
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2003-51 

2003-06-14 

A Generative Programming Framework for Adaptive Middleware A Generative Programming Framework for Adaptive Middleware 

Venkita Subramonian and Christopher Gill 

Historically, many distributed real-time and embedded (DRE) systems were developed manually 

from scratch, leading to stove-piped solutions that while correct in both functional and QoS 

properties were very expensive to develop and difficult to maintain and extend. First-generation 

middleware technologies such as CORBA 2.x [1], XML [2], and SOAP [3], served to shield 

application developers from low-level platform details, thus raising the level of abstraction at 

which distributed systems are developed and supporting reuse of infrastructure to amortize 

development costs over the lifetime of a system. However, interdependencies between services 

and object interfaces resulting from these programming models significantly... Read complete Read complete 

abstract on page 2. abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Subramonian, Venkita and Gill, Christopher, "A Generative Programming Framework for Adaptive 
Middleware" Report Number: WUCSE-2003-51 (2003). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1096 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1096?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1096 

A Generative Programming Framework for Adaptive Middleware A Generative Programming Framework for Adaptive Middleware 

Venkita Subramonian and Christopher Gill 

Complete Abstract: Complete Abstract: 

Historically, many distributed real-time and embedded (DRE) systems were developed manually from 
scratch, leading to stove-piped solutions that while correct in both functional and QoS properties were 
very expensive to develop and difficult to maintain and extend. First-generation middleware technologies 
such as CORBA 2.x [1], XML [2], and SOAP [3], served to shield application developers from low-level 
platform details, thus raising the level of abstraction at which distributed systems are developed and 
supporting reuse of infrastructure to amortize development costs over the lifetime of a system. However, 
interdependencies between services and object interfaces resulting from these programming models 
significantly limited the degree of reuse that could be achieved in practice. Component middleware 
technologies such as the CORBA Component Model (CCM) [4], J2EE [5], and .NET [6], were developed to 
address many of these limitations. In CCM, for example, standardization of component containers, ports, 
and homes offered a framework within which reuse of server as well as client infrastructure was 
facilitated. Component-oriented middleware has addressed a wide range of application domains, but 
unfortunately for DRE systems, the focus of these technologies has been primarily on functional and not 
QoS properties. For example, although CCM supports configuration of functional component attributes 
like their interconnections, key QoS attributes for DRE systems, such as execution times and invocation 
rates are inadequately configurable through conventional CCM [7]. Research on QoS-aware component 
models such as the CIAO project [8, 7] is showing significant promise in making QoS configuration a first-
class part of the component pro-gramming model, thus further reducing accidental complex-ities of 
building DRE systems. However, it is important to note a fundamental difference between configuration of 
functional and QoS properties even within such a unified compo-nent model: the dominant 
decomposition of functional properties is essentially object-oriented, while the dominant decomposition 
of QoS properties is essentially aspect-oriented. That is, functional properties tend to be stable with 
respect to component boundaries and configuration lifecycle stages, while QoS properties tend to cross-
cut component boundaries, and may be revised as more information is known in later configuration 
stages [7]. In this paper, we describe how a focus on aspect frameworks for configuring QoS properties 
both com-plements and extends QoS-aware component models. This paper makes three main 
contributions to the state of the art in DRE systems middleware. First, it describes a simple but 
representative problem for configuring QoS aspects that cross-cut both architectural layers and system 
lifecycle boundaries, which motivates our focus on aspect frameworks. Second, it provides a 
formalization of that problem using first order logic, which both guides the design of aspect configuration 
infrastructure, and offers a way to connect these techniques with model-integrated computing [9] 
approaches to further reduce the programming burden on DRE system developers. Third, it describes 
alternative mechanisms to ensure correct configuration of the aspects involved, and notes the phases of 
the DRE system lifecycle at which each such configuration mechanism is most appropriate. 

https://openscholarship.wustl.edu/cse_research/1096?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1096?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages




A Generative Programming Framework for Adaptive Middleware

Venkita Subramonian and Christopher Gill
fvenkita,cdgillg@cse.wustl.edu

Department of Computer Science and Engineering
Washington University, St.Louis,MO

(314) 935-7538

Abstract

Historically, many distributed real-time and embedded (DRE)
systems were developed manually from scratch, leading to
stove-piped solutions that while correct in both functional and
QoS properties were very expensive to develop and difficult to
maintain and extend. First-generation middleware technolo-
gies such as CORBA 2.x [1], XML [2], and SOAP [3], served
to shield application developers from low-level platform de-
tails, thus raising the level of abstraction at which distributed
systems are developed and supporting re-use of infrastruc-
ture to amortize development costs over the lifetime of a sys-
tem. However, interdependencies between services and object
interfaces resulting from these programming models signifi-
cantly limited the degree of re-use that could be achieved in
practice.

Component middleware technologies such as the CORBA
Component Model (CCM) [4], J2EE [5], and .NET [6], were
developed to address many of these limitations. In CCM,
for example, standardization of component containers, ports,
and homes offered a framework within which reuse of server
as well as client infrastructure was facilitated. Component-
oriented middleware has addressed a wide range of applica-
tion domains, but unfortunately for DRE systems, the focus of
these technologies has been primarily on functional and not
QoS properties. For example, although CCM supports config-
uration of functional component attributes like their intercon-
nections, key QoS attributes for DRE systems, such as execu-
tion times and invocation rates are inadequately configurable
through conventional CCM [7].

Research on QoS-aware component models such as the
CIAO project [8, 7] is showing significant promise in mak-
ing QoS configuration a first-class part of the component pro-
gramming model, thus further reducing accidental complex-
ities of building DRE systems. However, it is important to
note a fundamental difference between configuration of func-
tional and QoS properties even within such a unified compo-
nent model: the dominant decomposition of functional proper-
ties is essentially object-oriented, while the dominant decom-
position of QoS properties is essentially aspect-oriented. That
is, functional properties tend to be stable with respect to com-
ponent boundaries and configuration lifecycle stages, while
QoS properties tend to cross-cut component boundaries, and
may be revised as more information is known in later config-
uration stages [7]. In this paper, we describe how a focus on
aspect frameworks for configuring QoS properties both com-
plements and extends QoS-aware component models.

