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In 1990, the United States Human Genome Project was initiated as a fifteen-year endeavor to 
sequence the approximately three billion bases making up the human genome (Vaughan, 1996).  
As of December 31, 2001, the public sequencing efforts have sequenced a total of 2.01 billion 
finished bases representing 63.0% of the human genome (http://www.ncbi.nlm.nih. 
gov/genome/seq/page.cgi?F=HsProgress.shtml&&ORG=Hs) to a Bermuda quality 
error rate of 1/10000 (Smith and Carrano, 1996). In addition, 1.11 billion bases representing 
34.8% of the human genome has been sequenced to a rough-draft level. Efforts such as UCSC's 
GoldenPath (Kent and Haussler, 2001) and NCBI's contig assembly (Jang et al., 1999) attempt 
to assemble the human genome by incorporating both finished and rough-draft sequence.  The 
availability of the human genome data allows us to ask questions concerning the maintenance of 
specific regions of the human genome.  We consider two hypotheses for maintenance of high 
G+C regions: the presence of specific repetitive elements and compositional mutation biases.  
Our results rule out the possibility of the G+C content of repetitive elements determining regions 
of high and low G+C regions in the human genome. We determine that there is a compositional 
bias for mutation rates.  However, these biases are not responsible for the maintenance of high 
G+C regions.  In addition, we show that regions of the human under less selective pressure will 
mutate towards a higher A+T composition, regardless of the surrounding G+C composition.  We 
also analyze sequence organization and show that previous studies of isochore regions (Bernardi, 
1993) cannot be generalized within the human genome.  In addition, we propose a method to 
assemble only those parts of the human genome that are finished into larger contigs.  Analysis of 
the contigs can lead to the mining of meaningful biological data that can give insights into genetic 
variation and evolution.  I suggest a method to help aid in single nucleotide polymorphism (SNP) 
detection, which can help to determine differences within a population.  I also discuss a dynamic-
programming based approach to sequence assembly validation and detection of large-scale 
polymorphisms within a population that is made possible through the availability of large human 
sequence contigs. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

copyright by 

Eric C. Rouchka 

2002 



 

 

 

 

 

TO MY FAMILY AND FRIENDS whom have been very supportive while anxiously 

awaiting the day when I would reach this milestone.  Yes, the day is Monday and the 

month is August, but now you know the year -- 2002.



  

Contents 
 
Tables .......................................................................................................................................................... vii 
Figures......................................................................................................................................................... viii 
Equations........................................................................................................................................................ix 
Abbreviations ..................................................................................................................................................x 
Glossary..........................................................................................................................................................xi  
Acknowledgements .......................................................................................................................................xv 
Chapter 1: Introduction ...................................................................................................................................1 

1.1  Background of the Human Genome Project.........................................................................................1 
1.2  Computational Biology ........................................................................................................................2 
1.3  Specific Aims .......................................................................................................................................3 

1.3.1 Overview of Chapter 2: Assembly of Genomic Contigs ................................................................4 
1.3.2  Overview of Chapter 3: Single Nucleotide Polymorphisms..........................................................5 
1.3.3  Overview of Chapter 4: Sequence Assembly Validation ..............................................................5 
1.3.4  Overview of Chapter 5:  Breakpoint Segmentation.......................................................................6 
1.3.5  Overview of Chapter 6: Compositional Analysis of Homogeneous Regions in Human Genomic 
DNA ........................................................................................................................................................6 
1.3.6  Overview of Chapter 7: Accounting for Regions of High and Low G+C Content Found in 
Human Genomic DNA............................................................................................................................7 

Chapter 2: Assembly of Genomic Contigs ......................................................................................................8 
2.1 Motivation .............................................................................................................................................8 
2.2  Introduction ..........................................................................................................................................9 
2.3  System and Methods ..........................................................................................................................11 

2.3.1  Contig Construction.....................................................................................................................11 
2.3.2  Contig Validation ........................................................................................................................13 

2.4  Results ................................................................................................................................................14 
2.4.1  Genomic Contig Database...........................................................................................................14 
2.4.2  Difficulties in Contig Assembly ..................................................................................................18 
2.4.3  Contig Assembly Validation .......................................................................................................24 

2.5  Discussion ..........................................................................................................................................26 
2.5.1  Whole Genome Assemblies.........................................................................................................26 
2.5.2  Comparison to Whole Genome Assemblies ................................................................................27 
2.5.3  Comparison of NCBI and GoldenPath Assemblies .....................................................................28 

2.6  Summary ............................................................................................................................................39 
Chapter 3: Single Nucleotide Polymorphisms...............................................................................................41 

3.1  SNP Detection ................................................................................................................................42 
3.2  SNP Clustering ...............................................................................................................................43 

Chapter 4: Sequence Assembly Validation ...................................................................................................45 
4.1  Methods..............................................................................................................................................46 

4.1.1 Coverage.......................................................................................................................................50 
4.1.2  Setting up the Simulations...........................................................................................................51 

4.2 Results .................................................................................................................................................53 
4.2.1 Increasing the Number of Restriction Enzymes ...........................................................................53 
4.2.2  Analysis of Experimental Data....................................................................................................55 

4.3  Discussion of Sequence Assembly Validation ...................................................................................58 
4.3.1  False Negatives............................................................................................................................58 
4.3.2  Application to Clone Mapping ....................................................................................................59 
4.3.3  Detecting Structural Polymorphisms...........................................................................................60 

 iv



  
 

4.3.4  Differences Between Physical Mapping and Assembly Validation ............................................67 
4.3.5  Alternative Sequence Assembly Validation Techniques.............................................................68 

4.4  Summary of Sequence Assembly Validation .....................................................................................71 
Chapter 5: Breakpoint Segmentation.............................................................................................................72 

5.1  Introduction ........................................................................................................................................73 
5.2  CpG Island Characteristics .................................................................................................................74 
5.3  Why CpG Islands can be Statistically Determined.............................................................................75 
5.4  Algorithm ...........................................................................................................................................76 

5.4.1 Segmentation Algorithm ..............................................................................................................76 
5.4.2  Generalization of the CpG Detection Algorithm.........................................................................80 

5.5  Implementation...................................................................................................................................80 
5.5.1  Java Applet Interface...................................................................................................................80 
5.5.2  Interpretation of the Results ........................................................................................................83 
5.5.3  Implementation Issues .................................................................................................................87 
5.5.4  Code Statistics .............................................................................................................................88 

5.6  Results ................................................................................................................................................89 
5.6.1  Human Xq28 Region...................................................................................................................89 
5.6.2  Human bWXD3 Region ..............................................................................................................89 
5.6.3  Human bWXD42 Region ............................................................................................................91 

5.7  Comparison to Score-based Methods .................................................................................................92 
5.8  Discussion ..........................................................................................................................................94 

Chapter 6: Compostional Analysis of Homogenous Regions in Human Genomic DNA..............................97 
6.1 Introduction .........................................................................................................................................97 
6.2 Methods...............................................................................................................................................99 

6.2.1 Analyzing Homogeneous Segments .............................................................................................99 
6.2.2 Sequence Homogeneity ..............................................................................................................100 

6.3 Results ...............................................................................................................................................101 
6.3.1 Isochore Classifications..............................................................................................................101 
6.3.2 Sequence Homogeneity ..............................................................................................................105 

6.4 Discussion .........................................................................................................................................105 
Chapter 7: Accounting for Regions of High and Low G+C Content Found in Human Genomic DNA .....109 

7.1 Introduction .......................................................................................................................................110 
7.1.1 Overview of Maintenance Hypotheses.......................................................................................111 
7.1.2  Overview of Regional Variation in Mutation Hypothesis .........................................................116 
7.1.3 Understanding Large-scale G+C Variation ................................................................................117 

7.2 Exploration of Two Maintenance Hypotheses ..................................................................................118 
7.3 Maintenance Hypothesis 1: Regions of High/Low G+C Result from Repetitive Element Composition
.................................................................................................................................................................119 

7.3.1 Calculating Repetitive and Non-repetitive G+C Composition ...................................................120 
7.3.2 Repetitive Element Composition Results ...................................................................................121 

7.4 Hypothesis 2: Mutational Biases Revisited .......................................................................................126 
7.4.1 Studying Compositional Bias in Processed Pseudogenes...........................................................127 
7.4.2 Obtaining Pseudogene Data .......................................................................................................129 
7.4.3 Calculation of Gene -Pseudogene Substitution Rates.................................................................132 
7.4.4 Approaches to Looking at Mutation and Substitution Events ....................................................134 
7.4.5 Gene-Pseudogene Mutational Bias Results ................................................................................135 
7.4.6 Studying Compositional Bias in Repetitive Elements ................................................................138 
7.4.7 Detecting Repetitive Elements ...................................................................................................139 
7.4.8 Calculating Repetitive Element Substitution Rates ....................................................................140 
7.4.9 Repeat Instance Substitution Bias Results and Discussion.........................................................141 

7.5 Testing for Drift to an A+T Rich Genome Using Long Terminal Repeats (LTRs)...........................145 
7.5.1 Detecting Copies of HERVs.......................................................................................................146 
7.5.2  Determining Insertion Age and G+C Composition ...................................................................147 

 v



  
7.5.3 LTR Results................................................................................................................................148 

7.6 Discussion .........................................................................................................................................149 
7.6.1 Shortcomings in Determining Fixed Mutation Directionality ....................................................149 
7.6.2 Repeat Composition ...................................................................................................................152 
7.6.3 Compositional Bias ....................................................................................................................153 
7.6.4  Shift Towards an A+T Rich Genome ........................................................................................154 

Chapter 8  Discussion..................................................................................................................................156 
References ...................................................................................................................................................160 
Vita..............................................................................................................................................................173 
Short Title....................................................................................................................................................175 
 
 
 

 vi



  

Tables 
 
 2-1: Size of  Primate GenBank  Entries. ............................................................................................................11 
2-2: Sample Contig Entry..............................................................................................................................13 
2-3: Size of Generated Contigs..........................................................................................................................15 
2-4: Current Sequencing Progress. ................................................................................................................17 
2-5: Overlapping Clone Information. .................................................................................................................20 
2-6:  Genbank Clones with Repetitive Elements at the Ends......................................................................21 
2-7: GenBank Clones with Human-Specific Repeats at the Ends ...............................................................22 
2-8: Overlapping Clones with 50kb Insertion ...............................................................................................24 
2-9: Contig Assembly Validation..................................................................................................................25 
2-10: Summary of Accessions Used in the August 6, 2001 Goldenpath Assembly ......................................32 
2-11: Summary of Accessions Used in the NCBI Build 26. .........................................................................33 
2-12: GenBank Entry Orientations................................................................................................................34 
2-13: Aligned Bases Using multi. .................................................................................................................36 
4-1: Scores for Fingerprint Pattern Alignments. ...........................................................................................48 
4-2: Empirical Error Rates for Band Assignment..........................................................................................56 
4-3: BRCA2 Contig (IBC_chr13-ctg1). ........................................................................................................61 
4-4: T-cell Receptor Contig (IBC_chr7-ctg23) .............................................................................................61 
4-5: Color Vision Contig (IBC_chrX-ctg56).................................................................................................61 
4-6: Selected Polymorphic Sites from the BRCA2 Contig............................................................................65 
4-7: Selected Polymorphic Sites from the Color Vision Contig....................................................................65 
4-8: Selected Polymorphic Sites from the T-cell Receptor Contig ...............................................................66 
5-1: Dinucleotide Counts for the Sequence ACGGTACGCGCGA..............................................................77 
5-2: IUB/IUPAC Nucleic Acid Codes. .........................................................................................................83 
5-3: Nucleotide Color Codes. ........................................................................................................................85 
5-4: Average Runtime Comparisons on a 55 MHz HyperSparc Web Server and 200 MHz Pentium Pro 

Client. ....................................................................................................................................................88 
6-1: Isochore Classifications .........................................................................................................................99 
6-2: Boundary Locations Based on Total Percent of all Fragments. ...........................................................104 
7-1: Number of Genes and Pseudogenes Found..........................................................................................132 
7-2: Comparison of G+C Bias in Gene and Pseudogene Pairs..................................................................1377 
7-3: Comparison of G+C Bias in Instances of Repeat Families ................................................................1433 
7-4: Comparison of G+C Bias for Repeats Found on Chromosome Y .......................................................144 

 

 vii



  

Figures 
 
2-1: Contig Creation Flowchart .........................................................................................................................12 
2-2: Human Genomic Contigs Web Page......................................................................................................16 
2-3: Composition of Contigs Database..........................................................................................................18 
2-4: Growth of Contigs Database. .................................................................................................................19 
2-5: Clone Ordering Comparison ..................................................................................................................28 
2-6: Sequence Level Comparison..................................................................................................................29 
2-7: NCBI Build 22 vs. GoldenPath April 2001 Clone Ordering Comparisons............................................30 
2-8: NCBI Build 26 vs. Goldenpath August 2001 Clone Ordering Comparisons.........................................31 
2-9: Sequence Level Comparison of NCBI Build 26 vs. Goldenpath August 2001......................................35 
2-10: Length to Next Major Mismatch..........................................................................................................38 
2-11: Chromosome Dot Plots ........................................................................................................................39 
3-1: Distribution of Candidate SNPs.............................................................................................................44 
4-1: Sequence Assembly Validation Flow Diagram. ....................................................................................47 
4-2: Enzyme Fragment Coverage. .................................................................................................................51 
4-3: Coverage Graph Using a Single Enzyme............................................... Error! Bookmark not defined. 
4-4: Coverage Graph Using 2 Enzymes. ....................................................... Error! Bookmark not defined. 
4-5: Coverage Graph Using 4 Enzymes. ....................................................... Error! Bookmark not defined. 
4-6: Coverage Graph Using 4 Enzymes and Repeating the Digest Analysis.Error! Bookmark not defined. 
4-7: False Positive Rates.................................................................................................................................57 
4-8: False Negative Rates...............................................................................................................................58 
4-9: BRCA2 Region Clone Alignment...........................................................................................................63 
4-10: Color Vision Clone Alignment ............................................................................................................63 
4-11: T-Cell Receptor Clone Alignment........................................................................................................64 
5-1.  Breakpoint Segment Example...............................................................................................................79 
5-2: Sequence Fragmentation Interface.........................................................................................................81 
5-3: Breakpoint Statistics Frame ...................................................................................................................84 
5-4: Choices Frame. ......................................................................................................................................85 
5-5:  Mononucleotide Content using CpG Segmentation..............................................................................86 
5-6: Zoom Graph of CpG Content.................................................................................................................87 
5-7: Nucleotide Sequence Frame...................................................................................................................87 
5-8: CpG Segmentation for Human Xq28 Chromosomal Region.................................................................90 
5-9: CpG Segmentation Results for bWXD3 ................................................................................................90 
5-10: CpG Segmentation Results for bWXD42 ............................................................................................91 
6-1: Chromosome 19 G+C Histograms.......................................................................................................101 
6-2: Chromosomal Histograms for 75 kb Fragments ..................................................................................102 
6-3: Distribution of Standard Deviations from a Mean G+C Content.........................................................106 
7-1: Comparison of G+C Content ...............................................................................................................122 
7-2: Gene-to-Pseudogene Mechanism.........................................................................................................128 
7-3: Plot of Divergence Rate vs. G+C Composition in HERV-L Repeats. .................................................148 
7-4: Phylogenetic Inference.........................................................................................................................150 

 

 viii



  

Equations 
 
4-1: Predicted Fragment Mobility. ................................................................................................................48 
4-2: Observed Mobility Probability...............................................................................................................49 
4-3: Random Probability of Matching a Band...............................................................................................49 
5-1: Segment Log-Probability Score. ............................................................................................................77 
5-2: Generalized Log-Probability Score........................................................................................................80 
7-1: Individual HSP Score...........................................................................................................................130 
7-2: Native Locus Score. .............................................................................................................................130 

 

 ix



  

List of Abbreviations 
 
BAC - bacterial artificial chromosome  
BP -  base pair 
DFA - deterministic finite automaton 
DNA - deoxyribonucleic acid 
DOE - Department of Energy 
EST - expressed sequence tag 
HERV – human endogenous retrovirus 
HTGS - high throughput genome sequence 
IBC - Washington University Institute for Biomedical Computing 
indel - insertion or deletion 
KB - kilobase 
LINE - long interspersed element 
LTR – long terminal repeat 
MB - megabase  
NIH - National Institute for Health 
NT - nucleotide 
SINE - short interspersed element 
SNP - single nucleotide polymorphism 
STS - sequence tagged site 
TIGR - The Institute for Genome Research 
UCSC - University of California at Santa Cruz 
WUSTL - Washington University in St. Louis 
YAC - yeast artificial chromosome 

 x



  

Glossary1 
 
ALU - An interspersed DNA sequence, approximately 300 bp long, found in the genome 

of primates that is cleaved by the restriction enzyme ALU I.   

BAC (bacterial artificial chromosome) - A type of cloning vector use to clone DNA 
fragments. 

Biocluster - A set of 25 4-cpu machines set up by Compaq Corporation for 
computational biology applications. 

BLAST (Basic Local Alignment Statistics Tool) - A tool which reports the score for 
aligning two sequences using Karlin-Altschul statistics. 

chimera - A clone composed of pieces derived from two or more distinct organisms. 

clone - A DNA segment which has been inserted into a cloning vector and replicated to 
form many copies. 

codon - A sequence of three nucleotides that specifies a particular amino acid during 
protein synthesis. 

complement - Refers to the base which can pair with a reference base via a hydrogen 
bond.  The complement of adenine (A) is thymine (T); the complement of 
cytosine (C) is guanine (G). 

contig - Long stretches of continuous DNA sequence, represented by the concatenation 
of two or more shorter sequences. 

cosmid - A type of cloning vector used to clone DNA fragments by packaging the DNA 
to be cloned into lambda phage viruses which then infect E. coli.  When the E. 
coli reproduce, so does the DNA fragment of interest. 

cytogenetic - Pertaining to chromosomes. 

deamination - The process through which amino groups are stripped off of nucleic acids 
which results in base pair mismatches. 

density gradient centrifugation - A technique for separating macromolecules using 
centrifugal force and solvents of varying density. 

                                                           

 xi

1 Many of the definitions are adapted from three sources:  an online BioTech Life Science Dictionary 
(http://biotech.icmb.utexas.edu/search), Molecular Cell Biology (Lodish et al., 1995) and 
Concepts of Genetics (Klug and Cummings, 1991) 



  
dinucleotide - A sequence of two consecutive nucleotides. 

electrophoresis - A technique for separating DNA molecules based on their migration in 
a gel.  The migration is based on the molecule size. 

euchromatin - Less condensed chromosomal regions containing most transcribed 
regions.  Euchromatin is the sequence target of the human genome project. 

exon - The portion of a primary transcript which reaches the cytoplasm as part of the 
mature mRNA. 

expressed sequence tag - DNA sequence derived by sequencing an end of a cDNA 
molecule. 

fasta - A program which aligns two sequences.  Fasta format is the sequence format that 
is used.  Generally, fasta format requires the first line to be a header line  
beginning with '>' and each subsequent line contains the actual sequence data.   

fingerprint - The resulting DNA fragment pattern generated by one of several methods, 
including electrophoresis.  

GenBank - Database collection of all publicly available DNA sequences maintained by 
NCBI. 

gene conversion – The process in which the allele of one gene is converted to another 
during recombination.  Biased gene conversion implies that in regions of high 
G+C, the conversion is more likely to be to a G or C nucleotide.  

genic - Referring to regions of a genome in which genes occur. 

genome - The total genetic information contained within an organism. 

GoldenPath - Assembly of human genomic DNA using both finished and unfinished 
clones as well as various mapping information maintained by the University of 
California-Santa Cruz. 

haplotype - The set of alleles from closely linked loci carried by an individual and 
normally inherited as a unit. 

HERV (human endogenous retrovirus) – One class of LTR retroviruses that have 
become integrated into the human germline cells and thus fixed within the 
population. 

heterochromatin - Highly condensed and transcriptionally inactive portions of the 
genome which are typically not targeted to be sequenced. 

 xii



  
homologous - Pertains to two DNA sequences sharing a common ancestor and having 

both sequence and functional similarity.  Note that sequence homology refers only 
to those sequences that share sequence similarity regardless of their function. 

homologous recombination – The process by which DNA sequences on maternal and 
paternal chromatids are exchanged, resulting in new sequence combinations. 

intron - The portion of a primary transcript which is removed by splicing and is not 
included as a part of the mature mRNA. 

isochore - A large scale region of relatively constant G+C composition within a 
vertebrate genome.  According to the theories of Bernardi, there are five different 
isochore classification schemes depending on the G+C content. 

LINEs - Long interspersed elements that are non-viral retrotransposons, about 6-7 kb 
long, which are found abundantly in mammals. 

locus - A specific location within a chromosome. 

LTR (long terminal repeat) – A sequence directly repeated at both ends of a defined 
sequence, typically found in retroviruses (such as the HERV elements). 

methylation - The process by which a methyl group is added to a nucleotide base thereby 
modifying it.  In humans, general cytosine methylation occurs frequently. 

nucleotide - one of the four bases, adenine (A), cytosine (C), guanine (G) or thymine (T) 
composing genomic DNA. 

oligomer - A short polymer consisting of short stretches of amino acids or nucleic acids. 

oligonucleotide - A short stretch of nucleic acids. 

orthologous - DNA sequences from two different species which arose from a common 
ancestral gene which may or may not have functional conservation. 

paralogous - DNA sequences within a single genome which are similar to one another 
and arise from a duplication event.  

physical map - A map of the location of identifiable landmarks within a nucleotide 
sequence, including sequence tagged sites and restriction sites. 

pseudogene - A duplicated gene copy which has become non-functional. 

purine - One of two nucleic acids, either adenine (A) or guanine (G). 

pyrimidine - One of two nucleic acids, either cystine (C) or thymine (T). 

 xiii



  
RefSeq - A database for NCBI's reference sequence project, containing transcript and 

protein coding data among others. 

RepBase - A database of prototypic sequences representing repetitive elements in 
eukaryotes.  The database is maintained and curated by the Genome Research 
Institute. 

RepeatMasker - A program developed by Arian Smit that locates and masks out various 
repeats, including SINEs, LINEs and simple tandem repeats within a genomic 
sequence. 

repetitive element - Any nucleotide sequence that is repeated many times within a 
genome.  SINEs, LINEs, and simple tandem repeats are instances of repetitive 
elements. 

restriction enzyme - An enzyme that recognizes and cleaves a specific short sequence. 

restriction site - A specific short sequence which is recognized by a restriction enzyme. 

single nucleotide polymorphism - A mutation that occurs at a single point. 

shotgun sequencing - A technique in which a genome is sequenced by cloning randomly 
created  DNA fragments.  

SINEs - Short interspersed elements, approximately 300 bp long, which occur 
abundantly throughout mammalian genomes. 

synonymous – Referring to a mutation in a codon that does not affect the resulting amino 
acid. 

transcription - The process in which one strand of DNA is used as a template to produce 
a single strand of complementary RNA. 

transition - A mutational event in which one purine is replaced by another or in which 
one pyrimidine is replaced by another. 

transversion - A mutational event in which one purine is replaced by a pyrimidine or a 
pyrimidine is replaced by a purine. 

wobble base - The third nucleotide position in a codon.  Due to the degeneracy of the 
genetic code, the wobble base can be mutated and still code for the same amino 
acid. 

YAC - A vector used to clone DNA fragments up to 400 kb in length.  It is constructed 
from the replication origin regions needed for replication in yeast cells. 
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Chapter 1  
 
Introduction 
 

1.1  Background of the Human Genome Project 
 

The United States Human Genome Project, coordinated by the United States 

Department of Energy (DOE) and the National Institutes of Health (NIH), began in 1990 

as a 15 year venture with a primary goal of sequencing the approximately three billion 

bases making up the human genome (Vaughan, 1996) using a clone-based sequencing 

approach.  In May of 1998, The Perkin-Elmer Corporation, Dr. Craig Venter, and The 

Institute for Genomic Research (TIGR) announced plans to form the genomics company 

Celera with a strategy based on completing the sequencing of the human genome in three 

years using a shotgun based approach (Perkin-Elmer, 1998).  At the same time, the 

United States Human Genome Project announced revised goals to continue the 

exponential growth of sequencing data and provide a complete human genome by 2003 

(Collins et al., 1998) in conjunction with the 5oth anniversary of the discovery of the 

double helix structure of DNA (Watson and Crick, 1953).   

  

In February, 2001, both the public and private efforts announced completion of a 

rough draft of the human genome (International Human Genome Sequencing 

Consortium, 2001; Venter et al., 2001).  As of July 30, 2001, the public sequencing 

efforts have finished 1.04 billion bases representing 47.1% of the human genome to a 
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Bermuda quality level (Smith and Carrano, 1996).  Plans to assemble and orient the 

remaining 53% of the human genome from a rough draft state into a finished product by 

2003 are still in effect (Collins et al., 1998). 

Human sequence data is available in more refined forms than raw genomic 

sequence.  In particular, it is also available as the sequence of gene products expressed in 

the cells known as Expressed Sequence Tags (ESTs) (Adams et al., 1991) and sequences 

of experimentally known and predicted mRNAs (Pruitt and Maglott, 2001). The sequence 

data available from each of these projects continues to grow.  NCBI's dbEST (Boguski, 

Lowe and Tolstoshev, 1993) release 030802 contains 4.17 million entries of human ESTs 

(http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html). A total of 14,823 known 

and predicted mRNAs are available through NCBI's REFSEQ (Pruitt and Maglott, 2001) 

as of March 15, 2002. 

Due to the large-scale availability of differing types of sequence data, a focus has 

been placed on mining and modeling sequence information in order to understand 

biological systems.  Tools to handle and analyze large amounts of sequence data are 

needed. 

1.2  Computational Biology 
 

Computational biology is a multidisciplinary field, bringing together biologists, 

computer scientists, chemists, physicists, mathematicians and others together with a 

common goal of modeling and extracting information concerning biological systems.  

The NIH's Biomedical Information Science and Technical Initiative Consortium defines 
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computational biology as "The development and application of data-analytical and 

theoretical methods, mathematical modeling and computation simulation techniques to 

the study of biological, behavioral, and social systems."  (http://grants.nih.gov/ 

grants/bistic/CompBioDef.pdf)  One aspect of computational biology that has come to 

the forefront in recent years is genome sequence analysis.  Due to the efforts of both 

large-scale sequencing centers and individual scientists throughout the world, abundant 

resources of sequence data are now available.  The methods described are rooted in the 

field of computational biology and are presented as techniques to aid in the discovery of 

biologically significant data. 

1.3  Specific Aims 
 

The specific questions we set out to answer concern human sequence assembly 

and organization.  In particular, a sequence-based assembly approach is analyzed.  In the 

process, overlapping assembled regions can be mined for single nucleotide 

polymorphisms (SNPs).  Additionally, once assembled regions are available, they can be 

compared to restriction fragment digests to examine sequence assembly validation and 

the presence of large-scale polymorphisms.  Compositional analysis is performed and 

methods for maintenance of high and low G+C regions of the human genome are studied. 

The overview of the research chapters 2 through 6 follows.  Each of these short 

sections introduces the problems that are set up in more detail in the appropriate chapters.  

Each chapter flows in an Introduction, Methods, Results and Discussion manner whether 

or not the sections are implicitly stated as such.   
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1.3.1 Overview of Chapter 2: Assembly of Genomic Contigs 
 

The size of human chromosomes range from the 50 megabase (Mb) chromosome 

21 to the 263 Mb chromosome 1 (Morton, 1991).  The International Human Genome 

Consortium has employed clone-based sequencing strategies in order to sequence the 

euchromatic regions of the human genome chromosome by chromosome.  Due to 

limitations of current clone-based sequencing techniques, the genome must be broken 

down into smaller portions in the range of 20 kilobases (kb) for cosmid clones (Collins 

and Bruning, 1978) to 200-300 kb for bacterial artificial chromosomes (BACs) (Shizuya 

et al., 1992) and yeast artificial chromosomes (YACs) (Burke, Carle and Olson, 1987). 

We attempt to collate a definitive set of non-redundant extended segments of finished 

human genomic sequence by taking individual human entries in GenBank greater than 10 

kilobases (kb) and extending them on either end. As the sequencing of the rough draft 

data nears a close (Macilwain, 2000) and finished data comes to the front, we report on 

our experiences in dealing with the difficulties that arise when attempting to assemble 

contigs using a sequence-based approach. 

In addition to our set of finished human genomic contigs, groups at NCBI and 

UCSC have undertaken the task of assembling the whole human genome through the 

incorporation of both finished and draft sequence data.  A comparison of our assembly to 

these two assemblies is made.  A detailed comparison of both of these public assemblies 

is performed at both the clone order and orientation level as well as at the sequence level.  

The discrepancies found indicate the degree of uncertainty that must be understood when 

incorporating unfinished sequence data. 
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1.3.2  Overview of Chapter 3: Single Nucleotide Polymorphisms 
 
Single nucleotide polymorphisms (SNPs) occur when two or more different 

nucleotides are found at the same position within the population, i.e. a nucleotide 

substitution occurs.  SNPs can be used as stable genetic markers within a population.  

SNPs occurring within coding regions can be used to analyze the relationship between 

genotype and phenotype (Picoult-Newberg et al., 1999).  They are used as markers for a 

specific trait since they add genetic variation to a population.  

The overlapping regions between two clones can lead to insight concerning 

possible SNPs.  As a result, the construction of human genomic contigs is important in 

being able to detect specific locations of variation within the human population.  I will 

present a method for determining possible SNPs sites when looking at the overlapping 

regions.   

