-SAT(B). A 3-SAT(B) is
satisfied if an assignment that violates no more than B constraints exists. It
takes 3-SAT and MAX 3-SAT as special cases. When B = 0 it is 3-SAT; when
B is the optimal solution cost, it is equivalent to MAX 3-SAT.

Are the phase transition properties of 3-SAT reserved under the general no-
tion of satisfiability? Specifically, are there still a sharp trapsition from satisfia-
bility to unsatisfiability and easy-hard-easy complexity transitions in 3-SAT(B)
when the clause/variable ratio increases?
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Fig. 3. Satisfiability phase transitions of 3-8AT(3).

Figures 3 and 4 show our experimental results that answer these questions.
Figure 3 shows the probability of satisfiability of 3-SAT(0}, 3-SAT(5), 3-SAT(10),
3-SAT(15}, and 3-SAT(20). The figure shows that 3-SAT(B) still has a sharp
transition from satisfiable to unsatisfiable as the clause/variable ratio increases.
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Fig. 4. Complexity phase transitions of 3-SAT(B).

The location of the transition for a given clause/variable ratio depend on B,
however. The larger B is, the more problem instances are satisfiable. Similar to
the unsettled issue of the exact location of the satisflable to unsatisfiable transi-
tion of 3-SAT, it remains an interesting open problem to analytically determine
the transition location of 3-SAT(B) with a non-zero integer bound B.

Figure 4 shows the computational complexity of Davis-Putman algorithm on
3-SAT(0), 3-SAT(5), 3-SAT(10), 3-SAT(15), 3-SAT(20), and MAX 3-SAT. Note
that the vertical axis is in a logarithmic scale. As the curves in the figure show,
although the complexity of 3-SAT(B) still follows an easy-hard-easy transition
pattern, the second easy region where problem instances are overconstrained be-
comes no longer very easy comparing to the first easy region where the problems
are underconstrained. The larger B is, the computationally more difficult the
second easy region becomes.

In summary, a profound feature of phase transitions on computational com-
plexity of 3-SAT(B) is that the transition from the first easy region to the difficult
region is very sharp. In the first easy region, the computational complexity of
3-8AT(B) is relatively constant regardless the actual value of B. Whenever the
complexity enters the difficult region, the complexity increases exponentially.

3 Phase Transitions of CMP Backhones

We now study the backbones of constraint minimization problems. In our exper-
iments, we used the same set of randomly generated problem instances as for the
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experiments in the previous section. Specifically, we used 25 variables and varied
the number of clauses by changing the clause/variable ratio from 1 to 20, with
an increment of 0.2, For each clause/variable ratio, we generated 1,000 problem
instances. We collected the median value or computed an averaged value of the
results on these instances as needed.

Since backbone is defined over all solutions of a problem, we first examine
the problem of finding all optimal solutions to MAX 3-SAT problems.

3.1 Finding all optimal solutions

It is known that there are a large number of satisfying solutions whenever 3-
SAT is underconstrained, which are credited for the low computation cost in the
underconstrained region. These satisfying solutions are also optimal solutions
to MAX 3-SAT. When 3-SAT is overconsirained, however, a satisfiable solution
is unlikely to exist. What is the total number of optimal solutions when MAX
3-SAT is overconstrained? How will the other two important characteristics,
the cost of optimal solutions and the computational cost of finding all optimal
solutions, behave?
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Fig. 5. Number of optimal solutions of MAX 3-SAT.

Figure 5 shows the average number of optimal solutions of MAX 3-SAT
with 25 variables in terms of clause/variable ratio. The dotted line in the figure
is where the 50 percent satisfiability of 3-SAT occurs. The vertical axis is in a
logarithmic scale. As Figure 5 shows, the curve of the average number of optimal
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solutions can be divided into two segments. In the underconstrained region, the
average number of solutions decreases exponentially as the clause/variable ratio
increase. In the overconstrained region, the number of solutions is less than a
dozen, and decreases approximately linearly with the clause/variable ratio.
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Fig. 6. Computational cost of MAX 3-SAT.

We now examine the computational cost of finding all optimal solutions of
MAX 3-SAT. Figure 6 shows the experimental results. The median computa-
tional cost is shown in a logarithmic scale along the vertical axis. The compu-
tational curve is also separated by the 50 percent satisfiability point of 3-SAT,
which is shown by the vertical dotted line in Figure 6. The major trend of the
curve in the underconstrained region is an exponential drop. This differs signif-
icantly from the low, increasing computational cost for 3-SAT in this region as
shown in Figure 1. The higher computational cost when the ratio is smaller is
mostly due to enumerating the large number of optimal solutions {cf. Figure 5).
The curve exhibits a small plateau near the 50 percent satisfiability point. When
the clause/variable ratio passes through the 50 percent satisfiability separation
point, the computational cost steadily increases exponentially.

If finding a single satisfiable solution to a 3-SAT at the 50 percent satisfiability
point is considered difficult {cf. Figure 1), then finding all solutions of MAX
3-SAT is a much harder problem. Based on Figure 6, the cost for finding all
solutions around the 30 percent satisfiability point is near the lowest.