This paper makes three main contributions to the state of the
art in DRE systems middleware. First, it describes a simple but
representative problem for configuring QoS aspects that cross-
cut both architectural layers and system lifecycle boundaries,
which motivates our focus on aspect frameworks. Second, it
provides a formalization of that problem using first order logic,
which both guides the design of aspect configuration infras-
tructure, and offers a way to connect these techniques with
model-integrated computing [9] approaches to further reduce
the programming burden on DRE system developers. Third, it
describes alternative mechanisms to ensure correct configura-
tion of the aspects involved, and notes the phases of the DRE
system lifecycle at which each such configuration mechanism
is most appropriate.

Keywords: adaptive and reflective middleware, system as-
pects, generative programming, first order logic.

1



1 Introduction

Constructing systems that are easily modified and extended is
itself a challenging problem. A fundamental question is how to
balance the rigor with which the correctness of any one config-
uration of the system can be assured, against the flexibility to
evolve the system to other configurations that are also correct.
Specifically, constraints applied during system development to
ensure correctness often limit the range of adaptation that can
be achieved at run-time.

We argue that for distributed real-time and embedded
(DRE) systems the challenge of constructing correct yet evolv-
able systems is exacerbated, due to the additional challenges
we outline in Section 1.1. While some of these challenges are
readily addressed by specific modern development approaches
such as the generative programming techniques described in
Section 1.2, a complete framework for applying those tech-
niques to component-based model-integrated development of
DRE systems is needed.

1.1 Challenges for DRE Systems

The following challenges faced by distributed real-time and
embedded (DRE) systems motivate our work on aspect frame-
works for component-based model-integrated development:

1. Extra-functional constraints such as end-to-end timeli-
ness must be satisfied while also ensuring the system’s
functional correctness.

2. These extra-functional constraints tend to cross-cut tradi-
tional endsystem and architectural layer boundaries.

3. Details of infrastructure mechanisms used by DRE sys-
tems have significant impacts on extra-functional proper-
ties and must be modeled in the overall analysis of system
correctness.

4. The number and variety of system mechanisms that must
be considered grows with the heterogeneity and scale of
the system.

5. Due to all of the previous factors, analysis of correct-
ness can be computationally expensive even for appar-
ently simple applications.

Historically, many DRE systems have been developed man-
ually and individually to assure their constraints will be met
even under a set of worst case conditions knowna priori. Un-
fortunately this has occurred at a very high cost both in en-
gineering effort and in lost opportunities due to lengthy sys-
tem development cycles. Furthermore, these static approaches
are brittle with respect to the kinds of highly variable environ-
ments faced by the motivating applications described in Sec-
tion 2: if the a priori assumptions are violated by the actual

conditions the system encounters, then correctness cannot be
assured.

1.2 A Generative Programming Approach

In recent years, significant emphasis has been placed on the
design of configurable and customizable software. Such soft-
ware is often built from modules combined to form frame-
works addressing issues of interest to particular classes of ap-
plications. Each instance of a module may have its own unique
customizations both between frameworks and when the same
framework is refined for specific applications. Czarnecki and
Eisenecker [10] describe this kind of development as being
analogous to a luxury car assembly plant, in which each car
might have its own customized fittings.

Applying these ideas to middleware infrastructure devel-
opment is an emerging area of research. The confluence of
QoS-aware component models [8, 7] with model-integrated
computing [9] offers an important new paradigm for develop-
ing complex large-scale systems with stringent functional and
extra-functional properties. However, many open issues such
as configuration techniques for multiple infrastructure aspects
must be addressed before this approach will be widely appli-
cable to real-world DRE systems.

In particular, while component technologies ease the pack-
aging, assembly and deployment ofapplication components,
numerous constraints that cross-cut the application compo-
nents and the supporting middleware infrastructure on which
they run must still be configured manually or through manip-
ulation by a higher-level modeling tool. In either case, gratu-
itous detail complicates the task, even though aspect-oriented
modular structure is inherent in many of these configuration
problems.

Furthermore, while Qos-aware component technologies
providemechanismsfor configuring these cross-cutting con-
cerns, the configuration issues are often orthogonal to the par-
ticular component technology used. Configuring all details of
a system, from the highest to lowest architectural levels, can
make the implementation and extension of modeling tools un-
necessarily complex. Clearly, exposing only certain key de-
tails to the component technology and higher level modeling
tools while encapsulating the other details, is advantageous.

We therefore believe that such issues are best addressed just
above the lowest common level from which both the applica-
tion components and middleware mechanisms are built. In this
paper we describe how alternative Generative Programming
techniques such as C++ Template Meta Programming [10]
can be applied in the absence of suitable Aspect Oriented-
Programming [11] tools1 to configure aspects at this level. In

1While strong AOP tools such as AspectJ [12] are available, their counter-
parts for languages such as C++ that are used for a majority of DRE system

2



particular, template meta-programming can be applied to con-
figure ACE [13] primitives for both real-time application com-
ponents and infrastructure mechanisms such asreactors[14]
on which they are run, thus reducing complexity and increas-
ing fidelity of the system.

This work enables adaptive and evolvable software systems
in two main ways. First, it offers flexibility to customize sys-
tem properties in response to constraints cross-cutting the ap-
plication and middleware levels. Second, it offers a rigorous
and reusable common substrate for software development and
customization, across both architectural layers and alternative
component technologies.