1.3.3  Overview of Chapter 4: Sequence Assembly Validation 
 

Genomic sequence analysis depends on the accurate assembly of short (400 to 

1000 base pair) sequence reads into contigs that cover extended regions as a necessary 

step in deriving finished sequence.  Errors at the fragment layout assembly stage may be 

difficult or impossible to detect later in the editing process, and fragment assembly errors 

may have a serious impact on the biological interpretation of the data.  Since assembly 

errors are difficult to detect and can impact the utility of the finished sequence, 

experimental validation of the fragment assembly is highly desirable.  We propose a 

dynamic programming algorithm to match up experimental restriction fragments with 

  



6   

expected restriction fragments based on a reference sequence taken from the genomic 

contigs assembled previously. 

1.3.4  Overview of Chapter 5:  Breakpoint Segmentation 
 

Once genomic sequence is available in either a rough draft (Kent and Haussler, 

2001) or finished (Rouchka and States, 1999) state, we can begin to study how the human 

genome is constructed.  One particular characteristic of interest is CpG islands, which are 

regions rich in the dinucleotide CG.  These regions are interesting due to their association 

with upstream regions of genes.  A method to detect and visualize CpG islands using log-

likelihood and changepoint methods is given.  Generalizations of this method can be 

applied to other compositional analysis as well. 

1.3.5  Overview of Chapter 6: Compositional Analysis of Homogeneous 
Regions in Human Genomic DNA 
 

The bulk of the genomic analysis lies within chapters 6 and 7.  In chapter 6, we 

use the available human genome assemblies to study how the human genome is 

constructed into regions of homogeneous G+C content.  We examine the previous 

isochore definitions of Bernardi (1993) that are based on density gradient centrifugation 

techniques.  We show that a 5-class isochore definition is no longer applicable when 

sequence data is examined. 

  



7   

1.3.6  Overview of Chapter 7: Accounting for Regions of High and Low 
G+C Content Found in Human Genomic DNA 
 

While sequence analysis indicates that a 5-class isochore system is too broad 

when human genomic sequence data is brought into play, there is still significant 

evidence in the presence of regions of high and low G+C composition within the human 

genome.  In chapter 7, we examine two hypotheses for the maintenance of these regions 

by studying the G+C content of repetitive elements and by looking at the substitution 

rates between copies of repetitive elements and between genes and pseudogenes.  Our 

results rule out the possibility of the G+C content of repetitive elements determining 

regions of high and low G+C regions in the human genome. We determine that there is a 

compositional bias for mutation rates.  However, these biases are not responsible for the 

maintenance of high G+C regions.  In addition, we show that regions of the human under 

less selective pressure will mutate towards a higher A+T composition, regardless of the 

surrounding G+C composition. 

 

  



8   

Chapter 2  
 
Assembly of Genomic Contigs 
 

2.1 Motivation 
 

Since the beginning of the Human Genome Project (HGP) in 1990, the 

International Human Genome Sequencing Consortium has been using a clone-based 

strategy to sequence the human genome.  Finished data is deposited into databases such 

as the DNA Data Bank of Japan (DDBJ) (Tateno et al., 2000), the European Molecular 

Biology Laboratory (EMBL) Nucleotide Sequence Database (Stoesser et al., 2001), and 

GenBank (Benson et al., 2000).  As more data has become available, the presence of 

overlapping clones, whether sequenced at the same center or different centers, have 

become more prevalent.  We attempt to collate a definitive set of non-redundant extended 

segments of finished human genomic sequence by taking individual human entries in 

GenBank greater than 10 kilobases (kb) and extending them on either end. As the 

sequencing of the rough draft data nears a close (Macilwain, 2000) and finished data 

comes to the front, we report on our experiences in dealing with the difficulties that arise 

when attempting to assemble contigs using a sequence-based approach. 

As of February 26, 2001, our largely automated process has resulted in 4,360 

contigs covering a total of nearly 1081 megabases (MB) of non-redundant finished 

human genomic sequence.  This figure represents 34% of the complete human genome 
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and includes nearly complete euchromatic data for chromosomes 21 and 22.  Our 

sequence-based method was able to correctly piece together 92.73% of all fragments 

using a simulation study while at the same time avoiding any incorrect merging of two 

non-adjacent segments. 

2.2  Introduction  
 

The U.S. Human Genome Project, coordinated by the United States Department 

of Energy (DOE) and the National Institutes of Health (NIH), began in 1990 as a 15-year 

public venture to sequence the approximately three billion bases making up the human 

genome using clone-based techniques (Vaughan, 1996).    As of February 26, 2001, 1081 

million bases (34%) of the human genome has been sequenced to a Bermuda-quality 

(Smith and Carrano, 1996) finished state.  In addition, a rough draft of the human genome 

has been announced as complete (Macilwain, 2000). 

The International Human Genome Consortium has employed clone-based 

sequencing strategies in order to sequence the human genome.  Due to limitations of 

current clone-based sequencing techniques, the genome must be broken down into 

smaller portions in the range of 20 kilobases (kb) for cosmid clones (Collins and Bruning, 

1978) to 200-300 kb for bacterial artificial chromosomes (BACs) (Shizuya et al., 1992) 

and yeast artificial chromosomes (YACs) (Burke et al., 1987).  Since a complete 

sequence of each human chromosome is desired, a method to assemble these smaller 

sequences into larger contiguous regions (contigs) is produced. 
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Physical maps of the human genome have been constructed using restriction 

fragment fingerprint data (The International Human Genome Consortium, 2001; Cheung 

et al., 2001; Stewart et al., 1997).  Because of the large number of clones and limited 

information available from restriction fingerprints, this is a challenging task.  In addition, 

clone tracking errors and microbiological contamination can lead to errors in the labeling 

of clones.  Extended sequence overlaps are highly informative and provide a final arbiter 

as to how clones relate to one another.  However, because the human genome contains 

regions of very recently duplicated sequence, even near identity sequence overlaps may 

be ambiguous.  

An additional source of error is the presence of chimeric clones in the BAC 

collection.  While chimeric clones are far less common in BACs than in YACs, they 

cannot be completely excluded.  Chimeric clones can lead to false joins in assembly, 

potentially even placing sequence data on the wrong chromosome.  Correlation of the 

sequence assembly with other map data is therefore a valuable source of confirmation. 

Since December, 1998, we have been concerned with automating a process to 

assemble clones into contigs maintained at Washington University's Institute for 

Biomedical Computing, now known as The Center for Computational Biology.  We 

report on the status of our work, as well as the limitations and difficulties we have faced 

in the last two years. 
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2.3  System and Methods 

2.3.1  Contig Construction 
 

GenBank is used as the reference database for the human genomic DNA used in 

building the contigs.  The results are based upon release 122.0, which includes sequences 

submitted to GenBank up until February 15, 2001.  In addition, we have downloaded all 

of the finished human genomic sequence data submitted between February 15, 2001 and 

February 26, 2001 to be included in our studies.  The GenBank primate division is used 

in order to create stable human contigs based on finished data.  In release 122.0, this is 

divided into gbpri1, gbpri2, gbpri3, gbpri4, gbpri5, gbpri6, gbpri7, gbpri8, and gbpri9.  

Table 2-1 shows a breakdown of the sequences in the primates division by sequence size.   

Table 2-1: Size of  Primate GenBank  Entries.  This table indicates the number of sequences in the primate 
divisions (gbpri1, gbpri2, gbpri3, gbpri4, gbpri5, gbpri6, gbpri7, gbpri8 and gbpri9) of GenBank release 122.0 as well 
as the human entries between February 15, 2001 and February 26, 2001. 

 
Sequence Size 

(in nucleotides) 
Number of GenBank 

entries 
> 200,000 490 

150,000-199,999 2836 
100,000-149,999 2939  
75,000-99,999 1370 
50,000-74,999 763 
25,000 -49,999 1894 
10,000-24,999 1093 

 
TOTAL > 10,000 11,385 

 
We create most of the contigs using an automated procedure highlighted in Figure 

2-1. The first step is to retrieve human sequences from GenBank greater than 10 kb in 

length. After these sequences are retrieved their ends are searched against the primate 

division of GenBank for overlapping regions at least 70 base pairs (bp) long, and at least  
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Figure 2-1: Contig Creation Flowchart.  This figure indicates the steps that are followed in creating the human 
genomic contigs from GenBank entries. 

 
98% identical.  These searches are performed using wublastn version 2.0 (Gish, 1996-

2001) with the user options -gapw=256 and -W=99. 

Contigs can be extended by looking for blast hits to their ends.  When overlapping 

clones are found, they are merged together into a contig based on the alignment. The 

character N in the contig marks discrepancies in the alignment resulting from gaps and 

mismatches. In some cases, the restrictions need to be relaxed for automatic assembly to 

occur. Other contigs need to be assembled by hand in order to create the overlapping 

  



13   

region. Since the volume of sequencing data is growing exponentially, these steps are 

largely automated using Perl scripts.   

Each assembled contig, including singletons, is noted in a contig description file.  

For each clone entry, the clone locus name, clone size, beginning and ending position in 

the current contig, strandedness (+ denotes the strandedness found in GenBank; - is its 

reverse complement), and the center at which sequencing took place.  Table 2-2 indicates 

an example of a contig entry.  The current list of contig descriptions can be downloaded 

at http://stateslab.bioinformatics.med.umich.edu/contigs/HUMAN/contigList.dat. 

 

Table 2-2: Sample Contig Entry.  Shown in this table is the entry for contig IBC_chr7-ctg51 dated 1/08/01.  The 
first line lists the generated contig name,  its size, and its cytogenetic position, if available.  The second and third lines 
are historical and have no meaning at the current time.  The NOTES line can contain various information about the 
clones, as entered by hand.  Under the column headings "LOCUS  LENGTH OVERLAP START END STRAND 
SOURCE" is a list of the individual GenBank entries used to create the contig. The first column list the locus name of 
the individual GenBank entry.  The second column lists the length of the entry.  The third column lists the overlap 
between two adjacent clones.  If the overlap is a 100% identity, only a single value is given; otherwise, both the number 
of matching nucleotides and total number of nucleotides in the overlap are given.  The fourth and fifth columns list the 
position of the given entry within the current contig.  The sixth column lists the strandedness of the GenBank entry 
relative to the current contig, and the final column lists the sequencing center, if it can be automatically ascertained. 

 
***************************************************************************** 
IBC_chr7-ctg51  (504,868)       7q22 
GENOME CHANNEL:  ???? 
NCBI:            7ct113 
NOTES: 
  
 LOCUS         LENGTH    OVERLAP       START           END   STRAND  SOURCE 
AC005072        69367       --             1         69367     +      WUGSC 
AC005103       146394      200         69168        215661     +      ???? 
AC005086       129586      200        215462        345047     +      WUGSC 
AF024533        84912  39828/39843    305207        390119     -      JENA 
AF030453       125108    10359        379761        504868     +      JENA 
***************************************************************************** 

 

2.3.2  Contig Validation 
 

In order to test the validity of our sequence-based contig assembly algorithm, we 

attempted to assemble twelve different contigs extracted from our set of assembled 
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contigs dated 01/10/01 ranging in size from 2.0 MB to 5.5 MB (see results; Table 2-9). 

Rather than break the contigs up at the clone level, we randomly fragmented them using a 

uniform distribution into pieces ranging in size from 50 kb to 200 kb.  A uniformly 

distributed overlap between segments of the size 100 bp to 20 kb was imposed. Once the 

fragments were created, sequencing errors and single nucleotide polymorphisms (SNPs) 

were introduced at a rate of 1/10000 bp and 1/2000 bp, respectively.  All of these are 

followed in order to simulate the observed conditions between overlapping clones.  Once 

all of the simulated fragments were created, they were piped through the contig assembly 

process and the resulting contigs were analyzed.  

2.4  Results 

2.4.1  Genomic Contig Database 
 

GenBank release 122.0 contains 11,385 human genomic sequences greater than 

10 kb in length.  Table 2-1 indicates the breakdown of these clones.  As of February 26, 

2001, we have assembled a total of 4,360 contigs.  These contigs cover a total of 

1,080,908,685 bases.  Note that there are more clones in the assembled contigs than 

entries in GenBank greater than 10 kb due to the fact that several contigs contain clones 

shorter than 10 kb.  Most of these shorter clones were sequenced in order to close gaps 

between neighboring clones. 

Table 2-3 indicates the breakdown of the contigs by their size.  Most of the 

contigs are comprised of either one or two clones.  There are sixteen examples that 

contain 20 or more clones, including a 33,626,454 base contig composed of 105 clones  
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Table 2-3: Size of Generated Contigs.  The left-hand portion of this table indicates the number of contigs falling 
within a size range where the size is the number of GenBank entries that are concatenated together to produce them.  
The right-hand portion of the table reports the number of contigs falling within a certain size range, where the size is 
based on the number of nucleotides in the contig. 

 
Contig 

Size 
(in clones) 

Number 
of contigs 

 Contig Size 
(in kilobases) 

Number 
of 

contigs 
1 2691  0-50 528 
2 791  50-100 374 
3 325  100-150 739 
4 192  150-200 1251 
5 101  200-300 608 
6 61  300-400 368 
7 45  400-500 139 
8 37  500-1000 266 
9 22  1000+ 87 

10 16    
11-20 63    
20+ 16    

 
 

on chromosome 21 and a 23,109,284 contig composed of 334 clones on chromosome 22.  

Both of these chromosomes have been announced as complete (Hattori et al., 2000; 

Dunham et al., 1999) and contain only a few minor gaps.   

Shown in Figure 2-2 is a plot of the number of contigs found of various size 

ranges.  Also indicated is the total percentage of all finished human genomic sequence 

covered by contigs of various lengths.  Since the majority of contigs (2691 out of 4360; 

67.9%) are single clone contigs (singletons), the vast majority of contigs (2598 out of 

4360; 59.6%) lie in the 100-300 kb range.  Upon further examination, we see that 

although only 353 out of 4,360 (8.1%) contigs are greater than 500 kb, these contigs 

account for 36.5% of the total finished sequence available through the contig database. 

The breakdown by chromosome is presented in Table 2-4.  According to this data, 

the contigs cover about 34% of the human genome through February 26, 2001.  Table 2-4 
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Figure 2-2: Human Genomic Contigs Web Page.   Shown is a screen shot of the Human Genomic 
Contigs web page which can be found at the URL: http://stateslab.bioinformatics.med.umich. 
edu/contigs/HUMAN/index.html. 

 
indicates that chromosomes 21 and 22 are complete, while chromosomes 6 and 7 have 

produced the largest amounts of sequence data. 

In addition to the data presented in Table 2-4, there are 2417 additional sequenced 

clones that overlap contigs already assembled.  Several of these refer to multiple entries 

under different accession numbers within GenBank.  This data will be compared with 

the assembled clones.  These extra sequences are useful in detecting SNPs.  In addition, 
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they lend some information into the distribution of single nucleotide polymorphisms and 

mutational hotspots (Blackwell, Rouchka and States, 1999). 

The growth of our sequence-based contigs since their inception has been linear 

(Figure 2-3).  Using a projected linear growth based on the current finishing rates of 44.3 

MB per month (the rate of growth from 2/29/00 to 2/26/01), the human genomic 

sequence will be prepared to a finished state in February 2005. 

 

Table 2-4: Current Sequencing Progress.  These figures are non-redundant finished sequence data taken 
from the Human Genomic Contigs Database (http://stateslab.bioinformatics.med.umich. 
edu/contigs/HUMAN/index.html) dated 2/26/2001.  Note that the second column for the total 
euchromatic chromosome size is taken from NCBI.  (http://www.ncbi.nlm.nih.gov/genome/seq/ 
page.cgi?F=HsProgress.shtml&&ORG=Hs).   

 
Chromosome 

Number 
Total Size 

(MB) 
Aggregate 

Contig Length 
(MB) 

Percent 
Completed 

1 263 64.59 24.5 
2 255 61.14 23.9 
3 214 35.22 16.4 
4 203 18.69 9.2 
5 194 57.13 29.4 
6 183 112.04 61.2 
7 171 114.55 66.9 
8 155 15.77 10.1 
9 145 36.88 25.4 
10 144 25.53 17.7 
11 144 22.52 15.6 
12 143 45.15 31.5 
13 98 44.19 45.0 
14 93 60.87 65.4 
15 89 9.40 10.5 
16 98 27.58 28.1 
17 92 32.87 35.7 
18 85 6.30 7.4 
19 67 38.53 57.5 
20 72 58.23 80.8 
21 34 35.05 103.1 
22 34.5 35.27 102.2 
X 164 89.54 54.6 
Y 35 20.94 59.8 

UNKNOWN N/A 12.79 N/A 
    

TOTALS 3175 1080.90 34.0 
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Figure 2-3: Composition of Contigs Database.  Shown in the x-axis is the various size groupings of 
contig length.  There are two y-axes: the one to the left represents the cumulative percentage of the total 
number of contigs falling into a particular size range (corresponding to the bar data).  The y-axis to the 
right indicates the cumulative percentage of finished data falling into the various size ranges 
(corresponding to the diamond data).  This graph shows that the majority of contigs lie in the 100-300kb 
range, which is the expected range for single clone contigs.  It is also shown that while there are few 
contigs > 400 kb in length (8.1%), they still account for a large percentage (36.5%) of all of the finished 
data. 

 

2.4.2  Difficulties in Contig Assembly 
 
Overlapping Clone Information.  Some genome sequencing centers incorporate 

neighboring clone information into their GenBank entries.  Table 2-5 shows some 

examples of how this data is entered into the comments section.  Use of this information 

could help in the creation of genome contigs.  However, as Table 2-5 indicates, this data 

is not standardized among the sequencing centers.  The data is entered by hand in a 

manner that is easy for a human to read, but not easily parsed by a computer.  The 
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overlap between two clones, if given, is present only in a positional manner.  An 

alignment between two overlapping clones is not given. 

 
Figure 2-4: Growth of Contigs Database.  Shown in this figure is the growth of the non-redundant contigs 
database from 12/20/98 to 2/26/01.  Each data point represents an update to the contigs database. 

 
 

Assembly of adjacent clones into larger contigs is not always a straightforward 

process.  For instance, the orientation of two adjacent clones might be different.  Our 

routines handle both the forward and reverse complement of each GenBank entry when 

assembling contigs. 

The length of the overlap between two adjacent clones varies greatly.  Some 

sequencing centers such as Washington University Genome Sequencing Center 

(WUGSC) and Sanger Centre have a relatively constant sequence overlap length for 

known overlapping sequences.  (In the case for WUGSC it is 200 bp; for Sanger Centre it 

is 100 bp.) For the assembled contigs, the size ranges from 0 base pair overlaps from the 

Japan Science and Technology Corporation efforts on chromosome 21 to a 155,954 base 
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Table 2-5: Overlapping Clone Information.  The second column contains examples of overlapping clone 
information contained within the COMMENT section of the GenBank reports for the GenBank entries located in the 
second column.  The overlapping clone information is typical for the sequencing centers shown in the first column. 

 
GenBank  
Accession 

Overlapping Information 
In COMMENT section 

Z99715 The true right end of clone 1114G22 is at 104. 
The true left end of clone 262D12 is at 51983. 
 

AC004398 Overlapping Sequences: 
               5': UWGC: g1248a010 (Accession: AC004107) 
               3': UWGC: g1248a139 
 

AC005303 Only 90.0 kilobases from the middle of this clone are being submitted.  The 
remainder overlaps either accession AC003664 (WICGR project L281) or 
accession AC005277 (WICGR project L351). 
 

AC002378 NEIGHBORING SEQUENCE INFORMATION: 
The clone being sequenced to the left is BK085E05; the clone being 
sequenced to the right is DJ102K02.  Actual start of this clone is at base 
position 1 of DJ438O4.  
 

AC002523 Begining of sequence overlaps with AF007262, end of sequence overlaps 
with AF011889. 
 
(Note that Beginning is misspelled here) 
 

 
 
overlap between GenBank accession AC012634 and AC004782 from Lawrence Berkley 

National Labs on chromosome 5.  Note that those sequences with less than a 70 base pair 

overlap are hand assembled.  The GenBank entries for these sequences have been used 

to aid in the detection and assembly of these contigs.  For the shorter overlapping 

segments, running wublastn to find the alignment between two sequences takes a matter 

of seconds, but for larger regions, the time spent to find the alignment can take hours. 

  

Repetitive Elements.  Repetitive elements pose a serious problem in assembling contigs.  

The composition of the human genome is at least 35% repetitive elements (Jurka, 1998).  

These can come in the form of interspersed repeats (Smit, 1999) as well as large regions 

of chromosome specific (Shakh et al., 2000) and human specific (Choo et al., 1988) 
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repetitive elements.  Table 2-6 indicates a partial list of clones that cannot be extended, 

due to the fact that their ends contain interspersed repeats (SINES such as ALUs or 

LINES). Table 2-7 indicates a list of clones on various chromosomes whose overlaps 

cannot be resolved due to the occurrence of large-scale repeats occurring only on that 

particular chromosome, or uniquely within the human genome. As a result, the end of the 

clones listed in Tables 2-6 and 2-7 match multiple clones and the true neighboring clone 

cannot be determined.  

 

Table 2-6:  Genbank Clones with Repetitive Elements at the Ends.  Shown in this table is a list of 
finished human genomic clones which have a previously defined repetitive element sequence at one or both 
end(s).  Such clones cannot be extended, due to the inability to determine which overlapping clone is its 
true neighbor. 

GenBank 
Accession 

Repeat 
Family 

AC006525 LINE1 
HSJ433F14 ALU 
HS503N11 LINE1 
HS1043E3 LINE1 
HS179P9 LINE1 
HS271G9 LINE1 
AC004935 ALU-Sb; ALU-Sc 
AC002461 LINE1 
AC007459 ALU-Sb 
HUM7501 LINE1 
AC000100 LINE1 

HSU161B10 LINE1 
HS296K21 LINE1 
HS884M20 LINE1 
HSV602D8 LINE1 
HSV618H1 LINE1 

HSAF002997 LINE1 
HSU86H4 LINE1 
HSU19F10 LINE1 
HS1168A5 LINE1 
AF068624 ALU 
AF036876 LINE1 
AC004389 LINE1 

 

 

 

  



22   

Table 2-7: GenBank Clones with Human-Specific Repeats at the Ends.  This table indicates those 
finished human genomic clones with a previously unidentified human specific repeat occurring at one or 
both end(s).  These clones cannot be extended due to the occurrence of multiple clones that could be the 
adjacent clone. 

 
GenBank 

Accession 
Repeat Classification 

AF186194 HUMAN SPECIFIC 
AC002402 HUMAN SPECIFIC 

U73649 HUMAN SPECIFIC 
AC010196 HUMAN SPECIFIC 

HUAC002544 CHR16 SPECIFIC 
HUAC002045 CHR16 SPECIFIC 
HUAC002425 CHR16 SPECIFIC 

AC015853 HUMAN SPECIFIC 
HS138B7 HUMAN SPECIFIC 
AC012398 CHR22 SPECIFIC (BOTH ENDS) 
AC007981 HUMAN SPECIFIC 
AC023490 HUMAN SPECIFIC 
AC007324 CHR22 SPECIFIC 

HSA191C22 HUMAN SPECIFIC 
HS179D3A HUMAN SPECIFIC 
HS411B6 HUMAN SPECIFIC 
AC006314 HUMAN SPECIFIC 
HS884M20 HUMAN SPECIFIC 

 
 

Less frequently observed are recent duplications between two chromosomes.  We 

have observed and studied one such region involving two overlapping clones originating 

from two separate chromosomes in detail. The first entry is GenBank accession 

AL021921 and the second entry is GenBank accession U95738.  The 135 kb AL021921 

is sequenced by Sanger Centre and is annotated as 1p36.13.  The 171 kb entry U95738 is 

sequenced by The Institute for Genome Research (TIGR) and is annotated as 16p13.11.  

According to the blast hits, AL021921 lies completely within U95738 with 100 

mismatches, 74 of which are transitions (A G; C T) and 26 are transversions (A T, 

G C, A C, G T).  There are also 22 gaps composed of 123 indel events.  At random, 

it is expected to have twice as many transversions as transitions. However, in this case, 

there are almost three times as many transitions as transversions.    In addition, the 105 kb 
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GenBank accession AL161638, annotated as 1p34.2-35.3 and sequenced by the Sanger 

Centre, overlaps AL021921 with a 100% 100 bp overlap.  The beginning of AL161638 

overlaps the end of U95738 with 25405 matches, 57 mismatches (26 transitions and 31 

transversions) and 20 gaps composed of 431 indel events. The higher number of 

transitions in both of these cases indicates a possible evolutionary relationship (Kimura, 

1980).  

 
Polymorphisms.  One of the major challenges in assembling contigs is the occurrence of 

polymorphisms in the human population.  These can range from single nucleotide 

polymorphisms (SNPs) to large-scale polymorphisms. In most cases, large-scale 

polymorphisms occurring between two adjacent clones result from differences in repeat 

copy numbers.  However, there are also large insertion and deletion events occurring 

between adjacent clones.  A dramatic example occurs on chromosome 22 between 

GenBank accessions AP000351 and AP000352, both sequenced at Keio University in 

Tokyo, Japan.  The GenBank record for AP000351 indicates a 94,726 base pair overlap 

with AP000352, while the GenBank record for AP000352 indicates a 40,455 base pair 

overlap with AP000351.  Blast analysis on these two sequences indicates the end of 

AP000351 overlaps with the beginning of AP000352 with a 55,248 base insertion in 

AP000351.  Table 2-8 indicates the beginning and ending positions of the overlap.   

Since clones may not overlap with 100% identity due to sequencing errors and 

polymorphisms, we have crafted our scripts to allow for overlapping sequences greater 

than 98% identical.  This is an empirical cutoff, which reduces spurious matches, while 
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Table 2-8: Overlapping Clones with 50kb Insertion.  Shown in this table are the corresponding 
beginning and ending nucleotide positions of two overlapping clones on chromosome 22 sequenced at Keio 
University in Tokyo, Japan.  Note that the beginning of AP000352 matches the end of AP000351, with an 
additional 50kb insertion in AP000351.  The GenBank entries for these two clones list them as being 
adjacent to one another. 

 
CLONE 

ACCESSION 
CLONE  

LENGTH 
BEGIN OF 
OVERLAP  

END OF 
OVERLAP 

BEGIN OF 
OVERLAP  

END OF 
OVERLAP  

AP000351 118,999 24,274 53,787 108,035 118,999 
AP000352 152,244 1 29,527 29,528 40,455 

 
allowing for naturally occurring single nucleotide polymorphisms at a rate of 7/1000 

(Taillon-Miller, et al., 1998) and acceptable sequencing error rates of 1/10000 (Collins, et 

al., 1998).  Some overlaps such as the example on chromosome 22 can still be missed 

through this automated process, but most overlapping segments should be detected. 

 

Mislabeled GenBank Entries.  One of the difficulties in relying on physical map data in 

the annotation sections of GenBank entries is that these data are not completely reliable.  

We have uncovered at least two instances where it appears that GenBank entries have 

been mislabeled.  These clones were discovered while looking for overlapping clones 

from different chromosomes forming chimeric contigs.  In one case, the sequencing 

center involved acknowledged the missanotation and has since updated the GenBank 

entry.  The second case appears to have arisen from a data-tracking problem where clones 

from two different chromosomes with similar names were confused. 

2.4.3  Contig Assembly Validation 
 

Table 2-9 summarizes the results of contig assembly validation.  For the contig 

assembly, the 12 original contigs to reassemble were broken down into 356 fragments.  
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As a result, there are 344 total expected merges between fragments.  A total of 319 true 

merges were calculated, leaving a total of 25 false negatives.  In addition, there were no 

false merges (false positives) calculated.  The resulting sensitivity, calculated as the 

number of correctly calculated merged segments divided by the number of known 

merged segments, is 319/344, or 92.73%. The specificity, calculated as the number of 

correctly calculated merged segments divided by the total number of predicted merged 

segments, is 319/319, or 100%.  These findings suggest that our model is highly specific, 

while producing an acceptable level of sensitivity.  This supports our methods as a valid 

approach to assemble individual GenBank entries into larger contiguous regions.  

Table 2-9: Contig Assembly Validation.  Shown is the list of contigs used for contig assembly validation 
and their respective sizes, in nucleotides.  The contigs are taken from the set of IBC contigs dated 1/10/01.  
The fourth column indicates the number of expected merge events.  Column five and six indicate the 
number of merges found and the number of merges missed, respectively.  The eighth column indicate the 
true merge rate (sensitivity), calculated as the number of true merges found divided by the number of 
merges expected.  Since there are no false merges found, the specificity is 100%. 

 
CONTIG 
NAME 

CONTIG 
SIZE 

Total 
Frags 

Merges 
Found 

Merges 
Missed 

False 
Merges 

True 
Merge Rate 

False 
Merge Rate 

IBC_chr14-ctg5 2,444,856 23 20 2 0 90.9% 0% 
IBC_chr14-ctg50 2,087,975 15 14 0 0 100% 0% 
IBC_chr17-ctg2 2,834,939 27 25 1 0 96.2% 0% 
IBC_chr20-ctg12 5,549,661 52 46 5 0 90.2% 0% 
IBC_chr20-ctg20 5,530,385 45 40 4 0 90.9% 0% 
IBC_chr22-ctg11 2,488,705 24 23 0 0 100% 0% 
IBC_chr6-ctg1 4,562,704 44 40 3 0 93.02% 0% 
IBC_chr7-ctg1 2,044,635 20 15 4 0 78.95% 0% 

IBC_chr7-ctg34 2,880,961 23 20 2 0 90.91% 0% 
IBC_chr7-ctg49 2,204,146 20 17 2 0 89.47% 0% 
IBC_chrY-ctg10 4,210,264 39 38 0 0 100% 0% 
IBC_chrY-ctg3 3,063,814 24 21 2 0 91.3% 0% 

TOTAL 39,903,045 356 319 25 0 92.73% 0% 
 

  



26   

2.5  Discussion 
 

2.5.1  Whole Genome Assemblies 
 

Since the inception of the IBC Finished Genomic Contig Data set in 1998, other 

groups including the National Center for Biotechnology Information (Jang et al., 1999), 

Oak Ridge National Labs (Mural et al., 1999), The University of California-Santa Cruz 

(Kent and Haussler, 2001) and Celera Genomics (Venter et al, 2001) have entered the 

arena of assembling human genomic contigs.  In the case of the UCSC's GoldenPath 

Working Draft data and the more recent NCBI assemblies, high throughput genomic 

sequence (HTGS) is incorporated to create a whole genome assembly, even though over 

50% of human genomic data is available only in a rough-draft form.   