Another characteristic factor associated with finding all solutions is the me-
dian cost of optimal solutions, which is shown in Figure 7. The cost curve also
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has two segments, separated again by the 50 percent satisfability line, the dotted
line int the figure. In the underconstrained region, the median number of violated
clauses remains zero; while in the overconstrained region, the cost increases lin-
early with the clause/variable ratio.
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Fig. 7. Cost of optimal solutions of MAX 3-SAT.

In summary, the three main features associated with MAX 3-SAT, the num-
ber of optimal solutions, the computational cost for finding all sclutions and the
cost of optimal solutions, are segmented by the 50 percent satisfiability point of
3-SAT, and follow different patterns in the underconstrained and overconstrained
regions.

3.2 Backbone phase transitions

A backbone of a 3-SAT is a fraction of variables of all the variables which have
fixed values in all satisfying solutions {15]. In parallel, a backbone of & MAX 3-
SAT is the fraction of variables of all the variables which have fixed values in all
optimal solutions. In short, backbone variables are those critically constrained.
A violation to any of these variables will rule out all optimal solutions.

The size of a backbone is measured by a real number ranging from 0 to 1. A
backbone of 0 means that no variable is a backbone variable; while a backbone
of size 1 means that all variables are backbone variables.

Our study of MAX 3-SAT backbones revealed two interesting and surprising
results. First, there exist phase transitions of the backbones, shown in Figure 8,
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where the median size and average size of the backbones of 1,000 MAX 3-SAT
problem instances are included. As the figure shows, backbones emerge abruptly
as the clause/variable ratio increases. When the clause/variable ratio is less than
3.6, backbones almost do not exist. When the ratio is more than 3.6, backbones
emerge quickly. Before the clause/variable ratio gets to 6, the median backbone
size grows to more than 0.7, and reaches more than 0.9 when the ratio is 11.

The second surprising and more interesting result is that the backbone phase
transitions of MAX 3-SAT are coincident with the satisfiability phase transitions
of the corresponding 3-SAT. This is shown in Figure 9. The location where the
backbone of MAX 3-SAT is 0.5 concurs approximately with the location where
the corresponding 3-SAT has a probability 0.5 to be satisfiable. Within the
vicinity near this 0.5-0.5 collocation (the dotted square within Figure 9), the
backbone of MAX 3-SAT and the satisfiability of 3-SAT seem to be linearly
correlated. An increase in backbone will cause the probability of satisfability to
drop proportionally, and vice versa.

There are only a few optimal solutions when the clause/variable ratio is very
large, as shown by Figure 5. The backbone size is large when the clause/variable
ratio is large, as shown in Figure 8. The combination of these two factors indi-
cates that a handful of optimal solutions are clustered in a small neighborhood.
Therefore, searching for any one of the clustered optimal solutions is difficult
when backbone is large, since it is more likely to make a mistake of not setting a
backbone variable to its correct value. On the other hand, when there exists no
backbone variable, an arbitrary variable assignment may be an optimal solution.
Therefore, finding such an optimal solution is easy.

4 Related Work

Huberman and Hogg discussed and argued that phase transitions are a universal
feature of complex systems and problems [10]. Cheeseman et. al. [3] first exper-
imentally demonstrated the existence of phase transitions in many combinato-
rial decision problems, including Boolean satisfiability, the Traveling Salesman
Problem and graph coloring. The phase transitions of 3-SAT were extensively
examined by Mitchell et. al. [14] and many other authors. This line of work
concentrated mainly on decision problems. One of the main results is that the
average computational complexity of decision problems follows an easy-hard-easy
pattern.

‘The study of phase transitions of optimization problems probably started
with Karp and Pearl’s work of best-first search on a special random tree [11]. This
random tree is an abstract model of many combinatorial search problems and
state-space search algorithms, including best-first search and depth-first branch-
and-bound. This work was extended to a more general free by McDiarmid [13].
Zhang and Korf expanded the work to various linear space search algorithms,
including depth-first branch-and-bound and iterative deepening [20, 21]. A main
conclusion of this line of research is that the expected computational complexity
of optimization problems exhibits an easy-hard pattern.
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The discrepancy between the easy-hard-easy phase transitions of decision
problems and the easy-hard transitions of optimization problems has inspired
us to investigate the relationship of these two types of problems and their phase
transitions closely in this research. One of the results of this research reconciles
the relationship between the phase transitions of these two types of combinatorial
preblems.

Backbone seems to be an old concept, studied by Kirkpatrick and Toulouse
on the Traveling Salesman Problem [12], and attracting much attention recently.
Monasson et. al., investigated the backbones of 3-SAT and (2+p)-SAT and sug-
gested backbone as an order parameter for the decision problems [15]. Achilop-
tas also considered the backbones of quasigroup complete problems [1]. Slaney
and Walsh studied the backbones of many combinatorial optimization and ap-
proximation problems, such as graph coloring, the Traveling Salesman Problem,
number partitioning and blocks world planning [18]. The relationship between
backbone and local search on 3-SAT was studied by Parkes [16] and Singer et.
al. {17].

