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Abstract
The efficient deployment and robust operation of many

sensor network applications depend on deploying relays to
ensure wireless coverage. Radio mapping aims to predict
network coverage based on a small number of link mea-
surements from sampled locations. Radio mapping is par-
ticularly challenging in complex indoor environments where
walls significantly affect radio signal propagation. This pa-
per makes the following key contributions to indoor radio
mapping. First, our empirical study in an office building
identifies a wall-classification model as the most effective
model for indoor environments due to its balance between
model complexity and accuracy. Second, we propose a
practical algorithm to predict the Reception Signal Strength
(RSS) of links in an indoor environment based on a small
number of measurements at sampled locations. A key nov-
elty of our algorithm lies in its capability to automatically
classify walls into a small number of classes with different
degrees of signal attenuation. Finally, we present a practi-
cal Radio Mapping Tool that can predict the coverage areas
of relays based on a small number of link quality measure-
ments in the environment. Empirical evaluation in an office
building demonstrates that the Radio Mapping Tool reduces
the false positive rate by as much as 41% compared to the
classical log-normal radio propagation model, with a false
negative rate of 9% based on sampling only 20% of the loca-
tions of interest.

1 Introduction
Numerous sensor network applications require wireless

networks which fully cover an entire physical region. Exam-
ples of such applications include participatory sensing [4,8],
elderly care [25,28], and patient tracking and monitoring [3].
Our own interest in this topic is motivated by a medical ap-
plication which requires covering a hospital floor to ensure
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that the vital signs of mobile users may be collected reliably.
Accordingly, relays should be deployed such that, for any po-
sition where a patient may move, there is at least one link to
some relay that exceeds a minimum bound on packet recep-
tion rate (PRR). The best practice for assessing the coverage
of such a sensor network is to exhaustive measure the link
quality to the deployed relays at numerous locations. This
process is labor intensive and leads to significant deployment
costs. Even worse, the network coverage may need to be re-
assessed in response to physical changes (e.g., reconfiguring
cubicles) or changes in the radio properties (e.g., switching
operating frequency due to interference). As a result, main-
tenance cost may also be significant.

Within the 802.11 networking community, there are a
handful of deployment tools which can proactively evalu-
ate radio coverage [5]. These tools often employ ray trac-
ing techniques which require precise characterizations of the
location and radio properties of walls. While there are em-
pirical studies which determine the attenuation of different
wall types [21], the user must manually determine the con-
struction material of each wall. Such information is seldom
readily available to the network manager or end user. The
user may also need to provide the locations and attenuation
coefficients of other objects that can significantly affect ra-
dio propagation, such as bookshelves or filing cabinets. This
imposes an undue effort on the user.

What is needed is a practical radio mapping tool which
reduces the burden of assessing the coverage of a wireless
sensor network based on a small number of link measure-
ments. Specifically, we are interested in determining the re-
ception coverage of a relay: i.e., the set of points (x,y) such
that nodes located at (x,y) can transmit a packet to at least
one relay with a PRR above a user-specified threshold1. The
total network coverage may be computed by taking the union
of each relay’s coverage. We choose to focus on ensuring
a minimum PRR because PRR directly affects the perfor-
mance of link-layer and routing protocols.

We divide the radio mapping problem into two parts. We
first predict the receive signal strength (RSS) at the relay

1The techniques proposed in this paper are also applicable to the
network’s transmission coverage: i.e., the set of points that can re-
ceive transmissions from at least one relay. We focus on reception
coverage in this paper, since our target application entails data col-
lection. Henceforth, we use the term “coverage” to mean “reception
coverage”.



from any point on the floor plan. Then, based on the RSS
predictions along with an RSS threshold for predicting good-
quality links, we determine each relay’s coverage. While
established radio propagation models have been proposed
to predict RSS [1, 10, 12], it is unclear which is best-suited
for complex indoor environments where nodes may not have
line-of-sight. Finding an RSS threshold that predicts good-
quality links is also challenging because low-power links
have probabilistic properties [7, 15, 17, 22, 23].

The key contributions of this paper are the following:

• We perform an in-depth empirical study that character-
izes the accuracy of several propagation models’ RSS
predictions in an office building. In this study, we show
that complex models do not necessarily produce more
accurate estimates of signal strength: there is an im-
portant tradeoff between the accuracy of the model and
the number of model parameters that must be estimated
from limited training data. We demonstrate that a model
which classifies walls into a small number of classes
with differing attenuation values achieves the best pre-
diction accuracy, reducing errors by 18% compared to
the classical log-normal radio propagation model [2].

• We propose a computationally efficient wall classifica-
tion algorithm to be used in conjunction with this wall-
classification-based model. Our empirical results show
that it produces a wall classification which results in
better RSS prediction accuracy than a manual classifica-
tion, while also significantly reducing the user burden.

• We develop a practical Radio Mapping Tool (RMT)
which predicts the coverage of one or more relays
with minimal information about the indoor environ-
ment. RMT leverages wall location information to ac-
curately predict radio coverage based on a small number
of link quality measurements. Moreover, it can compute
the predicted coverage of a network in minutes, allow-
ing users to quickly refine the placement of relay nodes.

• We characterize the accuracy of this tool through a case
study. We find that the combination of our chosen radio
model with our automated wall classification scheme
reduces the false positive rate by as much as 41% com-
pared to the log-normal model, with a false negative rate
of 9% based on sampling only 20% of the locations of
interest.