Both GigAssembler, which is the algorithm used to construct the GoldenPath 

contigs, and NCBI incorporate additional information besides sequence similarity in 

ordering and orienting genomic sequences relative to one another.  The information used 

by GigAssembler includes the alignments of mRNA, paired plasmid ends, ESTs and 

BAC end pairs as well as additional information (Kent and Haussler, 2001).  NCBI takes 

advantage of clone-overlap information provided by the genome centers in their clone 

annotation as well as looking for STS markers and BAC end pairs in their assembly 

(Jang, et al., 1999).  Additional information may be incorporated into the current NCBI 

assembly. 
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2.5.2  Comparison to Whole Genome Assemblies 
 

Since our assemblies do not incorporate any mapping information, they cannot be 

ordered and oriented relative to one another.  Hence, when comparing our contigs to the 

NCBI and UCSC contigs respectively, we order them in the following manner: for each 

of our contigs, we take the first clone listed in the contig.  All of these first clones are 

then packed together and ordered according to where they are placed in the NCBI or 

UCSC contig relative to one another.  This position then denotes the ordering of all of the 

IBC contigs.  Since the NCBI and UCSC assemblies are not in complete agreement, this 

is done two times: once when comparisons are made to the NCBI data set, and once when 

comparisons are made to the UCSC data set. 

Clone Ordering Comparison.  Clone ordering comparisons are graphically shown by 

drawing a polygon between the absolute positioning of a clone on the IBC data set to the 

absolute positioning within the reference set.   Figure 2-5 shows the results of such a 

clone ordering comparison for chromosomes 7, 20 and 21.  A complete set of clone 

comparison graphs is available at http://sapiens.wustl.edu/~ecr/COMARE/.  It can be 

seen from these results that clone ordering within finished contigs is consistent.  

However, when rough-draft data is incorporated into the genomic assemblies, 

inconsistencies start to arise, even when these assemblies are aided by mapping 

information. 

Sequence Level Comparison.  Whole genome sequence comparisons are made using a 

tool called multi (States, unpublished).  multi creates a deterministic finite automaton 

  



28   

 

Figure 2-5: Clone Ordering Comparison.  Shown in each of the six images is a comparison between the 
UCSC Goldenpath clone position (top) to the IBC clone position (middle) and the IBC clone position to the 
NCBI clone position (bottom).  For images A, C and E, the IBC contig ordering used is adjusted according 
to the Goldenpath clone ordering.  In images B, D and F, the IBC contig ordering is based on the NCBI 
clone ordering.  In image A, there is only one disagreement between the UCSC and IBC clone orderings, 
and several disagreements between the IBC and NCBI clone orderings.  In image B, there are several 
disagreements between the Goldenpath and IBC, and fewer between the IBC and NCBI clone orderings.  
These discrepancies are a result in disagreements between the Goldenpath and NCBI clone orderings, 
which is shown in Figure 2-8.  Figures C and D show indicate that some of the IBC clones are in opposite 
orientation with respect to the IBC and NCBI orientation.  The large gaps in figures E and F are the result 
of different clone names used in the NCBI assembly. 

 (DFA) which is searched for exact matches of a specified length. Since two assemblies 

of the human genome are being compared, the match length is set to 1000 and the 

window size is set to 500.  Graphical results of the multi output for chromosomes 7, 20 

and 21 are shown in figure 2-6. 

2.5.3  Comparison of NCBI and GoldenPath Assemblies 
 

In an ideal situation, there would be only one way for the clone pieces of the genomic 

puzzle to fit together.  However, due to events such as repetitive elements (Smit, 1999), 

gene duplication (Lynch and Conery, 2000) and segmental duplications (Bailey et al.,  
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Figure 2-6: Sequence Level Comparison.  Shown in images A, C and E are comparisons between the 
Goldenpath sequence (top) and the IBC sequence (bottom).  Images B, D and F show a comparison 
between the NCBI sequence (top) and the IBC sequence (bottom).  Each line indicates a perfect match 
between the two assemblies of at least 1000 nucleotides.  The graphs were constructed from data resulting 
from multi.  These graphs show that the biggest discrepancies are the result of individual clone orientation.  
Green represents matches in the same orientation and red represents matches in opposite orientations. 

2001) there is nonrandomness associated with human genomic data.  This makes it 

difficult to verify whether or not two clones do indeed belong in a contig or they just 

happen to have some similarities in their ends.  This will become a more prevalent 

problem as more and more finished data becomes available through the Human Genome 

Project. 

In order to illustrate the difficulty involved with whole genome assembly, a comparison 

was made between UCSC Goldenpath's April, 2001 release and NCBI's MapViewer 

build 22 (April 1, 2001) assemblies at a clone ordering and sequence similarity level.  As 

figure 2-7 indicates, there are widespread inconsistencies in clone ordering.   This is 

especially evident with chromosomes X and Y.  Other chromosomes at or near 

completion as of the April releases indicate a greater level of consistency in clone 

ordering, such as 20, 21 and 22.  Even so, there are still areas where inversions of clones  
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Figure 2-7: NCBI Build 22 vs. GoldenPath April 2001 Clone Ordering Comparisons.  Shown in each 
one of these images is a graph relating the location of clones in the GoldenPath assembly (top) to their 
location in the NCBI assembly (bottom).  If the clone position on both assemblies is within 10%, then the 
polygon is drawn in green.  If the clone position between assemblies differs greater than 10%, the polygon 
is drawn in red. 
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Figure 2-8: NCBI Build 26 vs. Goldenpath August 2001 Clone Ordering Comparisons.  Shown in each 
of these images is a graph relating the location of clones in the Goldenpath assembly (top) to their location 
in the NCBI assembly (bottom).  In this figure, clone orientation data is included as well.  If the orientation 
of both clones is the same, they are colored green.  If they are different, they are colored red.  If  the 
orientation is unknown, it is drawn in blue.  If the difference between the clone locations on the two 
assemblies differs by more than 10%, it is drawn in a lighter color. 
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Table 2-10: Summary of Accessions Used in the August 6, 2001 Goldenpath Assembly.  The second 
column indicates the total number of GenBank sequences used by UCSC to construct the chromosome 
labeled in the first column.  The third column indicates the number of sequences UCSC uses that remain 
unordered in the NCBI assembly.  The fourth column indicates the number of sequences assigned to a 
chromosome by UCSC that NCBI labels as unknown.  The fifth column lists those sequences used by both 
UCSC and NCBI that are identical, but different accession ids are given.  The sixth column lists those 
sequences that UCSC assigns to one chromosome and NCBI assigns to another.  The seventh column 
indicates the total number of sequences used in the UCSC chromosome assembly that are not found 
anywhere in the NCBI assembly.  The final column lists the total number of sequences that are used in both 
assemblies. 

 
Chromosome Total 

used 
Unordered Unknown Different 

Accession 
Different 

Chromosome 
Unmatched 
Accessions 

Matched 
Accessions 

1 2704 20 0 11 20 71 2593 
2 1965 6 0 50 13 82 1864 
3 2004 22 5 28 19 121 1837 
4 1723 21 5 150 26 69 1602 
5 2084 37 0 0 7 42 1998 
6 1932 11 3 0 13 37 1868 
7 1561 10 2 10 15 46 1488 
8 1444 17 17 0 19 37 1354 
9 1117 13 0 0 12 46 1046 

10 1300 15 0 1 5 21 1259 
11 1666 12 3 0 8 17 1626 
12 1323 10 1 0 13 44 1255 
13 893 2 0 0 8 12 871 
14 678 1 0 0 3 9 665 
15 826 2 0 0 12 18 794 
16 856 9 0 2 10 33 804 
17 763 5 1 0 8 5 744 
18 968 10 0 0 9 8 941 
19 819 5 1 0 1 14 798 
20 629 0 0 0 0 0 629 
21 103 0 0 0 0 99 4 
22 527 0 0 0 0 0 527 
X 1465 9 1 0 6 16 1433 
Y 200 0 0 0 0 0 200 

TOTALS 29,550 237 39 252 227 847 28,200 
 

seem to be occurring.  Figure 2-8 shows a clone ordering comparison of NCBI build 26 

to the Goldenpath August 2001 release.  When figures 2-7 and 2-8 are compared, it can 

be seen that as sequences reach a finished state, the assemblies merge to agreement.  This 

is particularly evident when looking at the assemblies of chromosomes 20 and X.  Note 
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that in figure 2-8, that the NCBI and Goldenpath assemblies use different clones in order 

to create chromosome 21, thus leading to only a few matches in the clone ordering 

comparison.   A summary of the GenBank entries used in the August 2001 Goldenpath 

and NCBI build 26 assemblies are given in Tables 2-10 and 2-11, respectively.  Table 2-

12 summarizes the orientation agreements when comparing the August 6, 2001 

Goldenpath assembly to the NCBI build 26. 

Table 2-11: Summary of Accessions Used in the NCBI Build 26.  The second column indicates the total 
number of GenBank sequences used by NCBI to construct the chromosome labeled in the first column.  
The third column indicates the number of sequences NCBI uses that remain unordered in the UCSC 
assembly.  The fourth column indicates the number of sequences assigned to a chromosome by NCBI that 
UCSC labels as unknown.  The fifth column lists those sequences used by both UCSC and NCBI that are 
identical, but different accession ids are given.  The sixth column lists those sequences that NCBI assigns to 
one chromosome and UCSC assigns to another.  The seventh column indicates the total number of 
sequences used in the NCBI chromosome assembly that are not found anywhere in the UCSC assembly.  
The final column lists the total number of sequences that are used in both assemblies. 

 
Chromosome Total 

used 
Unordered Unknown Different 

Accession 
Different 

Chromosome 
Unmatched 
Accessions 

Matched 
Accessions 

1 3088 9 1 11 30 455 2593 
2 2134 3 0 50 15 252 1864 
3 2078 2 0 28 7 232 1837 
4 1765 11 5 150 17 130 1602 
5 2348 13 1 0 14 322 1998 
6 2337 7 0 0 12 450 1868 
7 1716 1 0 10 9 218 1488 
8 1556 3 0 0 10 189 1354 
9 1193 1 1 0 9 136 1046 

10 1463 4 2 1 11 187 1259 
11 1970 20 0 0 19 305 1626 
12 1438 2 0 0 14 167 1255 
13 1078 0 0 0 8 199 871 
14 817 3 0 0 5 144 665 
15 891 0 0 0 3 94 794 
16 894 4 0 2 5 71 804 
17 816 14 0 0 7 51 744 
18 1055 2 0 0 2 110 941 
19 901 14 0 0 12 77 798 
20 629 0 0 0 0 0 629 
21 475 78 4 0 5 384 4 
22 527 0 0 0 0 0 527 
X 1661 7 1 0 13 207 1433 
Y 200 0 0 0 0 0 200 

TOTALS 33,020 198 15 252 227 4,380 28,200 
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Table 2-12: GenBank Entry Orientations.  The orientation of a GenBank entry is considered consistent if 
the entry occurs in the same orientation in both the NCBI and Goldenpath assemblies.  An inconsistent 
orientation occurs when the orientation of the entry is different in both assemblies.  In the case that the 
orientation is marked as unknown in at least one of the assemblies, the entry is marked with an unknown 
orientation.  The distance threshold used means that the GenBank entry positions must agree within 10% in 
both assemblies. 

 Consistent Orientation 
 

Inconsistent Orientation Unknown Orientation 

Chromosome within 
Threshold 

outside 
Threshold 

within 
Threshold 

outside 
Threshold 

within 
Threshold 

outside 
Threshold 

1 1327 269 802 143 37 4 
2 1125 37 558 13 78 3 
3 906 29 701 18 151 4 
4 690 8 588 2 160 4 
5 1008 60 676 40 176 38 
6 1562 44 233 12 17 0 
7 1229 1 209 0 39 0 
8 623 123 395 100 81 32 
9 224 496 111 196 8 11 

10 856 43 298 14 46 1 
11 924 2 642 1 55 2 
12 728 8 385 11 122 1 
13 728 1 122 0 20 0 
14 582 36 18 25 4 0 
15 453 0 313 3 25 0 
16 351 195 155 81 7 13 
17 414 5 271 3 39 12 
18 481 36 324 22 71 7 
19 589 17 154 7 27 4 
20 628 0 0 0 1 0 
21 4 0 0 0 0 0 
22 527 0 0 0 0 0 
X 1160 2 211 2 56 2 
Y 198 0 0 0 0 2 

TOTALS 17317 1412 7166 693 1220 140 
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Figure 2-9: Sequence Level Comparison of NCBI Build 26 vs. Goldenpath August 2001.  Shown in 
each of these graphs are the results from aligning the NCBI build 26 data to the Goldenpath August 2001 
data using multi (States, unpublished).  In each of the graphs, if a sequence similarity is found in the same 
orientation, it is drawn in green.  If the orientation is in opposite directions, it is drawn in red.  For those 
sequence similarities falling in close proximity on both assemblies, the color used is a darker color.  A 
lighter color is used if they fall outside of a distance threshold. 
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Table 2-13: Aligned Bases Using multi.  The second column indicates the number of matching bases for 
each chromosome where the matches occur in the same orientation.  The third column indicates the number 
of matching bases for each chromosome where the matches occur in a different orientation. 

 

Chromosome Matching Bases 

Same Orientation 
 

Matching Bases  

Different Orientation 

1 61 746 063 20 411 421
2 68,880,069 16,725,895
3 46,402,958 18,531,575
4 39,549,971 20,747,599
5 40,449,965 21,510,030
6 62,936,552 8,228,667
7 53,201,681 5,840,056
8 37,439,999 11,180,941
9 34,975,746 9,624,503
10 42,060,960 8,006,401
11 37,438,424 13,694,342
12 36,328,682 11,486,143
13 35,695,803 4,281,521
14 32,428,345 2,117,332
15 19,193,109 8,687,356
16 17,702,596 6,568,383
17 15,667,567 6,813,709
18 20,677,969 7,429,676
19 12,368,846 3,453,858
20 23,484,031 33,978
21 12,994,871 2,498
22 12,412,454 25,480
X 49,177,058 9,246,770
Y 10,897,336 2,787,913

TOTALS 824,111,055 217,436,047
 
 

Comparisons at the sequence level produce results consistent with clone ordering.  

Figure 2-9 indicates pairings of identical 1000 base matches between the two assemblies.  

As can be seen in this figure, there are large regions of sequence matches where the 

matches seem to be inverted.  This is most evident in the red portions of chromosomes 3 
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and 4.  When all of the sequence comparisons are taken into account nearly 30% of all of 

the matches occur in opposite orientations.  Table 2-13 summarizes the aligned bases 

between the two assemblies.  Bailey et al. (2001) show that 10.6% of the January 2001 

Goldenpath assembly shows regions of greater than 1 kb in length and greater than 98% 

identity.  Even if all of these segmental duplications occurred on the same chromosome 

and in a different orientation, they could not account for 30% of all matched regions.  

Thus, there is a large amount of inconsistently oriented data between the NCBI and 

Goldenpath assemblies. 

In order to help determine the confidence in the assembly of any particular 

chromosome, we calculated a metric to determine the expected nucleotide length to the 

next major mismatch between the NCBI and UCSC assemblies.  Each matching multi 

block includes begin and end positions within the NCBI and UCSC assemblies.  

Consecutive matching blocks were compared to determine whether or not they should be 

merged together.  The nucleotide distance between two consecutive blocks was 

calculated for both assemblies.  The distance for each of these was compared.  If the 

difference was less than 1 kb, then the two blocks were merged together.  Otherwise, they 

were kept separate.  Once merging of consecutive blocks was finished, the length of each 

block was stored.  For each chromosome, the percentage of nucleotides with at least 1, 

10, 100, 1000, 10000, 105, 106, 107 and 108 bases before the end of a block was 

calculated.  This gave a measure of the agreement between the UCSC and NCBI 

assemblies.  The results for the chromosomes with the longest length to next mismatch 

(chromosome 20), shortest length to next mismatch (chromosome 4) and all 
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chromosomes are given in figure 2-10.  These results suggest that the agreement between 

the assemblies falls off between 10 kb and 100 kb, or approximately the size of an 

individual clone. 

 

Figure 2-10: Length to Next Major Mismatch. Shown are the percentage of nucleotides which have a 
length to the next major mismatch at least as many nucleotides as specified in the x-axis. The results are 
shown for all chromosomes as well as chromosomes 4 and 20. 

 

Major mismatches could result due to differences in gap lengths, repetitive 

regions and assembly errors or discrepancies.  In order to illustrate these differences, dot 

plots of chromosomes 5 and Y are shown in figure 2-11.  With chromosome 5, the major 

mismatches are due to sequencing differences, while chromosome Y agrees to a greater 

degree.  The dot plot for chromosome Y also illustrates the presence of large scale repeats 

within the chromosome. 
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As more finished human sequence data becomes available, assembled human 

genomic contigs become a powerful resource.  In addition to compositional analysis, 

genomic contigs can be mined for SNP detection and analysis (Blackwell, Rouchka and  

 

 
Figure 2-11: Chromosome Dot Plots. Both of these figures show dot plots resulting from a multi 
alignment of the NCBI assembly (x-axis) to the UCSC Goldenpath assembly (y-axis).  Shown are the 
results for chromosome 5 (figure A) and chromosome Y (figure B). 
 

States, 1999), transcriptional analysis (Kan et al., 2000), sequence assembly validation 

(Rouchka et al., 1998), and many other interesting problems.  In applications such as 

these, confidence in the assembled sequences is paramount.  An assembly incorporating 

only finished data provides a consistent starting point from which to base analyses. 

2.6  Summary 
 

Automated assembly of finished clone sequences into contiguous regions is a 

useful endeavor.  Simulation results suggest that a sequence-based approach can piece 
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together nearly 93% of all fragments without adding false joins.  While whole genome 

assembly incorporating draft sequences is useful, it leads to a large number of errors in 

order and orientation of clones and/or their trace fragments.  As more clone sequence 

data reaches a finished state and physical maps are refined, the number of errors declines. 

This is observed in the agreement with the NCBI release 26 and Goldenpath August 2001 

assemblies of chromosomes 20, 21, 22 and Y that are either at or near a finished state. 

Due to the expected exponential growth of finished data available in the genomic 

databases, it is becoming imperative that procedures become automated to create and 

annotate these large sequences.  It is equally important to determine which sequences are 

redundant and which offer novel information. 

Once contigs are assembled, analysis can proceed into understanding different 

aspects of the human genome.  In the subsequent chapters, assembled contigs are used as 

the basis for single nucleotide polymorphism (SNP) detection, sequence assembly 

validation, large scale polymorphism detection, CpG island segmentation, and an analysis 

of homogeneous regions of G+C content throughout the human genome. 
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Chapter 3  
 
Single Nucleotide Polymorphisms 

 

Single nucleotide polymorphisms (SNPs) occur when two or more different 

nucleotides appear at the same position within a population leading to genetic variation.  

In order to understand the relationship between the genetic makeup of an individual (the 

genotype) and the resulting observed properties, whether it be structural or functional (the 

phenotype), it is necessary to study genetic differences.  For instance, a single nucleotide 

change accounts for the difference between a healthy individual and one with sickle-cell 

anemia (Lodish, et al., 1995).  In addition, a single base mutation in the APOE gene is 

associated with Alzheimer's Disease (Chakravarti, 2001) and a one base deletion in the 

chemokine-receptor gene CCR5 leads to resistance of HIV (Chakravarti, 2001).  While 

the majority of genes and diseases within the human genome are more complex, detection 

of SNPs within the population can give a better understanding into the intricate 

interactions.  As a result, methods for the detection of SNPs are necessary.  An 

understanding of how SNPs cluster within the human genome is an important aspect that 

will be considered. 
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3.1  SNP Detection 
 

Overlapping regions between clones within the assembled contigs are useful in 

detecting SNPs.  Since the clones used to create the contigs are finished human sequence 

data, mismatches in these regions are less likely to be the result of sequencing errors 

which occur at a rate of 1 per 10000 (Smith and Carrano, 1996) and more likely to be 

actual SNPs which occur at a rate of 7 per 1000 (Taillon-Miller, et al., 1998).   When the 

contigs are constructed, the length of the overlapping region between two clones is 

reported along with the percent identity between the clones in this region.  If the identity 

is less than 100%, then there exists at least one gap or mismatch in one of the sequences.  

While gaps in the sequences can indicate SNPs in the sense of single nucleotide insertion 

or deletion events such as the resistance to HIV discussed earlier, we concentrate on the 

detection of single nucleotide substitution SNPs.   

Once the contigs are created, the overlapping regions less than 100% identical are 

extracted and the alignment is reconstructed using wu2blastn (Gish, 1994-2001).  The 

resulting alignment is then scanned, and all mismatches are treated as potential SNPs.  

Since at least 35% of the human genome is made up of repetitive elements (Jurka, 1998), 

it is possible that SNPs can occur in these regions.  For analytical purposes, this 

information can be incorporated.  However, for experimental validation of SNPs, it is 

important that the sites occur in unique regions.  Thus, we are only interested in those 

regions where an SNP has at least 75 bases before and after it that do not occur within 

repeat regions.  When possible, we report up to 500 bases to each side of the SNP that do 
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not occur within repeats.  RepeatMasker (Smit and Green, unpublished) is used to locate 

repeat regions within the overlapping segments.  This data can then be used for the 

purpose of creating PCR primers for amplification of SNP regions. 

  In a study to determine the effectiveness of such an approach to SNP detection, a 

collaboration was formed with Pui Kwok in the Dermatology Department at Washington 

University.  Preliminary results detected and verified 10 novel SNPs.  The SNPs were 

then deposited into NCBI's dbSNP (Sherry, et al., 2001).  The accessions are G54158, 

G54159, G54160, G54161, G54162, G54163, G54164, G54165, G54166 and G54167. 

Besides the non-redundant contig data that we have assembled, an additional 8 

MB of redundant data completely lying within assembled contigs has been found.  This 

data can also be used to screen for candidate SNPs using the same techniques outlined 

here.  

3.2  SNP Clustering 
 

In addition to the detection of SNPs, there are many other interesting questions to 

ask.  Once of these questions concerns the evolution and clustering of SNPs.  The 

information I gathered through the SNP detection was used in collaboration with Tom 

Blackwell at Washington University's Institute for Biomedical Computing for the 

purpose of testing a probabilistic population genetic theory for the expected distribution 

of SNPs (Blackwell, Rouchka and States, 1999).  A visual inspection of a typical 

clustering of possible SNPs, such as that seen in figure 3-1, shows that mismatches tend 

to be clustered.  Since SNP clustering is purely mathematical and therefore does not 
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require the same restrictions as experimental validation, all candidate SNPs are 

considered including those occurring within repetitive regions.  One aspect of finding 

SNPs that are identical by descent is that these regions can now be studied as linkage 

events and how inheritance of several different combinations of SNPs can lead to disease. 

 

 
Figure 3-1: Distribution of Candidate SNPs.  This figure illustrates the typical pattern of possible SNPs 
occurring within two overlapping regions.  The two sequences illustrated here are GenBank accession 
AF003625 and AF035396.  The red tick marks indicate a mismatch occurring between the two sequences, 
while a blue or green tick mark indicates a single nucleotide insertion or deletion event. 

 
 

  



45   

Chapter 4    
   
Sequence Assembly Validation 
 

One particular application which requires the use of extended regions of genomic 

data involves the validation of assembled sequence.  Genomic sequence analysis depends 

on the accurate assembly of short (400 to 1,000 base pair) sequence reads into contigs 

that cover extended regions as a necessary step in deriving finished sequence.  Errors at 

the fragment layout assembly stage may be difficult or impossible to detect later in the 

editing process, and fragment assembly errors may have a serious impact on the 

biological interpretation of the data.  For example, entire regions of the genome could be 

inverted or swapped as a result of assembly errors.  Such errors could impact the 

biological interpretation of the sequence data, potentially leaving groups of exons out, 

swapping exons or control elements onto the anti-sense strand, breaking genes into 

pieces, or dissociating genes from their control elements.  Since assembly errors are 

difficult to detect and can impact the utility of the finished sequence, experimental 

validation of the fragment assembly is highly desirable. 

Comparison of predicted and experimental restriction digests has been proposed 

as a means for validating fragment assembly.  The pattern of fragment masses resulting 

from a restriction digest of the source DNA can be readily determined with a precision of  

+1%.  This pattern of restriction fragment masses is commonly referred to as a restriction 

fingerprint.  The cleavage sites for restriction enzymes are specific so it is easy to 
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electronically generate a set of predicted fragment masses from the finished sequence.  

Similarly, the location of each of the predicted fragments on the finished sequence is 

known. Errors in sequence assembly will either change fragment masses directly or 

rearrange the position of restriction sites resulting in new fragments with altered masses.  

Figure 4-1 shows the general flow of the concepts used in comparing predicted and 

experimental restriction digests. 

Restriction fragment matching has been extensively used as the basis for physical 

map assembly (Riles et al. 1993; Waterston et al. 1993).  Similarities in fingerprint are 

used to infer clone overlap.  Since most clones overlap over only a fraction of their length 

and because restriction digest sites may be polymorphic, software has been developed to 

recognize common features of fingerprint patterns while ignoring the disparities.  Most of 

the information in a fingerprint is accessible even if several bands in the digestion pattern 

are missed or a number of false positives are scored. 

In this section, we examine the use of multiple restriction digest fingerprints for 

assembly validation.  Both simulated and experimental results will be discussed as well 

as a specific application to clone mapping.  We also compare the requirements for 

fingerprint mapping with the requirements for assembly validation. 

 

4.1  Methods 
 

Dynamic programming algorithms were first used in the context of computational 

biology for the purpose of finding the best alignment between two DNA or protein 

sequences (Needleman and Wunsch 1970; Sellers 1974; Smith and Waterman 1981). We 
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have developed a similar dynamic programming algorithm to determine the maximum 

alignment of error prone electrophoretic mobility data to predicted fragment mobilities.  

The expected fragment mobility information can be calculated when the sequence to 

validate and the restriction enzyme patterns used in creating the experimental data are 

known.  String matching functions are used to find the exact location of a particular 

cutting site in the sequence.   

 

Figure 4-1: Sequence Assembly Validation Flow Diagram.  This figure indicates the steps used in order 
to compare experimental restriction fragments to expected restriction fragments. 
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Predicted fragments are generated according to these locations.  The mobility, m, 

for each of these expected fragments is calculated using the same formula from which the 

experimental data is derived according to equation 4-1. 

 











=

fragment

tot
fragment L

LLogm 2  

 

Equation 4-1: Predicted Fragment Mobility. 

Here, Ltot is the total length of the sequencing project.  The factor of 2 is applied 

to give mobilities in the range typical of current experimental protocols, 0 to 20 cm.  In 

these units, a standard deviation in determination of band position of 0.1 cm corresponds 

to a relative accuracy of mass determination of 0.5%. 

Within the dynamic programming algorithm, fingerprint pattern alignments were 

scored using a log odds system based on the likelihood of deriving the observed fragment 

mobilities from the predicted digest mobilities relative to the odds of observing the 

fingerprint pattern at random.  Table 4-1 indicates these scores. 

Table 4-1: Scores for Fingerprint Pattern Alignments. 

 

Relationship Score 

Band match Log(Pmatch/Prandom) 

False positive Log(Pfalse positive) 

False negative Log(Pfalse negative) 
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The probability, Pmatch, of a fragment having an observed mobility, mobs, given a 

true mobility, m, and normally distributed errors in mobility determination (Drury et al. 

1990, 1992), is given in equation 4-2. 
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Equation 4-2: Observed Mobility Probability. 

Assuming that the fragment mobilities scale as the log of the molecular weight of 

the fragment (Maniatis, Jeffrey and van deSande, 1975), this formulation results in a 

constant fractional error in mass determination and agrees with empirical observations 

based on current data (M. Marra, personal communication, 1998). 

Equation 4-3 gives the probability, Prandom, of matching a band at random given a 

maximum mobility of X and N bands. 

 

X
NPrandom =  

Equation 4-3: Random Probability of Matching a Band. 

The values of Pfalse positive (false positive "added" band probability), Pfalse negative 

(false negative "missing" band probability), and σ  (standard deviation from true 

mobility) are calculated based on the precision with which the experimental data can be 

extracted.  

This scoring system penalizes either matching a band with an error in the mobility 

or failing to match a band altogether. The false positive score represents the case where a 

band in the experimental data does not match up with a band in the expected data.  The 
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false negative score represents the case where a band in the expected data does not match 

up with any experimental bands.   The maximum score is the log likelihood that the query 

fingerprint was derived from the target pattern under the assumptions of our model 

relative to the likelihood of assuming the same match at random.  Scores are reported in 

units of the natural logarithm of the likelihood ratio (nats).  They may be converted to 

bits by dividing ln(2). 

4.1.1 Coverage 
 

Since the sequence to be validated is known, a map of the restriction enzyme cut 

sites can be created for each of the restriction enzymes used in the experiments.  As a 

result, the location of each of the expected fragments within the sequence is known.  

