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A Generative Programming Framework for Adaptive Middleware

Venkita Subramonian and Christopher Gill

Complete Abstract:

Historically, many distributed real-time and embedded (DRE) systems were developed manually from
scratch, leading to stove-piped solutions that while correct in both functional and QoS properties were
very expensive to develop and difficult to maintain and extend. First-generation middleware technologies
such as CORBA 2.x [1], XML [2], and SOAP [3], served to shield application developers from low-level
platform details, thus raising the level of abstraction at which distributed systems are developed and
supporting reuse of infrastructure to amortize development costs over the lifetime of a system. However,
interdependencies between services and object interfaces resulting from these programming models
significantly limited the degree of reuse that could be achieved in practice. Component middleware
technologies such as the CORBA Component Model (CCM) [4], J2EE [5], and .NET [6], were developed to
address many of these limitations. In CCM, for example, standardization of component containers, ports,
and homes offered a framework within which reuse of server as well as client infrastructure was
facilitated. Component-oriented middleware has addressed a wide range of application domains, but
unfortunately for DRE systems, the focus of these technologies has been primarily on functional and not
QoS properties. For example, although CCM supports configuration of functional component attributes
like their interconnections, key QoS attributes for DRE systems, such as execution times and invocation
rates are inadequately configurable through conventional CCM [7]. Research on QoS-aware component
models such as the CIAO project [8, 7] is showing significant promise in making QoS configuration a first-
class part of the component pro-gramming model, thus further reducing accidental complex-ities of
building DRE systems. However, it is important to note a fundamental difference between configuration of
functional and QoS properties even within such a unified compo-nent model: the dominant
decomposition of functional properties is essentially object-oriented, while the dominant decomposition
of QoS properties is essentially aspect-oriented. That is, functional properties tend to be stable with
respect to component boundaries and configuration lifecycle stages, while QoS properties tend to cross-
cut component boundaries, and may be revised as more information is known in later configuration
stages [7]. In this paper, we describe how a focus on aspect frameworks for configuring QoS properties
both com-plements and extends QoS-aware component models. This paper makes three main
contributions to the state of the art in DRE systems middleware. First, it describes a simple but
representative problem for configuring QoS aspects that cross-cut both architectural layers and system
lifecycle boundaries, which motivates our focus on aspect frameworks. Second, it provides a
formalization of that problem using first order logic, which both guides the design of aspect configuration
infrastructure, and offers a way to connect these techniques with model-integrated computing [9]
approaches to further reduce the programming burden on DRE system developers. Third, it describes
alternative mechanisms to ensure correct configuration of the aspects involved, and notes the phases of
the DRE system lifecycle at which each such configuration mechanism is most appropriate.


https://openscholarship.wustl.edu/cse_research/1096?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1096?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-51

A Generative Programming Framework for Adaptive Middleware

Authors: Subramonian, Venkita; Gill, Christopher

June 14, 2003

Abstract: Historically, many distributed real-time and embedded (DRE) systems were developed manually from
scratch, leading to stove-piped solutions that while correct in both functional and

QoS properties were very expensive to develop and difficult to maintain and extend. First-generation middleware
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distributed systems are developed and supporting re-use of infrastructure
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Abstract This paper makes three main contributions to the state of the
artin DRE systems middleware. First, it describes a simple but

Historically, many distributed real-time and embedded (DRIgpresentative problem for configuring QoS aspects that cross-
systems were developed manually from scratch, leadingct both architectural layers and system lifecycle boundaries,
stove-piped solutions that while correct in both functional anghich motivates our focus on aspect frameworks. Second, it
QoS properties were very expensive to develop and difficulptovides a formalization of that problem using first order logic,
maintain and extend. First-generation middleware technobl@hich both guides the design of aspect configuration infras-
gies such as CORBA 2.x [1], XML [2], and SOAP [3], servegucture, and offers a way to connect these techniques with
to shield application developers from low-level platform denodel-integrated computing [9] approaches to further reduce
tails, thus raising the level of abstraction at which distributethe programming burden on DRE system developers. Third, it
systems are developed and supporting re-use of infrastrdescribes alternative mechanisms to ensure correct configura-
ture to amortize development costs over the lifetime of a siign of the aspects involved, and notes the phases of the DRE
tem. However, interdependencies between services and olggstem lifecycle at which each such configuration mechanism
interfaces resulting from these programming models signi§-most appropriate.
cantly limited the degree of re-use that could be achieved i
practice.

Component middleware technologies such as the CO
Component Model (CCM) [4], J2EE [5], and .NET [6], were
developed to address many of these limitations. In CCM,
for example, standardization of component containers, ports,
and homes offered a framework within which reuse of server
as well as client infrastructure was facilitated. Component-
oriented middleware has addressed a wide range of applica-
tion domains, but unfortunately for DRE systems, the focus of
these technologies has been primarily on functional and not
QoS properties. For example, although CCM supports config-
uration of functional component attributes like their intercon-
nections, key QoS attributes for DRE systems, such as execu-
tion times and invocation rates are inadequately configurable
through conventional CCM [7].

