
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2015-005 

2015-09-29 

Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-

Actuator Networks Actuator Networks 

Chengjie Wu, Dolvara Gunatilaka, Mo Sha, and Chenyang Lu 

Process industries are adopting wireless sensor-actuator networks (WSANs) as the 

communication infrastructure. WirelessHART is an open industrial standard for WSANs that 

have seen world-wide deployments. Real-time scheduling and delay analysis have been studied 

for WSAN extensively. End-to-end delay in WSANs highly depends on routing, which is still open 

problem. This paper presents the first real-time routing design for WSAN. We first discuss end-

to-end delays of WSANs, then present our real-time routing design. We have implemented and 

experimented our routing designs on a wireless testbed of 69 nodes. Both experimental results 

and simulations show that our routing design can improve... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Wu, Chengjie; Gunatilaka, Dolvara; Sha, Mo; and Lu, Chenyang, "Conflict-Aware Real-Time Routing for 
Industrial Wireless Sensor-Actuator Networks" Report Number: WUCSE-2015-005 (2015). All Computer 
Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/507 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/507?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/507 

Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Actuator Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Actuator 
Networks Networks 

Chengjie Wu, Dolvara Gunatilaka, Mo Sha, and Chenyang Lu 

Complete Abstract: Complete Abstract: 

Process industries are adopting wireless sensor-actuator networks (WSANs) as the communication 
infrastructure. WirelessHART is an open industrial standard for WSANs that have seen world-wide 
deployments. Real-time scheduling and delay analysis have been studied for WSAN extensively. End-to-
end delay in WSANs highly depends on routing, which is still open problem. This paper presents the first 
real-time routing design for WSAN. We first discuss end-to-end delays of WSANs, then present our real-
time routing design. We have implemented and experimented our routing designs on a wireless testbed of 
69 nodes. Both experimental results and simulations show that our routing design can improve the real-
time performance significantly. 

https://openscholarship.wustl.edu/cse_research/507?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/507?utm_source=openscholarship.wustl.edu%2Fcse_research%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages


Conflict-Aware Real-Time Routing for
Industrial Wireless Sensor-Actuator Networks

Chengjie Wu, Dolvara Gunatilaka, Mo Sha, Chenyang Lu,
Cyber-Physical Systems Laboratory, Washington University in St. Louis

Abstract—As process industries start to adopt wireless sensor-
actuator networks (WSANs) for control applications, it is crucial
to achieve real-time communication in this emerging class of
networks. Routing has significant impacts on end-to-end com-
munication delays in WSANs. However, despite considerable
research on real-time transmission scheduling and delay analysis
for such networks, real-time routing remains an open question
for WSANs. This paper presents a conflict-ware real-time routing
approach for WSANs. This approach leverage a key observation
that conflicts among transmissions sharing a common field device
contribute significantly to communication delays in industrial
WSANs such as WirelessHART networks. By incorporating
conflict delays in the routing decisions, conflict-aware real-time
routing algorithms allow a WSAN to accommodate more real-
time flows while meeting their deadlines. Evaluation based on
simulations and experiments on a real WSANs testbed show
conflict-aware real-time routing can lead to up to three-fold
improvement in real-time capacity of WSANs.

I. INTRODUCTION

With the emergence of industrial standards such as Wire-
lessHART [1] and ISA100.11a [2], process industries are
adopting Wireless Sensor-Actuator Networks (WSANs) that en-
able sensors and actuators to communicate through low-power
wireless mesh networks [3]. In recent years, we have seen
world-wide deployment of WSANs. Technical reports [4] from
the process industry show more than 1900 WirelessHART
networks have been deployed around the world, with more
than 3 billion operating hours in the field.

Feedback control loops in industrial environments impose
stringent end-to-end delay requirements on data communi-
cation. To support a feedback control loop, the network
periodically delivers data from sensors to a controller and then
delivers control commands to the actuators within an end-to-
end deadline. The effects of deadline misses in data commu-
nication may range from production inefficiency, equipment
destruction to irreparable financial and environmental dam-
ages.

Previous works [5]–[7] demonstrate that the end-to-end
delays of flows highly depend on routes. It is important to
optimize routes to improve the real-time capacity of WSANs.
Existing routing algorithms usually select routes with the min-
imum hop count, which introduces high transmission conflicts
among different flows. Since high transmission conflicts cause
long end-to-end delays, shortest paths usually lead to a low
real-time capacity. This paper presents our real-time routing
algorithms for WSANs. We incorporate conflict delays into our
routing design and propose conflict-aware routing algorithms
that allow WSANs to accommodate more real-time flows.