The remainder of the paper is organized as follows. In
Section 2, we start by overviewing several well-established
propagation models and discussing their applicability to in-
door environments. We find a model which classifies walls
into a few types to be promising. In Section 3, we discuss
methods to classify walls, including a computationally effi-
cient algorithm that automatically performs this classifica-
tion. The RSS prediction accuracy of different propagation
models is assessed in Section 4. In Section 5, we present a
radio mapping tool built based on the insights gained from
our empirical study. Section 6 evaluates the efficacy of our
radio mapping tool through a case study. We review related
work Section 7 and conclude in Section 8.

2 Radio Propagation Models
Modeling signal propagation in wireless networks has at-

tracted tremendous interest within the wireless communica-
tion community. Models optimized for different wireless
technologies and environments have been proposed in liter-
ature [1, 10, 12]. The models presented in this section fo-
cus on modeling three aspects which may significantly affect
signal propagation in indoor environments: (1) the distance
between the sender and receiver, (2) variations in the trans-
mission power caused by imperfect radio calibration, and
(3) the impact of walls. While these models are not new,
they have not been systematically evaluated on low-power
radios in complex indoor environments where nodes may not
have line-of-sight. Our goal is to identify the model with the
best trade-off between prediction accuracy and the number
of samples needed to estimate its parameters. This model
will ultimately be used in our Radio Mapping Tool to gen-
erate signal strength predictions. As we show in Section 4,
more complex models do not necessarily result in improved
prediction accuracy: it may not be possible to accurately esti-
mate many parameters with a reasonable number of samples.

Log-Normal Shadowing: Under the log-normal model,
signal strength decays exponentially as a function of dis-
tance. Let d(s,r) be the distance between the sender node
s and the receiver node r. The receive signal strength Pr(s,r)
at r from a sender s is given by: [2]

Pr(s,r) = α−10β log10 d(s,r)+σ (1)

The parameter α represents the transmission power at a ref-
erence distance of 1m. β represents the pass loss exponent.
σ models shadowing (i.e., the random signal variations be-
tween sender and receiver) and is usually considered to be a
normally distributed random variable.

An attractive feature of the log-normal model is its sim-
plicity: it has only two parameters that may be determined
through linear regression on a small number of samples.
Moreover, we may account for the variation in transmission
power among radios caused by imperfect radio calibration
[7, 22, 30] by having different α parameters for each sender
(i.e., replacing α in Equation 1 with α(s)). This model has
been shown in [30] to explain the wide transitional region
observed on low-power links.

Prior empirical studies have shown that this model may
accurately predict the receive signal strength of low-power
radios in outdoor environments [15] and in indoor environ-
ments where nodes have direct line-of-sight [15, 30]. Since
this model does not account for the impact of walls, we do
not expect it to perform well in complex indoor environ-
ments; the results of our empirical study in Section 4 will
later confirm this hypothesis.

Sector-Based: Prior literature has extended the basic log-
normal model to capture the fact that many low-power ra-
dios, such as the CC2420 radio used in the TelosB and MicaZ
sensor platforms, have non-isotropic radiation patterns [29].
That is, even when nodes are positioned at equal distances
from the sender, they may observe significantly different re-
ceive signal strengths. Intuitively, by capturing this effect we
obtain a more realistic model which should result in more ac-



curate signal strength predictions.
This extension captures the effect of non-isotropic radi-

ation by parameterizing α by the angle θ between the line
uniting s and r and a fixed frame of reference:

Pr(s,r) = α(s,θ)−10β log10 d(s,r)+σ (2)

α(θ) may be a non-linear function [29]. As a result, non-
linear optimization techniques would be necessary for fitting
the model. A simpler alternative is to divide θ into NS sec-
tors:

Pr(r,s) =
NS

∑
j=1

B(1+bθ/NSc= j)α(s, j)−10β log10 d(s,r)+σ

(3)
where B(a=b) is one if a = b and zero otherwise. The param-
eter values of each sector may then be fitted independently
using linear regression.

While this model is more realistic than the basic log-
normal model, it is also more complex. Accordingly, it will
require much more data to adequately fit its parameters. Un-
der the log-normal model, each sender has a single value for
α; under the sector-based model, each sender has NS values
of α. In our testing environment (shown in Figure 2), this
model may have as many as 360 parameters. In Section 4 we
show that the large number of parameters causes the sector-
based model to perform poorly in our indoor environment.

Per-Wall Attenuation: In complex indoor environments,
walls may significantly attenuate wireless links. We hy-
pothesize here (and validate in Section 4) that incorporat-
ing walls into the radio propagation model can improve its
signal strength predictions. Such information can be readily
extracted from a building’s floor plan.

An intuitive way of modeling wall attenuation is to as-
sume that each wall w ∈W in the environment attenuates the
signal by a constant factor γw. Therefore, if we let Is,r be the
set of all walls which intersect a virtual line between s and r,
then the signal strength at r is given by:

Pr(s,r) = α(s)−10β log10 d(s,r)+ ∑
w∈Is,r

γw (4)

This model may also be combined with the non-isotropic
radio range model, in which case α is replaced with
∑

NS
j=1 B(1+bθ/NSc= j)α(s, j).
However, several measurements should be taken through

each wall to accurately estimate γ. This may be a signifi-
cant burden in some environments; for example, we identi-
fied 85 walls in our testing environment. We demonstrate
in Section 4 that this requirement causes the per-wall atten-
uation model to make large estimation errors when only a
small amount of training data is available. In some cases,
this model performs even worse than the log-normal model.

Wall-Class Attenuation: A pragmatic alternative to the
per-wall scheme is to group walls into a few classes, re-
flecting the fact that only a few types of walls are used in
construction. For example, the building shown in Figure 2
mainly uses two kinds of walls: cinder block and drywall.