Research on QoS-aware component models such as the
CIAO project [8, 7] is showing significant promise in mak-
ing QoS configuration a first-class part of the component pro-
gramming model, thus further reducing accidental complex-
ities of building DRE systems. However, it is important to
note a fundamental difference between configuration of func-
tional and QoS properties even within such a unified compo-
nent model: the dominant decomposition of functional proper-
ties is essentially object-oriented, while the dominant decom-
position of QoS properties is essentially aspect-oriented. That
is, functional properties tend to be stable with respect to com-
ponent boundaries and configuration lifecycle stages, while
QoS properties tend to cross-cut component boundaries, and
may be revised as more information is known in later config-
uration stages [7]. In this paper, we describe how a focus on
aspect frameworks for configuring QoS properties both com-
plements and extends QoS-aware component models.

nKeywords: adaptive and reflective middleware, system as-
RpBeACtS’ generative programming, first order logic.



1 Introduction conditions the system encounters, then correctness cannot be
assured.

Constructing systems that are easily modified and extended is

itself a challenging problem. A fundamental question is how to . .

balance the rigor with which the correctness of any one config2 A Generative Programming Approach

uration of the system can be as_sured, against the ﬂeXibi"tylrtlorecent years, significant emphasis has been placed on the

evolvglthe system tq other cqnﬂgurgmons that are also corr %tsign of configurable and customizable software. Such soft-

Specifically, constraints applied during system developmen

¢ ften limit th f adaptation that 8re is often built from modules combined to form frame-
ensure correctness often imitthe range ot adaptation that gajy, addressing issues of interest to particular classes of ap-

be achieved at run-time. o ; . .
L . lications. Each instance of a module may have its own unique
We argue that for distributed real-tlme and embEdd%gstomizations both between frameworks and when the same
(DRE) system_s the challenge of constructing c.o_rrect yetevo Yamework is refined for specific applications. Czarnecki and
able Sy?te'.“s IS e.xacerbated,. due to the additional Challe'ﬁggnecker [10] describe this kind of development as being
we o.utllne in Section 1.1. Whlle some of these challenges Walogous to a luxury car assembly plant, in which each car
readily addressed by specific modern development approa t have its own customized fittings.

such as the generative programming techniques described | . . . .
Section 1.2, a complete framework for applying those techy pplying these ideas to middleware infrastructure devel-

. . pment is an emerging area of research. The confluence of
nigues to component-based model-integrated developmento : .

! 0S-aware component models [8, 7] with model-integrated
DRE systems is needed.

computing [9] offers an important new paradigm for develop-

ing complex large-scale systems with stringent functional and
1.1 Challenges for DRE Systems extra-functional properties. However, many open issues such
aé configuration techniques for multiple infrastructure aspects

The following challenges faced by distributed real-time and <t be addressed before this approach will be widely appli-

embedded (DRE) systems motivate our work on aspect frarggk-)le to real-world DRE systems.

works for component-based model-integrated development: . . .
P 9 P In particular, while component technologies ease the pack-

1. Extra-functional constraints such as end-to-end timefding, assembly and deploymentagplication componens

ness must be satisfied while also ensuring the systef§nerous constraints that cross-cut the application compo-
functional correctness. nents and the supporting middleware infrastructure on which

) ) they run must still be configured manually or through manip-
2. These extra-functional constraints tend to cross-cut tradlistion by a higher-level modeling tool. In either case, gratu-
tional endsystem and architectural layer boundaries. o5 detail complicates the task, even though aspect-oriented
3. Details of infrastructure mechanisms used by DRE sysedular structure is inherent in many of these configuration
tems have significant impacts on extra-functional propgroblems.
ties and must be modeled in the overall analysis of systenturthermore, while Qos-aware component technologies
correctness. provide mechanismsor configuring these cross-cutting con-

4. The number and variety of system mechanisms that mg&fns: the configuration issues are often orthogonal to the par-

be considered grows with the heterogeneity and scaldig¥lar component technology used. Configuring all details of
the system. a system, from the highest to lowest architectural levels, can

i . make the implementation and extension of modeling tools un-
5. Due to all of the previous factors, analysis of correglecessarily complex. Clearly, exposing only certain key de-
ness can be computationally expensive even for appafis to the component technology and higher level modeling
ently simple applications. tools while encapsulating the other details, is advantageous.
Historically, many DRE systems have been developed ma We therefore believe that such issues are best addressgd just
A . . . above the lowest common level from which both the applica-
ually and individually to assure their constraints will be M&on components and middleware mechanisms are built. In this

even under a set of worst case conditions knavamiori. Un- . . . .
aper we describe how alternative Generative Programming

fortunately this has occurred at a very high cost both in %)réchniques such as C++ Template Meta Programming [10]