Our conflict-aware routing algorithms reduce conflict delays
of real-time flows so they can meet their deadline constraints.
Our evaluation shows that our real-time routing algorithms can
greatly improve the real-time capacity of the network.

The rest of the paper is organized as follows. Section II
reviews the related work. Section IV discusses the problem
formulation. Section V provides a brief review of the existing
delay analyses, and Section VI presents our real-time rout-
ing algorithms. Section VII evaluates our routing algorithms
through simulations, then Section VIII concludes the paper.

II. RELATED WORK

WSANs have attracted much attention in the research
community [5]–[15] recently. Previous works studied real-
time transmission scheduling [5], [9], [15], communication
delay analysis [6], [7], [14] and rate selection [10], [12]. All
these works assume the routes of the flows are given, and do
not provide any routing protocol. There has been increasing
interest in developing routing algorithms for WSANs. For
example, Han et al. [8] propose routing algorithms to build
reliable routes based on hop count, but their algorithms do
not consider real-time performance.

Real-time routing has been studied in the wireless sensor
network community. Xu et al. [16] propose a Potential-based
Real-Time Routing (PRTR) protocol that minimizes delay
for real-time traffic. However, their end-to-end delay bounds
are probabilistic based on network calculus theory, which is
not applicable to WSANs that require strict delay bounds.
SPEED [17] bounds the end-to-end communication delays by
enforcing a uniform delivery velocity. MM-SPEED [18] ex-
tends SPEED to support different delivery velocities and levels
of reliability. RPAR [19] achieves application-specified com-
munication delays at low energy cost by dynamically adapting
transmission power and routing decisions. However, SPEED,
MM-SPEED, and RPAR all assume each device knows its
location via GPS or other localization services, which is not
always feasible in WSANs. Moreover, the stateless routing
policies adopted by these algorithms can not provide end-
to-end delay bounds. Despite existing results on the general
problem of real-time routing, none of the aforementioned work
can be applied to WSANs. To meet this open challenge in
industrial WSANs, we investigate the problem of real-time
routing in WSANs in this paper.



III. NETWORK MODEL

We consider a network model based on the WirelessHART
standard [1]. A WSAN consists of a gateway, multiple access
points, and a set of field devices. The gateway is wired to the
access points. The access points and network devices are all
equipped with half-duplex radio transceivers compatible with
the IEEE 802.15.4 physical layer. The gateway communicates
with field devices, such as sensors or actuators, through the
access points. The access points and the field devices form
a wireless mesh network. We use the term network device
to refer any device in the system, including the gateway, an
access point or a field device.

The WSAN adopts a centralized network management
approach, where the network manager (usually a software
running in the gateway) manages all devices. The network
manager gathers the network topology information from the
network devices, and generates and disseminates the routes
and transmission schedule to all network devices. This central-
ized network management architecture, adopted by the Wire-
lessHART standard, enhances the predictability and visibility
of network operations at the cost of scalability.

The WSAN adopts a Time Division Multiple Access
(TDMA) MAC layer protocol on top of the IEEE 802.15.4
physical layer. All devices across the network are synchro-
nized. Time is divided into 10 ms slots, and each time slot can
accommodate one data packet transmission and its acknowl-
edgment. The WSAN supports multi-channel communication
using channels defined in the IEEE 802.15.4 standard. To
avoid potential collision between concurrent transmissions in
a same channel, only one transmission is scheduled on each
channel across the whole network. While this conservative
design reduces network throughput and scalability, it avoids
interference between transmissions within the network and
thereby enhances reliability and predictability, which are im-
portant for industrial applications.

IV. PROBLEM FORMULATION

In this section, we discuss the problem formulation. We
consider a WSAN with a set of real-time flows F =
{F1, F2, · · · , Fn}. Each flow Fk = (sk, dk, φk, Dk, Tk) is
characterized by a source sk, a destination dk, a source route
φk

1, a relative deadline Dk, and a period Tk.
We assume that all flows are ordered by priorities. Flow Fi

has a higher priority than flow Fj , if and only if i < j. In
practice, priorities are assigned based on deadlines, periods,
or the criticality of the real-time flows. In this work, we use
the deadline-monotonic priority assignment policy [20], where
flows with shorter deadlines are assigned with higher priorities.