Given a set of classes C, a mapping Π : W →C, and an atten-
uation coefficient Γc for each class c ∈C, the signal strength
at a node r is:

Pr(s,r) = α(s)−10β log10 d(s,r)+ ∑
w∈Is,r

ΓΠ(w) (5)

A benefit of considering a small number of classes is that
it significantly reduces the number of parameters. However,
it also creates a new problem: a mapping Π from walls to
classes needs to be constructed. In the next section, we will
discuss an efficient algorithm for automatically constructing
this mapping.
3 Estimating Model Parameters

For most of the models discussed in the previous section,
the parameter values may be estimated through linear regres-
sion as follows. The user collects a training set of link quality
measurements by placing nodes at a small number of loca-
tions in the environment. The nodes exchange packets and
record the receive signal strength (RSS) and sequence num-
ber of each packet that they successfully decode. The user
also records the location of each deployed node so that the
distance d between any two nodes may be computed. From
this training data, we compute a vector y which specifies the
average signal strength at each node. We can then use stan-
dard linear regression techniques to fit most of the models’
parameters from d and y.

However, this approach is not sufficient for models based
on wall classification, which also require a mapping Π from
walls to wall classes. We note that these models are partic-
ularly important for our study, because (as discussed in Sec-
tion 4) they achieve the most accurate predictions of signal
strength. Thus, in this section we will focus on an efficient
method for fitting parameters to this model.

One way to construct this wall classification is to manu-
ally classify walls based on their construction material. Lin-
ear regression may then be used to fit the remainder of the
model’s parameters as described above. However, this ap-
proach is sub-optimal for two reasons. First, manual wall
classification is labor-intensive and requires architectural in-
formation that may not be readily available to application
developers or network managers. Second, a manual map-
ping will not consider the attenuation of other objects in the
building. For example, drywall is known to have a lower at-
tenuation than cinderblock. However, a signal that intersects
a bookshelf placed against drywall may have an attenuation
closer to cinderblock, which a manual architectural survey
will not capture.

Instead, we propose to automatically classify walls using
an iterative algorithm. This algorithm takes as input the av-
erage RSS vector y, a set of walls W , a set of wall classes
C, and the distance among all nodes d. Figure 1 presents the
pseudocode of this algorithm.

Initially, each wall is assigned to a random class. The al-
gorithm then proceeds in two stages, repeating until changes
in wall classification stop improving the sum of squared er-
rors (SSE) between the predicted signal strengths (ŷ) and the
actual signal strengths (y). In the first stage (line 6), the al-
gorithm uses linear regression to fit the parameters α and β,



[α,β,Γ,Π] = compute-parameters(y, W, C, d):
1: improvement = true;
2: for each wall w ∈W :
3: Π(w) = rand(C);
4: while (improvement):
5: improvement = false;
6: [α,β,Γ] = regress(y, [d;Π]);
7 : for each wall w ∈W in random order:
8: Πnew = Π and cold = Π(w);
9: for each class c ∈C:
10: Πnew(w) = c;
11: ŷ = α(s)−10β log10 d(s,r)+∑w∈Is,r

ΓΠnew(w);

12: SSE(c) = ∑
|y|
i=1(y(i)− ŷ(i));

13: cbest = argmincSSE(c);
14: if (cold 6= cbest):
15: Π(w) = cbest ;
16: improvement = true;
17: break;

Figure 1. Fitting algorithm for wall-classification models

as well as the attenuation coefficient Γ for each wall class.
In the second stage (lines 7–16), the algorithm attempts to
improve the mapping of walls to classes while keeping the
values of α, β, and Γ fixed. This is done by considering
each wall w in random order and computing the SSE when
w is assigned to each class in C. If changing w’s assignment
results in a smaller SSE, then w’s classification is updated ac-
cordingly and the algorithm goes back to executing the first
stage with an improved classification of walls. Otherwise, w
is already assigned to the best class, and the algorithm con-
siders the next wall. The algorithm terminates when no wall
may be assigned to a new class that reduces the SSE. At the
completion of the algorithm, the values of the parameters α,
β, and Γ are returned along with the mapping Π of walls to
classes.

This algorithm has two noteworthy features. First, it
is much less computationally expensive that an exhaus-
tive search. The wall-reassignment stage considers at most
|C|× |W | potential assignments at each iteration. We found
that, by randomizing the order in which walls are considered,
improved assignments are typically found after considering
only a few walls. Thus, in practice, this algorithm could be
executed in under two minutes on a modern laptop PC.

Second, the algorithm is guaranteed to converge. This is
because the algorithm reduces the squared error at each step
until it terminates. There is no guarantee on the optimality
of the solution, since it may get stuck in a local minimum;
however, we show in Section 4 that the classifications found
using this algorithm result in better prediction accuracy than
a manual wall classification. In fact, because of the random
initial assignment of walls to classes and the random order-
ing in which walls are reclassified, the algorithm may return
different values each time it is run. Accordingly, we may
improve the squared error by repeating the algorithm sev-
eral times and returning the parameters which resulted in the
lowest squared error.
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Figure 2. Testbed configuration; triangles represent re-
lays and circles represent test positions

4 Empirical Study of Signal Strength Models
In this section, we present an empirical study which eval-

uates the signal propagation models discussed in Section 2.
The results of our study indicate that the automatic wall clas-
sification model achieves the most accurate signal strength
predictions out of all the methods discussed in Section 2.
Perhaps more importantly, the findings highlight the impor-
tance of selecting a model with the right amount of com-
plexity. The manual and automatic wall classification mod-
els achieve as much as 16% lower error than the log-normal
model, because the log-normal model is excessively sim-
plistic. However, the sectorization and per-wall attenuation
models produce significantly higher error than the simpler
wall classification models, indicating that a more complex
model does not always produce more accurate results. These
observations serve as the foundation for developing our radio
mapping tool, which we will discuss in Section 5.