gineering effort and in lost opportunities due to lengthy SYan be applied in the absence of suitable Aspect Oriented-
tem development cycles. Furthermore, these static approa(gbes

are brittle with respect to the kinds of highly variable environ- odramming [11] tool$ to configure aspects at this level. In

ments f'aced by the _mOtivating applicatiqns described in SeCaypie strong AOP tools such as AspectJ [12] are available, their counter-
tion 2: if the a priori assumptions are violated by the actuglrts for languages such as C++ that are used for a majority of DRE system




particular, template meta-programming can be applied to certting would involve sending messages between UAVs result-
figure ACE [13] primitives for both real-time application coming in method upcalls on objects that actually perform services
ponents and infrastructure mechanisms sucteastors[14] within the UAV application. Thus when a single system initi-
on which they are run, thus reducing complexity and increages a new interaction with another system, both systems ex-
ing fidelity of the system. perience anode change

This work enables adaptive and evolvable software system&nsuring safety and feasibility of operations in individual
in two main ways. First, it offers flexibility to customize syssystems can be realized by (1) modeling a graph of method
tem properties in response to constraints cross-cutting theiapecations, (2) decorating that graph with QoS attributes like
plication and middleware levels. Second, it offers a rigoroegecution times and rates of invocation, and (3) performing
and reusable common substrate for software development andlysis over that graph. A key issue raised by this exam-
customization, across both architectural layers and alternapileis that the method invocation graph within each individual
component technologies. autonomous system must be augmented to reflect the inter-
action with the other autonomous systems. As we examine
. in greater detail in Section 3, this implies that the correct-
1.3 Structure of this Paper ness of each system'’s individual QoS configuration does not

The rest of this paper is structured as follows. Section 2 d@cessarily imply correctness of the combined and interact-
scribes a motivating real-world example that gives rise to thig System-of-systems that results when teams of autonomous
challenges described in Section 1.1. Section 3 discusses A¥@fems interact. Furthermore, because it may be intractable
problems with specification of system correctness involve d@-consider all combinations of possible interactiangriori,

tails of both the application and its supporting infrastructufdin-time checking of new configurations may be necessary.
We introduce logic for specifying system constraints in Sec-

tion 4. Section 5 describes our solution framework and ex- . -
plains in detail how our solution resolves the challenges facdd EVOIVing System Property Specifica-

by the example in Section 2. Section 6 examines related work tjons

and compares and contrasts our approach to other relevant ap-

proaches. Finally, Section 7 offers conclusions and descrikgs,nstract model of a system is used to analyze key proper-

future work. ties like safety, liveness, and resource feasibility. Though the
functional aspects of the system are represented in the model
. . at an abstract level, we observe that it may also be necessary

2 Motivation to model some of the key infrastructure mechanisms used in

the implementation of the system. These infrastructure mech-

DRE applications such as integrated avionics mission COfjisms may have significant impacts on extra-functional prop-
puting systems [15] have benefited significantly from preViies and must be modeled in the overall analysis of system
ous advances in middleware technology, and work is Undgyrectness.

way to apply QoS-aware component technologies to them agyiqqgieware typically offers different strategies to config-
well [7]. However, these systems are relatively small-sca|g, e mechanisms which underly the infrastructure. Correct
compared to envisioned next-generation DRE systems sUCRia§ice of strategies is crucial not only for the correct func-
autonomous agersystems involving swarms of coordinategqing of the infrastructure, but also is required to maintain

unmanned aerial vehicles (UAVs) [16] or teams of collabor@lstety and liveness properties. In this section, we present a
ing emergency rescue robots [17]. o simple, but sufficient example to illustrate the need to include
For autonomous agent systems, the need for individual Syrastructure mechanisms during modeling of a system. Sec-
tems (.e. each UAV or robot) to communicate and coordinaig, 3 1 first describes the properties of a simple set of infras-
their actions with one another means that the functional §pgl1re aspects that illustrate problems of safety, timeliness,
QoS configuration of each single system must be adapted (By schedulability. Section 3.2 then examines how these as-

tentially repeatedly) to reflect its interactions with other SYSects influence the specification and checking of system cor-
tems. For example, itis likely that each UAV would take to the, tness.

air separately, but then once airborne would establish a forma-
tion with the others before proceeding to a specified destina- .
tion. Each UAV would need to communicate with the other8,1  Middleware Infrastructure Aspects

which in a distributed object computing (DOC) middleware . ) ,
CORBA [18] based ORBs are increasingly being used as the

development have yet to appear. mechanism for communication in distributed systems with




real-time constraints. Implementation of an ORB [19] i
volves mechanisms like Reactors, Acceptors, and Connec
(see Sidebar 1). While modeling DRE systems, it becon
necessary to consider some of the key infrastructure meg
nisms like the ORB core reactor, the number of threads u
to receive incoming GIOP [20] requests, and the topology
method invocations that generate outgoing GIOP requests
this section, we describe one such strategy used to config
ORB core infrastructure Reply Wait Strategy to illustrate

the importance of including this level of detail in a syste
model.