1The WirelessHART standard supports two types of routing: source routing
and graph routing. Source routing provides a single route for each flow,
whereas graph routing provides multiple redundant routes in a routing
graph and therefore enhances reliability through route diversity. Our routing
algorithms currently assume source routing and can be easily extended to
a model where each flow has multiple source routes and sends redundant
packets through every route to enhance reliability. Supporting graph routing
is part of our future work.

Under a fixed priority scheduling policy, the transmissions
of the flows are scheduled in the following way. Starting
from the highest priority flow F1, the following procedure is
repeated for every flow Fi in decreasing order of priority. For
the current priority flow Fi, the network manager schedules
its transmissions along its route (starting from the source) in
the earliest available time slots and on available channels.
A time slot is available if no conflicting transmission is
already scheduled in that slot. In a WSAN, the complete
schedule is divided into superframes. A superframe consists
of transmissions in a series of time slots and represents the
communication pattern of a group of devices. A superframe
repeats itself when it completes all its transmissions.

The goal of our routing algorithm is to find routes for the
flows so that every flow can meet its deadline. Shortest path
algorithms based on hop count [8] are commonly adopted in
practice in WSANs. However, as shown in our simulation
results presented in this paper, the effectiveness of these
algorithms is far from the optimal. Based on the insights from
end-to-end delay analyses, we propose two heuristics to assign
routes to meet real-time requirements.

V. CONFLICT DELAY ANALYSIS

In this section, we summarize the delay analysis for
WSANs. Previous works have studied end-to-end communi-
cation delays in WSANs [6], [7]. Based on their analyses,
a packet can be delayed for two reasons: conflict delay and
contention delay. Due to the half-duplex radio, two transmis-
sions conflict with each other if they share a node (sender or
receiver). In this case, only one of them can be scheduled in the
current time slot. Therefore, if a packet conflicts with another
packet that has already been scheduled in the current time slot,
it has to be postponed to a later time slot, resulting in conflict
delay. As a WSAN does not allow concurrent transmissions
in the same channel, each channel can accommodate only
one transmission across the network in each time slot. If all
channels are assigned to transmissions of other packets, a
packet must be delayed to a later slot, resulting in contention
delay.

u

A

s

Route for Fi
Route for Fk

v

bc z

e f

y
x

Fig. 1. An example showing conflict delay

From existing delay analyses [6], [7] as well as our sim-
ulations, conflict delay plays a significant role in the end-
to-end delays of flows. Furthermore routing directly impacts
conflict delays, whereas contention delays largely depend on
the number of channels available. Therefore, in our routing
design, we focus only on conflict delay. Saifullah et al.



proposed the Efficient Delay Analysis algorithm (EDA) in
[6]. Here we briefly discuss their EDA algorithm and our
approximation of EDA for our routing design.

We denote the maximum conflict delay that a package of
flow Fk suffers from a package of flow Fi as ∆i

k. ∆i
k is

counted based on the routes of the two flows. ∆i
k equals the

number of links in Fi’s route that share nodes with Fk’s route,
times the number of transmissions scheduled on each link.
We use κ to denote the number of transmissions scheduled
for each link. We use an example in Figure 1 to show how
to count ∆i

k. Fk and Fi are two flows that share a part of
their routes. Four links in Fi’s route share nodes with Fk’s
route, which are {(u, v), (v,A), (A, x), (x, y)}. For simplicity,
assuming only one transmission is scheduled for each link, ∆i

k

in this example equals 4.
Given a time interval of t slots, the number of packets of

flow Fi that contribute to the delay of a packet of flow Fk

during this time interval is upper bounded by d t
Ti
e. As [6]

shows, the worst-case conflict delay of a packet of flow Fk

from all packets of flow Fi in a time window t can be bounded
as

Θi
k(t) = d t

Ti
e∆i

k, (1)

where Ti is the period of flow Fi and ∆i
k is the maximum

conflict delay imposed by one packet of flow Fi.
By summarizing conflict delays from all flows with higher

priorities than flow Fk, EDA proposes a upper bound of the
conflict delay of flow Fk as

Θk(t) =
∑
i<k

d t
Ti
e∆i

k. (2)

Based on Equation 2, EDA uses an iterative fixed-point
algorithm to get the upper bound of Fk’s conflict delay.
However, the iterative fixed-point algorithm is too expensive
for our routing algorithms since we will use the delay analysis
as a basic component and call it extensively in our routing
algorithm. Here, we propose an efficient approximation of
EDA.