1.3 Structure of this Paper

The rest of this paper is structured as follows. Section 2 de-
scribes a motivating real-world example that gives rise to the
challenges described in Section 1.1. Section 3 discusses how
problems with specification of system correctness involve de-
tails of both the application and its supporting infrastructure.
We introduce logic for specifying system constraints in Sec-
tion 4. Section 5 describes our solution framework and ex-
plains in detail how our solution resolves the challenges faced
by the example in Section 2. Section 6 examines related work
and compares and contrasts our approach to other relevant ap-
proaches. Finally, Section 7 offers conclusions and describes
future work.

2 Motivation

DRE applications such as integrated avionics mission com-
puting systems [15] have benefited significantly from previ-
ous advances in middleware technology, and work is under-
way to apply QoS-aware component technologies to them as
well [7]. However, these systems are relatively small-scale
compared to envisioned next-generation DRE systems such as
autonomous agentsystems involving swarms of coordinated
unmanned aerial vehicles (UAVs) [16] or teams of collaborat-
ing emergency rescue robots [17].

For autonomous agent systems, the need for individual sys-
tems (i.e. each UAV or robot) to communicate and coordinate
their actions with one another means that the functional and
QoS configuration of each single system must be adapted (po-
tentially repeatedly) to reflect its interactions with other sys-
tems. For example, it is likely that each UAV would take to the
air separately, but then once airborne would establish a forma-
tion with the others before proceeding to a specified destina-
tion. Each UAV would need to communicate with the others,
which in a distributed object computing (DOC) middleware

development have yet to appear.

setting would involve sending messages between UAVs result-
ing in method upcalls on objects that actually perform services
within the UAV application. Thus when a single system initi-
ates a new interaction with another system, both systems ex-
perience amode change.

Ensuring safety and feasibility of operations in individual
systems can be realized by (1) modeling a graph of method
invocations, (2) decorating that graph with QoS attributes like
execution times and rates of invocation, and (3) performing
analysis over that graph. A key issue raised by this exam-
ple is that the method invocation graph within each individual
autonomous system must be augmented to reflect the inter-
action with the other autonomous systems. As we examine
in greater detail in Section 3, this implies that the correct-
ness of each system’s individual QoS configuration does not
necessarily imply correctness of the combined and interact-
ing system-of-systems that results when teams of autonomous
systems interact. Furthermore, because it may be intractable
to consider all combinations of possible interactionsa priori,
run-time checking of new configurations may be necessary.

3 Evolving System Property Specifica-
tions

An abstract model of a system is used to analyze key proper-
ties like safety, liveness, and resource feasibility. Though the
functional aspects of the system are represented in the model
at an abstract level, we observe that it may also be necessary
to model some of the key infrastructure mechanisms used in
the implementation of the system. These infrastructure mech-
anisms may have significant impacts on extra-functional prop-
erties and must be modeled in the overall analysis of system
correctness.

Middleware typically offers different strategies to config-
ure the mechanisms which underly the infrastructure. Correct
choice of strategies is crucial not only for the correct func-
tioning of the infrastructure, but also is required to maintain
safety and liveness properties. In this section, we present a
simple, but sufficient example to illustrate the need to include
infrastructure mechanisms during modeling of a system. Sec-
tion 3.1 first describes the properties of a simple set of infras-
tructure aspects that illustrate problems of safety, timeliness,
and schedulability. Section 3.2 then examines how these as-
pects influence the specification and checking of system cor-
rectness.

3.1 Middleware Infrastructure Aspects

CORBA [18] based ORBs are increasingly being used as the
mechanism for communication in distributed systems with

3



real-time constraints. Implementation of an ORB [19] in-
volves mechanisms like Reactors, Acceptors, and Connectors
(see Sidebar 1). While modeling DRE systems, it becomes
necessary to consider some of the key infrastructure mecha-
nisms like the ORB core reactor, the number of threads used
to receive incoming GIOP [20] requests, and the topology of
method invocations that generate outgoing GIOP requests. In
this section, we describe one such strategy used to configure
ORB core infrastructure –Reply Wait Strategy– to illustrate
the importance of including this level of detail in a system
model.

3.1.1 ORB Reply Wait Strategies

In CORBA, when a client makes a remote two-way function
call, the caller’s thread needs to wait until it receives a reply
back from the server before continuing to execute the calling
method. This is in accordance with the semantics of a two-
way function call. There are different strategies to wait for the
reply each having different safety and liveness properties. Two
different strategies to wait for the reply are illustrated here:

� Wait on Connection
� Wait on Reactor

We use TAO [19] to illustrate the impact of these strate-
gies on the safety and liveness properties of distributed appli-
cations. A simple representative example consists of a client
communicating with a server using a two-way remote call and
passing a callback object reference. The server makes a remote
call back to the object corresponding to the reference passed
from the client. This could repeat for a finite number of times,
the back-and-forth calls then being stopped by some kind of
a counter. In ORB literature, this kind of sequence of calls is
termed “Nested Upcalls”. Without loss of generality, we first
assume that there is a single thread in the client and server.

Client Server
C

Reactor

3 wait

R
e

a
cto

r

Servant

Deadlock
here

Callback

1 2 4

5

Figure 1: Waiting for the reply on the connection

Wait on Connection: In this strategy, illustrated in Figure 1,
the following sequence of events takes place within the ORB
layer:

1. As soon as the client makes a remote call, the client ORB
actively establishes a connectionC to the server ORB.

2. The parameters to the remote call are marshalled by the
client stub, a GIOP Request is formed and sent to the
server usingC.

Sidebar 1: Key Patterns in TAO

The architecture of TAO is based on the network
programming patterns described in [14]. We outline
three fundamental patterns used in TAO:

� Reactor is an event handling design pattern used
in network programming to demultiplex events from
multiple sources using just a single thread. This
design pattern is used in ORBs to demultiplex and
dispatch incoming requests and replies from peer
ORBs. Event handlers like request and reply han-
dlers are registered with a reactor. The reactor
uses a synchronous event demultiplexer, e.g. the
UNIX select system call, to wait for data to arrive
from one or more ORBs. When data arrives, the
synchronous event demultiplexer notifies the reac-
tor, which then dispatches the appropriate regis-
tered event handler based on the event source.