3.1.1 ORB Reply Wait Strategies

In CORBA, when a client makes a remote two-way functig
call, the caller's thread needs to wait until it receives a re
back from the server before continuing to execute the calli
method. This is in accordance with the semantics of a ty
way function call. There are different strategies to wait for tl
reply each having different safety and liveness properties. T
different strategies to wait for the reply are illustrated here:

e Wait on Connection
e Wait on Reactor

We use TAO [19] to illustrate the impact of these strat
gies on the safety and liveness properties of distributed ap
cations. A simple representative example consists of a cli
communicating with a server using a two-way remote call
passing a callback object reference. The server makes arel
call back to the object corresponding to the reference pas
from the client. This could repeat for a finite number of time
the back-and-forth calls then being stopped by some kind
a counter. In ORB literature, this kind of sequence of calls
termed “Nested Upcalls”. Without loss of generality, we fir

Sidebar 1: Key Patterns in TAO

programming patterns described in [14].
three fundamental patterns used in TAO:

The architecture of TAO is based on the network
We outline

e Reactor is an event handling design pattern used
in network programming to demultiplex events from
multiple sources using just a single thread. This
design pattern is used in ORBs to demultiplex and
dispatch incoming requests and replies from peer
ORBs. Event handlers like request and reply han-
dlers are registered with a reactor. The reactor
uses a synchronous event demultiplexer, e.g. the
UNIX select system call, to wait for data to arrive
from one or more ORBs. When data arrives, the
synchronous event demultiplexer notifies the reac-
tor, which then dispatches the appropriate regis-
tered event handler based on the event source.

The Acceptor-Connector design pattern decouples
connection establishment between ORBs and re-
quest/reply processing in an ORB endsystem once
a connection is established. A Connector actively
establishes a connection with a remote acceptor
component and an Acceptor passively waits for
connection requests from remote connectors, es-
tablishing a connection upon arrival of such a re-
quest, and initializing a service handler to process
data exchanged on the connection.

Leader/Followers is an architectural design pat-
tern that provides an efficient concurrency model
where multiple threads take turns detecting, demul-
tiplexing, dispatching, and processing requests and
replies from peer ORBs.

assume that there is a single thread in the client and server.

Client
50
(& ﬁ
Figure 1: Waiting for the reply on the connection

Server

g

©)

101089 ¥

®

Reactor ><
LI ]

>

Deadlock
here

Wait on Connection: Inthis strategy, illustrated in Figure 1,

3

4.

. The sole client thread waits for the reply on the connec-
tion Cusing a blockingecv call.

The request is received by the server and dispatched to
the appropriate skeleton. The skeleton marshals the pa-
rameters and thepcallis made to the servant.

. The servantimplementation in this example uses the call-
back object reference (passed as parameter to the remote
call) to make a remote call back to the client.

the following sequence of events takes place within the ORBSince the sole thread on the client side is blocked on a sys-

layer:

tem call waiting for a reply from the server, there is no thread

1. As soon as the client makes a remote call, the client ORBaccept the incoming request. This results in a deadlock,

actively establishes a connectiGrio the server ORB.

where the client is waiting for a reply from the server and

2. The parameters to the remote call are marshalled by @ Server is blocked on the client for a reply. The situation
client stub, a GIOP Request is formed and sent to tf@" be improved by having a pool of threads listening for in-

server using.

put requests using the Leader-Follower model (see Sidebar 1).



But even with this model, when the number of outstanding rie-certainly true in the case of CORBA ORBs. The configura-
guests exceed the number of threads, the ORB ceases to adwaptan be based on system properties or constraints evaluated
any more requests and this will result in a deadlock in the casatically or dynamically and may need to be changed dur-
of nested upcalls. ing the course of the application execution becausmaode

. , changesin the application. The correctness of the system
Wait on Reactor: In this strategy, the sequence of calls igeeds to be maintained even across such mode changes. We

the same as the previous strategy until the request is Writfgfine some of the system properties which need to be main-
to the connection stream. After that, instead of waiting on ti&,o4 even under changing environments:

connection for the reply, the caller thread waits on the ORB
core reactor, which provides synchronous demultiplexing ofe Timeliness constraints
I/O events. This demultiplexing allows incoming requests to Schedualabilit
be accepted while waiting for replies (see Sidebar 1). The® SC¢hecuaiablity
(nested) callback request from the server is accepted and the Safety properties
call is completed eventually, thus avoiding deadlock (see Fig-
ure 2).