A packet of flow Fk can be delayed only within its lifetime
Dk (the relative deadline of flow Fk). Instead of using an
iterative fixed-point algorithm, we use the deadline of flow Fk

as the length of time window. We further ignore the ceiling
function and approximate the conflict delay that Fk can suffer
from flow Fi as

Θi
k =

Dk

Ti
∆i

k. (3)

By considering conflict delays from all flows, we approxi-
mate the conflict delay of flow Fk as:

Θk =
∑
i<k

Dk

Ti
∆i

k. (4)

We present the pseudocode of our conflict delay analysis
algorithm in Algorithm 1. Because each look up takes log|φk|

Algorithm 1: Conflict Delay Analysis

1 Function CDA(G,F , κ)
Input : A graph G(V,E), a flow set

F = {F1, F2, · · · , Fn} ordered by priority,
where Fk = (sk, dk, φk, Tk, Dk)

Output : Conflict delays {θ1, θ2, · · · , θn} for all
flows

2 for each flow Fk from F2 to Fn do
3 S = ∅;
4 for each link (u, v) ∈ φk do
5 insert u into S;
6 insert v into S;

7 for each flow Fi from F1 to Fk−1 do
8 ∆i

k = 0;
9 for each link (u, v) ∈ φi do

10 if u ∈ S or v ∈ S then
11 ∆i

k = ∆i
k + κ;

12 for each flow Fk from F1 to Fn do
13 Θk = 0;
14 if k > 1 then
15 for each flow Fi from F1 to Fk−1 do
16 Θk = Θk + Dk

Ti
∆i

k;

in average, the for loop from line 9 to line 11 has a complexity
of O(|φi|log|φk|). The for loop from line 7 to 11 has a
complexity of O(n|φi|log|φk|). The for loop from line 2 to
line 11 has a complexity of O(n(|φk| + n|φi|log|φk|)) =
O(n2|φi|log|φk|). Because the length of any path φk is no
longer than |V | (each node is visited only once given loop can
be removed), then |φk| ≤ |V |. the complexity of our conflict
delay analysis algorithm is O(n2|V |log|V |).

VI. REAL-TIME ROUTING

In WSANs, existing routing algorithms [8] usually take hop
count as the metric when selecting routes. As a result, each
flow will select a route with the minimum hop count. However,
the shortest path does not necessarily lead to the smallest
end-to-end delay. As previous delay analyses [6], [7] and our
simulations presented in Section VII show, conflict delay plays
an important role in the end-to-end delay. In this section, we
take conflict delay into account in the routing decision and
propose our real-time routing algorithms.

As we summarized in Section V, the conflict delay that a
flow Fk experiences is approximated as Θk =

∑
i<k

Dk

Ti
∆i

k,
where Ti is the period of a high-priority flow Fi, and ∆i

k is the
maximum conflict delay imposed by one packet of flow Fi. To
be more specific, ∆i

k is the number of transmissions of flow
Fi that share nodes with flow Fk, which depends on the routes
of flows Fi and Fk. In our real-time routing algorithms, we
aim to reduce the conflict delay caused by high-priority flows
under a deadline-monotonic priority assignment that assigns



higher priorities to flows with shorter deadlines. This policy
can improve the number of flows meeting their deadlines, as
shown in our simulation results in Section VII.

A. Conflict-Aware Routing

Algorithm 2: Conflict-Aware Routing

1 Function CAR(G,F)
Input : A graph G(V,E), A flow set

F = {F1, F2, · · · , Fn} ordered by priority
with Fk = (sk, dk, Tk, Dk)

Variable: link weight w, link delay coefficient c
Output : A route φk for each flow Fk

2 for each link (u, v) ∈ E do
3 w(u,v) = 1;
4 c(u,v) = 0;

5 for each flow Fk from F1 to Fn do
6 if k > 1 then
7 for each link (u, v) ∈ E do
8 w(u,v) = 1 +Dk · c(u,v);

9 Find the shortest path φk connecting sk to dk;
10 Assign φk as flow Fk’s route;
11 for each link (u, v) ∈ E do
12 if (u, v) shares at least one node with Fk’s

route Rk then
13 c(u,v) = c(u,v) + 1

Tk
;

We discuss our Conflict-Aware Routing (CAR) algorithm,
which pick routes with small conflict delays caused by high-
priority flows. Our CAR algorithm runs as follows. We assign
routes for flows following the priority order, from the highest
to the lowest. For each flow Fk, we update the link weights
based on routes of higher priority flows. If a link (u, v) shares
at least one node with a higher priority flow Fi’s route, its
weight will be increased by Dk

Ti
based on Equation (3). After

updating the link weights, we run Dijkstra’s algorithm [21] to
find the path φk with the smallest path weight. The algorithm
terminates when the flow with lowest priority is assigned with
a route φn. We present the pseudocode of our CAR algorithm
in Algorithm 2.