� The Acceptor-Connector design pattern decouples
connection establishment between ORBs and re-
quest/reply processing in an ORB endsystem once
a connection is established. A Connector actively
establishes a connection with a remote acceptor
component and an Acceptor passively waits for
connection requests from remote connectors, es-
tablishing a connection upon arrival of such a re-
quest, and initializing a service handler to process
data exchanged on the connection.

� Leader/Followers is an architectural design pat-
tern that provides an efficient concurrency model
where multiple threads take turns detecting, demul-
tiplexing, dispatching, and processing requests and
replies from peer ORBs.

3. The sole client thread waits for the reply on the connec-
tion Cusing a blockingrecv call.

4. The request is received by the server and dispatched to
the appropriate skeleton. The skeleton marshals the pa-
rameters and theupcall is made to the servant.

5. The servant implementation in this example uses the call-
back object reference (passed as parameter to the remote
call) to make a remote call back to the client.

Since the sole thread on the client side is blocked on a sys-
tem call waiting for a reply from the server, there is no thread
to accept the incoming request. This results in a deadlock,
where the client is waiting for a reply from the server and
the server is blocked on the client for a reply. The situation
can be improved by having a pool of threads listening for in-
put requests using the Leader-Follower model (see Sidebar 1).

4



But even with this model, when the number of outstanding re-
quests exceed the number of threads, the ORB ceases to accept
any more requests and this will result in a deadlock in the case
of nested upcalls.

Wait on Reactor: In this strategy, the sequence of calls is
the same as the previous strategy until the request is written
to the connection stream. After that, instead of waiting on the
connection for the reply, the caller thread waits on the ORB
core reactor, which provides synchronous demultiplexing of
I/O events. This demultiplexing allows incoming requests to
be accepted while waiting for replies (see Sidebar 1). The
(nested) callback request from the server is accepted and the
call is completed eventually, thus avoiding deadlock (see Fig-
ure 2).

It should be noted that the upcall for the incoming request
is made in the same thread context as that of the outgoing call.
There could be multiple incoming requests before the reply for
the initial outgoing call arrives. The processing of the reply
for the initial outgoing call can be done only after processing
of all the incoming requests, that arrived before its reply, is
completed. This results in blocking delays in completion of
outgoing remote calls. Section 4.3 describes this process in
detail.

Client Server
C

Reactor

wait

R
e

a
cto

r
Servant

Callback

6

Deadlock
avoided

by waiting
on reactor

1

3

42

5

Figure 2: Waiting for the reply on the reactor

Observation: The above discussion illustrates that it is im-
portant to choose appropriate strategies at fine levels of de-
tail in a middleware infrastructure. Depending on the nature
of application properties,e.g.nested upcalls, this choice will
drastically affect liveness properties as shown in the exam-
ple. Therefore, such details need to be taken into consideration
when doing analysis of the system model.

3.2 Specification of System Correctness

The example discussed in Section 3.1 illustrates some of the
problems encountered when building systems out of various
components. A component needs to be configured based on
the application or execution environment in which the com-
ponent is used. This is because the component might be de-
signed to be used by multiple application enviornments, which

is certainly true in the case of CORBA ORBs. The configura-
tion can be based on system properties or constraints evaluated
statically or dynamically and may need to be changed dur-
ing the course of the application execution because ofmode
changesin the application. The correctness of the system
needs to be maintained even across such mode changes. We
outline some of the system properties which need to be main-
tained even under changing environments:

� Timeliness constraints

� Schedualability

� Safety properties

Timeliness Constraints: Even under changing environmen-
tal conditions, real time systems mandate tasks to be com-
pleted before their deadlines. Based on this, the infrastructure
mechanisms might need to be reconfigured to adapt to the new
environment. The new configuration could affect the system
properties in an adverse way and hence this should be taken
into account during the system modelling phase.

In the example above, blocking factors are simpler to calcu-
late if the reply wait strategy is configured asWaitOnConnec-
tion since the thread waits only till the reply is received and no
incoming requests are processed in between. If we do an anal-
ysis of the system model based on this and later change the
configuration toWaitOnReactor, then the analysis that we did
would not be valid anymore since the blocking factor need to
be considered for analysing the new configuration. This could
result in violation of timing requirements.

Schedulability: As illustrated by the example in Sec-
tion 3.1, nested upcalls could affect the schedulability of a sys-
tem. Such nested upcalls introduce blocking times [21], which
need to be accounted for while doing schedulability analysis
like RMA [22]. There is a possibility that the system might
be under-utilized because of considering blocking factor when
in reality the configuration of the infrastructure does not allow
blocking to happen. This is true when we configure the infras-
tructure with a reply wait strategy ofWaitOnConnection. Both
runtime and static admission control policies should take this
into account when making schedulability decisions.

Safety Properties: Changing system environments could
affect the safety properties of the system. For example, in-
teraction between two independently developed components
could result in the deadlock illustrated in Section 3.1. Endsys-
tems might be configured withWaitOnConnectionand runtime
mode changes might then cause the application to change to a
state where there are nested upcalls between components. In
this scenario, the reconfiguration of the system should include
doing the appropriate call graph analysis and make sure that

5



the safety properties of the system are not violated. If the call-
graph after a mode change detects a nested upcall, the infras-
tructure could be reconfigured withWaitOnReactorreply wait
strategy, if necessary.

To analyze the above properties, the first step is formalize
the constraints in terms of a logic for what constitutes a “cor-
rect” and “safe” system. We need to be able to formally define
what a deadlock means and also derive rules which enable us
to detect the possibility of a deadlock based on system proper-
ties. We introduce a first order logic called theInfrastructure
Configuration Logicto formalize and verify some of the sys-
tem properties based on the configuration used in the infras-
tructure mechanisms.