Figure 4-2 shows an example of the known cutting sites for the restriction enzymes 

BamHI, EcoRI, HindIII, and KpnI within an example sequence. 

For each of the four restriction enzymes, an experimental digest has been 

performed independent of the other three enzymes.  The experimental fragments are 

compared to the expected fragments using the previously described dynamic 

programming algorithm.  The purpose of the algorithm is to tell which of the expected 

fragments are matched with an experimental fragment.  A region between two restriction 

sites in the sequence to be validated is said to be covered when it is matched with an 

experimental fragment.  The results of the coverage analysis for each individual 

restriction enzyme can be combined to produce a total coverage map where the coverage 

for any particular fragment can range from 0% to 100%.  When four enzymes are used, 
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the coverage for any fragment between two restriction sites can be 0% (not covered by 

any individual restriction enzyme coverage map), 25% (covered by one), 50% (covered 

by two), 75% (covered by three), or 100% (covered by all four restriction enzyme 

coverage maps).   

 

Figure 4-2: Enzyme Fragment Coverage. The sequences labeled BamHI, EcoRI, HindIII and KpnI show the 
location of the respective restriction enzyme recognition sites within an example sequence.  The sequence labeled 
TOTAL indicates the location of all of the enzyme restriction sites within the sequence. 

 

Analysis of coverage maps can indicate possible sequence assembly errors.  For 

instance, suppose that one segment within the clone has been reversed in the sequence 

assembly.  In such a case, we would expect two predicted restriction fragments from each 

digest not to be matched, resulting in a low coverage for the regions containing these 

fragments.  The regions of low coverage contain within them the endpoints of the 

reversed segment. 

 

4.1.2  Setting up the Simulations 
 

Simulated restriction digest patterns were created by adding random perturbations 

to the computationally predicted mobilities.  The predicted mobilities were created using 

a subset of the palindromic six base restriction sites EcoRI (GAATTC), BamHI 
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(GGATCC), HindIII (AAGCTT), BalI (TGGCCA), HpaI (GTTAAC), PstI (CTGCAG), 

SalI (GTCGAC), KpnI (GGTACC), NaeI (GCCGGC), and NarI (GGCGCC).  The test 

fingerprints were compared with reference fingerprint patterns derived from sequences 

rearranged by introducing a segmental inversion between two randomly chosen points in 

the sequence. For each of the patterns, we find which target bands get matched up with an 

experimental band.  Using this information, a coverage plot can be generated for the 

target sequence.  By comparing the digest patterns of more than one restriction enzyme 

and overlapping their coverage results, it is proposed that errors in sequence assembly 

can be differentiated from false positive and false negative experimental bands.  We ran 

simulations to test the effects of false positive and false negative band rates (ranging from 

.5% - 2%), band mobility resolution (ranging from .1% - 1%; 0.02mm - 0.2mm), and the 

number of restriction enzymes used. We looked at false negative rates (the percentage of 

time that one of the ends in the inversion is not detected by coverage analysis) and false 

positive rates (the percentage of time that an incorrect inversion location is detected by 

coverage analysis). The data presented is based on the simulations using a 219.4 kb 

interval derived from the human X chromosome (GenBank accession no. L44140) (Chen 

et al. 1996a). We will focus on the results using four restriction enzymes for a more 

detailed discussion. 

Experimental results have also been achieved using a HindIII digest on the 

bWXD718 sequencing project at the Washington University Center for Genetics in 

Medicine.  These results are discussed as well. 
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4.2 Results 
 

The Washington University Center for Genetics in Medicine and Genome 

Sequencing Center have been collaborating in construction of sequence ready maps and 

reagents for the human X chromosome, and over 1,000 clones have now been 

fingerprinted.  The precision of fragment mass determination was 1% (M. Marra personal 

communication, 1998).  In the early phases of this work 30 clones were sent for repeat 

analysis making it possible to estimate the reliability of the fingerprint data.  In this 

preliminary data set, one discrepancy in 25 bands was observed between identical clones 

implying a combined false positive and false negative rate of roughly 4%.  As the lab has 

become more experienced with fingerprint analysis, performance has improved 

substantially.  

4.2.1 Increasing the Number of Restriction Enzymes 
 

Figure 4-3 illustrates the use of a single restriction enzyme.  Fingerprint analysis 

is sensitive to false positive and false negative bands. As a result, it can be impossible to 

differentiate between false negative bands and regions of incorrect sequence assembly.  A 

restriction site is expected every 46 = 4096 bases in random sequence since six base 

restriction enzymes are used.  It is well known that genomes are not randomly distributed.  

Thus, some restriction sites might be rare in a particular region.  Two problems can 

result.  The first is that an inversion can be missed because it has a greater likelihood of 

occurring between two sites where it cannot be detected.  The second is that even though 
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a region of low coverage might be detectable, a greater area might have to be considered 

as a possible location for the inversion. 

A second enzyme can help alleviate the problem of differentiating false negatives 

and areas of concern.  However, if the restriction enzymes are not chosen carefully, 

relatively long stretches where there is not a restriction site for either enzyme can still 

exist.  Figure 4-4 illustrates the results using a second restriction enzyme. 

Coverage analysis of our simulations suggests that the use of four or more 

enzymes should produce the desired results (compare Figures 4-3, 4-4, and 4-5).  Two 

enzymes still present the difficulty of an inversion occurring in between two restriction 

sites.  Experimental errors will also have some effect when only two enzymes are used.  

We have analyzed the results using an even number of enzymes.  This is done to balance 

the number of A+T restriction patterns with the number of G+C restriction patterns, so as 

to avoid compositional biases.  Figure 4-5 illustrates the results using four restriction 

enzymes.  If the restriction digests are repeated when a potential region of difficulty is 

observed, experimental gel errors can be filtered out and differentiated from sequence 

assembly errors. Figure 4-6 illustrates this point.  Note that if a single enzyme is used (as 

in Figure 4-3), the digests would have to be repeated quite often due to false negative 

bands. 

Table 4-2 and Figure 4-7 examine the effects on the percentage of time that a 

region of faithful sequence is found to have low coverage by restriction digest fragment 

mapping. Figure 4-8 shows the percentage of time that a region that is involved in a 
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segmental inversion is found to have high coverage.  This corresponds to the fraction of 

the time that the rearrangement would be missed by our analysis.  

4.2.2  Analysis of Experimental Data 
 

One of the sequencing projects that the Washington University Center for 

Genetics in Medicine and Genome Sequencing Center is working on involves a region of 

the human X chromosome labeled bWXD718.  In a preliminary assembly, the sequence 

appears to be 79,612 nucleotides long.  The experimental HindIII digest of this clone 

indicates a total fragment size of 169,699 nucleotides,  indicating the preliminary 

assembly contains errors.  

All but two of the expected fragments match up with experimental fragments.  

The two fragments that do not match up are 558 and 145 nucleotides long.  It is possible 

that some of the smaller fragments travel through the gel more rapidly, and thus there are 

greater errors, so the 558 nucleotide segment might actually map to an expected segment 

that is 520 nucleotides long.  Also, the 145 nucleotide segment might have gone 

undetected in the gels.  Thus, the validation program cannot discern where the problem is 

located, but rather alerts the biologists that there is an existing assembly problem or a 

molecular biological rearrangement that occurred between the fingerprint and sequence 

analysis stages. 
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Figures 4-3 to 4-6: Coverage Graphs.  Indicated in all four figures is the coverage for the 219.4 kb region 
with a segmental inversion between nucleotides 136,796 and 201,014.  A single restriction enzyme is used 
in figure 4-3, resulting in four regions of zero coverage.  Two of these are due to experimental false 
negative rates, suggesting that a single enzyme is not sufficient for sequence assembly validation.  When 
two restriction enzymes are used as in figure 4-4, only the two regions where the inversion occurs have 
zero coverage, indicating that using a second restriction enzyme improves the analysis.  Figures 4-5 and 4-6 
show the results using four enzymes.    In figure 4-5, the band around the segmental inversion endpoints 
has shrunk to 2175 nucleotides for the left end and 1161 nucleotides for the right end.  Figure 4-6 repeats 
the restriction digest.  Some bands begin to have better coverage and the area surrounding the left end has 
shrunk from 2175 to 1286 nucleotides. 
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Table 4-2: Empirical Error Rates for Band Assignment.  The table presents the error rates for the 
assignment of segmental inversions to their corresponding segment of genomic sequence.  The column on 
the far left represents experimental gel resolution values.  False positives are the percentage of time that a 
region not involved in a segmental inversion is found to have low coverage. False negatives are the 
percentage of time that a region that is involved in a segmental inversion is not found.  Within each section 
results are presented for simulations conducted with false negative and false positive band calling rates of 
0.5%, 1% and 2%, and these results are presented separately.  These results are based on four enzyme 
digests, each performed once, and a coverage cutoff of 50%.  

 

Gel 

Resolution 

False Positive Result False  Negative Result 

 .5% 1% 2% .5% 1% 2% 

0.001 4.2% 6.8% 9.9% 6.2% 3.8% 3.9% 

0.0025 5.5% 7.5% 11.9% 6.1% 4.2% 5.8% 

0.004 5.9% 7.2% 11.2% 2.8% 3.8% 6.3% 

0.0055 4.9% 8.2% 12.6% 3% 4.9% 3% 

0.007 7.5% 7.7% 13.2% 3.9% 4.6% 3.3% 

0.0085 5.5% 7.2% 13.5% 5% 3.5% 5% 

0.01 5.2% 8.5% 11.4% 4.3% 3.6% 6% 

 

Comparison of false positive/negative experimental 
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Figure 4-7: False Positive Rates.  This figure corresponds to the data from Table 4-2. The x-axis represents the 
standard deviation from true mobility and the y-axis represents the false positive rates.  By examining this graph, we 
can see that the experimental false positive and false negative rates have an effect on false positives.  In particular, as 
the experimental rates increase, so does the percentage of time that a region that is not involved in a segmental 
inversion is found to have low coverage.  At the same time, the standard deviation from true mobility does not seem to 
affect the false positive percentage. 
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Figure 4-8: False Negative Rates.  This figure corresponds to the data from Table 4-2.  The x-axis represents the 
standard deviation from true mobility and the y-axis represents the false negative rates.  By examining this graph, we 
can see that the experimental false positive and false negative rates do not have much of an effect on the rate of missing 
a rearrangement. 

 

4.3  Discussion of Sequence Assembly Validation 
 

The results presented here demonstrate that it is possible to detect most sequence 

fragment assembly errors using a set of four restriction digests and without reference to 

an overlying physical map.  The confidence of sequence validation can be further 

improved by independently repeating the digests or by using additional enzymes (data not 

shown).  The confidence of sequence validation improves with both the resolution of the 

electrophoretic fragment sizing and the accuracy of band calling.  

4.3.1  False Negatives 
 

There are four reasons why the simulated segment inversion sites may not be 

determined correctly.  One reason is that the inversion could occur in a segment such that 

it does not overlap any restriction sites.  Another explanation is that the inversion occurs 
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in such a way that the restriction sites are located near the middle of the inverted 

segment, resulting in similar fragment mobilities.  Thirdly, an inversion occurs in such a 

way that the modified segments are similar to other existing segments, so coverage is 

preserved, albeit at a lower percentage than normal.  Finally, the inversion could occur 

within a long repeat segment, resulting in no change with an inversion. 

4.3.2  Application to Clone Mapping 
 

We have been in collaboration with the Washington University Center for 

Genetics in Medicine and Genome Sequencing Center to use these assembly validation 

techniques to map locations of BAC and YAC clones within the human genome.  For the 

purposes of our analysis, we are given both the end sequences of the clones and a set of 

restriction digest fragments for the enzymes BamHI, EcoRI, HindIII, and KpnI.  Once we 

have the experimental data, the process begins by searching our assembled genomic 

contigs for homologies with the end sequences using a local sequence alignment 

technique.  We find which, if any, of the contigs we have assembled have stretches of 

matching nucleotides longer than 30 nucleotides.  If such a contiguous sequence exists, 

we can compare an expected digest covering this region with the experimental digests.  A 

coverage graph of the results can then be analyzed.  Such a study can be helpful because 

it places the clones within existing contigs, helping to determine whether or not the whole 

clone should be sequenced.  This might help to bridge the gap between two contigs.   

To test our methods, we began by analyzing three clones on chromosome X 

(bX759, bX691, and bX171) where complete sequence determination has been performed 
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by Dr. Ellison Chen.  Bands with molecular weights between 1500 bp and 12,000 bp 

were scored.  A match was scored as a positive if a band in the observed digest was 

identified within 2% of the molecular weight predicted from the electronic digest.  293 of 

the 302 (97%) of the bands were scored as matches.  Of the nine bands that failed to 

match a band in the electronic digest, eight were within 2.5% of the predicted molecular 

weight, and one deviated by 3.3%.  These are entirely within the expected experimental 

error.  Four complete enzyme digests (HindIII, EcoRI, BamHI, and KpnI) were analyzed 

for each clone.  In no case did a fragment that failed to match overlap with a second 

fragment in a different enzyme digest.  These data verify the integrity and accuracy of the 

sequence data obtained from the Chen laboratory and validate our fingerprint analysis 

methods. 

4.3.3  Detecting Structural Polymorphisms 
 

When restriction digests for multiple clones within the same region are available, 

the results of the sequence assembly validation can be expanded upon to look for large 

scale structural polymorphisms. Restriction digest data has been made available to us for 

the breast cancer susceptibility region BRCA2 on chromosome 13; the T-cell receptor 

region on chromosome 7; and for the color vision region located on chromosome X.  The 

contigs created for these regions are described in tables 4-3 (BRCA2), 4-4 (T-cell), and 4-

5 (color vision).  
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Since we have available to us clones within these three regions, the first step is to 

take the end sequences and find out where they should be placed within the genomic 

contigs.  This search is performed using Smith-Waterman dynamic programming  

Table 4-3: BRCA2 Contig (IBC_chr13-ctg1).  This table describes the clones making up the BRCA2 
contig. 

BRCA2 Region (13q12) 
IBC_chr13-ctg1 

Clone Length Overlap 
AC002525 140,942 --
HUM85D2 34,931 200
HUM2G3A 110,858 200
AC002483 102,846 200
HS214K23 127,079 200
HS234I22 3,158 79
HS92M18 68,903 68
HS130N4 84,170 104
HS26H23 91,835 104
HS267P19 113,704 104
HS49J10 137,246 99
HS179I15A 146,810 104
HS46H23 129,098 104
HS65O19 95,274 110
TOTAL LENGTH = 1,385,178 bases 

 
 
Table 4-4: T-cell Receptor Contig (IBC_chr7-ctg23).  This table describes the clones making up the T-
cell receptor contig. 

T Cell Receptor Beta Chain (7q35) 
IBC_chr7-ctg23 

Clone Length Overlap 
U66059 267,156 --
U66060 215,422 9,638
U66061 232,650 20,617
TOTAL LENGTH = 684,973 bases 

 
 

Table 4-5: Color Vision Contig (IBC_chrX-ctg56).  This table describes the clones making up the color 
vision contig.  note that the overlaps indicated with a * are not 100% identical. 

Color Vision Region (Xq28) 
IBC_chrX-ctg56 

Clone Length Overlap 
HSU52112 174,424 -- 
AF030876 112,756 12965 
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HSQLL2C9 15,250 10986* 
13,546 251 

HSQC8B6 21,480 120 
HSCG1160 28,230 6092* 
HS14B7 36,429 241 
HUMFLNG6PD 219,447 305 
TOTAL LENGTH = 590,587 bases 

HSQC14G3 

 

methods.  After  the clones have been placed, the expected fragment sizes can be 

calculated.  After the sequence assembly validation has taken place, an optimal alignment 

of the experimental and expected fragments is determined.   Figures 4-9, 4-10 and 4-11 

show the results for BRCA2, color vision, and T cell receptor, respectively.  For each of 

these regions, restriction digest information was available for four different enzymes:  

BamHI, HindIII, KpnI, and EcoRI.  Fragments lying within the range 1,500 to 12,000 

base pairs were scored.  Those bands not scored are colored in gray.  When a predicted 

fragment which should be scored fails to match an experimental fragment, it is colored 

red.  The patterns of red can then be examined as possible locations of structural 

polymorphisms.  

In the preliminary work screening these three regions, at least 15 examples of 

structural polymorphisms have been detected.  These polymorphisms can range in length 

from hundreds of base pairs to kilobases of sequence.  Tables 4-6, 4-7, and 4-8 show 

candidate polymorphisms for the BRCA2, color vision, and T cell receptor regions.
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Figure 4-9: BRCA2 Region Clone Alignment.  Shown in the figure is a graphical summary of the 
matching of restriction fragments to the electronic digest of the human genomic contig.  Clones were 
positioned by end-sequence alignments.  Matching fragments are shown in green -  BamHI, yellow – 
HindIII, blue – KpnI, cyan – EcoRI.  Indeterminate fragments are shown in gray, and red indicates regions 
where a predicted fragment is unambiguously missing from the observed digest. 
 
 

 
  
Figure 4-10: Color Vision Clone Alignment.  Shown in the figure is a graphical summary of the matching 
restriction fragments for clones in the color vision region to the electronic digest of the human genomic 
contig.  Clones were positioned by end-sequence alignments.  Matching fragments are shown in green – 
BamHI, yellow – HindIII, blue – KpnI, cyan – EcoRI.  Indeterminate fragments are shown in gray, and red 
indicates where a predicted fragment is unambiguously missing from the observed digest. 
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Figure 4-11: T-cell Receptor Clone Alignment. Shown in the figure is a graphical summary of the 
matching restriction fragments for clones in the color vision region to the electronic digest of the human 
genomic contig.  Clones were positioned by end-sequence alignments.  Matching fragments are shown in 
green – BamHI, yellow – HindIII, blue – KpnI, cyan – EcoRI.  Indeterminate fragments are shown in gray, 
and red indicates where a predicted fragment is unambiguously missing from the observed digest. 
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Table 4-6: Selected Polymorphic Sites from the BRCA2 Contig.  The left column on this table indicates 
the restriction enzyme and location of the fragment associated with a possible polymorphic site within the 
human genomic contig IBC_chr13-ctg1.  The second column indicates those clones with matching 
fragments while the third column indicates those clones which do not have matching fragments. 

Fragment Matching Clones Fail to match 

EcoRI fragment 
From 11816 to 22552 
(size 10,3760) 

bM1 bM4 bM5 
Matching bands:  
Low 10,491 high 10,976 
Mean 10,814+-228 

bM10 bM11 bM7 
Nearest bands: 
Low 11,237 high 11,407 
Mean 11,294+-80 

HindIII fragment 
From 68,458 to 79,572 
(size 11,114) 

None bM1 bM10 bM12 bM4  
bM5 bM7 
Nearest bands: 
Low 11,607 high 12,266 
Mean 11,916+-237 

EcoRI fragment 
From 78,467 to 87,817 
(size 9,350) 

bM5 
matching band: 9,416 

bM10 bM12 bM7 
Nearest bands: 
Low 9,074 high 9,138 
Mean 9,108 +-26 

KpnI fragment 
From 244,546 to 256,644 
(size 12,098) 

None  pM12 pM14 
Nearest bands:  
Low 12,894 high 13,117 
Mean 13,006+-111 

 

Table 4-7: Selected Polymorphic Sites from the Color Vision Contig. The left column on this table 
indicates the restriction enzyme and location of the fragment associated with a possible polymorphic site 
within the human genomic contig IBC_chr13-ctg56.  The second column indicates those clones with 
matching fragments while the third column indicates those clones which do not have matching fragments. 

Fragment Matching Clones Fail to Match 
KpnI fragment 
 
From 126,086 to 129,196 
(size 3,110) 

bX1033 and pX28 
 
Matching bands: 
Low 3,111 high 3,157 
Mean 3,134+-23 

bX1034 pX25 
 
Nearest bands: 
Low 3,192 high 3,194 
Mean 3,193 

EcoRI fragment 
 
From 155,269 to 158,311 
(size 3,042) 

pX25 
 
Matching band 3,095 

BX1033 bX1034 
 
Nearest bands: 
Low 3,119 high 3,122 
Mean 3,120 

BamHI fragment 
 
From 208,800 to 211,844 
(size 3,044) 

None bX1034 pX25 
 
Nearest bands: 
Low 3,118 high 3,133 
Mean 3,126  
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Table 4-8: Selected Polymorphic Sites from the T-cell Receptor Contig. The left column on this table 
indicates the restriction enzyme and location of the fragment associated with a possible polymorphic site 
within the human genomic contig IBC_chr7-ctg23.  The second column indicates those clones with 
matching fragments while the third column indicates those clones which do not have matching fragments. 

Fragment Matching Clones Fail to Match 
HindIII fragment 
 
From 76,727 to 79,129 
(size 2,402) 

bG1 bG18 bG3 bG30 bG35  
bG37 bG4 bG7 pG1 pG3 pG6 
 
matching bands: 
Low 2,382 high 2,442 
Mean 240+-17  

bG28 bG8 
 
Nearest bands: 
Low 2,499 high 2,529 
Mean 2,514 +-15 
  

BamHI fragment 
 
From 98,690 to 100,771 
(size 2,081) 

None bG8 pG1 
 
Nearest bands: 
Low 2,419 high 2,807 
Mean 2,613+-194 

BamHI fragment  
 
From 135,639 to 137,734 
(size 2,095) 

bG10 bG12 
 
Matching bands: 
Low 2,080 high 2,086 
Mean 2,083+-3 

bG6 bG8 
 
Nearest bands: 
Low 2,332 high 2,807 
Mean 2,570 +-237 

BamHI fragment 
 
From 167,634 to 171,578 
(size 3,944) 

bG10 bG12 bG24 bG37  
bG4 bG5 bG6 
 
Matching bands: 
Low 3,902 high 4,011 
Mean 3952+-38 

bG28 bG7 bG9  
pG3 pG6 
 
Nearest bands: 
Low 3,497 high 4,685 
Mean 4,073+-43 

BamHI fragment 
 
From 200,722 to 202,951 
(size 2,229) 

bG14 bG16 bg24 bg25  
bG28 bG4 bG5 pG6 
 
Matching bands: 
Low 2,189 high 2,244 
Mean 2,223+-17 

bG33 bG8 bG9 
 
Nearest bands: 
Low 2,102 high 2,807 
Mean 2,563 +-326 

BamHI fragment 
 
From 253,216 to 255,322 
(size 2,106) 

bG14 bG16 bG25 bG27 bG39 
bG42 
 
Matching bands: 
Low 2,083 high 2,132 
Mean 2,109+-18 

bG23 bG33 bG8 
 
Nearest bands: 
Low 2,781 high 2,940 
Mean 2,843+-69 

HindIII fragment 
 
From 298,045 to 301,664 
(size 3,619) 

bG14 bG15 bG22 bG25 bG27 
bG32 bG33 bG9 
 
Matching bands:  
Low 3,605 high 3,670 
Mean 3,634+-20 

bG13 bG8 
 
Nearest bands: 
Low 3,500 high 3,521 
Mean 3,510+-10 

HindIII fragment 
 
From 480,807 to 485,169 
(size 4,362) 

None bG19 bG22 
 
Nearest bands: 
Low 4,257 high 4,265 
Mean 4,261+-4 
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4.3.4  Differences Between Physical Mapping and Assembly Validation 
 

Restriction digest fingerprinting has been an effective and useful tool in physical 

map assembly (Riles et al. 1993; Waterston et al. 1993), but there are several critical 

differences between genome mapping and sequence assembly validation.  In physical 

mapping, the problem is to identify overlapping clones by similarity in their digest 

patterns.  The presence of one or more discrepant bands in comparing fingerprints in 

overlapping clones is expected.  Clones are rarely the same length, rarely overlap over 

their full extent, and may be derived from different haplotypes in a heterogeneous 

population.  Fingerprint matching algorithms have been developed that recognize the 

common features of an overlapping pair and ignore the discrepancies.  False positives and 

false negatives in scoring the bands on a gel are readily tolerated.  In physical mapping, 

all comparisons are made between experimental data so the precision of electrophoretic 

analysis is important but the absolute accuracy is not.  Fragments exhibiting anomalous 

migration behavior in gel electrophoresis (Chastain et al. 1995) match reliably as long as 

their anomalous behavior is reproducible. 

The goal in sequence assembly validation is to recognize the possible presence of 

a small number of disparities between the experimentally observed fingerprint and the 

pattern inferred from the sequence. Many rearrangements, such as a segmental inversion, 

will alter only two or three of the fragments in a digest that may contain 50 or more 

bands. Comparisons must be made between experimental data and theoretically derived 

predicted patterns so the absolute accuracy as well as the precision of mass determination 

are important.  False positive and false negative band calls are potentially confounding 
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and could be mistaken for fingerprint disparities resulting from an incorrect sequence 

assembly. 

The difficulty of sequence assembly validation by fingerprint comparison 

increases with the size of the project being analyzed.  There are several reasons for this 

dependence.  As the size of the clone increases, the number of bands in the restriction 

pattern will also increase.  This makes it more likely that matches will occur at random, 

decreasing the information content of a match.  As the number of bands in the pattern 

increases, the number that are expected to deviate from their predicted migration 

behavior also increases.  In a digest with 50 bands, 2 or 3 are expected to deviate from the 

predicted position by P<0.05.  The number of disparities arising from a sequence 

rearrangement is constant while the number of uninformative bands increases.  For all of 

these reasons, the task of assembly validation by fingerprint matching becomes more 

difficult as the size of the project increases.  Trends in high-throughput sequencing are 

moving toward the use of very large insert clones (200kb BACs and YACs).  It is 

important to be aware that experience in assembly validation based on previous 

generations of small (10 kb lambda) to moderate (35 kb cosmid) insert vector systems 

may not be applicable to the case of current BAC or YAC scale projects. 

4.3.5  Alternative Sequence Assembly Validation Techniques 

High Coverage Clone Maps.  To address the problem of experimental sequence 

assembly validation, several methods appear worth exploring.  The first is the use of high 

coverage clone maps assembled from restriction fingerprint data to bin the fingerprint 
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markers by clone content.  For a map with a 5X mean clone coverage, there will, on 

average, be 5 clone ends and 5 clone beginnings in the interval spanned by the 

sequencing project of interest. These endpoints will define 10 intervals.  By comparing 

the fingerprint content of the overlapping clones, it should be possible to assign most 

fragments to a unique interval.  Comparing this binned set of fingerprint markers to the 

digest predicted from the assembled sequence will provide a more powerful test of 

sequence integrity.  This strategy is particularly attractive because the necessary data are 

likely to be available as a result of clone retrieval and mapping work done prior to the 

initiation of sequence analysis.  The strategy needs to be tested in a production setting.  

Phenomena such as restriction site polymorphisms in the clone libraries, errors in 

fingerprint band calling, and uncertainty in the physical map may confound analysis. 

Multiple Complete Digest (MCD) Mapping.  Multiple complete digest (MCD) 

mapping (Gillett 1992; Gillett et al. 1996) is a more demanding physical map assembly 

process that utilizes multiple restriction enzyme digests and complete fragment 

accounting in the physical map assembly.  MCD data should provide a powerful test of 

sequence assembly. Compared to single digest analysis with complete fragment 

accounting, MCD offers two advantages.  Even if it is not possible to uniquely assign all 

fragments of each enzyme digest to unique intervals in an MCD map, a uniquely assigned 

fragment will likely cover every base in the assembled sequence for at least one enzyme 

digest (as we show above).  A single restriction fragment map may be insensitive to some 

rearrangements if the fragment mass pattern for the rearranged sequence fortuitously 

matches the original pattern, but it is very unlikely that this will be the case for all of the 
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enzymes in an MCD data set. MCD mapping requires the analysis of multiple enzyme 

digests for each clone increasing the necessary experimental work by several fold.  

Experimental and analytical studies are needed to determine if the additional work of 

multiple complete digest analysis is warranted. 

Optical Restriction Mapping.  Optical restriction mapping determines both fragment 

mass and order through the use of advanced microscopy technology to visualize the 

digest patterns for individual DNA molecules.  In principle, the technique is ideally 

suited to the problem of assembly validation. Optical mapping is capable of determining 

accurate fragment masses and orders even for large insert clones (Cai et al. 1995) and 

requires very little input DNA, but production scale throughput remains to be 

demonstrated. A second alternative is the use of 2-dimensional gels (Peacock et al. 1985) 

in which the first dimension is a rare cutting enzyme and the second dimension is a 

frequent cutting (4-cutter) digest. The resulting data set is a two-dimensional fingerprint 

for the clone in which each column represents 4-cutter fragments derived from a rare-

cutter fragment.  Comparing the experimental fingerprint with a pattern predicted from 

the sequence would provide a powerful test of assembly validity. While only the 

sequenced clones need be analyzed, 2-D gel analysis is labor intensive, difficult to 

standardize, and difficult to run reproducibly.  

Ordered Shotgun Sequencing (OSS).  Finally, some sequencing strategies, notably 

Ordered Shotgun Sequencing (OSS) (Chen et al. 1993), incorporate high coverage 

intermediate length clone end sequences into the sequence assembly.  The map built from 
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these end pair overlaps serves as an intrinsic verification of assembly fidelity and can be 

used for assembly validation as long as this information has not already been used in 

assembling the project.  Given the high clone coverage (typically 10X) used in OSS 

framework map generation, it should be possible to choose an initial tiling set of lambda 

clones from the framework map and to reserve the remaining lambda end pair 

relationships for assembly validation.  Bootstrap procedures could be used to 

independently verify the validation. 