4.1 Experimental Setup
Our experiments are carried out on indoor office build-

ing (shown in Figure 2) using TelosB motes. The motes are
equipped with CC2420 low-power radio chips, which pro-
vide an RSS indicator reading for each correctly decoded
packet with an accuracy of ±6 dB [27]. All nodes in our
experiment were set to 802.15.4 channel 26, which does
not overlap with the 802.11g network deployed in the same
building.

The experimental setup is motivated by our interest in
supporting robust data collection from mobile users. Accord-
ingly, we are interested in ensuring that at least one testbed
node is capable of receiving data from a user standing in any
location. A testbed of 45 TelosB motes deployed close to
the ceiling is used to represent potential relay locations. As
shown in Figure 2, our testbed does not have direct line-of-
sight among many nodes. Our study consists of 2880 link
quality measurements taken from 64 different positions (cir-
cles in Figure 2) to each of the 45 relays (triangles in Fig-
ure 2). At each position, a TelosB transmitter broadcasts 800



packets. The relays record the RSS indicator reading and
sequence number of each packet which they successfully de-
code. This information is relayed to a central database using
a USB and Ethernet backbone, so as not to interfere with
wireless transmissions.

After collecting the data, we randomly selected a portion
of the nodes from each room or hallway to use as training
data. This training data was input into several different radio
propagation models. We then used the models discussed in
Section 2 to predict the average signal strength observed over
the links which were not represented in the training data, us-
ing the remainder of the experimental dataset as ground truth
data for comparison. We varied the proportion of training
data from 20%–80% during our evaluation.

Unless mentioned otherwise, the presented results are av-
erages of 10 randomly generate training sets. The error bars
in all graphs represent the 90% confidence intervals across
the 10 runs. (We note that the error bars are sometimes
smaller than the markers in the graphs, and hence are not
always visible.)
4.2 Effect of Walls

First, we will evaluate the effectiveness of including walls
in our radio propagation models by comparing the perfor-
mance of the two wall-based models against the log-normal
model. We also evaluate the efficacy of the automatic wall
classification algorithm discussed in Section 3; to do so, we
include an additional experimental run using a wall classifi-
cation that has been manually generated from architectural
information of the building.
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Figure 3. Comparison of radio propagation models

Figure 3 compares the 90th percentile errors of all four
experiments with various proportions of training data. The
two wall-classification models consistently outperform the
log-normal model, which has a prediction error 7.9%–
15.5% higher than the automatic wall-classification model
and 9.9%–13.7% higher than the manual wall-classification
model. The log-normal model is largely unimproved even
when it is given substantially more training data; quadru-
pling the size of the training dataset only decreases the esti-
mation error by 2.5%.
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Figure 4. The estimated attenuation of each wall under
the per-wall attenuation model

Strikingly, the model which assigns an individual attenua-
tion to each wall has 3.8%–13.6% higher error than the wall-
class model with manual classification, and 1.6%–15.8%
higher error than the wall-class model with automatic clas-
sification. When given a small proportion (20%) of training
data, it even performs 5.3% worse than the basic log-normal
model that completely ignores wall attenuation, though it
improves on the basic model by 5.0%–10.8% when given
more training data. As hypothesized in Section 2, this oc-
curs because the per-wall attenuation model has 87 parame-
ters, which cannot be fit well given a reasonable amount of
training data. This effect can be seen in Figure 4, which plots
the estimated attenuation of each wall in the building; even
when 80% of the dataset is used as training data, the model
predicts that 17 of the 85 walls amplify radio signals.

We also note that the automatic wall-classification
scheme achieves comparable error to the manual wall-
classification scheme. When both models are given only
20% of the data for training, the automatic wall-classification
scheme has 1.9% higher error than the manual wall-
classification scheme; at all other datapoints, the automatic
wall-classification scheme achieves 0.1%–2.7% lower error
than the manual scheme. This occurs because the manual
classification scheme only captures the effect of walls, while
the automatic scheme can indirectly capture the effect of
other obstacles in the environment. However, when the pro-
portion of training data is 20%, the automatic classification
scheme does not have enough data to adequately map walls
to classes.

From this data, we make the following key insights:

• The basic log-normal radio model can be significantly
affected by obstacles; it is not always practical to com-
pensate for this effect by just collecting more training
data.

• Judicious use of wall location information can lead to
significant improvements in prediction accuracy.
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Figure 5. Comparison of different numbers of wall
classes

• Automatic wall classification obviates the need to man-
ually classify walls, with comparable or slightly im-
proved prediction accuracy.

4.3 Wall Classification Methods
The previous experiment assumed that all walls in the en-

vironment can be assigned into 2 classes. We will now take
a closer look at how altering the number of wall classes can
affect the accuracy of the automatic wall-class attenuation
model.