4 Infrastructure Configuration Logic

Our logic is designed to allow description of scenarios that oc-
cur in systems using CORBA-like infrastructure mechanisms.
Though we apply this logic using TAO as an example, it is easy
to generalize this logic to fit other infrastructure mechanisms.

4.1 Logic Notations

For any remote function call in CORBA, there is a source,
usually called theclient and a destination, usually referred to
as theserver. The variablesf; f1, etc. are used to denote
functions. It should be noted that two different variables can
be assigned the same function value. For example,f1 andf2
could both have the valuefoo, which is a function that resides
in a remote CORBA object. To indicate that a functionf1 calls
a remote function functionf2, we say

f1 ; f2

To illustrate a call-chain involving three different functions,
f1 ; f2 ; f3 indicates thatf1 makes a remote call tof2
which in turn makes another remote call tof3.

Remote functions are embedded in CORBA objects which
in turn are activated in server processes. The variablesP; P1,
etc. range over processes which host CORBA objects.2 The
relation HostedInis used to denote the process in which a
CORBA object, and hence the remote object method or func-
tion, is hosted.HostedIn(f; P1) indicates that the functionf
is hosted in processP1. Finally, we use the transitive closure
;

+to indicate that a function calls another function indirectly
as part of a call-chain. In the above example, we can assert
thatf1 ;+ f3 . We denote a call chain by variablesC;C1, etc.
.

Each process hosting CORBA objects may configure the
ORB that it uses, with an appropriate strategy to wait for the

2We assume without loss of generality that each such process will have a
single ORB.

reply. The two strategies described in Section 3.1 are denoted
using WaitOnConnectionand WaitOnReactor. The relation
ReplyWaitStrategyis used to describe the reply wait strategy
used in a particular process. It can also be expressed as a pred-
icate which evaluates to either true or false.

We introduce two moreoperators in our logic called
ThreadCountand BlockingTime. ThreadCount(P)indicates
the number of threads configured in the ORB to listen to in-
coming requests. Different threads take turns listening accord-
ing to the Leader-Follower pattern (see Sidebar 1).Blocking-
Time(f) indicates the time a function call will take before ex-
ecution continues at the point after the function call, in the
calling method.

4.2 Safety Properties

As explained in Section 3.1, a call chain could end up in a loop
resulting in a nested upcall. This could result in a deadlock
based on the configuration of the wait strategy for the ORB
infrastructure. We introduce the operatorDeadlockwhich in-
dicates the possibility of a deadlock happening on a given call-
chain.

Assuming thatC is a call-chainf1 ;+ fn representing

f1 ; � � � fi ; � � � fn

possibility of a deadlock in this call chain can be verified by

Deadlock(C)
def
= 9Pj ; 9fi j

kffi j HostedIn(fi; Pj)gk

> ThreadCount(Pj)

^ ReplyWaitStrategy(Pj ;WaitOnConnection)

The termkffi j HostedIn(fi; Pj)gk represents the number
of functions in the call-chain that are hosted inPj . According
to the above logic, if there are more thanThreadCount(Pj)
functions hosted inPj that are part of the same call-chain, then
there is a possibility of deadlock if the ORB is configured with
a reply wait strategy ofWaitOnConnection. This is because
the all threads will be exhausted waiting for replies and no
threads left to accept incoming requests. To avoid this possible
deadlock, the infrastructure must be configured with a reply
wait strategy ofWaitOnReactorinstead ofWaitOnConnection.

4.3 Schedulability

When theWaitOnReactorstrategy is used to wait for replies,
incoming requests can be processed while a reply for an al-
ready issued request is outstanding. To determine whether the
system is schedulable or not in the presence of such interleaved
calls, the increased complexity of the blocking time for tasks
should be taken into account. We illustrate this with an exam-
ple as shown in Figure 3. There are 8 functions. The three

6



f1 f4

f7 f2 f5

f8 f3 f6

P

Figure 3: Example scenario to illustrate Blocking factor

functionsf1; f2; f3 are hosted in the same processP and they
make remote calls to functionsf4; f5 andf6 respectively.f2
andf3 are invoked as a result of remote calls fromf7 andf8.
For the purposes of simplicity we consider only direct remote
calls, although it is easy to extend this to a remote call chain
using the transitive closure property.

Given the above scenario, Figure 4 shows the thread of con-
trol flowing through the different components. Note that the
stubs and skeletons are only shown for completeness and do
not significantly impact this analysis. We ignore the actions
before functionf1 starts execution.f1 makes a remote call to
f4. The flow of control passes through the stub code forf4 and
eventually blocks on the reactor waiting for the reply from the
server hostingf4.

Blocking on the reactor enables processing of incoming re-
quests even in the presence of outstanding replies. In our ex-
ample, a request forf2 comes in when the ORB is waiting
for reply fromf4. The thread that was blocked on the reactor
makes the upcall tof2. f2 now makes another remote call to
f5. Again, the ORB waits for the reply from its peer. Mean-
while, the reply fromf4 arrives. We cannot unwind the thread
stack at this point since that would break the two-way seman-
tics of f2. So the reply fromf4 has to be queued until the
reply fromf5 has been processed andf2 has finished execu-
tion. This causes an unnecessary blocking delay forf1 since
its reply has already arrived but cannot be processed.

We use the notationf1 a f2 to indicate thatf1 is blocked by
f2. Note that this does not necessarily imply thatf1;

+f2. In
the example discussed above, there is no call-chain in which
bothf1 andf2 are involved, but still the relationf1 a f2 holds.
We also introduce the notion of alist used to represent a se-
quence of items. To talk about lists of arbitrary length, we use
the binary functional operator “.” in infix form. In particular, a
term of the form�1:�2 designates a sequence in which�1 is the
first element and�2 is the rest of the list. This is very similar
to the CAR and CDR operators in LISP.