4.4  Summary of Sequence Assembly Validation 
 

In summary, comparison of experimental restriction digest fingerprints with 

inferred patterns derived from finished sequence data may identify some errors in 

sequence assembly, but high-resolution electrophoretic analysis and accurate scoring of 

bands are necessary.  The problem of assembly validation by fingerprint comparison 

becomes more difficult as the size of the sequencing project increases.  Even with state-

of-the-art experimental technology, it is difficult to exclude the possibility of an 

undetected assembly error such as a large segmental inversion in a BAC-scale sequencing 

project.  In the work presented here, we demonstrate that reliable validation of assembly 

integrity is possible using multiple restriction digests without the necessity of 

constructing a full MCD physical map.   
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Chapter 5  
 
Breakpoint Segmentation 
 

Contained within the DNA of the human genome are many different signals that 

give rise to the genetic blueprint of life.  Once extended regions of human genomic DNA 

are available, compositional analysis on a larger-scale basis can be explored.   One 

approach is to partition a contig according to the frequency of a particular pattern.  

Among the patterns that could be looked for include tandem repeats, single nucleotides, 

dinucleotides, higher order oligonucleotides and isochore regions.   

One pattern of particular interest is the dinucleotide CG, which is can also be 

written as CpG (a cytosine linked to a guanine through a phosphate bond). Regions of 

DNA rich in CpG dinucleotides, also known as CpG islands, are often located upstream 

of the transcription start site in both tissue specific and housekeeping genes. By 

identifying the CpG islands, it is thought that regions of DNA coding for housekeeping or 

tissue-specific genes can be located (Antequera and Bird, 1993) even in the absence of 

transcriptional activity.  

A method we have developed to detect different signals including CpG islands 

involves a heuristic algorithm employing classic changepoint methods and log-likelihood 

statistics.  A comparison to score-based methods (Karlin and Altschul 1990; Karlin 1994) 

is provided.  A Java applet has been created to allow for user interaction and visualization 

of the segmentation resulting from the changepoint analysis.  The model is tested using 
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several sequences obtainable from GenBank  (Benson, et al., 2000), including a 220 Kb 

fragment of human X chromosome from the filanin (FLN) gene to the glucose-6-

phosphate dehydrogenase (G6PD) gene which has been experimentally studied (Rivella, 

et al., 1995; Chen, et al., 1996a). Also examined are sequences from two regions of the 

human X chromosome where subtle CpG islands previously undetected are found. The 

GenBank accession numbers and clone names are L44140 (HUMFLNG6PD), 

AF0033528 (bWXD3), and AF003530 (bWXD42). 

 

5.1  Introduction 
 
Deoxyribonucleic acid, also known as DNA, is the genetic blueprint for life.  

DNA is composed of a linear chain of four nucleotide bases: adenine (A), cytosine (C), 

guanine (G), and thymine (T).  Information is encoded in the genome in independently 

heritable units known as genes.  A gene typically includes control signals that determine 

when it will be active, a promoter which signals where the sequence should be copied 

into DNA, and a protein-coding region.  There are two basic types of genes: 

housekeeping and tissue specific.  Housekeeping genes are genes that are  

transcriptionally  active  (i.e. produce proteins), in cells throughout the body.  Tissue 

specific genes, on the other hand, are transcriptionally active only in certain cells.  

Experimental results suggest that all housekeeping genes and 40% of the tissue specific 

genes in humans have an associated CpG island (Bird, 1993).  It is proposed that by 

locating CpG islands in sequences of vertebrate DNA gene positions can be postulated.  

This section will present characteristics of CpG islands in vertebrates and how they can 
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be distinguished in a statistical fashion.  The methods used can later be extended to 

incorporate segmentation according to other compositions, including tandem repeats and 

higher order oligonucleotides. 

 

5.2  CpG Island Characteristics 
 
Chemically, DNA is composed of nucleoside monomers (“bases”) linked by a 

phosphate from the 3’ hydroxyl of one sugar to the 5’ hydroxyl of the next.  CpG islands 

are regions of DNA high in the dinucleotide composition CG; that is, where a cytosine 

residue (C) is immediately followed by a guanine residue (G).  The existence of CpG 

islands in vertebrates, particularly humans and mice, has been studied (Antequera and 

Bird, 1993; Aissani and Bernardi, 1991; Cross and Bird, 1995; Gardiner, 1996; Macleod, 

et al., 1994).  Aissani and Bernardi (1991) and Bernardi (1993) have studied the location 

of genes in the DNA of vertebrates and have grouped regions of chromosomes into 

isochores based on the nucleotide composition.  It has been determined that both the 

majority of genes (Antequera and Bird, 1993; Gardiner, 1996) and CpG islands 

(Bernardi, 1993; Cross and Bird, 1995) are found on the Giemsa light or reverse bands of 

chromosomes, which are rich in the nucleotides C and G. 

The CpG islands studied so far are mainly located upstream (5') of the gene that 

they are associated with, even though a few are located downstream (3') (Cross and Bird, 

1995).  Chen et al. (1996) discuss this association by examining candidate genes 

occurring within a region of high G + C DNA.  It is possible that CpG islands can be 
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found in a region where no genes have previously been mapped.  This information could 

help in setting up experiments to determine gene location. 

 

5.3  Why CpG Islands can be Statistically Determined 
 

If successive nucleotides in a DNA sequence were independent and identically 

distributed and residues occurred with equal frequency, it would be expected that by 

chance a nucleotide G or C would be observed at any given location 50% of the time. 

However, in genomic DNA, G + C occurs only 40% of the time.  One simple method to 

find interesting regions of DNA would be to look for regions where the observed number 

of G's and the observed number of C's together exceeds 40%. 

Since there are 4 different choices of nucleotides, it is expected that CpG 

dinucleotides will occur once in every 16 positions or 6.25% of the time by chance alone.  

As a result of methylation, CpG occurs at 25% the expected frequency (Bird, 1993).  

Over evolutionary time, this 5' methylcytosine decay has mutated the dinucleotide CpG 

into TpG (CpA on the complementary strand) so that both TpG and CpA are both over 

represented (Bird, 1980).  A technique that Antequera and Bird (1993) use to locate 

possible CpG islands is to look at regions of DNA, at least 200 nucleotides in length, 

where the G + C content is at least 50% and an observed: expected CpG ratio is above 

0.6.  This criterion has also been used with the software package CpG Isle (Larsen et al., 

1992; Lopez, 1995) which characterizes CpG islands from sequences in the EMBL 

database.  (CpG Isle can be obtained from the Internet at the URL 

ftp://ftp.ebi.ac.uk/pub/databases/cpgisle.) 
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CpG islands are also known as HTF islands (HpaII tiny fragments) since they are 

cut by the restriction enzyme HpaII (Cross and Bird, 1995).  Other methods to 

experimentally determine the location of these islands include looking for rare-cutter sites 

and G/C boxes within DNA (Aissani and Bernardi, 1991).  While these locations can be 

found experimentally in a wet lab, they can also be located using string-matching 

algorithms due to their specificity. 

5.4  Algorithm 

5.4.1 Segmentation Algorithm 
 

As previously described, determining CpG island location by using the criterion 

that the G + C content is at least 50% and an observed:expected CpG ratio is above 0.6 

will provide some clues as to where CpG islands will occur.  However, such an approach 

can leave undetected CpG islands.  It is also very specific to human nucleotide 

composition.  A more sequence and organism independent approach is proposed that will 

help to detect even subtle CpG islands.  Our aim is to implement this approach to search 

for other regions of compositional bias. 

The problem can be approached as a classic changepoint problem (Carlin, 

Gelfand, and Smith 1992). Lawrence and Reilly (1985) have proposed changepoint 

methods to determine subsequence conservation within amino acid sequences using 

maximum likelihood estimation. Similar techniques can be used to determine the location 

of the breakpoints according to dinucleotide composition.  The idea is to segment the 

DNA sequence into regions adjacent to one another with different CpG distribution.   
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First Phase: Breakpoint Segmentation.  A heuristic approach involving greedy 

optimization through random sampling has been applied to the changepoint problem in 

order to determine breakpoint locations.  The general idea is to iterate a number of times, 

randomly choosing whether a new breakpoint should be tested, an existing one should be 

moved, or two adjacent regions should be merged.  Each segment is assigned a score 

according to the formula in Equation 5-1. 

 

N
CpGCpG

N
CpGCpGS ln*ln* +=  

 
Equation 5-1: Segment Log-Probability Score. 

 
Here,  is the log probability score, S CpG  is the number of dinucleotides in the segment 

that are not CpG,  is the number of CpG dinucleotides in the segment, and  is the 

total number of dinucleotides in the segment.  Note that 

CpG N

1−= LN  where  is the length of 

the segment in nucleotides.  Table 5-1 indicates the dinucleotide counts for an example 

segment. 

L

Table 5-1: Dinucleotide Counts for the Sequence ACGGTACGCGCGA. 

 

Dinucleotide Counts Dinucleotide Counts

AA 0 GA 1
AC 2 GC 2 

AG 0 GG 1 

AT 0 GT 1 

CA 0 TA 1 

CC 0 TC 0 

CG 4 TG 0 

CT 0 TT 0 
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DNA is typically found in a double stranded conformation where one strand is 

complementary to the other and running in the opposite direction.  Since it may not be 

known which strand the gene is transcribed from, both strands should be searched for 

dinucleotides.  A nice property of the CpG dinucleotide is that its complement is the 

dinucleotide GpC. For the sequence ACGGTACGCGCGA, its complement is 

TGCCATGCGCGCT.  The location of CpG islands in the complement should be looked 

for in the reverse direction due to the orientation.  The CpG islands are as follows: 

 
5’ ---- ACGGTACGCGCGA ---- 3’ 
3’ ---- TGCCATGCGCGCT ---- 5’ 

 
Note that the locations of CpG islands in both strands are identical.  Thus, it is 

only necessary to search one strand for the location of CpG islands. 

In order to determine whether or not a given breakpoint is significant, consider the 

diagram in Figure 5-1. The threshold needs to be chosen in such a way as to ensure that 

all possible breakpoints are found, yet that no false breakpoints will result.  It has been 

empirically determined that threshold values between 15 and 20 work best.  It is also 

possible that the segmentation can over segment a CpG island.  To overcome this 

problem, a post-processing step is invoked. 
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Figure 5-1.  Breakpoint Segment Example.  Let Ascore = S for segment A, Bscore = S for segment B, and 
Cscore = S for segment A+B where S can be calculated using Equation 5-1.  If Ascore +Bscore > Cscore + 
Threshold, then it is significant and a new breakpoint should be inserted at the location separating segments 
A and B. 

Second Phase: Post Processing.  The purpose of the post-processing step is to further 

refine the boundaries of the segments found in the breakpoint segmentation phase.  This 

can be accomplished in one of two ways.  The first method is to merge segments together 

using a lower threshold value.  The second method is to determine if two adjacent 

segments should be merged by determining if they are both above or both below the 

expected dinucleotide content based on the composition of the DNA sequence being 

studied.  This in effect reverts back to the previous method of testing an 

observed:expected CpG ratio.  Since this is done as a post-processing step, subtle islands 

will not be missed.  By processing the breakpoints in this manner, false positives and 

fractionation of segments can be eliminated without loss of the true positives. 
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5.4.2  Generalization of the CpG Detection Algorithm 
 

Location of CpG islands is only one application of the segmentation algorithm.  

Equation 5-1 can be easily changed to allow the user to determine breakpoints in other 

biologically significant locations.  The user is given the option of finding breakpoints 

according to the C + G content (for the purpose of isolating isochores), mononucleotide 

content, purine/pyrimidine content (for structural purposes), and dinucleotide content.  

Equation 5-2 shows a generalization of Equation 5-1. 

 

i

K

i
i FCS ln*

1
∑
=

=  

Equation 5-2: Generalized Log-Probability Score. 

 
Here, K is the number of different compositions to segment by, is the count of items in 

the segment of composition i  and is the frequency of items in the segment of 

composition i . 

iC

iF

5.5  Implementation 

5.5.1  Java Applet Interface 
 

A Java applet interface has been developed using Sun's JDK 1.1.1.  It can be run 

using any Java-enabled browser at the URL http://www.ibc.wustl.edu/~ecr/CPG/ 

segment.html.  The purpose of the interface is to allow the user to input a nucleotide 

sequence in fasta format and then segment it into significant pieces based on the various 

compositions, the default of which is CpG islands.   
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Figure 5-2: Sequence Fragmentation Interface.  Sequences can be entered either through cut/paste 
methods, a URL pointing to a valid FASTA file, or by Genbank identification number. 

 

The results will be returned graphically to the user who can then analyze them 

interactively. 

Two frames should initially appear when the applet is run.  The first frame is the 

Sequence Fragmentation Interface frame (see Figure 5-2) which is the main user 

interface.  The second frame is the Status and  Message  Frame  where  error  messages   

will   be displayed as they occur.  Other messages will also appear in this frame in order 

to inform the user of the status of the breakpoint segmentation. 

Segment Composition.  Clicking on an “Advanced Settings” menu, going to the 

“Segmentation Criteria” submenu, and clicking on the desired composition can change 

the criterion used for segmentation.  There are currently five different compositions that 
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can be used for segmentation criteria: mononucleotide, dinucleotide, CpG dinucleotide, 

purine/pyrimidine, and isochore (C+G) content. 

Fasta Sequence File.  The interface allows the user to input a DNA sequence in fasta 

format in one of three ways.  One method is to input the sequence in a cut and paste 

fashion.  A second method is to enter in a URL that points to a valid fasta file.  The third 

method is to enter in the GenBank id number of a sequence.   

Regardless of which method is chosen, a valid fasta file must be present.  Fasta 

file format specifies that the first line begins with a ‘>’ followed by the GSDB sequence 

accession number, the International Collaboration accession number, and a sequence 

description.  The sequence follows the one line header.  For the purposes of this 

segmentation program, it is only required that the first line begins with a ‘>’.  Valid 

nucleotide characters of the sequence should follow the standard IUB/IUPAC nucleic 

acid codes as seen in Table 5-2 (Corhish-Bowden, 1984).  Note that the case of the 

characters can be mixed.  In addition, spaces, tabs, and carriage returns are valid 

characters that will be stripped out prior to segmentation.  

Note for the segmentation program, U will be converted to T, and anything 

besides A, C, G, or T will get set randomly according to the codes in Table 5-2.  If an 

invalid FASTA file is present, an error message will be displayed. 

Minimum Threshold. The minimum threshold parameter allows the segmentation 

program to tell when segmentation should occur due to two segments being significantly 

different. If not enough breakpoints are appearing, lowering the threshold should 

introduce more. If too many breakpoints are appearing, then raise the threshold. A default 
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value of 20 generally produces acceptable results. The user can change this value by 

changing the text box located to the right of the "Minimum Threshold" label. Note that 

this value is a real number. 

Table 5-2: IUB/IUPAC Nucleic Acid Codes. 

 
Symbol Representation  Symbol Representation 

A Adenine  M A C (amino) 
C Cytosine  S G C (strong) 
G Guanine  W A T (weak) 
T Thymine  B G T C 
U Uridine  D G A T 
R G A (purine)  H A C T 
Y C T (pyrimidine)  V G C A 
K G T (keto)  N A G C T (any) 

 

Minimum Sequence Length.  The minimum sequence length parameter refers to the 

minimum number of nucleotides that must be present in a segment. This parameter has 

been introduced, because without it, over segmentation becomes a problem. A default 

value of 100 is set. Updating the text box located to the right of the “Minimum Sequence 

Length” label can change this. 

Post-processing.  There is an additional post-processing parameter that can be set under 

the "Advanced Settings" menu. By checking the post-processing parameter, the 

segmentation program will attempt to merge breakpoints back together to form the most 

optimal results. This option is turned off by default. 

5.5.2  Interpretation of the Results 
 

Once the breakpoint segmentation has occurred, two windows will pop up.  One 

window indicates “Breakpoint Statistics” (Figure 5-3) while the other is a “Choices” 
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frame (Figure 5-4).  The window in Figure 5-3 contains information on the nucleotide 

and possibly dinucleotide composition for each of the segments, as well as their 

beginning and ending points, their length, and the logP value. Included as well are C + G  

composition,   purine   composition,   and pyrimidine composition statistics for each of 

the segments. The title of the frame indicates the composition criteria for segmentation. 

In this case, segmentation is based on CpG content.  When looking at the table of 

dinucleotide composition, the column labels refer to the first nucleotide and the row 

labels refer to the second nucleotide. 

By clicking on any of the buttons in the Choices Frame as shown in Figure 5-4, a 

graph will appear showing the content of the nucleotide(s) or dinucleotide(s) indicated on 

the button labels. Color-codes for the graphs are defined in Table 5-3. Note that when  

 

 
 
Figure 5-3: Breakpoint Statistics Frame. Statistics include beginning and ending points for the segment, 
the segment length, the logP score for the segment, and various frequencies.  For the dinucleotide 
frequencies, the column label refers to the first nucleotide and the row label refers to the second nucleotide. 

  



85   

 

Figure 5-4: Choices Frame.  Clicking on any of these buttons will cause a graph to appear showing the 
content of the indicated nucleotide(s) or dinucleotide(s). 

 

Table 5-3: Nucleotide Color Codes. 

 
  Adenine Green 
Cytosine Blue 

  Guanine Black 
Thymine Red 

 All Others Purple 
 
 
multiple dinucleotides are shown together, the color corresponds to the second 

nucleotide. 

Figure 5-5 shows all of the breakpoints, which are indicated by the vertical dark 

blue lines. In this case, the breakpoints were determined according to CpG content. Note 

that the graphs are based on a running average over a specified window size. Editing the 

text to the right of the “Widow Size” label can change the window size. The graph will 

change according to the new window size once the "Redraw" button is pressed. The 

breakpoints might shift slightly to follow this window. If the graphs appear too cluttered, 

it would be best to increment the window size.  
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Figure 5-5:  Mononucleotide Content using CpG Segmentation. Breakpoints are indicated by the dark 
blue vertical lines.  The four lines in the graphs represent a running average of the frequency of the four 
nucleotides. 

 
Located directly to the right of each of the graphs is an "Edit" choice button. By 

clicking on this button, a blue background will appear on the associated graph. The user 

can then select a specific portion of the graph by either clicking or  dragging  the  mouse  

to  the  desired location. Once the desired area is covered, the user can press the 

associated zoom button to zoom in on this region of the graph. 

Figure 5-6 shows an example of a zoomed in portion of a graph. The resulting 

zoom graph is very similar to the previous graphs. There are two main differences. The 

first is that when only a single composition is to be displayed, there will be blue tick 

marks underneath the graph indicating where it occurs within the sequence. The second 

difference is that there is a "View Sequence" button. By pressing this button, the 

nucleotide sequence will be displayed in a frame as shown in Figure 5-7. 
  



87   

 
 

 
Figure 5-6: Zoom Graph of CpG Content.  The blue tick marks underneath the graph indicates the 
occurrence of an item of a particular composition (in this case, CG dinucleotide.) 

 

 
Figure 5-7: Nucleotide Sequence Frame. 

5.5.3  Implementation Issues 
 

Due to the limitations of Java security, a client/server application is used in order 

to retrieve sequences from remote locations and to run the segmentation algorithm.  Once 

the user has entered in the desired parameters in the client side applet, the parameters are 

sent to the server side executable.  The server is responsible for taking in the parameters, 

retrieving the DNA sequence, and segmenting the sequence according to the provided 

parameters.  Once the segmentation is finished, the server sends the results back to the 
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client where they can be viewed graphically.  All of the communication takes place 

through the use of sockets.   

5.5.4  Code Statistics 
 

For the client side Java applet, there are currently twenty-one different classes 

containing a total of 2104 lines of code.  The server side consists of a single Java class 

that is 48 lines long and a C program that has 435 lines of code.  The segmentation 

routines, written in C, take up six files containing a total of 943 lines of code.  

Performing the actual segmentation in Java has been attempted, but is not feasible 

due to the nature of Java as an interpreted language.  The bottleneck in the process is in 

I/O.  Table 5-4 shows the runtime comparisons of the Java segmentation program versus 

the standalone executable created from compilation of C code.  Testing was performed 

using a 55 MHz HyperSparc as the web server.  The client side was run on a 200 MHz 

Pentium Pro machine.  This data indicates that the Java interface slows down processing 

by a factor of 10.    

Table 5-4: Average Runtime Comparisons on a 55 MHz HyperSparc Web Server and 200 MHz 
Pentium Pro Client. 

 
Length 

(in Nucleotides) 
JAVA 

Sequence 
Retrieval Time 

JAVA 
Segmentation 

Time 

Total JAVA 
Time 

Standalone 
Segmentation 

Time 
5828 17.3 Seconds 4.3 Seconds 21.6 Seconds 1.06 Seconds 

93964 19.4 Seconds 9.3 Seconds 28.8 Seconds 2.33 Seconds 
219446 36.0 Seconds 30.5 Seconds 66.5 Seconds 3.66 Seconds 
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5.6  Results 

5.6.1  Human Xq28 Region 
 

Figure 5-8 shows the breakpoint locations calculated within a sequence in the 

human Xq28 chromosomal region.   The default parameters are used with the exception 

of the post-processing step being allowed.  The location of breakpoints found is 

consistent with the results found by Chen, et al. (1996). Our segmentation routine finds 

all of the CpG islands postulated.  An additional CpG island is found between bases 

201,861 and 203,041.  The implications of this additional CpG island are discussed in 

Figure 5-8. 

 

5.6.2  Human bWXD3 Region  
 

A subtle CpG island that cannot be picked out by the more traditional methods is 

shown in Figure 5-9 for the bWXD3 region of the X chromosome.  The minimum 

nucleotide length required for a segment is increased to 150.  All other parameters take 

on their default values.   Two CpG islands are postulated using these parameters.  There 

is an exon located between bases 68,432 and 68,633 associated with the 3’ end of the 

EDA gene.  The first postulated CpG island is located between bases 85,472 and 85,727. 

This indicates that it is a good candidate located upstream of an exon associated with a 

gene.  The second detected CpG island may indicate that there is another exon within this 

region.  A discussion of predicted exons is included in Figure 5-9. 
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Figure 5-8: CpG Segmentation for Human Xq28 Chromosomal Region.  Default parameters are used.  
All seventeen of the CpG islands postulated by Chen, et al. (1996) are located.  An additional CpG island is 
found as well between bases 201, 861 and 203, 041.  GenScan (Burge and Karlin, 1997) and Grail (Guan, 
et al., 1992) do not predict any exons in the ‘+’  strand in the region of the additional CpG island, while 
GeneID (Guigo, et al., 1992) predicts one.  The additional CpG island partially covers exons in the 3’ end 
of the glucose-6-phosphate dehydrogenase gene (E.Y. Chen, et al., 1991) on the ‘-‘ strand, which has exons 
spanning from bases 201,336 to 217,196. 

 
 

  

Figure 5-9: CpG Segmentation Results for bWXD3.  A minimum nucleotide length is set to 150.  All 
other parameters are set according to their default values.  Two CpG islands are postulated.  An exon 
associated with the 3’ end of the EDA gene is located between bases 68,432 and 68,633, indicating that the 
5’ end of this gene might be closer to one of the two postulated CpG islands. The two CpG Islands are 
located between positions 85,501-85,733 and 90,856-91,133.   Grail and GenScan both predict and exon 
from locations 84,012-84,045.  Such an exon could be associated with the first CpG island.  GenScan 
predicts an additional exon between locations 93,433-93,592 that may be associated with the second CpG 
island. 
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5.6.3  Human bWXD42 Region 
 

Figure 5-10 shows the results for the bWXD42 region of the X chromosome that 

has a hint of a subtle CpG island.  There is a cdx4 gene in this region with exons 

extending between bases 43,025 (3’ end) and 50,304(5’ end).  Using the breakpoint 

segmentation program with a minimum threshold of 24 and default values for all of the 

other parameters, a single CpG island is located between bases 48,716 and 50,710.  This 

indicates that that CpG island is actually located in the 5’ end  of  the gene. More 

research will be pursued to determine the association between CpG island location and  

 
 

Figure 5-10: CpG Segmentation Results for bWXD42.  There is a cdx4 gene in this region on the ‘-’ 
strand with exons extending between bases 43025 (3’ end) and 50304 (5’ end).  A minimum threshold of 
24 and default values for all other parameters is used.  The postulated CpG island is located in the 5’ end of 
the cdx4 gene. 
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the 5’ end of genes.  The sequences for the bWXD3 and bWXD42 regions have been 

shared by the Washington University Medical School Center for Genetics in Medicine 

(CGM, 1997). 

 

5.7  Comparison to Score-based Methods 
 

As a testing measure, a program incorporating a score-based method (Karlin and 

Altschul, 1990; Karlin, 1994) to detect CpG islands was created.  Traditional scoring 

criterion was used.  In order for a region to be considered a CpG island, the C+G content 

must be at least 50% and an observed:expected CpG ratio for that region must be above 

0.6. 

For the Xq28 region (as discussed in Figure 5-8), the score-based method finds all 

eighteen candidate CpG islands that our algorithm finds.  There are also five additional 

candidate CpG islands postulated by the score-based method.  Upon further examination, 

one of the additional CpG islands results from the splitting of one of our CpG islands.  

The other four additional candidates actually lie within the coding region of genes. Three 

of them are contained within the FLN gene, and one within the 2-19 gene, as discussed 

by E.Y. Chen, et al, (1996).  Since we are only interested in the CpG islands that signal 

genes, the results indicate that score-based methods using the traditional criterion are 

actually over-sensitive to high C+G regions while our algorithm produces the expected 

results.  
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The score-based method picks out a CpG island between bases 49,645 and 50,564 

for the bWXD42 sequence (as discussed in Figure 5-9).  This is consistent with the 

results of our algorithm. 

There are no possible CpG islands for the bWXD3 region (as discussed in Figure 

5-10) according to the results of the score-based method.  This deviates from the results 

of our algorithm that proposes two subtle CpG islands. 

In order to give the score-based approach a more fair evaluation, we took the 

resulting CpG frequencies found in the CpG islands using the traditional criterion as the 

expected value of CpG frequency within CpG islands.  We also disregarded the condition 

that a CpG island must have a C+G content at least 50%.  The results for both bWXD42 

and bWXD3 are consistent with the previous score-based results.  For the Xq28 region, 

more postulated CpG islands are found.  As with the previous score-based method, all of 

these CpG islands either result from the splitting of previously postulated CpG islands, or 

they are located within the coding regions of genes.  

These comparisons indicate that our approach can produce more useful results 

than score-based approaches.  The score-based approaches modeled here indicate a 

decrease in specificity without increasing sensitivity when compared to our approach.  As 

a result, score-based methods do not have the ability to detect subtle CpG islands given 

the traditional segmentation criterion. 
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5.8  Discussion 
 

In addition to the detection of CpG islands, it would be interesting to determine if 

there are any conserved sequence signals in either the beginning or end of the CpG 

islands that could lead to the conservation of CpG islands over the course of evolution.  

Gibbs Sampling (Lawrence, et al., 1993) and other similar motif identification programs 

could be used in this analysis.  Other analyses could be performed in order to determine 

other conserved characteristics of CpG islands, including length, total CpG content and 

locations relative to the 5' start exons of genes.   

There is room to improve the segmentation process.  One area is to make a more 

accurate post-processing procedure to merge breakpoints without losing minor islands.  

Hopefully this would reduce false positives.   Analytical methods to determine segments 

taking segment length into account could be explored.  Perhaps such a method will 

eliminate the need for a post-processing step. 

The goal with the segmentation algorithm is to be able to develop an automatic 

method to annotate databases with added CpG island information.  Hopefully this will 

add insight into the location of genes.  While testing out the capabilities of this algorithm, 

it will be possible to assimilate a database of CpG islands more extensive than anything 

else currently available by looking at the human genomic contigs I have assembled.  

Discussion of CpG islands has traditionally been limited to vertebrates.  A 

comparison of homologous regions of DNA in mice and humans is possible.  Through 

such a study, it can be determined which islands are conserved and which are lost.  Future 

studies could also include analysis of other organisms including S. cerevisiae and C. 
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elegans to determine if they have subtle CpG islands.  Traditional methods suggest they 

do not. 

The analysis performed so far suggests that there are at least 3 classifications of 

CpG islands: those having gradual signals, those having sharp left-handed signals, and 

those having sharp right-handed signals.  A method using Kolmogorov-Smirnov testing 

(Lilliefors, 1967) could be explored in an attempt to classify CpG islands. 

Segmentation can be applied to other sequence problems in addition to CpG 

island detection.  The segmentation algorithm could be improved by allowing for the 

detection of other forms of compositional bias, introduction of higher-order oligomers, 

repeat sequences, and searching through amino acid sequences in addition to nucleic acid 

sequences. 

Isochores are relatively large regions of DNA which are compositionally 

homogeneous in their C+G content.  Isochores have been studied and classified 

extensively before high throughput human genomic sequence was available (Bernardi, 

1993.)  There are four main classes of isochores that have been classified based on 

density gradient centrifugation.  Now that large amounts of sequence data is available, 

segmenting the genome into isochore regions according to sequence can be accomplished 

and compared to the earlier results. 

The current Java 1.1 implementation could be updated to Java 1.2.  Hopefully a 

newer implementation would lead to faster speed and greater flexibility while 

maintaining a high degree of available user interaction.  A newer version could include 

enhanced features, such as reading in complete GenBank records. This would allow the 
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user to view additional features such as predicted and experimental gene locations as well 

as EST homologies. 
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Chapter 6  
 
Compositional Analysis of Homogeneous Regions 
in Human Genomic DNA 
 

Due to the increased production of human DNA sequence, it is now possible to 

explore and understand human genomic organization at the sequence level.  In particular, 

we have studied one of the major organizational components of vertebrate genome 

organization previously described as isochores (Bernardi, 1993), which are 

compositionally homogeneous DNA segments based on G+C content.  We have 

examined sequence data for the existence of compositionally differing regions and report 

that while compositionally homogeneous regions are present in the human genome, 

current isochore classification schemes are too broad for sequence-level data. 