Figure 5 compares the estimation accuracy of the auto-
matic wall-classification model with 1–4 classes of walls.
For comparison, we also include the per-wall model, where
each wall is effectively assigned to its own class. When rela-
tively little training data is available, using fewer wall classes
improves the predication accuracy; when 20% of the data is
used for training, the 1-class model has 2.2%–6.7% lower
error than the other classification-based models, and 16.0%
lower error than the per-wall model. As the amount of train-
ing data is increased, schemes which use more wall classes
are able to better fit their data to the model’s parameters,
and their estimations improve. When the proportion of train-
ing data is 30%, the difference among the wall-classification
schemes is insignificant; as the proportion is increased to
80%, the 4-class model achieves up to 4.1% lower error than
the other class-based models. Nevertheless, at all data points,
using 1–4 wall classes consistently improves (by a margin of
up to 16.0%) on the most extreme case where each of the 85
walls has its own class.

We thus make the following new key insight into the be-
havior of the automatic wall-classification model:

• Classifying walls into a small number of classes
achieves the lowest error when little training data is
available; but as the amount of training data increases,
more classes should be employed.

4.4 Impact of Sectorization
In the preceding models, we have ignored the effect of the

non-uniform radiation that has been observed on the CC2420

radio chip. We will now explore the sectorization technique
(Equation 3) that aims to improve the accuracy of the radio
propagation model by modeling this non-isotropic radiation
pattern.

Figure 6(a) compares the quality of the signal strength
estimates of the automatic wall-classification based model
with enhanced models which divide the radio range into 4,
6, and 8 sectors and assign a different reference transmission
power (α) to each range. (In this figure, walls are classified
into 3 classes; the results for different numbers of classes are
similar.) Notably, when 20–70% of the data is used for train-
ing, the three schemes which perform sectorization generate
0.3%–71.0% higher errors than a model which does not use
sectors; the errors increase as more sectors are added. When
80% of the data is used for training, the differences among
the schemes are statistically insignificant. Sectorizing the
path-loss exponent (β) instead gives similar results (see Fig-
ure 6(b)).

This phenomenon is caused by the fact that modeling non-
isotropic communication ranges greatly increases the num-
ber of parameters to the model. Rather than solving for a
single parameter α or β, it now necessary to solve for up
to 360 values of α or β (45 nodes × 8 sectors/node); much
more training data is needed to adequately fit these added pa-
rameters. Moreover, the effects of wall attenuation dominate
the effects of non-isotropic radiation in our complex indoor
environment. Thus, while adding sectorization makes the re-
sulting model more realistic in principle, in practice it does
not result in better RSS predictions.

We therefore make one more key insight:

• More sophisticated models are not necessarily better;
the difficulties of fitting the extra parameters may out-
weigh the enhanced model accuracy.

5 A Radio Mapping Tool
In this section, we present our Radio Mapping Tool

(RMT), which is designed to assess network coverage. RMT
is particularly beneficial for applications which require a net-
work to cover an entire physical area. Examples of such ap-
plications include elderly care [25, 28] and the collection of
vital signs from ambulatory patients in hospitals [13]. The
main uses case of RMT is to determine the coverage of an
already deployed network. RMT does this by predicting the
coverage of each relay node. The network coverage is then
computed as the union of the regions covered by each relay.
Coverage gaps are detected by checking if there is any point
which is not covered by any relay. RMT may also be used
for network deployment. In this case, the user may deploy
an overly dense network of relays. Based on the coverage
predictions made by RMT, the smallest subset of relays nec-
essary to cover an area may be determined.

RMT has several salient features. (1) In contrast to ray-
tracing techniques, RMT does not require the user to spec-
ify the attenuation coefficients or construction materials of
walls. Wall locations may be extracted from readily avail-
able floor plans. (2) At its core, RMT incorporates the in-
sights found in the previous section. Accordingly, RMT
uses the models which involve a small number of wall types
since they have been found to provide the best trade-off be-
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Figure 6. Comparison of sectorization schemes

tween model complexity, number of samples required for
accurate parameter estimation, and prediction accuracy. (3)
RMT uses the computationally efficient algorithm presented
in Section 3 to classify each wall in a small number of classes
and determine the model parameters.

RMT requires the user to provide: the locations of the
relay (or group of relays) whose coverage the user is inter-
ested in predicting, the locations of wall, a training set, and a
PRR threshold (PPRt ) used to discriminate between “good”
and “bad” links. The training set includes a number of link
quality measurements obtained by broadcasting packets at a
small number of sample locations. For each link in the train-
ing set, the following information must be supplied: the loca-
tions of the sender and receiver, the received the packets, and
a table of raw link statistics. The raw link statistics include
the RSS for each received packet and its sequence number.
The sequence numbers are used to compute the PRR of each
link. A TinyOS application is include with RMT to assist
with this process. RMT then computes summary statistics
for each link which include the their PRR and average RSS.

RMT has three main components: a Parameter Estima-
tor, an RSS Mapper, an RSS-to-PRR Mapper, and a Cover-
age Mapper (see Figure 8). The Parameter Estimator uses
the computationally efficient algorithm described in Section
3 is used to determine the parameters of this model. Based
on the determined parameter values, the RSS Mapper con-
structs RSS map which includes signal strength predictions
on a dense 2D grid overlaid on the floor plan. The RSS Map-
per uses the automatic wall classification model. For each
relay whose coverage the user wants to predict, the RSS Map-
per constructs an RSS map. The radio map contains the pre-
dicted RSS at the considered relay from a sender that may be
placed at each grid point.

The RSS-to-PRR Mapper is responsible for identifying an
RSS threshold which accurately separates the “good links”
(with PRR higher than PRRt ) from the “bad links” (with
PRR lower than PRRt ). An ideal RSS threshold should re-

sult in as few false negatives (links incorrectly predicted as
good-quality) and false positive (links incorrectly predicted
as poor-quality) as possible. Figure 7 illustrates the relation-
ship between RSS and PRR observed in our testing environ-
ment. Each point in the figure plots the average RSS of a
link against that its PRR. This scatter plot shows that there
is a transitional region at approximately −95 to −85 dBm.
Our results agree with the in-depth analysis of the correlation
between RSS and PRR presented in [24].