It should be noted that the upcall for the incoming requédfneliness Constraints: Even under changing environmen-
is made in the same thread context as that of the outgoing d&ll conditions, real time systems mandate tasks to be com-
There could be multiple incoming requests before the reply Rleted bgfore thelr deadlines. Based on this, the infrastructure
the initial outgoing call arrives. The processing of the repfjechanisms might need to be reconfigured to adapt to the new
for the initial outgoing call can be done only after processigvironment. The new configuration could affect the system
of all the incoming requests, that arrived before its reply, ROperties in an adverse way and hence this should be taken
completed. This results in blocking delays in completion #ft0 account during the system modelling phase.

outgoing remote calls. Section 4.3 describes this process i) the example above, blocking factors are simpler to calcu-
detail. late if the reply wait strategy is configured\&&itOnConnec-

- tion since the thread waits only till the reply is received and no
*g @@ incoming requests are processed in between. If we do an anal-
5

ysis of the system model based on this and later change the
ait configuration toWaitOnReactarthen the analysis that we did
Reactor ® would not be valid anymore since the blocking factor need to
be considered for analysing the new configuration. This could
result in violation of timing requirements.

Deadlock

bﬁy“’v‘;g’iﬁgg Schedulability: As illustrated by the example in Sec-
on reactor tion 3.1, nested upcalls could affect the schedulability of a sys-
Figure 2: Waiting for the reply on the reactor tem. Such nested upcalls introduce blocking times [21], which

need to be accounted for while doing schedulability analysis

Observation: The above discussion illustrates that it is i ike RMA [2.2.]' There is a p055|b!llty .that the §ystem might
portant to choose appropriate strategies at fine levels of g_under—utlhzed because of considering blocking factor when

tail in a middleware infrastructure. Depending on the natu'b reality the configuration of the infrastructure does not allow
of application propertie®.g.nested upcalls, this choice will ocking to happen. This is true when we configure the infras-

drastically affect liveness properties as shown in the eancFure with a re.ply wa|'t st.rategy Wa|thQonnectlonBoth .
ple. Therefore, such details need to be taken into considera{férﬁ'me and static admission control policies should take this
when doing analysis of the system model Into account when making schedulability decisions.

Safety Properties: Changing system environments could
3.2 Specification of System Correctness affect the safety properties of the system. For example, in-

teraction between two independently developed components
The example discussed in Section 3.1 illustrates some of ¢oeld result in the deadlock illustrated in Section 3.1. Endsys-
problems encountered when building systems out of varidasms might be configured witWaitOnConnectioand runtime
components. A component needs to be configured basedrmie changes might then cause the application to change to a
the application or execution environment in which the corstate where there are nested upcalls between components. In
ponent is used. This is because the component might be tés scenario, the reconfiguration of the system should include
signed to be used by multiple application enviornments, whidbing the appropriate call graph analysis and make sure that



the safety properties of the system are not violated. If the ca#iply. The two strategies described in Section 3.1 are denoted
graph after a mode change detects a nested upcall, the infuasig WaitOnConnectiorand WaitOnReactar The relation
tructure could be reconfigured withaitOnReactoreply wait ReplyWaitStrategis used to describe the reply wait strategy
strategy, if necessary. used in a particular process. It can also be expressed as a pred-
To analyze the above properties, the first step is formalizate which evaluates to either true or false.
the constraints in terms of a logic for what constitutes a “cor-We introduce two moreoperators in our logic called
rect” and “safe” system. We need to be able to formally defif@readCountand BlockingTime ThreadCount(P)ndicates
what a deadlock means and also derive rules which enablehesnumber of threads configured in the ORB to listen to in-
to detect the possibility of a deadlock based on system proeming requests. Different threads take turns listening accord-
ties. We introduce a first order logic called thnfrastructure ing to the Leader-Follower pattern (see SidebarBlpcking-
Configuration Logido formalize and verify some of the sysTime(f)indicates the time a function call will take before ex-
tem properties based on the configuration used in the infrasution continues at the point after the function call, in the
tructure mechanisms. calling method.

4 Infrastructure Configuration Logic =~ 42 Safety Properties

o ) o i As explained in Section 3.1, a call chain could end up in a loop
Our logic is designed to allow description of scenarios that Q€sulting in a nested upcall. This could result in a deadlock
cur in systems using CORBA-like infrastructure mechanisnsised on the configuration of the wait strategy for the ORB
Though we apply this logic using TAO as an example, itis ea$¥,astructure. We introduce the operaBeadlockwhich in-
to generalize this logic to fit other infrastructure mechanism§icates the possibility of a deadlock happening on a given call-

chain.