We now introduce a logic for evaluating the blocking time

Stub for f6

Skeleton for f3

Stub for f5

Skeleton for f2

f1
f2

Stub for f4

f3

R
e
a
c
t
o
r

Request for f2

Request for f3

Reply for f6

Blocking
factor

for f1

Blocking
factor for

f2

Reply for f4

Reply for f5

Reply for

f4 queued

Reply for

f5 queued

Reply for f5
processed

Reply for f4
processed

Figure 4: Flow of control with WaitOnReactor Strategy.

for a function. If there is a sequence of functions

[f1; : : : ; fi; : : : ; fn]

such that

f1 a f2 a : : : fi a : : : fn

then the blocking time forf1 can be written as

BlockingT ime(f)
def
= ExecutionT ime(f:tail)

ExecutionT ime(f) = Execution time of f without any blocking

ExceutionT ime(list) =
X

ExecutionT ime(fi); fi 2 list

Once the blocking time is calculated this needs to be taken
into account while doing schedulability analysis using tech-
niques like RMA with blocking factor [21].

5 Logic Implementation Schemes

In this section, we propose possible mechanisms for imple-
menting the logic discussed in Section 4. Some of the asser-
tions can be made at compile time and some others can be done
only at run time. For example, a call graph detailing the func-
tion calls can be constructed at compile-time and analyzed for
possible nested upcalls and deadlocks, but when an application
makes a mode transition while running, it may not be possible
to predict,a priori, the resulting system properties. In such
cases we might have to resort to dynamic logic evaluation.

5.1 Static Analysis

Certain aspects of a system render themselves to be pre-
configured at design time based on facts available at design

7



time. A static analysis would suffice in such cases. C++ Tem-
plate meta-programming [10] provides excellent mechanisms
to do compile-time computations. This power combined with
its applicability in writing configuration generators can prove
to a valuable combination for implementing a logic analyzer.
Facts in the logic can be asserted at compile-time and the re-
sults inferred can be used to generate appropriate configura-
tions using generators. For example, using the logic discussed
in Section 4.2, the existence of a deadlock can be asserted at
compile-time, if the call-chain in the system can be determined
a priori. The challenge here is to choose the appropriate tem-
plate meta-programming constructs to represent the logic as
well as the call graph.

C++ templates provides mechanisms to prohibit certain
template instantiations [10]. If we could prohibit the instan-
tiation of a template for certain combinations of system prop-
erties, that would serve as a compile-time checker forinvalid
combinations. One simple way to do this is to use template
specialization. Specialized template definitions can be pro-
vided for all invalid parameter combinations and prohibit in-
stantiation of these by defining the template classes as having
a private constructor or something similar. This would give a
compile-time error when the invalid set of system properties is
used to instantiate the template. Alternatively, if the space of
valid configurations is smaller, we could prevent instantiation
of a base template, but allow instantiations of specializations
representing the acceptable combinations.

5.2 Dynamic Analysis

DRE systems undergo changes in state, called mode transi-
tions, wherein the system moves from one state having one set
of system properties to another state with different character-
istics. These changes would require new set of configurations
at the infrastructure level. Such configuration cannot be de-
termined at static time and hence template meta-programming
cannot be of any use here.

Under such situations an adaptive approach involving dy-
namic logic evaluation is necessary. This is especially relevant
in applications requiring admission control. Languages like
Prolog can be used to represent and evaluate the logic in some
situations, or in our case we could build a simple expression
structure and evaluator for use in C++. It should be noted that
the run time evaluation of logic rules can be computationally
complex and canonical forms like Horn clauses might be use-
ful in reducing the complexity of computation within bounds.

5.3 Hybrid Analysis

A combination of the above two approaches is useful, if some
system properties can be knowna priori and some others

would be known only at runtime. This approach balances on-
line computation cost with flexibility by pre-compiling par-
ticular parameters of the on-line specification mechanisms for
performance and predictability. One of the key question for
the static part is whether we pre-compile too much and thus
over constrain so that the solution becomes brittle in some en-
vironments, or too little so that computational complexity of
on-line specification exceeds constraints.

6 Related Work

This work intersects with prior work in the following areas:

� Reasoning in concurrent and component-based systems

� Configuration of Component based systems

� Model-based systems integration

Logic applied to Hierarchical Scheduling: Task/Scheduler
Logic (TSL) [23, 24] has been used to reason about concur-
rency in component based software systems. Each component
might come under the purview of one of a hierarchy of sched-
ulers, each imposing its own set of restrictions on the type of
resources that can be used. TSL uses first order logic to repre-
sent tasks, resources, locks and schedulers. Such reasoning is
essential in component based systems to make more efficient
uses of resources. Components are executed in environments
which may be different from the environments that they are
developed in. TSL can be used to find errors in system code,
for example, using a lock in a component which will eventu-
ally be run as an interrupt handler. There are different kinds of
locks like regular mutex locks, recursive locks, readers-writer
lock, etc. Based on the environment and the call graph of func-
tions, TSL can be used to infer the type of lock to be used by
a particular component under a particular context.

RMA using C++ template-metaprogramming: C++ Tem-
plate metaprogramming provides powerful mechanisms to do
compile-time computations. Veldhuizen [25] shows an exam-
ple of factorial computation at compile-time. Since RMA in-
volves static schedulability analysis of a set of tasks and the
periods of these tasks are knowna priori, a static analysis can
be done using template meta-programming constructs. If a set
of tasks are not guaranteed to be scheduled according to the
RM utilization bound, a compile time error will be generated.
Deters [26] describes an implementation of Rate-Monotonic
Analysis (RMA) within the C++ parametric type system that
provides C++ real-time software developers a good way to rea-
son with types at the source level about recurrent tasks and
deadlines. Using this approach, a program can be considered
incorrect, raising type errors at compile time, if a given set of
tasks is not statically schedulable. Similarly, this compile-time
“metaprogram” can adjust a task set so as to become feasible

8



and this this analysis is performed inside the C++ type system,
which allows a very natural integration into C++ programs.