6.1 Introduction 
 

It has been proposed that vertebrate genomes, including human, are made up of 

compositionally homogeneous DNA segments based on G+C content (Bernardi, 1993).  

These regions, known as isochores, have been studied experimentally using density 

gradient centrifugation on mechanically sheared DNA in the range of 50-100 kb 

(Bernardi, 1993) since their discovery in the late '70s (Macaya, Thiery and Bernardi, 

1976).  Isochores are biologically interesting due to the association between increasing 
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G+C content and high gene density (Mouchiroud, et al., 1991; Gardiner, 1996; Zoubiak, 

Clay and Bernardi, 1996).   

According to Bernardi's theories, there are five families of isochores, each having 

a different level of cytosine and guanine (C and G, respectively) as described in Table 6-

1.  There are two G+C-poor isochore families L1 and L2 that make up approximately 

60% of the human genome.  The isochore family L1 is defined to be regions 

corresponding to less than 37% G+C content; L2 is defined to be regions containing 

between 37% and 41% G+C.  The isochore family H1 forms 24% of the human genome 

and corresponds to regions between 41% and 46% G+C.  The other G+C rich isochore 

family H2 forms 7.5% of the human genome and corresponds to those regions containing 

between 46% and 53% G+C.  The final isochore family, H3, forms almost 5% of the 

genome and corresponds to those very G+C rich regions which are greater than 53% 

G+C.  Since the overall composition of the human genome is approximately 60% AT and 

40% G+C, the L1 and L2 families correspond to isochore regions containing less than 

average G+C content while the H1, H2, and H3 families correspond to isochore regions 

containing higher than average G+C content. The availability of human genomic 

sequence makes it possible to explore and understand human DNA composition at a 

sequence level.  We attempted to correlate Bernardi's isochore family definition to 

sequence data. 
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Table 6-1: Isochore Classifications.  This table indicates the GC ranges for the five isochore family classification 
as defined by Bernardi (2000). The remaining 3.8% of human genomic DNA corresponds to satellite repeats and 
ribosomal sequences (Bernardi , 2000).    ANote that the L1 and L2 isochore classes together represent 60 percent of the 
human genome.  
  

Isochore  Percent 
Class Range of Genome

L1 0-37% GC 
L2 37-41% GC 60A 

H1 41-46% GC 24 
H2 46-53% GC 7.5 
H3 53-100% GC 4.7 

 

6.2 Methods 
 

6.2.1 Analyzing Homogeneous Segments 
 

In order to study the validity of Bernardi's definitions on a sequence level and to 

examine more properties of the homogeneous regions found in human sequence data, we 

took the contig sequences for each chromosome available in the April 2001 release of 

UCSC's Goldenpath (Kent and Haussler, 2001). For each of these chromosomes, we 

examined the effect of varying the fragment size.  This was accomplished by segmenting 

each chromosome into all possible fragments of 1 kb, 5 kb, 10 kb, 20 kb, 50 kb, 75 kb 

and 100 kb. For each fragment size, there are 101 possible bins into which each fragment 

could be placed.  Each bin represents a G+C percentage, from 0 to 100.  We calculated 

the G+C percentage for each fragment, and then increased the total counts for the 

appropriate bin.  The histograms were compared to determine the effect of variable 

fragment size and compositional variation from one chromosome to another.  Chi-

squared analysis was applied in order to compare the G+C distributions among the 

chromosomes.  In addition, we calculated the frequency of the dinucleotide CG within 
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each bin in order to test whether or not a correlation exists between G+C content and the 

occurrence of CpG dinucleotides. 

An attempt to validate Bernardi's classifications was made by calculating where 

isochore boundaries should be based on the percentage of the genome that belongs to 

each of his classifications.  This was accomplished by calculating which histogram bin 

represents the first 60% of the genome, the next 24%, the next 7.5%, and the next 4.7%. 

6.2.2 Sequence Homogeneity 
 

The term "isochore" implies a level of high sequence homogeneity.  In order to 

test the validity of this point, we examined 80 different contigs greater than 10 MB in 

length available through the August 2001 Goldenpath human genome assembly (Kent 

and Haussler, 2001).  The total sequence length of these contigs is over 2 GB in length, 

representing nearly 2/3 of the human genome.  At 1 KB intervals, we calculated the G+C 

percentage for a surrounding 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, 1 MB and 3 MB 

window.  The variation in the G+C content was calculated and reported.  In addition, 

random sequences were generated corresponding to the lengths of each of the contigs 

with the following frequencies: A = 0.30, C = 0.20, G = 0.20 and T = 0.30.  The same 

tests in variation were tested for the randomized sequences.   
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6.3 Results 
 

6.3.1 Isochore Classifications 
 

Chi-squared analysis was performed on the seven different window sizes (1 kb, 5 

kb, 10 kb, 20 kb, 50 kb, 75 kb and 100 kb) for each chromosome in a pair-wise fashion.  

In each case, the null hypothesis that the distributions of G+C fragments are independent 

of the window size can be rejected (results not shown).  Thus, the isochore classification 

schemes are highly dependent on the fragment sizes being studied.  In the case of the 

five-class system, the results were skewed towards fragments in the range of 50 kb to 100 

kb due to the use of density gradient centrifugation.  Figure 6-1 graphically illustrates a  

 
 
Figure 6-1: Chromosome 19 G+C Histograms. Shown in this figure from top left to bottom right are the 
resulting C+G histograms for chromosome 19 (extracted from the Goldenpath April 2001 release) using 5kb, 10kb, 
20kb, 50kb, 75kb, and 100kb fragments.  This graph illustrates that the distribution of C+G within a particular 
chromosome is dependent on the fragment sizes that are used. 
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dependence on window size with chromosome 19.  By looking at this figure, it can be 

seen that when a smaller fragment size (5 kb) was used when studying chromosome 19, a 

unimodal distribution of G+C fragments is observed.  When the window size was 

increased (50 kb - 100 kb), a bimodal distribution of G+C fragments can be seen.   

In order to determine whether or not G+C content distribution is chromosome 

specific, Chi-squared analysis was performed (results not shown).  The distributions of 

G+C fragments using 75 kb windows was compared for each pair of chromosomes.  The 

null hypothesis that the G+C content distribution of any two given chromosomes is 

similar was rejected, no matter which two chromosomes were compared.  Displayed in 

 

 
 

Figure 6-2: Chromosomal Histograms for 75 kb Fragments.   Shown in this figure are the resulting G+C 
histograms for the following chromosomes: Row 1: (left to right): 1, 3, 7, 9.  Row 2: 11, 13, 14, 16.  Row 3: 19, 22, X, 
ALL.  The X-axis represents the G+C content, and the Y-axis represents the percentage of fragments falling within a 
given G+C content.  These histograms were created using the April 2001 Goldenpath release (http://genome.ucsc.edu). 
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figure 6-2 is the distribution of G+C fragments using a 75 kb window for eleven different 

chromosomes and the genome as a whole.  As this figure shows, there are vast 

differences in the G+C fragment distribution among chromosomes.  Some chromosomes, 

such as 1 and X, appear to have a distinct unimodal distribution of fragments at the 75 kb  

window level.  Other chromosomes, such as 9, 11 and 19 seem to have distinct bimodal 

distributions in the G+C fragments.  However, in none of the cases were there more than 

two distinct peaks in the distribution of G+C fragments.  Our results show the difficulty 

of defining isochore boundaries based on sequence data alone.  We do see, however, that 

there does appear to be two distinct isochores that were observable: the majority that are 

in low G+C, and those that are high in G+C.  Further division of these two major groups 

based on sequence data appears to be a difficult, if not impossible, task.  

According to the density gradient centrifugation experiments performed by 

Bernardi, 60% of the human genome falls into an L1+L2 isochore classification, 24% is 

H1, 7.5% is H2, and 4.7% is H3.  Table 6-2 was created using these guidelines to split the 

histograms for 75 kb fragments for the various chromosomes into densities of 60%, 84%, 

and 91.5%, which would theoretically find the isochore boundaries.  Not surprisingly, we 

see that when all of the chromosomal data was inspected, 60% of the histograms lie at 

43% G+C or less, which is just above the cutoff for the L2-H1 isochore boundaries.  84% 

of the histograms lie at 48% G+C or less, which is just above the cutoff for H1-H2 

isochores.  91.5% of the histograms lie at 51% G+C, or slightly less than the H2-H3 

isochore cutoff of 53% G+C.  However, Table 6-2 also shows that these cutoffs do not  
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Table 6-2: Boundary Locations Based on Total Percent of all Fragments.  Shown in column 1 is the 
chromosome label.  Column 2 indicates the breakpoint where 60% of all 75 kb fragments for the given chromosome 
lie.  Column 3 indicates the breakpoint under which 84% of all 75kb fragments lie.  Column 4 indicates the breakpoint 
under which 91.5% of all 75 kb fragments lie.  Note that the breakpoints of 60%, 84%, and 91.5% indicate breakpoints 
for the defined isochore classes L2-H1, H1-H2, and H2-H3 (Bernardi, 2000). 

 
Isochore Boundary locations based on total percent of all fragments 

 
Chromosome 60% of all fragments 84% of all fragments 91.5% of all 

fragments 
 L2-H1 Boundary H1-H2 Boundary H2-H3 Boundary 

BERNARDI 42% G+C 47% G+C 53% G+C 
1 44% G+C 49% G+C 51% G+C 
2 44% G+C 47% G+C 49% G+C 
3 41% G+C 47% G+C 49%G+C 
4 40% G+C 43% G+C 45% G+C 
5 41% G+C 44% G+C 46% G+C 
6 39% G+C 43% G+C 45% G+C 
7 46% G+C 51%G+C 52% G+C 
8 42% G+C 45% G+C 49% G+C 
9 47% G+C 53% G+C 54% G+C 

10 44% G+C 48% G+C 49% G+C 
11 46% G+C 52% G+C 55% G+C 
12 44% G+C 48% G+C 50% G+C 
13 41% G+C 44% G+C 47% G+C 
14 43% G+C 51% G+C 55% G+C 
15 43% G+C 46% G+C 47% G+C 
16 47% G+C 51% G+C 55% G+C 
17 49% G+C 52% G+C 54% G+C 
18 41% G+C 44% G+C 46% G+C 
19 51% G+C 54% G+C 55% G+C 
20 47% G+C 50% G+C 53% G+C 
21 50% G+C 55% G+C 56% G+C 
22 50% G+C 54% G+C 56% G+C 
X 40% G+C 43% G+C 45% G+C 
Y 39% G+C 42% G+C 43% G+C 

ALL 43% G+C 48% G+C 51% G+C 
correlate with isochore boundaries for all chromosomes.  Some chromosomes, such as 

chromosomes 9, 11, 14, 16, 17, 19, 21 and 22 have more fragments that are G+C rich, 

while other chromosomes such as 4, 5, 6, 13, 18, X and Y have more fragments that are 

G+C poor.  These results suggest that calculating the isochore boundaries based on the 

fragment density is not valid when applied to individual chromosomes. 
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6.3.2 Sequence Homogeneity 
 

Figure 6-3(A) illustrates the distribution of standard deviations in G+C content for 

every 1000th base in both the randomly generated contigs and Goldenpath contigs greater 

than 10 MB in length.  The mean was computed by calculating the G+C content for 

windows of 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, 1 MB and 3 MB.  As figure 6-3(A) 

shows, the distribution of standard deviations for the random sequence is much tighter 

and closer to zero than the distribution of standard deviations for the actual human 

sequence.  Figure 6-3(B) shows the calculated cumulative percentage of standard 

deviations.  Examination of this data indicates that in random sequence data, 50% of the 

points examined have a standard deviation in G+C content of ± 0.4%, while for the real 

sequence data this number is ± 1.8%.  75% of all random points have a standard deviation 

of ± 0.7% or less, while this number grows to ± 2.6% in the real sequence data.  95% of 

all random fragments have a standard deviation of ± 1.2%.  This number grows to ± 4.5% 

in the real sequence.  In fact, only 24% of all real sequence data had a standard deviation 

of ± 1.2% or less.  These results indicate that the human genome is much more 

heterogeneous than the theories of Bernardi (1993) lead one to believe. 

6.4 Discussion 
 

In order to understand the concept of a 5-class isochore system as proposed by 

Bernardi, it is important to revisit the experimental procedures performed over 25 years 

ago.  In the article where isochores were first described (Cuny et al., 1981), human 

genomic DNA was found to be fractionated into five major components using CsCl 
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Figure 6-3: Distribution of Standard Deviations from a Mean G+C Content.  Shown in A) is the count 
of each standard deviation calculated for every 1000th base in human and randomized contigs using window 
sizes of 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, 1 MB and 3 MB.  B) shows the cumulative percentage of 
standard deviations from figure 3 falling under a certain percentage. 
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density profiles.  Each component represents a set of DNA segments that sediments 

differently based on different buoyant densities.  The results presented are based on 

earlier analyses of the composition of eukaryotic genomes (Thiery, Macaya and Bernardi, 

1976).  Thiery et al. (1976) looked at the separation of human DNA using thirteen 

different density gradients.  What results are thirteen different Gaussian distributions of 

absorbance, each representing a different distribution of genomic DNA based on G+C 

content.  Three main observations of the experimental work are discussed.   

First of all, the decision to choose five major components (later given the label 

“isochores” by Cuny, et al., 1981) seems somewhat arbitrary.  In fact, examination of 

Figure 1 of Thiery, et al. (1976) indicates that any of the thirteen different results could 

have been chosen as major components.  In addition, if more than thirteen different 

density gradients were examined, a different distribution of major components could 

potentially result. 

The second critique is that the Gaussian distributions resulting for each of the 

labeled major components are overlapping.  This means, for instance, that a fragment of 

human genomic DNA containing an average G+C content of 47% could potentially wind 

up belonging to multiple major components, or isochore families.  This is a major 

problem when looking at a sequence level comparison.  It is a necessary requirement that 

each individual sequence fragment be assigned to a single classification, or at most, 

belong to an unknown area between two breakpoints. 

The final critique is that density gradient centrifugation experiments can only 

allow for the fractionation of DNA based on the overall G+C content of any segment.  It 
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does not seem to be in any way possible to determine the homogeneity.  In fact, the only 

means by which homogeneity can be discerned is by looking at finished sequence data. 

The density gradient centrifugation experiments are important in that they indicate 

that there are larger regions of the human genome with a conserved low or high G+C 

content.  However, the previous school of thought of a five-class isochore system for the 

human genome with strict boundaries appears to be out-of-date in light of the availability 

of sequence data. 

Our results have shown the difficulty of defining isochore boundaries based solely 

on sequence data.  This is supported by failed attempts of window-based sequence 

segmentation resulting in arguments against strict definitions of isochore classes (IHGSC, 

2001; Nekrutenko and Li, 2000; Häring and Kypr, 2001).  We do see, however, that there 

does appear to be two different classes of isochores that can be observed: the majority 

that are low in G+C, and those that are high in G+C.  Further breakdown of these two 

major groups based on the sequence data appears to be a difficult task. 
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Chapter 7   
 
Accounting for Regions of High and Low G+C 
Content Found in Human Genomic DNA  
 

The increased availability of finished human genomic sequence data has made it 

possible to analyze human genomic organization at the sequence level.  Examination of 

sequence data indicated regions of high and low G+C content exist within the human 

genome.  Different hypotheses were presented examining why these regions are present 

in the human genome, including the widely studied hypotheses that these regions are 

maintained in the human genome via various mechanisms.  Preliminary tests of one of 

these hypotheses strongly suggested high and low G+C regions have not been maintained 

by the presence of repetitive elements with a high or low G+C content within them.  

Examination of a mutational hypothesis supports the conclusion that compositional 

mutation biases influenced the evolution of the human genome.  However, the observed 

mutation biases did not seem to have maintained the regions of high G+C content.  

Rather, preliminary results indicated different substitution rates were in effect in different 

regions of the genome.  This led to a detailed examination of a separate hypothesis that 

the human genome began as a G+C rich ancestral genome that mutated towards the 

present-day A+T rich genome.  Different regions of the genome may have mutated at 

different rates, presenting the current mosaic view of the human genome.  The 

preliminary study of composition specific substitution rates in repetitive elements and 

  



110   

pseudogenes suggested that features inserted into the human genome under less selective 

pressure appear to be mutating towards a higher A+T composition with a rate dependent 

upon the local G+C context at the insertion site. 

7.1 Introduction 
 

It has been proposed that vertebrate genomes, including human, are made up of 

compositionally homogeneous DNA segments based on G+C content (Macaya et al., 

1976; Cuny et al., 1981).  These regions, known as isochores, have been studied for 

nearly 30 years using experimental density gradient centrifugation techniques (Bernardi, 

1993; Macaya et al., 1976).  The theories of Bernardi et al. (reviewed in Bernardi, 1993) 

suggest five separate classes of isochores are found within the human genome.  These 

five classes are defined and separated from each other by different levels of G+C 

composition.  The availability of bulk human genomic DNA sequence has made it 

possible to study these regions in more detail.   

Recent sequence level studies argue the human genome is not nearly as 

homogeneous as Bernardi’s 5-class system of isochore classification might lead one to 

believe.  Rouchka and States (2002) show isochore classifications are specific to the 

fragment size and chromosome being studied.   Nekrutenko and Li (2000) show the 

human genome is highly heterogeneous both within and between chromosomes and 

suggest the previous isochore definitions of Bernardi should be relaxed to allow for the 

high heterogeneity index within human genomic DNA.  The International Human 

Genome Sequencing Consortium (2001) tested the variance of G+C content within 
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windows of the human genome and concluded that, within a given window, the variance 

is far too large to be in agreement with a definition implying regions with strong 

homogeneities.  While these recent studies have brought to light that a strict five-class 

system based on G+C content may not be the best approach for sequence segmentation in 

human DNA, all of the authors seem to agree with Bernardi that large regions of long-

range variation in high and low G+C content are present in the human genome (IHGSC, 

2001).    

At least two categories of theories have emerged to account for these regions.  

The first category, the maintenance hypotheses, states regions of high and low G+C 

content are present in the human genome due to various poorly specified mechanisms 

that promote compositional maintenance.  The second category hypothesizes regions of 

high and low G+C content are observed within the human genome due to regional 

variations in mutational rates across the genome.   

7.1.1 Overview of Maintenance Hypotheses 
 

Several theories have recently been proposed arguing in support of maintenance 

mechanisms (see Eyre-Walker and Hurst, 2001, and Bernardi, 2000, for reviews).  The 

two main arguments stem from a selectionist hypothesis that a selective process was at 

work to promote G+C compositional regions and a neutralist hypothesis that states no 

selection has occurred.  The neutralist theories can be broken down into two camps, those 

subscribing to biased gene conversion theories and those who believe some sort of 

mutational mechanism was at work. 
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Selectionist Hypothesis.  The selectionist argument for the presence of high and low 

G+C regions suggests these regions arose due to selective advantages.  In particular, G:C 

base pairs contain three hydrogen bonds while A:T base pairs contain two, and thus G:C 

base pairs should provide greater stability at higher temperature levels (Wada and 

Suyama, 1986).  The argument for the presence of high and low G+C regions in warm-

blooded vertebrates due to selection stems from the apparent observation of an "isochore" 

structure in mammals and birds, while genomes of cold-blooded vertebrates including 

fish and amphibians are devoid of such structure (Bernardi, 1993).  One explanation is an 

increase in G+C content could provide thermodynamic stability against degradation by 

heat (Bernardi, 2000).  Ohama et al. (1987) show that in some bacterial genomes, the 

overall G+C content is related to different selective pressures in the environment, 

including thermostability.  However, a conflicting study by Galtier and Lobry (1997) 

shows genomic G+C content is not correlated with optimal growth temperature when 224 

different prokaryotes were examined.  Bernardi (2000) suggests this lack of correlation 

could be due to other selective factors such as DNA-binding proteins (Robinson et al., 

1998) and thermostabile chaperonins (Taguchi et al., 1991) that act to stabilize genomic 

DNA.  This hypothesis of high/low G+C structure as a selective advantage to 

homeothermy has additionally been questioned due to the apparent presence of an 

"isochore" structure in the genomes of the cold-blooded Nile crocodile and red-eared 

slider turtle when 16 different genic regions are studied (Hughes et al., 1999).  This result 

indicates the strong possibility that "isochore" evolution predated homeotherm evolution. 
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Conflicting studies by Galiter and Lobry (1997) and Hughes et al. (1999) appear 

to argue against the selectionist hypothesis presented by Bernardi by giving 

counterexamples.  The most unfortunate property of the selectionist hypothesis as 

presented is that it cannot be easily tested using scientific rigor.  While the argument may 

have some merit, it appears to be grounded more at a philosophical rather than factual 

level.  Therefore, in the remainder of the discussion, the selectionist hypothesis as 

proposed by Bernardi is not considered and tested. 

Biased Gene Conversion.  During meiotic recombination, two homologous genomic 

fragments originating from sister chromosomes form a DNA heteroduplex.  Since these 

fragments originate from sister chromosomes, heterozygous sites are possible.   Gene 

conversion is the molecular process in which one allele of a gene is converted into the 

other at these heterozygous sites.  The biased gene conversion (BGC) hypothesis states 

regions of the human genome have been maintained at a higher (lower) G+C composition 

due to a bias in A|T→G|C (G|C→A|T) gene conversion events (Galtier et al., 2001).  

Biased gene conversion has been shown to play a potential role in the maintenance of 

high G+C regions, due to the high G+C content of regions in recombination hotspots 

such as regions encoding ribosomal operons, tRNAs and histones (Galtier et al., 2001).  

Galtier et al. (2001) suggest the BGC hypothesis could account for the bias in G|C→A|T 

vs. A|T→G|C mutations found within single nucleotide polymorphisms (Eyre-Walker, 

1999). 
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Mutational Bias.  A third hypothesis for the presence and maintenance of high and low 

G+C regions is the mutational bias hypothesis.  This hypothesis states these regions were 

maintained by biases in mutational mechanisms favoring A|T→G|C mutations in G+C 

rich regions and G|C→A|T mutations in G+C poor regions.  Thus, if a G+C poor segment 

of DNA inserted into a region that was G+C rich, over time the G+C poor segment would 

mutate and evolve to the surrounding G+C composition.   

Filipski (1987) study the correlation between coding regions and their 

surrounding G+C content and codon usage, a phenomenon now well studied (Knight, 

Freeland and Landweber, 2001; D'Oniofro and Bernardi, 1992).  Filipski suggests 

differences in composition arise from mutational biases contributed by the fidelity of α 

and β polymerases.  The α polymerase, the main replicating enzyme, maintains higher 

sequence fidelity.  The β polymerase, a DNA repair enzyme, is much more error prone.  

The β polymerase mostly acts on relaxed G+C rich chromatin regions.  Thus, Filipski 

argues, regions of differing G+C content have been maintained due to mutational biases 

caused by the actions of the β polymerase. 

Wolfe, Sharp and Li (1989; also see Wolfe, 1991) study mutation rates in silent 

sites in thirteen genes and two pseudogenes found in humans and Old World monkeys 

and 88 genes found in mouse and rat.  Their results provide evidence for a significant 

difference in mutation rates in different regions of G+C content in mammals.  They 

suggest compositional biases could be due to differences in replication conditions.  They 

note high G+C regions replicate early in the S-phase of the cell cycle when dGTP and 

dCTP is high in the dNTP pools.  As the S-phase progresses, the dGTP and dCTP 
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concentrations decrease, and low G+C regions replicate.  As a result, A|T→G|C 

mutations are more likely to occur early in S-phase replication (or in high G+C regions) 

and C|G→A|T mutations are more likely to occur later in low G+C regions. 

Casane et al. (1997) perform similar experiments on three argininosuccinate-

synthetase-processed pseudogenes and the surrounding non-coding regions in human, 

orangutan, baboon and colobus.  Their results show the ratio of the G|C →A|T mutation 

rate to the A|T→G|C mutation rate varied according to G+C content of the genomic 

position.  This indicates a mutational bias was at work. 

 Francino and Ochman (1999) suggest high and low G+C regions result from 

mutation events in their study of α and β globin clusters of genes and pseudogenes in 

humans and Old World monkeys.  Their results from this limited data set indicate the 

ratio of G|C→A|T to A|T→G|C mutations produces strikingly different results when the 

composition of the genes and pseudogenes is considered.  They conclude a compositional 

bias in mutation rates existed which in turn promoted the formation of high and low G+C 

content regions. 

Mutational biases have also been observed within bacterial genomes.  Ohama et 

al. (1987) examine the G+C composition of the streptomycin operon in two separate 

bacterial organisms with different overall G+C content.  The Escherichia coli genome is 

approximately 45% G+C while the Micrococcus luteus genome is approximately 74% 

G+C.  The high G+C content of the M. luteus genome affects the G+C composition of the 

str operon which has a mean G+C content of 67%, much higher than found in E. coli 
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(51%).  In addition, 95% of all wobble bases in the M. luteus str operon are either G or C 

compared to only 52% in E. coli. 

Fryxell and Zuckerkandl (2001) suggest context dependent mutational biases is 

possibly due to cytosine deamination, which causes C→T and G→A transitions within 

mammals.  It decreases in rate two-fold for each 10% increase in G+C content.  This 

implies the higher the G+C content, the lower the rates of C→T and G→A mutations will 

be, and similarly, lower G+C content will produce a higher rate of C→T and G→A 

mutations through cytosine deamination.  This bias could be due to a higher 

concentration of methylation/deamination enzymes in regions of lower A+T composition.  

Cytosine deamination would then function as a positive feedback loop, promoting 

maintenance of both high and low G+C regions. 

7.1.2  Overview of Regional Variation in Mutation Hypothesis 
 

In 1972, before the notion of isochores in vertebrates was introduced, Cox argued 

(albeit with little hard scientific evidence) that the spontaneous mutation rate within 

mammalian DNA varies over the entire genome.  This conflicts with the previous 

assumption that mutation rates were uniform throughout genomes (Sueoka, 1962).  More 

recent studies have begun to illustrate that variation in mutation rates across a genome 

appears to be present.  Wolfe, Sharp and Li (1989) discuss significant variation they 

observed in silent site mutation rates along the human genome in their discussion of 

mutation within pseudogenes found in humans and old world monkeys.  Casane et al. 

(1997) looked at pseudogenes within four closely related species.  Among the results of 
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their work is the suggestion that a regional variation in the mutation rate exists.  This 

stems from their observation that pseudogenes appear as mutational “hot” spots located 

within mutationally “cold” regions.  Castresana (2002) studied the rates of evolution in a 

set of mouse and human genes, comparing the rates within the exonic and alignable 

intronic regions.  Castresana concludes the most likely explanation for the observed 

correlation in evolutionary rates in exonic and intronic regions was the existence of local 

nonrandom fluctuations in mutation rates of a nonrandom nature.   

Regions of high and low G+C could potentially arise due to regional variations in 

mutation rates.  A hypothesis studied herein is that the human genome evolved over time 

from a G+C rich ancestral genome.  As discussed in the results, substitution rates within 

the human genome appear to have moved the genome towards A+T richness.  This rate 

would appear to have been slower, but nonetheless present, in regions of high G+C.  The 

variability in the mutation rate hypothesis suggests regions of high G+C are seen in the 

present view of the human genome due to their location in regions of low mutation while 

regions of low G+C tend to be located in mutation hot spots. 

7.1.3 Understanding Large-scale G+C Variation 
 

The interest in understanding large-scale G+C variation within the human genome 

led to the exploration of experiments designed to test the maintenance hypothesis.  

However, preliminary results appear to support instead the regional variation in mutation 

rate theory.  Two hypotheses for the maintenance of high and low G+C regions were 

explored.   The first hypothesis states high and low G+C regions were maintained by the 
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presence of repetitive elements with a high or low G+C content within them.  The second 

hypothesis tested was that a compositional bias for mutation rates existed which 

promoted the maintenance of such regions.  The results ruled out the possibility of the 

G+C content of repetitive elements determining regions of high and low G+C 

composition.  Based on the study of compositional specific mutation rates in repetitive 

elements and pseudogenes, it is believed that compositional biases in mutation rates did 

occur within the human genome.  However, these biases do not seem responsible for the 

maintenance of high G+C regions.  In addition, features likely to be under less selective 

pressure inserted into the human genome appear to have mutated towards a higher A+T 

composition, regardless of the G+C context in which they were placed. 

7.2 Exploration of Two Maintenance Hypotheses 
 

One of the shortcomings of previous studies into the mechanisms suggesting 

maintenance of regions of high and low G+C content is they are largely based on looking 

at genic regions within the genome.  While an underlying association between genes and 

G+C content does exist (Zoubak, Clay and Bernardi, 1996), genes only account for 3-5 

percent of the human genome (Gardiner, 1996).  In order to understand regions of high 

and low G+C composition more completely, potential maintenance of these regions was 

studied by looking at two features in the human genome less likely to be under selective 

pressure.  Such an approach may rule out other evolutionarily advantageous mechanisms 

that were at work.  The first feature is repetitive elements, which make up at least 35 
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percent of the human genome (Jurka, 1998).  The second feature is processed 

pseudogenes.   

Two separate hypotheses for the maintenance of regions of high and low G+C 

content were studied.  The first hypothesizes regions of high and low G+C content were 

determined by the G+C content of the repetitive elements contained within them.  The 

second suggests regions of high and low G+C content were evolutionarily maintained by 

mechanisms promoting compositional mutational bias.  The second hypothesis is an 

expansion of the mutational bias hypothesis previously discussed.  The methods were 

based on analysis of the University of California-Santa Cruz's Goldenpath rough draft 

assembly of the human genome (Kent and Haussler, 2001; http://genome.ucsc.edu/). 