4.1 Logic Notations Assuming that is a call-chairf, ~* f, representing

For any remote function call in CORBA, there is a source, fimo o fimor oo fn

usually called thelientand a destination, usually referred to

as theserver The variablesf, f;, etc. are used to denotePossibility of a deadlock in this call chain can be verified by
functions. It should be noted that two different variables can

be assigned the same function value. For examfplandf,  Deadlock(C) <" 3P;, 37, |

could both have the valueo, which is a function that resides I{f; | HostedIn(f;, P;)}||
in a remote CORBA object. To indicate that a functjrecalls > ThreadCount(P;)
a remote function functioifi,, we say A ReplyWaitStrategy(Pj, WaitOnConnection)
f1 ~ fo The term||{f; | HostedIn(f;, P;)}| represents the number

. o ) ) . of functions in the call-chain that are hostedi?n According
To illustrate a call-chain involving three different functionsg the above logic, if there are more thahreadCountp;)
fi ~ fo ~ fs indicates thatf, makes a remote call 1, fynctions hosted itP; that are part of the same call-chain, then
which in turn makes another remote callfip _ there is a possibility of deadlock if the ORB is configured with
~ Remote functions are embedded in CORBA objects whighyeply wait strategy oWaitOnConnection This is because
in turn are activated in server processes. The variablés, the |l threads will be exhausted waiting for replies and no
etc. range over processes which host CORBA obfecthie  hreads left to accept incoming requests. To avoid this possible
relation HostedlInis used to denote the process in which @eadlock, the infrastructure must be configured with a reply

CORBA object, and hence the remote object method or fuRgsi strategy ofNaitOnReactomstead ofWaitOnConnection
tion, is hosted.HostedIn(f, P;) indicates that the functioff

is hosted in procesB; . Finally, we use the transitive closure -
~»Tto indicate that a function calls another function indirectf)lr3 Schedulability
as part of a call-chain. In the above example, we can assgfen thewaitOnReactostrategy is used to wait for replies,
thatf, ~* f;. We denote a call chain by variabl€sC', etc. incoming requests can be processed while a reply for an al-
: ) . _ ready issued request is outstanding. To determine whether the
Each process hosting CORBA objects may configure ®@stem is schedulable or notin the presence of such interleaved
ORB that it uses, with an appropriate strategy to wait for thgjis, the increased complexity of the blocking time for tasks
2\We assume without loss of generality that each such process will hav@¥ould be take'n II’IFO account. We illustrate th'§ with an exam-
single ORB. ple as shown in Figure 3. There are 8 functions. The three
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functionsfi, fo, f3 are hosted in the same procé3snd they
make remote calls to functions, f; and fs respectively. fo
and f3 are invoked as a result of remote calls frgmand fs.
For the purposes of simplicity we consider only direct remolle . . .

. ; or a function. If there is a sequence of functions
calls, although it is easy to extend this to a remote call chain
using the transitive closure property. If: fi fl

) ) (3 ) n

Given the above scenario, Figure 4 shows the thread of con-
trol flowing through the different components. Note that theich that
stubs and skeletons are only shown for completeness and do
not significantly impact this analysis. We ignore the actions fidfed. fid. fn
before functionf; starts executionf; makes a remote call to o ]
4. The flow of control passes through the stub codeffaand  then the blocking time fof, can be written as
eventually blocks on the reactor waiting for the reply from the
server hosting;. BlockingTime(f) % EzecutionTime(f.tail)

Blocking on the reactor enables processing of incoming reEzecutionTime(f) = Execution time of f without any blocking
quests even in the presence of outstanding replies. In our BXceutionTime(list) = > EwecutionTime(f;), fi € list
ample, a request fof; comes in when the ORB is waiting S .
for reply from f4. The thread that was blocked on the reactorOnce the bqukmg t!me IS calculatg.d this negds tq be taken
makes the upcall tg>. f> now makes another remote call tér!to acc'ount whlle.domg sphedulab|l|ty analysis using tech-
f5. Again, the ORB waits for the reply from its peer. Mearf!dues like RMA with blocking factor [21].
while, the reply fromf, arrives. We cannot unwind the thread

stack at this point since that would break the two-way semaf- ; ;
tics of f,. So the reply fromf, has to be queued until thg)] LOgIC Implementatlon Schemes

rgply frqm f5 has been processed af@ha}s finished EXECU | this section, we propose possible mechanisms for imple-
Flon. This causes an unnecessary blocking delayffasince menting the logic discussed in Section 4. Some of the asser-
its reply has already arrived but cannot be processed. tions can be made at compile time and some others can be done
We use the notatiofy - f» to indicate thatf, is blocked by only at run time. For example, a call graph detailing the func-
f2. Note that this does not necessarily imply tifiat+" f>. In - tion calls can be constructed at compile-time and analyzed for
the example discussed above, there is no call-chain in whiggksible nested upcalls and deadlocks, but when an application
both f, and > are involved, but still the relatiofy - f, holds. makes a mode transition while running, it may not be possible
We also introduce the notion oflest used to represent a seto predict,a priori, the resulting system properties. In such
quence of items. To talk about lists of arbitrary length, we uggses we might have to resort to dynamic logic evaluation.

the binary functional operator “.” in infix form. In particular, a

term of the formr, .7 designates a sequence in whighis the . .

first element and:, is the rest of the list. This is very similar5'1 Static Analysis

to the CAR and CDR operators in LISP. Certain aspects of a system render themselves to be pre-
We now introduce a logic for evaluating the blocking timeonfigured at design time based on facts available at design

Figure 4: Flow of control with WaitOnReactor Strategy.