Bossa: Bossa [27] is a special-purpose language dedicated
to the development of scheduling policies. By providing
a high-level abstraction, developing scheduling modules be-
come less error-prone. This approach also provides a clean
separation of the scheduling policy from the actual mecha-
nisms. Moreover, dealing with high level abstractions makes
possible the verification of important safety properties that are
specific to the domain of scheduling.

CIAO: Component Integrated ACE ORB (CIAO) [8] is a
QoS-aware open source implementation of the CORBA Com-
ponent Model (CCM) [28] specification. CIAO currently aims
to provide component-oriented paradigm to the distributed,
real-time, embedded (DRE) system developers by abstract-
ing DRE-critical systemic aspects, such as QoS requirements,
RT policies, as installable/configurable units supported by the
component framework. Promoting these DRE-critical aspects
as first-class meta data disentangles code for controlling these
non-function aspects from application logic and makes DRE
system development more flexible. Since mechanisms to sup-
port various DRE-critical non-functional aspects can be easily
verified, CIAO will also make configuring and managing these
aspects easier.

Reasoning in CCM: Cadena [29] is an integrated GUI envi-
ronment for building and modeling Corba Component Model
(CCM) [28] systems. Its philosophy is based on the fact
that reasoning about correctness properties is essential in
component-based designs. CCM architecture defines differ-
ent roles during the lifecycle of a CORBA component. Con-
figuring a component is done through XML based descrip-
tors which are tedious to write manually. Cadena provides
a component assembly framework supporting a variety of vi-
sualization and programming tools for developing component
connections. It provides model checking for verifying cor-
rectness properties of CCM systems derived from CCM IDL
and XML. It does this based on specifications of a compo-
nent along with component assembly information combined
with Cadena specifications. It also provides facilities for defin-
ing component types, specifying dependency information and
transition system semantics for these types.

Model Integrated Computing(MIC): Integration of em-
bedded systems using different components require a great
deal ofa priori modeling and analysis. The key element in
MIC is that it extends the scope and usage of models such that
they form the “backbone” of a model-integrated system devel-
opment process. The Generic Modeling Environment [30, 31]
is a configurable toolkit for creating domain-specific modeling
and program synthesis environments. The generated domain-
specific environment is then used to build domain models that

are stored in a model database. These models are used to au-
tomatically generate the applications or to synthesize input to
different COTS analysis tools.

7 Conclusions and Future Work

This paper highlights the importance of including aspects that
cross-cut infrastructure mechanisms and application descrip-
tors when reasoning about the correctness of a DRE system.
We presented an infrastructure configuration logic that offers
a way to check safety properties and schedulability of DRE
systems. From the results of evaluating this logic we can in-
fer the appropriate strategy to use at particular places in the
supporting middleware infrastructure, or offer proof why no
configuration is acceptable,e.g. , for purposes of admission
control.

We presented an example illustrating the application of this
logic to the TAO ORB core infrastructure. We examined so-
lutions that can be employed to configure the infrastructure
mechanisms based on the result of evaluating the logic, of
which C++ static template metaprogramming is a very pow-
erful one for static configurations. For dynamic adaption, hy-
brid solutions are necessary involving partially pre-configured
mechanisms that are reconfigured at runtime.

References
[1] Object Management Group,The Common Object Request Broker: Ar-

chitecture and Specification, 2.6.1 ed., May 2002.

[2] W. A. Domain, “Extensible Markup Language (XML).”http://
www.w3c.org/XML .

[3] J. Snell and K. MacLeod,Programming Web Applications with SOAP.
O’Reilly, 2001.

[4] Object Management Group,CORBA Components, OMG Document
formal/2002-06-65 ed., June 2002.

[5] D. Alur, J. Crupi, and D. Malks,Core J2EE Patterns: Best Practices
and Design Strategies. Prentice Hall, 2001.

[6] Microsoft Corporation, “Microsoft .NET Development.”
msdn.microsoft.com/net/, 2002.

[7] N. Wang and C. Gill, “Improving Real-Time System Configuration via a
QoS-aware CORBA Component Model,” insubmitted to the Hawaii In-
ternational Conference on System Sciences, Software Technology Track,
Distributed Object and Component-based Software Systems Minitrack,
HICSS 2003, (Honolulu, HW), HICSS, Jan. 2003.

[8] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill, B. Natarajan, C. Ro-
drigues, J. P. Loyall, and R. E. Schantz, “Total Quality of Service Provi-
sioning in Middleware and Applications,”The Journal of Microproces-
sors and Microsystems, vol. 27, pp. 45–54, mar 2003.

[9] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
and G. Karsai, “Composing Domain-Specific Design Environments,”
IEEE Computer, Nov. 2001.

[10] K. Czarnecki and U. Eisenecker,Generative Programming: Methods,
Tools, and Applications. Boston: Addison-Wesley, 2000.

9



[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” inProceed-
ings of the 11th European Conference on Object-Oriented Program-
ming, June 1997.

[12] The AspectJ Organization, “Aspect-Oriented Programming for Java.”
www.aspectj.org , 2001.

[13] Center for Distributed Object Computing, “The ADAPTIVE Commu-
nication Environment (ACE).” www.cs.wustl.edu/�schmidt/ACE.html,
Washington University.

[14] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. New York: Wiley & Sons, 2000.

[15] B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from
Execution Dependencies,” inProceedings of the 11th Annual Software
Technology Conference, Apr. 1999.

[16] US Navy Program Executive Office (Cruise Mis-
siles and Joint Unmanned Aerial Vehicles), “”Un-
manned air vehicle makes successful shipboard landing”.”
www.mediacen.navy.mil/pubs/allhands/mar00/pg6g.htm, 2000.

[17] E. R. Z. Zhu, K. Rajasekar and A. Hanson, “Panoramic Virtual Stereo
Vision of Cooperative Mobile Robots for Localizing 3D Moving Ob-
jects,” inProceedings of the IEEE Workshop on Omnidirectional Vision
(OMNIVIS’00), IEEE, 2000.