Figure 2 shows an example of our CAR algorithm. In this
example, we have two flows, Fh and Fl. Flow Fh has a higher
priority than flow Fl. The flow Fh has a source p, a destination
a, a period 1s, and a deadline 1s. The flow Fl has a source q,
a destination a, a period 4s, and a deadline 4s. We use black
lines to represent links in the network, red lines to represent
the route of flow Fh, and blue lines to represent the route of
flow Fl. In the first step (Figure 2(a)), we assign an initial
link weight of 1 for each link in the topology. In the second
step (Figure 2(b)), we run the shortest path algorithm to get
Fh’s route as p → b → a. In the second step (Figure 2(c)),
we update the link weights based on flow Fh’s route. If a
link (u, v) shares at least one node with any link on flow

p

b

a

q
e

c

1

1
1

1

1

1 1

sh

sl

1

1

(a) Assign initial link weights

p

b

a

q
e

c

1

1
1

1

1

1 1

sh

sl

1

1

(b) Pick the route of Fh

p

b

a

q
e

c

5

5
5

1

1

5 5

sh

sl

5

5

(c) Update link weights

p

b

a

q
e

c

1

5
5

1

1

5 5

sh

sl

5

5

(d) Pick the route of Fl

Fig. 2. An example of the CAR algorithm. Red lines represent the route of
flow Fh. Blue lines represent the route of flow Fl.

Fh’s route, we add an estimated conflict delay Dl

Th
= 4 to the

link weight, because each link in flow Fh’s route will bring
Dl

Th
= 4 conflict delay to flow Fl based on the delay analysis in

Equation 3. In this example, links that could encounter conflict
delay from flow Fh will have a link weight of 5. In the fourth
step (Figure 2(d)), we find the shortest path from flow Fl’s
source q to its destination a, which is q → e→ c→ a in this
example. Note the path we found is different from the shortest
path based on hop count q → b→ a.

Now we discuss the complexity of the CAR algorithm. We
first check the complexity for each flow (one iteration within
the for loop at lines 5-13). The complexity to update the link
weights is O(|E|). The complexity of the Dijkstra’s algorithm
is O(|E|+ |V |log|V |), and the complexity to update the delay
coefficients is O(|E|). Then the complexity of each flow is
O(|E| + |V |log|V |). Therefore, the complexity of our CAR
algorithm is O(|F|(|E|+ |V |log|V |)).

B. Iterative Conflict-Aware Routing

By reducing the conflict delay of low priority flows, we
can accommodate more flows while meeting their deadlines.
However, CAR is based on flow priorities, and high priority
flows are not aware of the routes of low priority flows.
We further improve the real-time capacity by introducing an
approach where high priority flows also take into account
the routes of low priority flows. We introduce our Iterative
Conflict-Aware Routing (ICAR) algorithm as Algorithm 3.

The ICAR algorithm terminates when no flows update their



Algorithm 3: Iterative Conflict-Aware Routing

1 Function ICAR(G,F)
Input : A graph G(V,E), A flow set

F = {F1, F2, · · · , Fn} ordered by priority
with Fk = (sk, dk, Tk, Dk)

Variable: link weight w, per link flow set S, link
delay coefficient c

Output : A route φk for each flow Fk

2 changed = true;
3 schedulable = false;
4 for each flow Fk ∈ F do
5 φk = ∅;
6 for each link (u, v) ∈ E do
7 S(u,v) = ∅;
8 c(u,v) = 0;

9 while changed == true and schedulable == false
do

10 changed = false;
11 schedulable = true;
12 for each flow Fk from F1 to Fn do
13 if k > 1 then
14 for each link (u, v) ∈ E do
15 if Fk ∈ S(u,v) then
16 w(u,v) = 1 +Dk · (c(u,v) − 1

Tk
);

17 else
18 w(u,v) = 1 +Dk · c(u,v);

19 Find the shortest path φtemp connecting sk to
dk;

20 schedulabletemp = EDA(φtemp);
21 if φk == ∅ or (φtemp 6= φk and

schedulabletemp == true) then
22 routechanged = true;
23 schedulable = schedulabletemp ;

24 if φtemp == φk or (φtemp 6= φk and
schedulabletemp == false) then

25 routechanged = false;
26 schedulable = EDA(φk);