time. A static analysis would suffice in such cases. C++ Temeuld be known only at runtime. This approach balances on-
plate meta-programming [10] provides excellent mechanishime computation cost with flexibility by pre-compiling par-
to do compile-time computations. This power combined witltular parameters of the on-line specification mechanisms for
its applicability in writing configuration generators can proveerformance and predictability. One of the key question for
to a valuable combination for implementing a logic analyzehe static part is whether we pre-compile too much and thus
Facts in the logic can be asserted at compile-time and theaeer constrain so that the solution becomes brittle in some en-
sults inferred can be used to generate appropriate configureenments, or too little so that computational complexity of
tions using generators. For example, using the logic discussedine specification exceeds constraints.

in Section 4.2, the existence of a deadlock can be asserted at

compile-time, if the call-chain in the system can be determined

a prigri. The challenge here is to chgose the appropriate te%]— Related Work

plate meta-programming constructs to represent the logic as ) ] ] ] )

well as the call graph. This work intersects with prior work in the following areas:

C++ templates provides mechanisms to prohibit certaine Reasoning in concurrent and component-based systems
template instantiations [10]. If we could prohibit the instan- ¢ Configuration of Component based systems
tiation of a template for certain combinations of system prop-
erties, that would serve as a compile-time checkeirfealid
combinations. One simple way to do this is to use template . . . . o
specialization. Specialized template definitions can be p}&g!c applied to Hierarchical Scheduling: Task/Scheduler
vided for all invalid parameter combinations and prohibit i -0gic (TSL) [23, 24] has been used to reason about concur-

stantiation of these by defining the template classes as havigy " component based software systems. Each component

a private constructor or something similar. This would giveml ht come under the purview of one of a hierarchy of sched-

compile-time error when the invalid set of system propertiesulérsers’ each imposing its own set of restrictions on the type of

used to instantiate the template. Alternatively, if the spacer8§ ources that can he used. TSL uses first order logic to repre-
slgnt tasks, resources, locks and schedulers. Such reasoning is

valid configurations is smaller, we could prevent instantiatio sential in component based svstems to make more efficient
of a base template, but allow instantiations of specializatiolées of resourceps Componentsyare executed in environments
representing the acceptable combinations. which may be different from the environments that they are
developed in. TSL can be used to find errors in system code,
5.2 Dynamic Analysis for example, using a lock in a component which will eventu-

ally be run as an interrupt handler. There are different kinds of
DRE systems undergo changes in state, called mode trajgks like regular mutex locks, recursive locks, readers-writer
tions, wherein the system moves from one state having onelsek, etc. Based on the environment and the call graph of func-
of system properties to another state with different charactggns, TSL can be used to infer the type of lock to be used by
istics. These changes would require new set of configuratiensarticular component under a particular context.

at the infrastructure level. Such configuration cannot be %(AA using C++ template-metaprogramming: C++ Tem-
termined at static time and hence template meta—programmi"}ﬂe metaprogramming provides powerful rﬁechanisms t0 do

p
cannot be of any usg here. . . . ompile-time computations. Veldhuizen [25] shows an exam-
Under such situations an adaptive approach involving (?
n

. . L o : of factorial computation at compile-time. Since RMA in-
namic logic evaluation is necessary. This is especially relev o?v
in applications requiring admission control. Languages li &
Prolog can be used to represent and evaluate the logic in s
situations, or in our case we could build a simple expressi
structure and evaluator for use in C++. It should be noted t

the run time evaluat'ion of Iogig rules can be computationa eters [26] describes an implementation of Rate-Monotonic
complex ar!d canonical forms like Horn clguseg mlght be u%ﬁialysis (RMA) within the C++ parametric type system that
ful in reducing the complexity of computation within boundsprovides C++ real-time software developers a good way to rea-
son with types at the source level about recurrent tasks and
5.3 Hybrid Analysis Qeadlines. Qging this approach, a program can bg considered
incorrect, raising type errors at compile time, if a given set of
A combination of the above two approaches is useful, if sort@sks is not statically schedulable. Similarly, this compile-time
system properties can be knovenpriori and some others“metaprogram” can adjust a task set so as to become feasible
t t be k d th t djust a task set tob feasibl

¢ Model-based systems integration

es static schedulability analysis of a set of tasks and the
riods of these tasks are knowpriori, a static analysis can
Gone using template meta-programming constructs. If a set
tasks are not guaranteed to be scheduled according to the
utilization bound, a compile time error will be generated.



and this this analysis is performed inside the C++ type systeare stored in a model database. These models are used to au-
which allows a very natural integration into C++ programs. tomatically generate the applications or to synthesize input to

Bossa: Bossa [27] is a special-purpose language dedicaPlen(Lzlf

to the development of scheduling policies. By providing
a high-level abstraction, developing scheduling modules

specific to the domain of scheduling.

erent COTS analysis tools.