[18] Object Management Group,Real-Time CORBA Specification, 1.1 ed.,
Aug. 2002.

[19] Center for Distributed Object Computing, “The ACE ORB (TAO).”
www.cs.wustl.edu/�schmidt/TAO.html, Washington University.

[20] G. Coulson and S. Baichoo, “Implementing the CORBA GIOP in a
High-Performance Object Request Broker Environment,”ACM Dis-
tributed Computing Journal, vol. 14, Apr. 2001.

[21] G. C. Buttazzo,Hard Real-Time Computing Systems. Norwell, Mas-
sachusetts: Kluwer Academic Publishers, 1997.

[22] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour,A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-Time Systems. Norwell, Massachusetts: Kluwer
Academic Publishers, 1993.

[23] A. Reid and J. Regehr, “Task/Scheduler Logic: Reasoning about
Concurrency in Component-Based Systems Software.”www.http://
www.cs.utah.edu/˜regehr/papers/tsl/tsl-pdf.pdf ,
2002.

[24] J. Regehr, A. Reid, K. Webb, and J. Lepreau, “Composable
Execution Environments.”http://www.cs.utah.edu/flux/
papers/cee-flux-tn-02-02/ , 2002.

[25] T. Veldhuizen, “Using C++ template metaprograms,”C++ Report,
vol. 7, May 1995.

[26] M. Deters, C. Gill, and R. Cytron, “Rate-Monotonic Analysis in the
C++ Typesystem,” inProceedings of the 9th Real-time/Embedded Tech-
nology and Applications Symposium (RTAS), (Washington, DC), IEEE,
May 2003.

[27] L. P. Barreto and G. Muller, “Bossa: a language-based approach to the
design of real-time schedulers,” in10th International Conference on
Real-Time Systems (RTS’2002), (Paris, France), Mar. 2002.

[28] N. Wang, D. C. Schmidt, and C. O’Ryan, “An Overview of the
CORBA Component Model,” inComponent-Based Software Engineer-
ing (G. Heineman and B. Councill, eds.), Reading, Massachusetts:
Addison-Wesley, 2000.

[29] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena:
An Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” inProceedings of the International Con-
ference on Software Engineering, (Portland, OR), May 2003.

[30] G. Karsai, S. Neema, A. Bakay, A. Ledeczi, F. Shi, and A. Gokhale,
“A Model-based Front-end to ACE/TAO: The Embedded System Mod-
eling Language,” inProceedings of the Second Annual TAO Workshop,
(Arlington, VA), July 2002.

[31] S. Neema, T. Bapty, J. Gray, and A. Gokhale, “Generators for Synthe-
sis of QoS Adaptation in Distributed Real-Time Embedded Systems,”
in Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Gen-
erative Programming and Component Engineering (GPCE’02), (Pitts-
burgh, PA), Oct. 2002.

10


	A Generative Programming Framework for Adaptive Middleware
	Recommended Citation
	A Generative Programming Framework for Adaptive Middleware

	tmp.1471023011.pdf.ftFdv

	Abstract: Abstract: Historically, many distributed real-time and embedded (DRE) systems were developed manually from scratch, leading to stove-piped solutions that while correct in both functional and
QoS properties were very expensive to develop and difficult to maintain and extend. First-generation middleware technologies such as CORBA 2.x [1], XML [2], and SOAP [3], served
to shield application developers from low-level platform details, thus raising the level of abstraction at which distributed systems are developed and supporting re-use of infrastructure
to amortize development costs over the lifetime of a system. However, interdependencies between services and object interfaces resulting from these programming models signifi-
cantly limited the degree of re-use that could be achieved in practice.

Component middleware technologies such as the CORBA Component Model (CCM) [4], J2EE [5], and .NET [6], were developed to address many of these limitations. In CCM,
for example, standardization of component containers, ports, and homes offered a framework within which reuse of server as well as client infrastructure was facilitated. Componentoriented
middleware has addressed a wide range of application domains, but unfortunately for DRE systems, the focus of these technologies has been primarily on functional and not
QoS properties. For example, although CCM supports configuration of functional component attributes like their interconnections,
key QoS attributes for DRE systems, such as execution times and invocation rates are inadequately configurable through conventional CCM [7].
Research on QoS-aware component models such as the CIAO project [8, 7] is showing significant promise in making QoS configuration a first-class part of the component programming
model, thus further reducing accidental complexities of building DRE systems. However, it is important to note a fundamental difference between configuration of functional
and QoS properties even within such a unified component model: the dominant decomposition of functional properties is essentially object-oriented, while the dominant decomposition
of QoS properties is essentially aspect-oriented. That is, functional properties tend to be stable with respect to component boundaries and configuration lifecycle stages, while
QoS properties tend to cross-cut component boundaries, and may be revised as more information is known in later configuration
stages [7]. In this paper, we describe how a focus on aspect frameworks for configuring QoS properties both complements and extends QoS-aware component models. 

This papermakes three main contributions to the state of the art in DRE systems middleware. First, it describes a simple but
representative problem for configuringQoS aspects that crosscut both architectural layers and system lifecycle boundaries, which motivates our focus on aspect frameworks. Second, it
provides a formalization of that problem using first order logic, which both guides the design of aspect configuration infrastructure,
and offers a way to connect these techniques with model-integrated computing [9] approaches to further reduce the programming burden on DRE system developers. Third, it
describes alternative mechanisms to ensure correct configuration of the aspects involved, and notes the phases of the DRE system lifecycle at which each such configuration mechanism
is most appropriate
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: June 14, 2003
	Author: Authors: Subramonian, Venkita; Gill, Christopher
	Title: A Generative Programming Framework for Adaptive Middleware
	ReportNumber: 2003-51
	DepartmentName: Department of Computer Science & Engineering