7.3 Maintenance Hypothesis 1: Regions of High/Low G+C 
Result from Repetitive Element Composition 
 

Previous studies show the densities of certain types of repetitive elements such as 

ALU, L1, and MIR are not uniform throughout the human genome (Belle and Eyre-

Walker, 2002; IHGSC, 2001; Pavlίček et al., 2001; Matasi, Labuela and Bernardi, 1998; 

Jabbari and Bernardi, 1998).  The pattern of distribution of G+C rich SINE elements (the 

mean G+C content of the representative ALUs is 52%) and G+C poor LINE elements 

(L1 elements are 37% G+C) is particularly intriguing (Belle and Eyre-Walker, 2002; 

IHGSC, 2001; Eyre-Walker and Hurst, 2001).  SINEs and LINEs both incorporate the 

LINE transcription mechanism (Jurka, 1997).   In both cases, the LINE endonuclease 

selectively chooses the cleavage site TTTT/A to prime reverse transcription (Feng et al., 

1996).  It would be thought that such an insertion mechanism promotes SINEs and LINEs 
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both within A+T rich regions due to an increased likelihood of finding a cleavage site.  

However, it has been shown LINEs tend to be found in A+T rich regions, while SINEs 

are found in more G+C rich regions (IHGSC, 2001; Eyre-Walker and Hurst, 2001), 

although more recent ALUs are more evenly distributed in the genome (Eyre-Walker and 

Hurst, 2001). 

One potential explanation leading to the appearance of high and low G+C regions 

in the human genome is regions of G+C variation are caused by the presence of repetitive 

elements within them.  Under this hypothesis, regions of high G+C will exist in the 

human genome due to a high density of G+C rich SINEs within them.  Similarly, regions 

of low G+C should be observed due to the high density of G+C poor LINEs in these 

areas.  If repeats alone were responsible for regional variation, there should be no 

correlation between regional G+C content and the G+C content of the unique sequence 

contained within. 

7.3.1 Calculating Repetitive and Non-repetitive G+C Composition 
 

One method used to determine whether or not the G+C content of repetitive 

elements biases regions towards a given G+C distribution was to compare the G+C 

composition of the region as a whole to the G+C composition of the repetitive and 

potentially unique (non-repetitive) regions.  If the repetitive elements were the driving 

force behind the overall G+C composition, then there should be a higher correlation 

between the G+C content of the repetitive elements and the G+C content of the overall 
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region.  At the same time, the G+C content of the unique regions should remain neutral 

and randomly vary based on the G+C content of the repetitive elements. 

This hypothesis was explored by examining the Goldenpath December 2001, 

assembly of the human genome, which breaks apart the human genome sequence into 

2,992 contigs comprising 2.8 billion bases.  Only contigs mapped to a particular 

chromosome were considered.  Known repeats from the Repbase database version 6.10 

(Jurka, 2000) were masked out using RepeatMasker (Smit and Green, unpublished; 

http://repeatmasker.genome.washington.edu/).  Each of the contig sequences was run 

through RepeatMasker twice.  One run was performed in the slower, native settings 

for the detection of low complexity and simple repeats (using the -int option).  The 

second run took advantage of the -w option, which incorporates wublastn as the 

underlying alignment algorithm (Bedell, Korf and Gish, 2000) resulting in a significant 

speed up in the detection of interspersed repetitive elements. 

7.3.2 Repetitive Element Composition Results 
 

A total of 51.6% of the bases were masked out, indicating they contained some 

form of repetitive sequence structure.  For each of the 2,992 contigs, the G+C 

composition of the overall, masked, and unmasked regions was recorded.  The G+C 

composition of each overall contig was compared to the G+C composition of the masked 

regions and unmasked regions looking for correlations.  Figure 7-1 shows the resulting 

plot for those contigs greater than 250 KB in length.  As the graph clearly shows, there 

was a positive correlation between both the unmasked (potentially non-repetitive) G+C 
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Figure 7-1: Comparison of G+C Content.  Shown in this figure is the comparison of the G+C content of 
masked (repetitive) and unmasked (potentially non-repetitive) regions compared to the overall G+C content 
for each of the 1,927 Goldenpath contigs greater than 250 KB in length from the December, 2001 build.  
The x-axis represents the overall G+C content of each contig.  Regions were masked using 
RepeatMasker (Smit and Green, unpublished; http://repeatmasker.genome.washington.edu). 

 

content and the overall G+C content, as well as between the masked portion G+C content 

and the overall G+C content.  Correlation coefficients and t-scores were calculated for 

each of these comparisons.  In the case of the masked/overall comparison, the correlation 

coefficient of 0.9620 yielded a t-score of 192.55. For the unmasked/overall comparison, 

the correlation coefficient is 0.9532, corresponding to a t-score of 172.45.  In each of 
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these cases, the t-score was much greater than the critical value of 2.58 (using a p-value 

of 0.995; α = 0.005).  Thus, these correlations were highly statistically significant. 

A positive correlation between the G+C content of the masked regions and the 

overall contigs was expected.  This is due to the previously reported positive correlation 

between increasing genomic G+C content and G+C rich SINE elements and the negative 

correlation between increasing genomic G+C content and the density of A+T rich LINE 

elements (IHGSC, 2001; Eyre-Walker and Hurst, 2001).  However, such a strong positive 

correlation between the overall G+C content and the G+C content of the unmasked 

regions was not expected.  Since the unique regions were highly correlated with the 

overall G+C content, it cannot be concluded that the G+C content of repetitive regions 

was responsible for the variable G+C content within the human genome. 

It could be postulated there was some sort of mechanism for preferential insertion 

of low G+C repetitive elements into genomic regions of low G+C, while high G+C 

repetitive elements were inserted into genomic regions high in G+C content.   However, 

as previously discussed (Feng et al., 1996), SINEs and LINEs use the same mechanism 

of insertion.  This indicates both SINEs and LINEs would be preferentially located in 

regions of low G+C.  Eyre-Walker and Hurst (2001) show this is the case when only 

recently inserted SINE elements are considered.  So why do older SINE insertions tend to 

be found in higher G+C regions?  Pavlίček et al. (2001) propose this may occur if the 

excision of ALUs was fast enough to remove new copies before they had a chance to 

fixate in the population.  They discuss the possibility of positive selection of the CpG rich 

ALUs in G+C rich regions due to hypomethylation in germline cells.  In addition, it is 
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suggested there are different recombination rates that could be affected by the short 

length of SINE elements (on the order of 300 bases) when compared to LINE elements 

(several KB long).   

The parameters in RepeatMasker have been designed so potentially 

interesting, unique regions are not falsely masked as repetitive.  This is based on a cutoff 

alignment score.  As a result, repetitive elements that have sufficiently diverged from the 

consensus for their repeat family will not be detected.  This does not pose a problem in 

the analysis, since those repetitive elements closest in identity to the Repbase consensus 

are detected.  These result from more recently active transposable elements within the 

human genome.  Since these recent transposable events do not lead to the creation and 

maintenance of regions of high and low G+C content within the human genome, it is 

unlikely ancient copies of the same repetitive elements would have any different effect.  

In fact, these ancient copies should behave in the same manner due to the same 

mechanisms of insertion.  In addition, Repbase consensus sequences have been 

carefully constructed to address the problem of detecting diverse repeats by representing 

the best available approximation of the elements that generated the repeats (Jurka, 1998). 

The variance of the G+C content in unmasked regions was small.  Ancient copies 

of repeats currently undetected are expected to have properties similar to the detected 

repeats.  If methods to detect these repeats were available, then a migration of the data 

points in figure 7-1 from the unmasked fraction to the masked fraction would result.  This 

migration should have little effect on the correlation between the unique region and 

overall contig G+C% due to the low variance.  Therefore, even if all ancient copies of 
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repeats were detected, a positive correlation between unique and overall contig G+C% 

would be expected to exist. 

Low copy number repeats and repeats that have not been characterized in the 

human genome will not be detected when using RepeatMasker.  Undetected low copy 

repeats are not likely to contribute much to the maintenance of regions of high and low 

G+C content.  This is due to the definition that each family of a low copy repeat is found 

only in a small portion of the genome due to the small copy number.  The human genome 

has been available at least to a rough draft level since February of 2001 (IHGSC, 2001).  

Since Repbase has been carefully examining and collating information on repetitive 

elements within the human genome, it is highly unlikely there are any high copy number 

repeats that remain uncharacterized.  Any remaining uncharacterized repeat families or 

subfamilies will likely have a relatively low copy number, and constitute a low 

percentage of the human genome.  Thus, currently uncharacterized repeats should 

contribute little information into the origin and maintenance of high and low G+C regions 

within the human genome. 

Based on the information gathered, the first hypothesis should be rejected.  

Regions of G+C content within the human genome do not appear to result from the 

presence of repetitive elements; rather it appears as though the presence of regions of 

high and low G+C concentration determines the density of certain repetitive elements 

within the human genome. 
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7.4 Hypothesis 2: Mutational Biases Revisited 
 

As previously discussed, one of the hypotheses for high and low G+C region 

maintenance is it was due to biological mechanisms favoring compositional bias in 

mutation rates.  Previous studies in favor of the mutational bias theory have focused on a 

limited set of genes and pseudogenes within human and primate populations (Filipski, 

1987; Wolfe, Sharpe and Li, 1989; Casane et al., 1997).   

The shortcoming of these approaches is two-fold.  While an association between 

genes and G+C content can be demonstrated (Zoubak, Clay and Bernardi, 1996), genes 

only account for 3-5 percent of the genome (Gardiner, 1996).  Secondly, these studies are 

closely tied to genic regions and, as such, selective pressure is a factor.  Thus, it is not 

easy to separate the conclusions of results suggesting a mutational bias mechanism for 

the maintenance of high and low G+C regions from the biased gene conversion 

hypothesis.   

In order to work around selection mechanisms that may play a role, two elements 

likely to be under less selective pressure were studied: processed pseudogenes and 

repetitive elements.  In an ideal case, the rate of A|T→G|C and G|C→A|T mutations 

would be compared when elements deriving from the same ancestor were placed in 

differing neighborhoods of G+C concentration.  However, it is not always possible to 

determine whether a mutation has occurred within the ancestor or the descendant 

sequence (see section 7.6).  Therefore, the rate of A|T→G|C and G|C→A|T substitutions 

were studied as to how they related to the surrounding G+C composition. 
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7.4.1 Studying Compositional Bias in Processed Pseudogenes 
 

Processed pseudogenes are non-functional copies of processed mRNAs from 

functional genes that have been retrotransposed (reverse-copied) into a region of the 

genome.  Processed pseudogenes are characterized by the presence of direct repeats on 

both the 5' and 3' ends, which result due to target site duplication with the 

retrotransposable insertion mechanisms employed.  Depending on the processed 

pseudogene, this mechanism for insertion is borrowed from either the human endogenous 

retrovirus (HERV) or LINE retrotransposition machinery  (Pavlίček et al., 2002).   Since 

processed pseudogenes are derived from processed mRNA, intronic regions are spliced 

out and poly-A tails are present at the 3' end (Lodish et al., 1995).  In addition, insertion 

mechanisms incorporated by processed pseudogenes can cause truncation at the 5' end 

(Pavlίček et al., 2002).  Multiple mutations may occur that disrupt the reading frame or 

introduce stop codons.  This is particularly important in pseudogenes where the 5' end has 

not been truncated (Lodish et al., 1995).  Figure 7-2 illustrates the steps in which a gene 

and processed pseudogene pair are generated. 

For the purpose of the study, it was assumed that the gene locus existed first, and 

then at some point in the evolutionary history of humans, the pseudogene arose.  Once 

the gene and pseudogene were in place, they could evolve and mutate independently of 

one another.  However, genes are under selective pressure, so mutations within them 

were expected to be fewer than in neutrally mutating pseudogenes.  When a nucleotide 

difference was observed between a gene and pseudogene, it would be more likely to have 

occurred within the pseudogene.  An exception would be when a mutation occurred in   
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Figure 7-2: Gene-to-Pseudogene Mechanism.  Shown is the native locus (top) and pseudogene locus 
(bottom).  The processed mRNA is created by the transcription of the genic region into a pre-mRNA 
intermediary that is subsequently spliced to remove the introns and polyadenylated to add the poly-A tail.  
The pseudogene is created by the retrotransposition of the processed mRNA via either a LINE or HERV 
retrotransposition mechanism.  The light blue boxes represent the exons, labeled E1, E2, E3, and E4.  The 
dark blue boxes represent the genomic location. 
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the third codon position (also known as the wobble base).  When mutations occurred in 

this location and were synonymous (did not change the encoded amino acid), they were 

not expected to alter the fitness of the genic region in a significant way. 

The directionality of the change would be of interest as well.  Details on how to 

incorporate directional information gathered using genomic comparisons is given in 

section 7.6.  However, the directionality of the mutation is not nearly as important as 

whether or not it changed the overall G+C composition of the gene or pseudogene.  

Therefore, substitutions were reported as A|T→G|C and G|C→A|T where the nucleotide 

of the gene was listed first, and the nucleotide of the pseudogene second.  If the original 

nucleotide was an A or T in the gene and the nucleotide in the pseudogene was a C or G, 

the effect will be the same as if the original gene nucleotide was a C or G that mutated to 

an A or T over time.  Thus, the rates of A|T→G|C and G|C→A|T substitutions were 

compared when the gene was in one G+C composition and the pseudogene was in 

another.  This allowed the examination to see if a compositional bias in substitution rates 

within genes and pseudogenes potentially exists.  Limitations to this approach are 

discussed in section 7.6.1. 

7.4.2 Obtaining Pseudogene Data 
 

The first step in this analysis required gathering gene-pseudogene pairs..  

Potential processed pseudogenes were obtained by searching individual mRNA entries of 

RefSeq (Pruitt and Maglott, 2001) against the University of California-Santa Cruz's 

Goldenpath assembly of the human genome (Kent and Haussler, 2001) using wublastn 
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(Gish, 1996-2001).  For the data sets, RefSeq was downloaded on April 18, 2002, when 

15,199 human mRNAs were available.  The December 2001 Goldenpath assembly 

was used. 

Only RefSeq entries hitting multiple loci in the Goldenpath assembly were 

considered.  RefSeq entries mapping to more than one location were likely to contain 

both a native locus location as well as one or more other locations that were potential 

paralogs or pseudogenes.  For the entries with multiple loci, a native locus scoring system 

was implemented in the following fashion.  For each individual BLAST HSP (High-

scoring Segment Pair -- it can be thought of as a single local alignment), a score SHSP 

(Equation 7-1) was assigned a value equal to the fractional percentage identity multiplied 

by the fraction of the mRNA that the HSP covered.  LHSP is the length of the HSP and 

LREFSEQ is the length of the RefSeq entry.  Scores for all of the HSPs occurring within a 

single locus (a total of n HSPs) were summed into a single score, SLOCUS (Equation 7-2). 

REFSEQ

HSP
HSP L

LidS *%=  

Equation 7-1: Individual HSP Score. 

∑
=

=
n

i
iHSPLOCUS SS

1
 

Equation 7-2: Native Locus Score. 
 

The native locus should produce an SHSP score close to 1, which represents a locus 

that is 100% identical over 100% of the bases of the RefSeq mRNA.  Therefore, the locus 
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with the highest (optimal) SLOCUS score was considered to be the native locus.  All other 

suboptimal loci were treated as potential candidates for paralogs and pseudogenes, both 

processed and unprocessed. 

 Each HSP within an alignment should roughly correspond to an alignment of 

exonic regions.  RefSeq hits were further filtered to only contain entries where the native 

locus contained at least three HSPs.  Such a filter was applied to increase the likelihood 

that at least one intron (two exons) was in the native gene.  This helped to reduce the 

problem of differentiating between paralogs, unprocessed pseudogenes and processed 

pseudogenes corresponding to single exon genes.  Since processed pseudogenes have 

intronic regions spliced out, they should map continuously with the RefSeq mRNA. 

Thus, an additional restriction that the non-native loci contained only a single HSP was 

applied.  A final restriction required non-native loci to align within 20 basepairs (bp) of 

the 3' end of the RefSeq sequence, since processed pseudogenes are often truncated at the 

5' end.  This helped to reduce spurious matches.   While these restrictions would not 

allow detection of all of the processed pseudogenes within the human genome, the 

detected gene-pseudogene pairs had a greater likelihood of being true positives.   

Gene and pseudogene pairs were separated into one of four categories based on 

their G+C content (Table 7-1).  The four different categories are: (LOW, LOW), (LOW, 

HIGH), (HIGH, LOW), and (HIGH, HIGH).  The first element in the ordered pair 

represents the regional G+C composition flanking the gene while the second element 

represents the regional G+C composition flanking the pseudogene.  These neighboring  
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Table 7-1: Number of Genes and Pseudogenes Found.  This table indicates the number of genes and 
corresponding pseudogenes found after processing the results of searching the April 18, 2002 version of 
RefSeq (Pruitt and Maglott, 2001) against the December, 2001 assembly of the Goldenpath (Kent and 
Haussler, 2001; http://genome.ucsc.edu/).  The G+C content is listed as either LOW (less than 41% 
G+C) or HIGH (greater than 44% G+C). 

 
Gene 
G+C 

Pseudogene
G+C 

Number 
of Genes 

Number of 
Pseudogenes 

HIGH LOW 242 564 
HIGH HIGH 233 464 
LOW LOW 173 250 
LOW HIGH 52 79 

TOTALS  700 1,357 
 
 

compositions were calculated from the 25 kb flanking both sides of the gene or 

pseudogene.  A region containing less than 41% G+C was categorized as LOW, while 

regions containing greater than 44% G+C were categorized as HIGH.  The total 

neighborhood size of 50-kb (25-kb on two ends) was used to maintain consistency with 

Bernardi's earlier density gradient centrifugation experiments.  In addition, the 

boundaries of 41% and 44% G+C were chosen due to their correspondence with major 

breakpoint divisions within Bernardi's isochore definitions (Bernardi, 1993). 

7.4.3 Calculation of Gene -Pseudogene Substitution Rates 
 

Once the genes and pseudogenes were separated into the appropriate category, 

they were aligned to one another using Sim4 (Florea et al., 1998).  Sim4 is an algorithm 

for aligning cDNAs to genomic sequence. Sim4 attempts to delineate intron/exon 

boundaries by looking for donor and acceptor sites, thus adding more information to the 

alignments.  Whenever a mismatch appeared between the gene and pseudogene, it was 

treated as a substitution event.  
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Since substitutions occurring in different regions of genes have the potential to be 

under different selective pressure, the context of each substitution was recorded.  The 

annotated coding sequence (CDS) was parsed out of each RefSeq entry.  Since the 

frame of the CDS was known, the third base (wobble base) of each coding triplet was 

extracted.  Substitutions in the CDS were recorded and separated into wobble base and 

non-wobble base positions.  Anything outside of the CDS was labeled as a non-coding 

substitution.  Non-coding substitutions were separated into 5' UTR mutations and 3' UTR 

mutations, depending on their relationship to the start and end of the CDS.  The 

alignment of introns was not a problem since they would have been removed from the 

processed pseudogenes that made it into our test set. 

Genes are likely to be under more selective pressure than processed pseudogenes.  

Thus, the direction of each substitution was more likely to be FROM the gene TO the 

pseudogene.  However, mutational directionality is not nearly as important as how each 

substitution is reflected when compared to the overall G+C context of the gene or 

pseudogene.  These limitations are discussed further in section 7.6.  Once all of the 

alignments were made, the number of each of the 16 substitution events (gathered from 

the Cartesian product A x B where A,B = {A, C, G, T} and A represents the nucleotide in 

the gene and B represents the corresponding nucleotide in the processed pseudogene) 

were calculated for the following categories: coding regions, wobble bases, non-wobble 

coding bases, non-coding regions, 5' UTRs and 3' UTRs.   
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7.4.4 Approaches to Looking at Mutation and Substitution Events 
 

In 1962, Noboru Sueoka introduced the concept of effective base conversion 

rates.  These values, u and v, are described by Sueoka as the rates of conversion at any 

given point in the genome from A|T→G|C and G|C→A|T nucleotides, respectively.  

These rates are explained in terms of the observed inherited rates of nucleotide 

substitution within a single organism from generation to generation.  These values are 

used in more recent studies to measure the mutation rates within different genomic 

regions (Piganeau et al., 2002; Smith and Eyre-Walker, 2001; Casane et al., 1997; Gu 

and Li, 1994). 

Using these models as guidelines, the rate of A|T→G|C substitutions (u) was 

calculated as the probability that a G or C nucleotide was found at a given location in the 

pseudogene, conditioned on the nucleotide in the gene being an A or T.  In addition, the 

rate of G|C→A|T substitutions (v) was calculated as the probability that an A or T 

nucleotide was found at a given location in the pseudogene, conditioned on the nucleotide 

in the gene being a C or G.  The difficulty in determining the exact directionality of 

mutation within a single species is discussed in section 7.6.1. 

 The G+C bias (f) was calculated as f=u/(u+v) (Piganeau et al., 2002).  A measure 

of the A+T bias can be obtained as 1-f. The G+C bias ranges from 0 to 1.  A value of 0 

means there were no A|T→G|C substitutions in a region for a given feature.  A value of 1 

indicates there were no G|C→A|T substitutions.  If the A|T→G|C and G|C→A|T 

substitution rates were equal in any given region, then the G+C bias and A+T bias would 
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both be equal to 0.5.  A G+C bias less than 0.5 indicates a region will drift to A+T 

richness over time, while a value greater than 0.5 indicates a drift towards G+C richness. 

In order to test for compositional bias in substitution rates, a ratio of the G+C bias 

in high G+C regions (fHIGH) to the G+C bias in low G+C regions (fLOW) was computed.  A 

ratio, r, consistently greater than 1 indicates a compositional bias in substitution rates was 

likely to exist, where high G+C regions acquired more G's and C's over time and low 

G+C regions were adding more A's and T's over time.  A ratio less than 1 on a consistent 

basis indicates there was likely to be a negative correlation where G+C rich regions 

would be mutating towards A+T and A+T rich regions would be mutating towards G+C.  

If the ratios randomly fluctuate above and below 1, a compositional bias for substitution 

rates cannot be demonstrated for the feature being studied. 

7.4.5 Gene-Pseudogene Mutational Bias Results 
 

In order to test for a possible compositional bias for substitution rates in gene-

pseudogene pairs, two different comparisons were made: one where the gene originated 

in a low G+C region, and one where the surrounding content of the gene was high G+C.  

In each comparison, two different cases were examined.  The first case involved the 

pseudogene occurring in a low G+C region, and the second case was when the 

pseudogene was in a high G+C region. 

If a compositional bias for substitution rates exists, the G+C bias, f, would be 

expected to increase as the G+C context of the pseudogene increases.  This would 

indicate the ratio of A|T→G|C to G|C→A|T mutations increase as the surrounding G+C 
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context increases.  In order to test this hypothesis, the G+C bias, f, was calculated for the 

four cases defined by the Cartesian product A x B where A,B={HIGH, LOW} and 

A=G+C context of the gene; B=G+C context of the pseudogene.  The resulting G+C 

biases were labeled as follows: f1 = {LOW,LOW}; f2 = {LOW,HIGH}; f3 = 

{HIGH,LOW}; f4 = {HIGH,HIGH}.  In order to test for potential compositional biases 

for substitution rates, the ratios r1 =f2:f1 and r2=f4:f3 were calculated.  If a compositional 

bias exists, the values of r1 and r2 would be expected to be greater than 1. 

The results are listed in Table 7-2.  Table 7-2 (A) lists the results for the first 

comparison of a gene in a low G+C region while Table 7-2 (B) lists the results when the 

gene was in a high G+C region.  Table 7-2 (A) gives the value of r1 calculated in 5' 

UTRs, coding sequences, wobble bases, non-wobble coding bases, and 3' UTRs.  Table 

7-2 (B) gives the value of r2 calculated for each of these regions. 

For each of the features studied, the values of r1 and r2 were greater than 1, with 

r1 ranging from 1.173 to 1.362 and r2 ranging from 1.134 to 1.175.  This indicates 

A|T→G|C and G|C→A|T substitutions were 17-36% higher in the first case, and 13-17% 

higher in the second case.  These increases indicate that, when pairs of genes and 

pseudogenes were examined, there appeared to be a compositional bias for substitutions. 

Table 7-2 yields an interesting result.  When the G+C bias, f, was compared in the 5' 

UTRs, CDS, non-wobble CDS, and 3' UTRs, the values were always less than 0.5.  This 

indicates these portions of the pseudogenes had higher rates of G|C→A|T substitutions 

than A|T→G|C substitutions no matter what the original gene and pseudogene G+C 

contexts were.  As a result, as pseudogenes aged, these regions tended towards A+T 
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Table 7-2: Comparison of G+C Bias in Gene and Pseudogene Pairs.  Table 7-2 A) lists the results when 
the gene was located in a region of low G+C content (<41% G+C).  Table 7-2 B) lists the results when the 
gene was located in a region of high G+C content (>44% G+C).  In each case, the second and third 
columns list the G+C bias when the pseudogene was located in a region of high and low G+C, respectively.  
The G+C bias was calculated as f=u/(u+v) where u was the rate of A|T→G|C substitutions and v was the 
rate of G|C→A|T substitutions within a particular region.  The fourth column lists the ratio of the 
HIGH:LOW G+C biases. 

 
A)  Gene in Low G+C 
  Pseudogene 

HIGH G+C 
Pseudogene 

LOW G+C 
Ratio 

of HIGH:LOW 
 5' UTR 0.4632 0.3797 1.220 
 CDS 0.4288 0.3309 1.296 
 WOBBLE 0.4721 0.3467 1.362 
 NON-

WOBBLE 
0.3986 0.3145 1.268 

 3' UTR 0.3674 0.3132 1.173 
   

 
 

  

B)  Gene in High G+C 
  Pseudogene 

HIGH G+C 
Pseudogene 

LOW G+C 
Ratio 

HIGH:LOW 
 5'UTR 0.4721 0.4032 1.171 
 CDS 0.4159 0.3600 1.155 
 WOBBLE 0.5710 0.5036 1.134 
 NON-

WOBBLE 
0.3331 0.2835 1.175 

 3' UTR 0.4376 0.3765 1.162 
 
 

regardless of the surrounding G+C content.  However, the rate of this substitution trend 

was slowed when the surrounding region was G+C rich.   

Substitutions found within the non-wobble coding positions are likely to have 

occurred within the pseudogene since most mutations within the first two codon positions 

of a gene will cause a change to the amino acid encoded by that codon.  Such a change 

can affect the fitness of the gene.  Therefore, the results listed in Table 7-2 suggesting 
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that a compositional bias for substitution has occurred within non-wobble coding regions 

is likely to have a directionality associated with it. 

The study of gene and pseudogene pairs indicates there was a strong possibility of 

a compositional bias for substitution rates.  However, the rate of A|T→G|C substitutions 

was always less than the rate of G|C→A|T substitutions.  This indicates pseudogenes 

within the human genome were likely to accumulate more A+T sequence over time 

regardless of the surrounding G+C context.  However, as the G+C context of the 

pseudogene increased, the rate of this change slowed.  As a result, a compositional bias in 

substitution rates was observed, but this rate cannot be the determining factor for 

maintaining regions of low and high G+C composition. 

7.4.6 Studying Compositional Bias in Repetitive Elements 
 

A large portion of human genomic DNA has been derived from the dispersion of 

transposable elements throughout the genome (Prak and Kazazinan, 2000; Smit, 1999).  

The International Human Genome Sequencing Consortium's analysis found that 45% of 

the human genome is made up of identifiable transposable elements (IHGSC, 2001).  The 

two largest types of these are long interspersed elements (LINEs) and short interspersed 

elements (SINEs).  There are approximately 868,000 copies of LINEs in the human 

genome, making up over 20% of the total genomic sequence.  In addition, there are over 

1.5 million copies of SINEs, accounting for over 13% of the genome (IHGSC, 2001).  

Due to the large abundance of repetitive elements in the human genome, substitution 
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rates within them were studied to determine if a compositional bias for substitution 

potentially existed in these segments. 

7.4.7 Detecting Repetitive Elements 
 

Instances of SINE and LINE repeats were located within the human genome using 

RepeatMasker.  The repetitive regions were obtained by running RepeatMasker 

release 6/19/01 (Smit and Green, unpublished; http://repeatmasker.genome. 

washington.edu/) using the Repbase update 6.6 (Jurka, 2000) repeat definitions.  

RepeatMasker was run using the faster -w option, which employs wublastn as the 

alignment algorithm. 

Once the contigs were masked, the generated .out files containing tables of 

repeat information were parsed.  Files were generated to group together the Goldenpath 

contig name, contig location and orientation of the repeat instances for each type of 

repeat.  The repeat regions were extracted from the contigs, and the G+C content of the 

surrounding 50-kb (25 kb on each side) window was noted.  Each instance of a repeat 

was placed into one of two files for each repeat type based on whether the G+C content 

of the surrounding window was less than 41% or greater than 44%, labeled low and high 

G+C, respectively.  Those repeat elements falling in the intermediate range of 41% to 

44% G+C were discarded from the study. 

Repetitive element families and subfamilies with the greatest number of instances 

currently detectible in the human genome were studied.  The resulting data set analyzed 
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included 8 ALU families/subfamilies and 34 LINE families/subfamilies (see Table 7-3 

for the family/subfamily names). 

7.4.8 Calculating Repetitive Element Substitution Rates 
 

With repetitive elements, it is difficult to assign directionality for each mutation 

since it cannot easily be determined which copy of a repeat was present first in a genome, 

and whether or not a second repeat was derived as a direct ancestor.  In addition, once a 

copy is in place, it mutates and evolves independently of its parent copy.  One possible 

scenario is that a C or G nucleotide is observed at one position in a copy of an element 

situated in a region of high G+C composition.  At the same time, an A or T could be 

observed at the same position when a copy of the element was found in a low G+C 

region.  The difficulty of determining directionality is discussed in detail in section 7.6.1. 