To understand how to determine an appropriate RSS
threshold let us consider the case when the user specifies
good links to have a PRR threshold higher than 80% . For
this case, we plot the false negative and false positive rates
for each possible RSS threshold between the minimum and
maximum observed RSS values. These results are plotted
in Figure 7(b). As expected, increasing the RSS threshold
decreases the false positive rate while increasing the false
negative rate. Setting the RSS threshold to −88 dBm offers
the good tradeoff between these rates: the false negative rate
is 9% and false positive rate is 10%.

RSS-to-PRR Mapper automatically identifies the appro-
priate RSS threshold for a user-specified PRR threshold.
This is done by having the user provide bounds on the max-
imum tolerable false negative and false positive rates. RMT
selects the minimum RSS which satisfies both bounds, or re-
ports an error to the user when no such RSS threshold exists.

Finally, the Coverage Mapper determines the coverage
prediction at is grid location by comparing the predicted RSS
with the RSS threshold. Figures 9 and 10 are examples of the
output maps produced by RMT. We found this to be an effec-
tive way of visualizing RMT’s signal strength and coverage
predictions.

The initial RMT prototype had some performance limita-
tion. We found that the key to ensuring RMT’s performance
was to precompute as much of the data as possible. For ex-
ample, we precompute the set of walls which are intersected
by the line between any relay and any grid location. This
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approach allows to train the models and make predictions
within minutes.

6 Empirical Evaluation of RMT
In this section, we analyze the performance of the RMT

on data set previously collected for the empirical study in
Section 4. We begin by assessing RMT’s performance
through a case study which highlights RMT’s accuracy and
that the intuitive nature of the radio maps RMT presents
to the user. In the next subsection, we show that the auto-
matic wall classification model which RMT uses by default
achieves significantly better accuracy than either the basic
log-normal model or the manual wall-classification model.

We characterize the accuracy of RMT’s coverage predic-
tions by its resulting false positive and false negative rates. In
contrast to the previous section, the false positive and false
negative rates discussed here refer to the prediction cover-
age rather than the RSS threshold. In this context, a false
positive occurs when RMT predicts coverage where there is
none; similarly, a false negative occurs when RMT predicts
no coverage but ground truth data indicates otherwise.

6.1 Representative Examples
The case-study is designed to emulate the use of RMT to

predict the coverage of one or two relays. In order to illus-
trate the efficacy of our automatic wall-classification model,
we present results with the unmodified RMT as well as with
a version of RMT that has been modified to use the basic
log-normal model. To highlight RMT’s accuracy when us-
ing only a small amount of training data, we randomly select

20% of our experimental data for training, while the remain-
ing 80% is used as ground truth data for testing. The data is
divided into training and testing sets through the same sam-
pling strategy described in Section 4. For the purposes of
this study, we define a “good link” to have a PRR higher
than 80%. Using the RSS threshold selection technique pre-
viously discussed, an RSS threshold of −87 dBm was se-
lected.

We first present the case when one relay (node 175 in Fig-
ure 9) is deployed. The results are summarized in Table 1.

Figure 9(a) plots the RSS predictions when the log-
normal model is used. Since the log-normal model does not
account for wall attenuation, the contour graph consists of
concentric circles. RMT also plotted the −87 dBm line that
delineates the relay’s coverage area. Figure 9(b) shows the
corresponding coverage map. The log-normal model pre-
dicts coverage correctly at only 59% of tested locations and
had over 22 false positives as summarized in Table 1. The
high false negative rate highlights that the log-normal model
makes overly optimistic coverage predictions i.e., it predicts
coverage where there is none.

Figure 9(c) presents the RSS predictions made by the au-
tomatic wall classification model. The results indicate that
the relay’s coverage is non-isotropic due to wall attenua-
tion. A close examination shows significant signal attenu-
ation caused by walls. This is especially apparent close to
relay 187 (near the bottom-left corner) where the signal is
significantly attenuated by the wall. Another place where the
impact of walls is evident are the finger-like features present



Log Normal Automatic
wall classification

Correct predictions 32 46
False positives 22 2
False negatives 0 6

Table 1. Accuracy of coverage predictions for one relay
when using 20% of the data set for training

Log Normal Automatic
wall classification

Correct predictions 39 46
False positives 15 1
False negatives 0 7

Table 2. Accuracy of coverage predictions for two relays
when using 20% of the data set for training

in the predicted coverage area. These features are the result
of changes in the number of walls through which the sig-
nals pass. This is most apparent when the signal propagate
through the building’s small hallway, as labeled near the cen-
ter of the map.

Figure 9(d) shows the corresponding relay coverage. The
automatic wall class model achieves a prediction accuracy
of 85%. Compared to the log-normal model, the automatic
wall class model reduces the number of false positives from
22 to 2. We note that the automatic wall classification model
incurred a higher number of false negatives than the log-
normal model. However, from a practical standpoint, false
positives may have a more significant impact on the end-user.
False positives represent locations where the model predicts
coverage even though there is none, which could lead to cov-
erage gaps. In contrast, a slight increase in the number of
false positives may be acceptable since it would only lead to
slightly denser network.

We also note that most of the false-positive and false-
negative locations are close to the predicted coverage border.
We expect that the coverage prediction could be improved by
targeted sampling near the border. This highlights the use of
RMT as an interactive tool to guide the user about where to
collect additional coverage measurements.