27 if routechanged == true then
28 changed = true;
29 for each link (u, v) ∈ φk do
30 if (u, v) /∈ φtemp then
31 Remove Fk from S(u,v);
32 c(u,v) = c(u,v) − 1

Tk
;

33 for each link (u, v) ∈ φtemp do
34 if (u, v) /∈ φk then
35 Insert Fk into S(u,v);
36 c(u,v) = c(u,v) + 1

Tk
;

37 φk = φtemp;

routes in the last round or all flows are schedulable under EDA.
Within each round, flows pick their routes one by one. For each
flow Fk, the algorithm first updates link weights based on the
routes of other flows. One difference between ICAR and CAR
is that lower priority flows can also contribute to link weights
for Fk. ICAR lets higher priority flows be aware of the routes
of lower priority flows, and therefore reduces the overlapping
of their routes. This leaves a bigger space for low priority
flows and gives them a higher chance to find routes which are
schedulable. If a new route Rtemp is found, the algorithm will
first check whether flow Fk with this new route is schedulable
under EDA. If yes, this new route Rtemp is assigned to Fk

and flow Fk is indicated as schedulable. If not, flow Fk will
use its old route Rk. If flow Fk is schedulable under EDA,
we indicate it as schedulable; otherwise, Fk is unschedulable.
The algorithm will enter into a new round if at least one flow
is not schedulable and at least one flow has an updated route.

VII. EVALUATION

We evaluate our real-time routing algorithms through both
experiments on a physical WSAN testbed and simulations
based on the WSAN testbed topology. We compare our
Conflict-Aware Routing (CAR) algorithm and the Iterative
Conflict-Aware Routing (ICAR) algorithm with the Shortest
Path Routing (SP) algorithm. In SP, each flow uses breath-
first search algorithm [21] to select a route with the minimum
hop count.

A. Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN
testbed consisting of 63 TelosB motes, located on the fifth
floors of two adjacent buildings. Figure 3 shows the topology
of the WSAN testbed. We use motes 129 and 155 (green
circles) as access points, which are physically connected to
a root server (the gateway). The other motes are used as field
devices (red circles). The network manager as a software runs
on this root server. For each link in the testbed, we measure
its packet reception ratio (PRR) by counting the number of
received packets among 250 packets transmitted on the link.
Following the practice of industrial deployment, we only add
links with PRRs higher than 90% to the topology of the
testbed. We implement a multi-channel TDMA MAC protocol
on top of the IEEE 802.15.4 physical layer. Clocks of network
devices across the entire network are synchronized using the
Flooding Time Synchronization Protocol (FTSP) [22]. Time is
divided into 10 ms slots.

We generate 8 flows in our experiment. We use 8 channels
in this experiment. The period of each flow is picked up from
the range of 24∼7× 10 milliseconds. The length of the hyper-
period is 128 milliseconds. The relative deadline of each flow
equals to its period. All flows are schedulable based on our
delay analyses. We run our experiments long enough such that
each flow can deliver at least 100 packets.

In Figure 4, we compare delays from the experimental
results with delay analyses as well as simulation. We compare
four delays for each flow: minimum delay in experiments



Fig. 3. Topology of the WSAN Testbed

1 2 3 4 5 6 7 8

Flow Priority
0

50

100

150

200

250

300

D
e
la

y
 (

m
s
)

(a) End-to-end delay

1 2 3 4 5 6 7 8

Flow Priority
0

50

100

150

200

250

300

C
o
n

fl
ic

t 
D

e
la

y
 (

m
s
)

SP-EXP-MIN

SP-EXP-MAX

SP-SIM

SP-EDA

CAR-EXP-MIN

CAR-EXP-MAX

CAR-SIM

CAR-EDA

ICAR-EXP-MIN

ICAR-EXP-MAX

ICAR-SIM

ICAR-EDA

(b) Conflict delay

Fig. 4. Delays



(EXP-MIN), maximum delay in experiments (EXP-MAX),
maximum delay in simulation (SIM), and the estimated delay
in EDA [6]. We evaluate both the end-to-end delays and the
conflict delays. To save space, Figure 4(a) shares the same
legend with Figure 4(b).

First of all, the results show for both the end-to-end delay
and conflict delay, every flow has the four delays follow the
following order: EXP-MIN ≤ EXP-MAX ≤ SIM ≤ EDA.

This shows that simulation and delay analysis are safe upper
bounds of the actual delays. In addition, SIM is consistently
higher than EXP-MAX, which indicates our simulations can
generate test cases with worse delays than those observed on
the testbed.