Compared to the existing work on backbone, we made two main contributions
in this research. The first is the result of the collocation of the 0.5 backbone of
MAX 3-SAT (an optimization problem) and the 0.5 satisfiability of 3-SAT (a
decision problem). The second is the result of the near linear correlation between
these two phase transitions of two diflerent but closely related problems.

5 Conclusions

We draw two conclusions from this research on constraint minimization prob-
lems. First, phase transitions are persistent in bounded 3-SAT (3-SAT(B)) in
which up to B constraints may be violated. We showed that deciding if there
exists a variable assignment with no more than B constraints unsatisfied exhibits
similar phase transitions as that in 3-SAT, i.e., dramatic satisfiable to unsatisfi-
able transitions and easy-hard-easy computational complexity phase transitions.
However, the difficulty of the second computationally easy phase in 3-SAT(R)
increases with the quality bound B. Furthermore, the computational cost of
MAX 3-SAT envelops the computational cost peaks of 3-SAT(B).

Second, the backbone of MAX 3-SAT also experiences a phase transition. A
backbone is almost not existent in the underconstrained region, abruptly emerges
when moving toward the critically constrained region, and quickly increases to
almost a full size in the overconstrained region. The backbone of MAX 3-SAT
with size 0.5 appears approximately at the location where 3-SAT is satisfiable
with probability 0.5. Near this 0.5-0.5 phase transition collocation, the backbone
of MAX 3-SAT and the satisfiability of 3-SAT seems to be linearly correlated.

This research makes two contributions. First, it reconciles the relationship
between the phase transitions of decision and optimization problems, bridging
the gap of the previous phase transition results on these two types of problems.
Second, it suggests that backbone in the solutions of optimization problems is
an order parameter for the problems.
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This work also gives rise to many interesting open questions for future re-
search. For instance, where is the exact phase transition location of bounded
3-SAT({B)? Why does the backbone of MAX 3-SAT with size 0.5 collocate with
50 percent satisfiability of 3-SAT? Why does the backbone appear to have a
linear correlation with the satisfiability?

References

1. D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Generating satisfiable problem
mstances. In Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI-00), pages 256-261, Austin, Texas, July-August 2000.

2. J. C. Beck and M. S. Fox. A generic framework for constraint-directed search and
scheduling. AT Magazine, 19(4):101-130, 1998.

3. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence,
(IJCAIL-91), pages 331-337, Sydney, Australia, August 1991.

4. P. Codognet and F. Rossi. Notes for the ECAI2000 tutorial on Solving
and Programming with Soft Constraints: Theory and Practice. available at
http://www.math.unipd.it/ frossi/papers.html.

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of ACM, 5:304-397, 1962.

6. E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial Intelli-
gence, 58:21-70, 1992.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New York, NY, 1979.

8. L. P. Gent and T. Walsh. The TSP phase transition. Artificial Intelligence, 88:349—
358, 1996.

9. T. Hogg, B. A. Huberman, and C. Williams. Phase transitions and the search
problem. Artificial Intelligence, 81:1-15, 1996.

10. B. A. Huberman and T. Hogg. Phase transitions in artificial intelligence systems.
Artificial Intelligence, 33:155-171, 1987.

11. R. M. Karp and J. Pearl. Searching for an optimal path in a tree with random
costs, Artificial Infelligence, 21:99-117, 1983.

12. 8. Kirkpatrick and G.Toulouse. Configuration space analysis of traveling salesman
problems. J. de Physigue, 46:1277-1292, 1985.

13. C. J. H. McDiarmid. Probabilistic analysis of tree search. In G. R. Gummett
and D. J. A. Welsh, editors, Disorder in Physical Systems, pages 249-260. Oxford
Science, 1990.

14. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
problems. In Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI-92), pages 459-465, San Jose, CA, July 1992.

15. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-
mining computational complexity from characteristic *phase transitions’. Nature,
400:133-137, 1999.

16. A.J. Parkes. Clustering at the phase transition. In Proceedings of the 1/th National
Conference on Artificial Intelligence (AAAI-97), pages 340-245, Providence, RJ,
July, 1997.

I7. J. Singer, I P. Gent, and A. Smaill. Backbone fragility and the local search cost
peak. J. Ariificial Intelligence Research, 12:235-270, 2000,



Phase Transitions and Backbones of CMP 15

18. J. Slaney and 'F. Walsh. Backbones in optimization and approximation. In Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence, (IJCAL
01}, page to appear, Seattle, WA, August 2001,

19. E. Tsang. Foundations of Constraint Setisfaction. Academic Press, London, 1993.

20. W. Zhang. State-Space Search: Algorithms, Complezity, Extensions, and Applica-
tions. Springer, New York, NY, 1699.

21. W. Zhang and R. E. Korf. Performance of lirear-space search algorithms. Artificial
Intelligence, 79:241-292, 1995,

22. W. Zhang and R. E. Korf. A study of complexity transitions on the asymmetric
Traveling Salesman Problem. Artificial Intelligence, 81:223-239, 1996.



	Phase Transitions and Backbones of Constraint Minimization Problems
	Recommended Citation
	Phase Transitions and Backbones of Constraint Minimization Problems

	tmp.1439916845.pdf.u72CM