We now consider a case where two relays are deployed at
nearly opposite sides of the building, as shown in Figure 10
and summarized in Table 2. RMT combines the RSS predic-
tions from each relay by taking the maximum RSS prediction
at each point.

Figure 10(a) shows the RSS values predicted by the log-
normal model. This prediction suggests that the two selected
relays cover a large fraction of the floor plan. However, as
may be observed in Figure 10(b), in reality a significant por-
tion of the building is not covered with a PRR higher than
80%. The log-normal model achieves a prediction accu-
racy of 72%, incorrectly predicting coverage at 15 locations
where there ground-truth data indicates a hole in coverage.

Figures 10(c) and 10(d) show the corresponding RSS
and coverage predictions made using the automatic wall-
classification model. It is worth noting that the model pre-
dicts a thin corridor near node 66 where there is no coverage.
This highlights the fact that coverage regions may be discon-

nected when considering the attenuation of walls. The auto-
matic wall classification model had only one false negative
and seven false positives, resulting in a prediction accuracy
of 85%.

6.2 Detailed Empirical Results
In this section, we compare in more detail the statistical

performance of three different models: log-normal, manual
wall-classification, and automatic wall-classification. Based
on these results we provide several additional insights re-
garding the radio mapping problem.

To understand how these models are affected by the
amount of training data available to them, we performed a
new set of experiments with the proportion of training data
varied from 20% to 80% in increments of 10%. For each
model at proportion, we randomly selected ten pairs of re-
lays from the network and analyzed the false positive and
false negative rates for the remaining test data. Like the pre-
vious experiment, we select a PRR threshold of 80%. As
in Section 4, we present the average of 10 runs with error
bars indicating the 90% confidence intervals, though the er-
ror bars are not always large enough to be clearly visible.

Figure 11(a) plots the false positive rates of these three
models. As also seen in the case study, the log-normal
model suffers from numerous false positives, with a false
positive rate ranging from 51%–56%. In contrast, the mod-
els that incorporate wall information have significantly bet-
ter false positive rates, reducing the false positive rate by
41% when using only 20% of the training data. At the 20%
data point, the two wall classification models achieve com-
parable performance. For higher fractions of training data,
the automatic wall classification achieves a false positive
rate as much as 20% lower than the manual wall classifi-
cation model. These results demonstrate that the proposed
radio mapping technique with automatic wall classification
achieves the lowest false positive rates, allowing the user to
better identify coverage holes.

Figure 11(b) plots the false negative rates for the same
training data. The log-normal model achieved the lowest
false negative rate, of 4%. However, this comes at the cost of
incurring a high false positive rates. The false positives for
manual and automatic wall classification were 7% and 9%,
respectively. These rates are comparable with the 10% false
negative rate imposed in selecting the RSS threshold. We
note that if the signal strength prediction was perfectly accu-
rate, the the false positive rates in prediction coverage should
equal 10%. As previously discussed, a moderate increase in
false negative may be acceptable since it would only result
in a slightly denser network.

Based on these results, we draw the following insights:
• Models that account for the impact of walls reduce the

false positive rate by as much as 41%.

• The automatic wall classification model not only re-
quires less user information, but also may reduce the
false positive rate by as much as 20%.

• Accurate predictions of coverage are feasible even
when the link quality to relays is sampled at only ten
locations.
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(a) RSS map under log-normal model
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(b) Coverage map under log-normal model
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(c) RSS map under automatic wall-classification model
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(d) Coverage map under automatic wall-classification model

Figure 9. Coverage and RSS predictions for one relay marked by a filled rectangle. The predicted relay coverage has
a white background while the uncovered region is gray (blue on color printers). Different marker types are used to
distinguish between training data (hollow circles), correct predictions (filled circles), false positives (filled stars), and
false negatives (filled triangles).

7 Related Work
Modeling signal propagation is a challenging problem

that has attracted a great deal of interest in the wireless
communication community. Reviews of various radio prop-
agation models for indoor and outdoor environments may
be found in [1, 10, 12]. These models fall into two dif-
ferent categories: small-scale fading and large-scale path
loss. The small-scale fading models use statistical tech-
niques to describe variations in signal strength over a few
wavelengths [19]. In contrast, large-scale path loss mod-
els predict average signal strength at distances significantly
larger than the radio’s wavelength. This paper focuses on the
latter because large-scale path loss is more applicable to the
radio mapping problem.

Most commonly, large-scale path loss models are derived

by using empirical measurements to fit a small number of
parameters (e.g., distance between sender and receiver, or
walls) which significantly affect signal propagation. These
models have the advantage of being intuitive to use and re-
quire minimal computational overhead. At the other end
of the complexity spectrum, researchers have proposed site-
specific techniques which involve ray tracing [16, 20]. [5]
presents a tool for predicting signal strength of 802.11 ac-
cess points at different locations through ray tracing tech-
niques. A fundamental limitation of ray-tracing techniques
is that they rely on the user to provide locations and attenua-
tion coefficients for each partition or obstacle in the environ-
ment. Moreover, these techniques are usually computation-
ally demanding and therefore not suitable for an interactive
tool as we have built. We observe in Sections 4 and 6 that
complex models are not necessarily better for radio mapping
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(a) RSS map under log-normal model
0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