Figure 4(a) compares end-to-end delays of flows based
on different routing algorithms: SP, CAR, and ICAR. The
results show CAR and ICAR can reduce the end-to-end delays
compared with SP. Furthermore, ICAR can further reduce the
delays for flows with low priorities. Given we have enough
channels in this experiment, there is no contention delay. We
further compare conflict delays of flows in Figure 4(b). Clearly,
CAR and ICAR can reduce the conflict delays of flows. For
example, flow 7 has conflict delays in SP routing. However,
its conflict delays in CAR and ICAR routings are zero. By
reducing conflict delays, CAR and ICAR can reduce the end-
to-end delays of flows.

B. Simulations

Besides the testbed experiments, we also test our routing
algorithms through simulations on testbed topology. The sim-
ulator uses the same routing and scheduling design used on
our testbed experiments and is written in C++. All simulations
are performed on a MacBook Pro laptop with 2.4 GHz Intel
Core 2 Duo processor. To show the impact of the number of
channels, we test our algorithms under different number of
channels (4, 8, 12, and 16) in our simulation. We test our
routing designs on different numbers of flows by increasing
the numbers of source and destination pairs from 2 to 22.
The period Tk of the each flow Fk is randomly generated in
the range of 24∼7 × 10 milliseconds. The relative deadline
Dk of every flow Fk is equal to its period. For each flow
set, we generate 100 test cases and simulate them on testbed
topologies.

We first compare the acceptance ratios of CAR, ICAR and
SP in Figure 5. SP always has the lowest acceptance ratio.
Both CAR and ICAR have much higher acceptance ratios than
SP when the network has at least 8 channels. ICAR has a
higher acceptance ratio than CAR, which shows the benefit of
letting flows with higher priorities be aware of the routes of
lower priority flows. The performance of our real-time routing
algorithms improves when the number of channels increases.
Because when the network has very few channels, contention
delay is the main part of end-to-end delay. However, when
the network has more channels, the conflict delay becomes
the dominant part of the end-to-end delay. Compared to SP,
CAR and ICAR can improve the acceptance ratio by 239%
and 350% in average with 16 channels, respectively. We

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(d) 16 Channels

Fig. 5. Acceptance Ratio in Simulation



2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100
A

c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(d) 16 Channels

Fig. 6. Acceptance Ratio in Analysis

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(d) 16 Channels

Fig. 7. Delays in Simulation



2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200
D

e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(d) 16 Channels

Fig. 8. Delays in Analysis

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
) SP

CAR
ICAR

Fig. 9. Execution Time

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u

m
b

e
r 

o
f 

it
e
ra

ti
o
n

s

Fig. 10. Number of Iterations

further compare the acceptance ratios of CAR, ICAR and SP
on efficient delay analysis [6] in Figure 6. Our simulation
results show CAR and ICAR have higher acceptance ratio in
delay analysis compared to SP. Because the delay analysis is
pessimistic compared to simulation, acceptance ratios in delay
analyses (Figure 6) are lower than simulation (Figure 5).

We further compare end-to-end delays of CAR, ICAR, and
SP in Figure 7. Here we draw the average delays of all 100 test
cases. We use CF to stand for conflict delay, CT for contention
delay, and TC for transmission count (number of transmissions
scheduled on the route). When the number of channels is small
(4 or 8), the contention delays can be important part of the end-
to-end delays. However, when the network has 12 channels,
the contention delays are zero, and conflict delays dominate
since then. Although CAR and ICAR may lead to routes with
longer hop count, their end-to-end delays are smaller than SP
in average. Because CAR and ICAR have fewer conflict delays
than SP in all cases. The end-to-end delays in delay analysis
[6] show the same trend in Figure 8.

We compare the execution time of SP, CAR, and ICAR
when there are 10 channels in Figure 9. The execution time
increases as the number of flows increases in all three algo-
rithms. The execution time of three routing algorithms follows
this order: SP<CAR<ICAR. SP has the lowest execution time
since it uses the breadth-first search algorithm. ICAR has a



higher execution time than CAR because it is an iterative
algorithm. The execution time of ICAR is less than 200 ms
when the number of flows is 22, which is acceptable in real-
world operations. We also show the number of iterations in
Figure 10. The number of iterations increases as the number
of flows increases. Even for 22 flows, the maximum number
of iterations is 4 in our simulations, which is relatively small
when considering the size of the network.