The Repbase-defined consensus was taken as the ancestral repeat element.  

Such an approach is justified in the sense that the consensus sequence has been derived to 

be the best approximation of the original transposable element that generated a given 

repeat subfamily (Jurka, 1998).  Such an approach assumes a master/slave model of 

repetitive element propagation (Shen, Batzer and Deringer, 1991; see 7.6.1 for a 

discussion).  Substitution rates were measured as the difference from the Repbase 

sequence.   

Each instance of a given repetitive element was compared against the Repbase 

consensus sequence using wublastn with the parameters -S2=200 -S=250.  These 

parameters were chosen to eliminate smaller matching regions by requiring higher 

  



141   

scoring hits with a final score of at least 250.  Using the default wublastn scoring 

parameters of +5,-4 for matches and mismatches, this corresponds to an ungapped 

alignment of at least 50 bp at 100% identity, or 78 bp at 80% identity. 

The total number of substitution events FROM the Repbase consensus TO the 

instance of the repeat was noted.  The total substitution events for repeat instances in low 

G+C (<41%) and high G+C (>44%) were calculated.  The rate of A|T→G|C (u) and 

G|C→A|T (v) substitutions were computed as well as the G+C bias (f) for two categories: 

HIGH and LOW for each of the repetitive element families studied.  HIGH represents 

those repetitive regions occurring in >44% G+C regions and LOW represents those 

repeats occurring in <41% G+C regions.  A ratio of the HIGH:LOW G+C biases was 

calculated for each repeat family studied.  A ratio greater than 1 indicates that the rate of 

A|T→G|C vs. G|C→A|T mutations is likely to be higher in high G+C regions. 

7.4.9 Repeat Instance Substitution Bias Results and Discussion 
 

Table 7-3 lists the resulting G+C biases calculated for each of the repeat families 

for the instances in low and high G+C. For the Alu repeat families studied, the ratio 

ranged from 0.937 to 1.080.  Six of the eight Alu families had ratios greater than 1 (with 

the exception of the AluYa5 and AluYb8 families).  This suggests for six of these 

families, a slight compositional bias for mutation rates exists.  All 34 of the LINE 

families studied had ratios greater than 1.  In fact, these ratios tended to be larger than the 

ratios for Alu families, ranging from 1.047 for the L1PA6 family, to 1.437 for the 
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L1MB3 family.  These values show the LINE families have a potentially stronger 

compositional bias for mutation rates.   

The G+C biases for nearly all of the repetitive families were much less than 0.5, 

yielding results similar to the gene-pseudogene substitution rates.  This indicates no 

matter what the surrounding G+C content is for an instance of a repetitive element, the 

repeat copy will likely drift towards A+T richness over time.  Since the ratios were 

greater than 1 (indicating there was a compositional bias for substitution rates), the rate of 

drift should be slower when the surrounding G+C content is higher.  These results 

indicate there seems to be a compositional bias for substitution rates; however, this bias is 

unlikely be the cause for the maintenance of high G+C regions containing the features 

studied. 

Repeats on Chromosome Y.  As previously discussed, one potential problem is the 

mutational bias and biased gene conversion theories are not necessarily mutually 

exclusive.  In order to address this concern, another study examining only instances of 

repetitive elements occurring on chromosome Y was performed.  Chromosome Y 

contains a non-recombining region making up over 95% of the chromosome (Tilford et 

al., 2001).  The non-recombining region of chromosome Y does not recombine with 

chromosome X or any other chromosome (Lahn, Pearson and Jegalian, 2001).   Non-

recombining regions will not allow for gene conversion, and biased gene conversion 

could not be the cause of any biases in G+C composition that are observed in such 

regions. 
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Table 7-3: Comparison of G+C Bias in Instances of Repeat Families. Listed in the first column is the 
repeat family studied.  The second and third columns contain the G+C bias f=u/(u+v) (where u was the rate 
of A|T→G|C substitutions and v was the rate of G|C→A|T substitutions) calculated for instances of repeats 
occurring in HIGH and LOW G+C regions, respectively.  The fourth column lists the ratio of HIGH:LOW 
G+C biases. 

 
Repeat 
Family 

HIGH 
G+C 

LOW  
G+C 

RATIO 
HI:LOW 

 Repeat 
Family 

HIGH 
G+C 

LOW 
G+C 

RATIO 
HI:LOW 

AluYa5 0.3821 0.4077 0.937  L1MA2 0.3439 0.2870 1.198 
AluYb8 0.5121 0.5440 0.941  L1PB2 0.3549 0.2930 1.211 
AluYc 0.2486 0.2467 1.008  L1PA15 0.3227 0.2659 1.214 
AluY 0.2479 0.2397 1.034  L1PB3 0.3213 0.2621 1.226 

AluSg1 0.2017 0.2091 1.036  L1PA14 0.3469 0.2830 1.226 
L1PA6 0.3018 0.2883 1.047  LAMA4A 0.3369 0.2743 1.228 
L1PA3 0.3217 0.3057 1.053  L1PA13 0.3646 0.2968 1.229 
L1PA4 0.3418 0.3222 1.061  L1MA4 0.3370 0.2741 1.229 

L1 0.2888 0.2708 1.066  L1PA16 0.3376 0.2701 1.250 
L1PA2 0.4242 0.3955 1.073  L1MB4 0.3527 0.2810 1.255 
AluSq 0.2332 0.2173 1.073  L1ME1 0.3489 0.2758 1.265 
AluSc 0.2333 0.2160 1.080  L1PA17 0.3275 0.2579 1.270 
AluSp 0.2109 0.1952 1.080  L1PB4 0.3511 0.2739 1.282 

L1PA8A 0.3291 0.2978 1.105  L1MB8 0.3558 0.2770 1.284 
L1PA7 0.2989 0.2687 1.112  L1MA9 0.3616 0.2811 1.286 
L1PA5 0.3500 0.3134 1.117  L1MB7 0.3659 0.2756 1.327 
L1PB1 0.3428 0.3003 1.141  L1MA8 0.3691 0.2780 1.328 

L1PA10 0.3493 0.3020 1.157  L1MB2 0.3635 0.2732 1.331 
L1PA8 0.3367 0.2870 1.173  L1MC1 0.3836 0.2811 1.365 

L1PA11 0.3601 0.3049 1.181  L1MB5 0.3838 0.2726 1.408 
L1MA3 0.3373 0.2829 1.192  L1MB3 0.4035 0.2808 1.437 

 
 

The analysis on chromosome Y was limited to only those Alu and LINE elements 

having at least five different instances in LOW G+C regions and five different instances 

in HIGH G+C regions.  The G+C bias was calculated for instances occurring in HIGH 

and LOW G+C for those repetitive elements fitting this criterion.  In addition, the ratio of 

the HIGH:LOW G+C biases was computed. 

A total of five different Alu families and twelve LINE families were studied on 

chromosome Y.  The results are listed in Table 7-4.  The only repeat subfamily with a 

ratio less than 1 was the AluY subfamily, the youngest repeat studied with an age less 

than 1 million years old (IHGSC, 2001).  The ratio of G+C biases for all of the other 
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repeat subfamilies was greater than 1. This indicates these 16 repetitive element families 

on chromosome Y likely have a compositional bias affecting substitution rates.  The G+C 

biases were significantly less than 0.5, indicating instances of repetitive elements on 

chromosome Y are likely to tend toward A+T richness over time.  Since 95% of 

chromosome Y is not subject to recombination, it is highly unlikely the compositional 

bias for substitution rates within repetitive elements on chromosome Y was due to biased 

gene conversion.  Although it cannot be certain that biased gene conversion does not 

largely contribute on other chromosomes, the results observed for chromosome Y were 

consistent with the previous repeat study.  As a result, biased gene conversion is thought 

to contribute little to the observed compositional bias. 

Table 7-4: Comparison of G+C Bias for Repeats Found on Chromosome Y.  Listed in the first column 
is the repeat family studied.  The second and third columns contain the G+C bias f=u/(u+v) (where u was 
the rate of A|T→G|C substitutions and v was the rate of G|C→A|T substitutions) calculated for instances of 
repeats occurring in HIGH and LOW G+C regions, respectively.  The fourth column lists the ratio of 
HIGH:LOW G+C biases.  Only repetitive elements occurring at least five times in both HIGH and LOW 
G+C regions on chromosome Y were included. 

Repeat 
Family 

HIGH 
G+C 

LOW 
G+C 

RATIO 
HIGH:LOW 

AluY 0.2194 0.2210 0.993 
L1PA2 0.3916 0.3898 1.005 
L1PB1 0.2876 0.2836 1.014 
AluSq 0.2165 0.2099 1.031 
L1MA9 0.3008 0.2778 1.083 
L1PA4 0.3321 0.3046 1.090 
L1PA14 0.2740 0.2503 1.095 
L1PA3 0.3350 0.2957 1.133 
AluSp 0.2185 0.1910 1.144 
AluSc 0.2478 0.2150 1.153 
AluSx 0.2614 0.2122 1.231 

L1 0.3238 0.2472 1.310 
L1MB7 0.4076 0.2866 1.422 
L1PA7 0.3784 0.2547 1.486 
L1MA8 0.4465 0.2984 1.497 
L1PB4 0.4125 0.2563 1.609 
L1PA15 0.4394 0.2570 1.709 
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7.5 Testing for Drift to an A+T Rich Genome Using Long 
Terminal Repeats (LTRs) 
 

The results of looking at gene/pseudogene pairs and instances of repetitive 

elements suggest elements inserted into the human genome are likely to mutate towards a 

higher A+T composition over time.  This phenomenon was observed when comparing the 

rate of A|T→G|C and G|C→A|T substitutions and was independent of the G+C content of 

the surrounding region.  In order to test this hypothesis, elements inserted at different 

points in time were studied to determine whether or not older elements tend to be more 

A+T rich. 

One class of repetitive elements of particular interest is those caused by LTR 

retroviral integration events.  These elements are useful to study since the mechanism of 

LTR retroviral integration produces two identical long terminal repeats (LTRs) which 

flank the 5' and 3' end of the virus (Lodish et al., 1995).  The divergence between the 5' 

and 3' LTRs can be used to calculate an approximate integration date for any particular 

instance (Tristem, 2000). 

LTR retroviruses that have become integrated into the human germline cells are 

one such example.  Human endogenous retroviruses (HERVs) have been studied in detail 

(Barulescu et al., 1999; Tristem, 2000; Griffiths, 2001).  Approximately 1.3% of the 

human genome is composed of HERV elements, representing roughly half of the LTRs 

found in humans (Smit, 1996).  One recent study looked at classification and integration 

age of the various HERV families (Tristem, 2000).  The classification and naming 

convention for HERV families is based on the similarity of the HERV binding site to host 
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tRNAs.   The study of Tristem (2000) estimates the HERV-H, HERV-K, and HERV-L 

families have the largest copy number in the human genome.   

7.5.1 Detecting Copies of HERVs 
 

Representative sequences for HERV-H, HERV-K, and HERV-L families as 

described by Tristem (2000) were obtained from Genbank.  The accessions obtained 

were as follows: D11078 (HERV-H)  (Hirose et al., 1993); M14123 (HERV-K) (Ono et 

al., 1986); and X89211 (Corodonnier, Casella and Heidmann, 1995).  Each of these 

sequences was searched against the December 2001 release of the Goldenpath assembly 

of the human genome using wublastn.  Score cutoff parameters of -S=2000 and -

S2=2000 were used to filter spurious hits.  A score of 2000 using the default 

wublastn scoring scheme of +5,-4 requires a 400 bp ungapped alignment at 100% 

identity, or a 625 bp ungapped alignment at 80% identity.  In addition, the parameter -

gapw=2000 was used to close longer alignment gaps. 

The search matched 1001 HERV-H locations, 409 HERV-L locations, and 723 

HERV-K locations.  However, many of these instances were truncated, missing one or 

both of the LTR sequences due to recombination events leading to a solitary LTR (Prak 

and Kazazian, 2000).  These matches were manually filtered to include only full-length 

copies.  The resulting datasets included 14 HERV-H, 21 HERV-K, and 72 HERV-L 

copies. 
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7.5.2  Determining Insertion Age and G+C Composition 
 

GenBank accessions for the HERV-H, HERV-K and HERV-L representative 

sequences contain various annotations including the 5' and 3' LTR sequences.  The 

representative 5' and 3' LTR sequences were extracted and placed into separate files.  

Each of the full-length copies were searched against the appropriate 5' LTR using 

wublastn with the parameters -S=300 -S2=300 -gapw=200.  Since the 5' and 3' 

LTRs should be identical at the time of insertion, searching full-length repeats for the 

presence of the 5' or 3' LTR should produce the same results.  The 5' LTR was arbitrarily 

chosen, which in every instance located the 3' LTR as well.  The resulting wublastn 

output was parsed to extract the 5' LTR sequence and 3' LTR sequence.  These were 

aligned to each other using wublastn with the parameters -S=200 -S2=200 -

gapw=128.  The approximate edit distance for each instance was determined based on 

the number of mismatched bases in the alignment of the 5' and 3' LTRs.  Gaps were 

ignored. 

After the 5' and 3' LTRs were located in each full-length copy, the G+C content of 

the repeat copy was calculated.  The edit distance for each instance was compared to the 

G+C content to see if more distant elements tend to be more A+T rich.  Figure 7-3 shows 

a graph plotting the G+C composition against the percent divergence for the 72 full-

length HERV-L copies.   For this figure, the percent divergence was calculated as  

the percentage of mismatching bases when the 5' and 3' LTRs were aligned.  The 

assumption is the higher the percent divergence, the older the insertion date will be.   
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7.5.3 LTR Results 
A correlation coefficient was calculated to determine whether or not a correlation 

exists between the edit distance and the G+C content.  An r-value of -0.3279 was 

calculated for the 72 HERV-L instances, indicating a slight negative correlation between 

the LTR divergence and the repeat G+C content.  This suggests the older the date of 

insertion, the greater the accumulation of A's and T's will be.  A t-score was calculated 

for the r-value of -0.3279 with 72 instances to determine the level of significance for this 

correlation coefficient.  The resulting t-score was -2.946.  Using 70 degrees of freedom 

and a two-tailed test, this t-score yields a p-value of 0.0087, indicating the observed 

correlation is likely to exist between the insertion date and G+C content. 

 
Figure 7-3: Plot of Divergence Rate vs. G+C Composition in HERV-L Repeats. Shown in this figure is 
a plot of the divergence rate versus the overall G+C percentage for each of the 72 full-length HERV-L 
copies found within the human genome.  The divergence rate (x-axis) is calculated as the percentage of 
bases mismatched in an alignment between the 3' and 5' LTRs of the HERV-L copy.  The overall G+C 
percentage (y-axis) is based on the G+C content of the complete HERV-L copy. 
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While a correlation between the insertion date and G+C content has been 

demonstrated with the HERV-L repeat family, it would be useful to locate more instances 

of high copy number elements in which the relative date of insertion can be determined.  

There are two main difficulties in obtaining such data for human LTR retrotransposons.  

The first problem is homologous recombination events often remove one or both of the 

LTRs (Prak and Kazazian, 2000).  The second problem is the human genome contains 

relatively few LTR elements (Smit, 1996), many of which are solitary LTRs.  Next to the 

HERV families of LTR retrotransposons, the mammalian apparent LTR-retrotransposon 

(MaLR) superfamily is the most interesting to study.  However, most of the LTR copies 

from the MaLR superfamily are found as solitary LTRs in the genome (Smit, 1993), 

making it difficult to determine an insertion date. 

It has been shown through examination of full-length copies of the HERV-L 

family of LTR retrotransposons that a correlation between the relative insertion date of an 

element and its G+C content likely exists.  This upholds the previously described 

observations of mutation rates in gene/pseudogene pairs and instances of repetitive 

elements.  Such a result was not expected, yet it leads to an interesting conclusion.  

7.6 Discussion  
 

7.6.1 Shortcomings in Determining Fixed Mutation Directionality 
 
Gene – Pseudogene Pairs.  One of the shortcomings of the approach of looking at 

mutation rates in the gene-pseudogene case is the direction in which a substitution has 

occurred cannot be inferred with a high degree of certainty.  A fairly good idea of the 
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direction of mutation is obtained in the gene-pseudogene case, since genes are under high 

selective pressure, and therefore are likely to have fewer mutations than pseudogenes.  

However, there are regions such as synonymous wobble bases, where mutations can 

occur in genic regions with little consequence to fitness.  One method of getting around 

this would involve constructing an evolutionary phylogeny of the genes in the data set 

using sequences from three or more related species.  This would allow us to determine 

with greater confidence what the original nucleotide was in the human gene, and 

therefore directionality could be assigned more reliably, although still not with absolute 

certainty.  Shown in Figure 7-4 is an example of how phylogentic inference could be used 

to determine the likely direction of mutation, given the nucleotide sequence of four 

present-day organisms and a phylogenetic relationship between them. 

 
(C)

 

C C C A 

(C or A) 

(C)  

 

 

 

 

Figure 7-4: Phylogenetic Inference. Shown in this figure is a tree calculating the nucleotide at a specific 
location in a gene most likely to be present in the most recent common ancestor (parent nodes) given the 
currently observed nucleotide in four present-day species (leaf nodes).  In the fourth species, if the 
pseudogene nucleotide is a C, that it is likely that there has been a C→A mutation within the gene. 
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Such an approach is taken by Wolfe, Sharp and Li (1989) and Casane et al. 

(1987) in their studies of small sets of genes and pseudogenes in the primate genome.  

While such a study may not currently be possible on a large set of genes due to the lack 

of large scale genomic sequence information for comparative species, it will shortly be 

possible in this era of genomics.  Assemblies of the human genome (IHGSC, 2001) and 

the mouse genome (http://genome.ucsc.edu/) are already available and other complete 

genomes are likely to become available in the not too distant future. 

Repetitive elements.  Repeats within the human genome are thought to have evolved in 

one of two ways (Shedlock and Okada, 2000).  The master gene model (Shen, Batzer and 

Deringer, 1991) suggests only a few Alu loci are capable of amplification, and all 

subsequent copies found within the genome are direct descendants from these loci.  The 

multiple source gene model (Matera and Hellman, 1990) states offspring copies of 

repetitive elements may also be amplified. 

  

Depending on which model actually holds for the human genome, the study of 

substitution rates in repetitive element instances has some potential pitfalls as well.  

Substitution rates were calculated from the Repbase defined sequence to the copies 

found in the human genome.  If the master gene model was the actual mechanism, the 

assumptions made should be correct to the degree that the Repbase sequences were the 

actual master genes.  However, if the multiple source gene model was the mechanism, 

some of the substitutions reported could actually be due to a single substitution occurring 

at some point in time in an intermediary copy, which subsequently proliferated 

throughout the genome. 



152   

Since the issue of which mechanism was involved is hard to resolve, we cannot be 

completely confident in assuming the master gene model was the only mechanism at 

work.  At the same time, comparing substitutions to the Repbase defined consensus 

sequences is promising, since the Repbase repeats have been arduously studied.  

Therefore, while intermediary subfamilies may still exist, it seems likely a majority of 

substitutions observed between the Repbase sequence and a particular copy in the 

genome are due to accumulated substitution events in the genomic loci rather than a long 

line of mutational intermediaries. 

7.6.2 Repeat Composition 
 

The resulting studies of repetitive elements give insight into how regions of high 

and low G+C content are maintained within the human genome.  Included is the first 

hypothesis accounting for the maintenance of high and low G+C regions within the 

human genome.  This hypothesis states that the presence and G+C composition of 

repetitive elements was the cause of high and low G+C regions within the human 

genome.  By looking at the occurrences of repetitive elements, however, it appears as 

though their G+C content was not the driving factor into the appearance of high and low 

G+C regions.  Rather it appears as though the unique sequence DNA mirrors the G+C 

pattern of the surrounding sequence.  Thus, the repeat composition and distribution 

hypothesis cannot be accepted as the cause for the maintenance of high and low G+C 

regions within the human genome. 
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7.6.3 Compositional Bias 
 

The second hypothesis states that high and low G+C regions within the human 

genome were caused by biases in mutational mechanisms.  The studies of G+C biases 

found in gene and pseudogene pairs as well as instances of repetitive elements indicate a 

high likelihood for compositional biases in substitution rates existing within the human 

genome.  However, this compositional bias cannot be the cause for maintaining high and 

low G+C regions.   This is due to the observed G+C biases suggesting the human genome 

is mutating towards A+T richness independently of the surrounding G+C content. 

The ratio of G|C→A|T to A|T→G|C observed substitution rates is much higher in 

regions of high A+T.  Such a finding suggests the human genome evolved from a G+C 

rich ancestral genome, and regions of high and low G+C arose as a result of the variance 

in mutation rates where some regions (high A+T regions) mutated faster than others (high 

G+C regions). 

One of the difficulties with the selectionist, biased gene conversion, and 

mutational bias hypotheses is they are not mutually exclusive.  For instance, it is possible 

a substitutional bias could be observed due to biased gene conversion.  It is also possible 

substitutional biases are observed since they provide evolutionary advantages, and 

therefore fall under a selectionist hypothesis.  Biased gene conversion could also provide 

changes that are advantageous and can fall under the selectionist theories. 

Pseudogenes and repetitive elements are features likely to be under less selective 

pressure.  In these regions, the bias observed is unlikely to have been caused by selection.  

The study of repetitive elements on the non-recombining chromosome Y yields similar 
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results.  This indicates biased gene conversion is not likely to be the cause of the 

compositional biases in substitution we observe in these regions. 

As described in the introduction, this context dependent substitution rate could be 

caused by mechanisms involved in DNA synthesis.  The mechanism involved could 

possibly be related to the fidelity of α and β polymerases (Filipski, 1987), modification in 

the components of DNA synthesis (Muto and Osawa, 1987), or cytosine deamination 

(Fryxell and Zuckerkandl, 2000).  Of course these mechanisms must be tied to germline 

cells in order for the mutations to become fixed in the population. 

7.6.4  Shift Towards an A+T Rich Genome 
 

Shift Towards an A+T Rich Genome.  Perhaps the most intriguing result of the 

substitutional bias study was that the G+C biases for nearly all of the cases looked at 

were less than 0.5.  This indicates no matter what the surrounding G+C context was, the 

rate of A|T→G|C substitutions seemed to be higher than the rate G|C→A|T substitutions.  

Such a result suggests over time, regions under less selective pressure within the human 

genome evolve into more A+T rich regions.  The rate of this evolution appeared to be 

slower in high G+C regions, although it was still observed.  The study of LTR 

retrotransposons within the human genome supports these results, since older copies 

tended to contain a higher A+T concentration. 

 
Maintenance of High G+C Regions.  The results suggest the human genome began 

from an ancestral genome higher in G+C composition that has evolved into a 

progressively lower G+C genome.  However, the regions studied involved those features 
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(pseudogenes and repetitive elements) less likely to be involved in selection.  Since there 

are regions of high G+C content observed within the human genome, there is likely to be 

some other mechanism at work to preserve these regions.  One explanation for this might 

be that the presence of functionally and structurally important features in these regions 

makes the genome less tolerant of changes in their G+C composition.  This would 

explain the high association between increasing G+C content and a higher gene density 

(Zoubak, Clay and Bernardi, 1996).  If this is the case, the selectionist (and possibly 

biased gene conversion) hypotheses would hold true for these regions. 

Comparing the G+C content of conserved and non-conserved regions in mouse 

and human could test this hypothesis.  It is postulated conserved regions would have a 

higher G+C composition than non-conserved regions, if some sort of selection 

maintained high G+C regions.  Otherwise, these regions would be subject to the 

compositional bias in substitution rates that are observed, and therefore the overall 

genome should mutate towards a higher A+T genome. 

The main conclusions of the studies show repetitive element composition was not 

responsible for the maintenance of high and low G+C regions within the human genome.  

In addition, compositional biases in substitution rates were observed.  However, the G+C 

biases for these substitution rates show this mechanism could not be responsible for 

maintenance of high G+C regions since they appear to move regions of the human 

genome towards a higher A+T composition over time.  The study of LTR elements 

upholds these results, suggesting regions inserted into the human genome and under less 

selective pressure will mutate towards an A+T rich composition. 
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Chapter 8  
 
Discussion 
 

The Human Genome Project as well as the sequencing of other organisms 

provides the biological community with a wealth of genomic data waiting to be 

understood.  The discipline of computational biology has provided a gateway between the 

biologist and the genomic data through the development of tools for mining important 

information. 

Sequencing of the human genome at the finished quality level is proceeding at a 

rapidly increasing pace.  As a result, assembly of finished human genomic sequences into 

larger contiguous regions (contigs) has proven to be a useful endeavor.  Non-uniformity 

and redundancy in the human genome in the form of repetitive elements, pseudogenes, 

duplicated genes and other genomic duplications pose as obstacles that must be 

overcome. 

We have provided a technique for conservative assembly of finished human 

genomic clones into larger contigs using a sequence-based method.  Simulation studies 

indicate that approximately 93% of all overlapping fragments can be correctly assembled 

using this technique.  The two most popular human genomic assemblies, NCBI and 

UCSC's Goldenpath, were examined.  While both of these assemblies are based on the 

same input data, they contain inconsistencies in clone ordering and orientation which 

  



157   

leads to conflicting sequence data.  Thus it is important that research using genomic 

assemblies as an underlying template be made aware of the inconsistencies that are 

present. 

The availability of large contigs of human genomic data allows for the analysis of 

polymorphisms within the human genome.  We have shown that overlapping regions 

between two clones originating from different haplotypes are excellent sources for 

mining single nucleotide polymorphisms.  Mismatches in these regions allow for both the 

detection and clustering of potential SNPs that lead to informative genetic markers of 

disease. 

A dynamic programming technique for aligning restriction fragment digests to 

contig regions has been discussed.   Large-scale polymorphisms within a population can 

be detected using this approach.  In addition, alignment of experimental and theoretical 

restriction digest fragments lends its hand to sequence assembly validation. 

The availability of large contigs of human genomic data allows for compositional 

analysis of the human genome.  Specifically, we have examined the organization of the 

human genome into CpG islands and homogeneous regions.  A heuristic algorithm 

utilizing changepoint methods and log-likelihood statistics to detect and visualize 

different organizational components is discussed.  Other knowledge can be mined as 

well, including information pertaining to gene structure, alternative splicing and 

paralagous sequences. 

The human genome is made up of organizational components.  We have shown 

that traditional approaches to isochore organization are not applicable when analyzing the 
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human genome at a sequence level.  However, there are homogeneous regions that are 

maintained within the human genome.  We have shown that repetitive element 

composition is not responsible for the maintenance of high and low G+C regions within 

the human genome.  In addition, our analysis of gene to pseudogene mutations and repeat 

instances indicates there is an apparent compositional bias for mutation.  G+C biases for 

these substitution rates show this mechanism cannot be responsible for maintenance of 

high G+C regions since they appear to move regions of the human genome towards a 

higher A+T composition over time.  Our study of LTR elements upholds these results, 

suggesting regions inserted into the human genome and under less selective pressure will 

mutate towards an A+T rich composition. 

Advancements in sequencing technology due to the human genome project have 

made it possible to sequence other organisms as well at a fraction of the cost in time and 

funds as previously was possible.  In fact, over 800 genomes are represented in part or 

whole in the NCBI's Entrez nucleotide database (http://www.ncbi.nlm.nih.gov/entrez/ 

query.fcgi?db=Genome).  As more of these genomes become available in with greater 

genomic coverage, comparative genomics will become an important endeavor.  The 

generality of the techniques outlined here will allow them to be applied to the genome of 

choice.   
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	Abstract: Abstract: In 1990, the United States Human Genome Project was initiated as a fifteen-year endeavor to sequence the approximately three billion bases making up the human genome (Vaughan, 1996).  As of December 31, 2001, the public sequencing efforts have sequenced a total of 2.01 billion finished bases representing 63.0% of the human genome (http://www.ncbi.nlm.nih. gov/genome/seq/page.cgi?F=HsProgress.shtml&&ORG=Hs) to a Bermuda quality error rate of 1/10000 (Smith and Carrano, 1996). In addition, 1.11 billion bases representing 34.8% of the human genome has been sequenced to a rough-draft level. Efforts such as UCSC's GoldenPath (Kent and Haussler, 2001) and NCBI's contig assembly (Jang et al., 1999) attempt to assemble the human genome by incorporating both finished and rough-draft sequence.  The availability of the human genome data allows us to ask questions concerning the maintenance of specific regions of the human genome.  We consider two hypotheses for maintenance of high G+C regions: the presence of specific repetitive elements and compositional mutation biases.  Our results rule out the possibility of the G+C content of repetitive elements determining regions of high and low G+C regions in the human genome. We determine that there is a compositional bias for mutation rates.  However, these biases are not responsible for the maintenance of high G+C regions.  In addition, we show that regions of the human under less selective pressure will mutate towards a higher A+T composition, regardless of the surrounding G+C composition.  We also analyze sequence organization and show that previous studies of isochore regions (Bernardi, 1993) cannot be generalized within the human genome.  In addition, we propose a method to assemble only those parts of the human genome that are finished into larger contigs.  Analysis of the contigs can lead to the mining of meaningful biological data that can give insights into genetic variation and evolution.  I suggest a method to help aid in single nucleotide polymorphism (SNP) detection, which can help to determine differences within a population.  I also discuss a dynamic-programming based approach to sequence assembly validation and detection of large-scale polymorphisms within a population that is made possible through the availability of large human sequence contigs.
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