550

1

1

175

182

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21 22

23

24

25

26

27

28

29

30

31323334

35

36

37 38

39

40

41

42

43

44 4546
47
48

49 50 51 52 53

54 55 56 57 5859 60

61 62

63

64

(b) Coverage map under log-normal model

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

500

550

−90

−9
0

−9
0

−90

−9
0

−80

−80

−80

−80

−80

−80

−80

−80

−8
0

−80

−70

−70

−70

−7
0

−70

−70

−
70

−7
0

−
70

−70

−
70

−60

−
60

−60

−60

−60

−50
−90

−90

−40

−80

−9
0

−
90

−87

−87

−87

−87

−87−87

−87

−87

 

 

148

147

149

145

191

188

164

165 159

158

189

190

186

187

150

151

175

174

154
155

152153

157

156

178

179

172

173
163

162

181

180

176 177

170

171

161

160

168169

184

167

166

183

182

175

182

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
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(d) Coverage map under automatic wall-classification model

Figure 10. Coverage and RSS predictions for two relays marked by filled rectangles

purposes, because there is a fundamental trade-off between
model complexity and the amount of training data needed to
accurately estimate the model’s parameters.

[18] proposes a framework for assessing the signal
strength and coverage of 802.11 mesh networks in out-
door environments. The paper proposes a radio propaga-
tion model which relies on the extraction of topological fea-
tures from satellite images such as those provided by the
Google Maps service. While our study and [18] both high-
light the importance of topological information in assessing
signal strength, [18] relies on a sectorization approach sim-
ilar to the one considered in Section 2 which our own study
finds to be ineffective. The different results owe to the differ-
ent testing environments: in a complex indoor environment,
wall attenuation dominates the effect of non-isomorphic ra-
diation. Moreover, our study proposes a model based on wall
classification which we expect would be inappropriate for an
outdoor survey, since we do not expect different buildings to
have similar attenuations.

A number of studies evaluate the properties of low-power
wireless links [7,15,17,22,23,29]. Our own empirical study
focuses on predicting the signal strength at any location in
space rather than characterizing existing links. Neverthe-
less, our empirical study evaluates the applicability of several
insights made in these studies with regards to radio map-
ping. Prior studies have concluded that variations in hard-
ware calibration may lead to significant variations in signal
strength and packet reception rates [22, 22, 26]. We cap-
ture this effect by assigning a different α parameter to each
node. [26, 29] demonstrate an angular dependency on signal
strength caused by the non-isotropic radiation pattern of real-
world antennas. We find in Section 4 that modeling this be-
havior is not effective for radio mapping purposes, because it
introduces many more parameters that require large amounts
of training data to adequately estimate. [15, 26, 30] use the
log-normal model to predict link quality in simple indoor en-
vironments where nodes have line-of-sight. In contrast, our
work targets environments where nodes do not always have
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Figure 11. Comparison of mapping accuracy

direct line-of-sight; we show in Section 4 that this model has
poor performance in such environments.

The sensor network community has recognized the im-
portance of ensuring sensing or communication coverage
early on. However, the majority of the work on coverage
relies on geometric models that fundamentally assume that a
node’s communication/sensing range is circular [6, 9]. This
assumption has been shown by many empirical studies to be
incorrect, as does our case study in Section 6. More closely
related to our work are two recent papers which look at sens-
ing coverage. [14] proposes a framework which uses Gaus-
sian processes to model sensing and communication costs.
A disadvantage of Gaussian processes is that they cannot ef-
fectively model discontinuities such as those observed when
a signal passes through walls. In contrast, the propaga-
tion model used by RMT explicitly models wall attenuation,
which our study in Section 4 shows to be significant. [11]
proposes a method for determining a sensor’s sensing ra-
dio range through hierarchical sampling. This approach is
complementary to our own, since it deals with efficient sam-
pling strategies for refining coverage boundaries; our work
focuses on processing the collected samples to predict cov-
erage. Moreover, [11] exclusively addresses sensor coverage
while our study deals with radio coverage.
8 Conclusion

Radio mapping is a challenging problem for real indoor
environments due to signal attenuation through walls, com-
plex signal propagation behavior, and the need to reduce the
number of sampling measurements. This paper addresses
this important challenge by developing a practical and effec-
tive radio mapping approach for indoor environments.

We first perform an in-depth empirical analysis of several
signal propagation models in an office building. Our analysis
shows the importance of balancing the accuracy of the model
against the number of model parameters that need be esti-
mated based on limited measurement. Our empirical results

identify the wall-classification model as the most practical
and effective model for indoor environments.

We then propose a practical algorithm to predict the RSS
between different locations based on a small number of mea-
surements. A key novelty of our algorithm lies in its ability
to automatically classify walls into a small number of classes
with different degrees of signal attenuation. Empirical re-
sults show that our automatic wall classification scheme re-
sults in more accurate RSS prediction than a manual classi-
fication based on architectural knowledge.

We have developed a practical Radio Mapping Tool to
predict the radio coverage of relay placements. RMT has
several salient features. (1) It requires minimal informa-
tion about the indoor environment. The only knowledge
about the environment that RMT needs are the wall loca-
tions, which may be extracted from existing floor plans. (2)
RMT can accurately predict radio coverage based on a small
number of measurements, which can significantly reduce the
cost of network deployment and maintenance. (3) RMT fea-
tures computationally efficient algorithms that allow users to
quickly assess and adjust the coverage of a potential relay
placement.

An empirical evaluation in the office building showed that
RMT achieves as much as 41% fewer false positives com-
pared to the log-normal model with a false negative rate of
9% based on sampling only 20% of the locations of interest.
Our results demonstrate that RMT is a practical and accurate
tool which can be used to facilitate the efficient deployment
and robust operation of wireless sensor networks for indoor
environments.
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