VIII. CONCLUSION

As process industries start to adopt wireless sensor-actuator
networks (WSANs) for control applications, it is crucial
to achieve real-time communication in this emerging class
of networks. Routing has significant impacts on end-to-end
communication delays in WSANs. However, despite con-
siderable research on real-time transmission scheduling and
delay analysis for such networks, real-time routing remains
an open question for WSANs. This paper presents a conflict-
ware real-time routing approach for WSANs. This approach
leverage a key observation that conflicts among transmissions
sharing a common field device contribute significantly to
communication delays in industrial WSANs such as Wire-
lessHART networks. By incorporating conflict delays in the
routing decisions, conflict-aware real-time routing algorithms
allow a WSAN to accommodate more real-time flows while
meeting their deadlines. Evaluation based on simulations and
experiments on a real WSANs testbed show conflict-aware
real-time routing can lead to up to three-fold improvement in
real-time capacity of WSANs.

REFERENCES

[1] “WirelessHART specification,” 2007. http://www.hartcomm2.org.
[2] “ISA100: Wireless Systems for Automation.” https://www.isa.org/

isa100/.
[3] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, and M. Nixon,

“WirelessHART: Applying Wireless Technology in Real-Time Industrial
Process Control,” in RTAS ’08.

[4] “Emerson’s wirelesshart report.” http://www2.emersonprocess.com/en-
us/plantweb/wireless/pages/wirelesshomepage-flash.aspx.

[5] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for
WirelessHART Networks,” in RTSS’10.

[6] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end delay analysis for
fixed priority scheduling in WirelessHART networks,” in RTAS’11.

[7] C. Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,
“Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks,”
in IEEE/ACM Symposium on Quality of Service (IWQoS’14), May 2014.

[8] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and
Real-time Communication in Industrial Wireless Mesh Networks,” in
RTAS’11.

[9] O. Chipara, C. Wu, C. Lu, and W. Griswold, “Interference-Aware Real-
Time Flow Scheduling for Wireless Sensor Networks,” in ECRTS’11.

[10] A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen, “Near
Optimal Rate Selection for Wireless Control Systems,” in RTAS’12.

[11] B. Li, Z. Sun, K. Mechitov, C. Lu, S. Dyke, G. Agha, and B. Spencer,
“Realistic case studies of wireless structural control,” in ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS’13), April
2013.

[12] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen,
“Near optimal rate selection for wireless control systems,” ACM Trans-
actions on Embedded Computing Systems (TECS’14), April 2014.

[13] M. Sha, D. Gunatilaka, C. Wu, and C. Lu, “Implementation and
Experimentation of Industrial Wireless Sensor-Actuator Network Pro-
tocols,” in The 12th European Conference on Wireless Sensor Networks
(EWSN’15), February 2015.

[14] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu,
and Y. Chen, “Schedulability Analysis under Graph Routing for Wire-
lessHART Networks,” in RTSS’15.

[15] B. Li, L. Nie, C. Wu, and H. G. C. Lu, “Incorporating Emergency Alarms
in Reliable Wireless Process Control,” in ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS’15), April 2015.

[16] Y. Xu, F. Ren, T. He, C. Lin, C. Chen, and S. K. Das, “Real-time
routing in wireless sensor networks: A potential field approach,” ACM
Transactions on Sensor Networks, vol. 9, pp. 35:1–35:24, June 2013.

[17] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A Stateless
Protocol for Real-Time Communication in Sensor Networks,” in ICDCS
’03.

[18] E. Felemban, C.-G. Lee, and E. Ekici, “MMSPEED: Multipath Multi-
SPEED Protocol for QoS Guarantee of Reliability and Timeliness in
Wireless Sensor Networks,” IEEE Transactions on Mobile Computing,
vol. 5, no. 6, pp. 738–754, 2006.

[19] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, and
T. Abdelzaher, “Real-time Power-Aware Routing in Sensor Networks,”
in 14th IEEE International Workshop on Quality of Service (IWQoS’06),
pp. 83–92, June 2006.

[20] A. Burns and A. Wellings, Real-Time Systems and Programming Lan-
guages. Addison Wesley, 3rd ed., 2001.

[21] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[22] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The Flooding Time
Synchronization Protocol,” in SenSys’04.

http://www.hartcomm2.org
https://www.isa.org/isa100/
https://www.isa.org/isa100/

	Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Actuator Networks
	Recommended Citation
	Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Actuator Networks

	Introduction
	Related Work
	Network Model
	Problem Formulation
	Conflict Delay Analysis
	Real-Time Routing
	Conflict-Aware Routing
	Iterative Conflict-Aware Routing

	Evaluation
	Experiments on a WSAN Testbed
	Simulations

	Conclusion
	References