come less error-prone. This approach also provides a clean Conclusions and Future Work

separation of the scheduling policy from the actual mechﬁ{
nisms. Moreover, dealing with high level abstractions makes

possible the verification of important safety properties that agr)ré)

is paper highlights the importance of including aspects that
ss-cut infrastructure mechanisms and application descrip-
rs when reasoning about the correctness of a DRE system.
We presented an infrastructure configuration logic that offers

CIAO: Component Integrated ACE ORB (CIAO) [8] is aa way to check safety properties and schedulability of DRE
QoS-aware open source implementation of the CORBA Cosystems. From the results of evaluating this logic we can in-
ponent Model (CCM) [28] specification. CIAO currently aimger the appropriate strategy to use at particular places in the
to provide component-oriented paradigm to the distributeslipporting middleware infrastructure, or offer proof why no
real-time, embedded (DRE) system developers by abstraafiguration is acceptable,g., for purposes of admission
ing DRE-critical systemic aspects, such as QoS requiremeotstrol.

RT policies, as installable/configurable units supported by thewne presented an example illustrating the application of this
component framework. Promoting these DRE-critical aspefdgic to the TAO ORB core infrastructure. We examined so-
as first-class meta data disentangles code for controlling thesens that can be employed to configure the infrastructure
non-function aspects from application logic and makes DRfrechanisms based on the result of evaluating the logic, of
system development more flexible. Since mechanisms to swpich C++ static template metaprogramming is a very pow-
port various DRE-critical non-functional aspects can be easdful one for static configurations. For dynamic adaption, hy-
verified, CIAO will also make configuring and managing thesgid solutions are necessary involving partially pre-configured

aspects easier.

Reasoning in CCM: Cadena[29]is an integrated GUI envi-

mechanisms that are reconfigured at runtime.

ronment for building and modeling Corba Component ModR eferences

(CCM) [28] systems. Its philosophy is based on the fact

that reasoning about correctness properties is essentialllih Object Management Groughe Common Object Request Broker: Ar-

component-based designs. CCM architecture defines differ-

chitecture and SpecificatioR.6.1 ed., May 2002.

ent roles during the lifecycle of a CORBA component. Conk2] W. A. Domain, “Extensible Markup Language (XML)http:/

figuring a component is done through XML based descrip-

www.w3c.org/XML .

tors which are tedious to write manually. Cadena providd3l J: Snell and K. MacLeodProgramming Web Applications with SOAP
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	Abstract: Abstract: Historically, many distributed real-time and embedded (DRE) systems were developed manually from scratch, leading to stove-piped solutions that while correct in both functional and

QoS properties were very expensive to develop and difficult to maintain and extend. First-generation middleware technologies such as CORBA 2.x [1], XML [2], and SOAP [3], served

to shield application developers from low-level platform details, thus raising the level of abstraction at which distributed systems are developed and supporting re-use of infrastructure

to amortize development costs over the lifetime of a system. However, interdependencies between services and object interfaces resulting from these programming models signifi-

cantly limited the degree of re-use that could be achieved in practice.



Component middleware technologies such as the CORBA Component Model (CCM) [4], J2EE [5], and .NET [6], were developed to address many of these limitations. In CCM,

for example, standardization of component containers, ports, and homes offered a framework within which reuse of server as well as client infrastructure was facilitated. Componentoriented

middleware has addressed a wide range of application domains, but unfortunately for DRE systems, the focus of these technologies has been primarily on functional and not

QoS properties. For example, although CCM supports configuration of functional component attributes like their interconnections,

key QoS attributes for DRE systems, such as execution times and invocation rates are inadequately configurable through conventional CCM [7].

Research on QoS-aware component models such as the CIAO project [8, 7] is showing significant promise in making QoS configuration a first-class part of the component programming

model, thus further reducing accidental complexities of building DRE systems. However, it is important to note a fundamental difference between configuration of functional

and QoS properties even within such a unified component model: the dominant decomposition of functional properties is essentially object-oriented, while the dominant decomposition

of QoS properties is essentially aspect-oriented. That is, functional properties tend to be stable with respect to component boundaries and configuration lifecycle stages, while

QoS properties tend to cross-cut component boundaries, and may be revised as more information is known in later configuration

stages [7]. In this paper, we describe how a focus on aspect frameworks for configuring QoS properties both complements and extends QoS-aware component models. 



This papermakes three main contributions to the state of the art in DRE systems middleware. First, it describes a simple but

representative problem for configuringQoS aspects that crosscut both architectural layers and system lifecycle boundaries, which motivates our focus on aspect frameworks. Second, it

provides a formalization of that problem using first order logic, which both guides the design of aspect configuration infrastructure,

and offers a way to connect these techniques with model-integrated computing [9] approaches to further reduce the programming burden on DRE system developers. Third, it

describes alternative mechanisms to ensure correct configuration of the aspects involved, and notes the phases of the DRE system lifecycle at which each such configuration mechanism

is most appropriate
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