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experimentally that the reduced search space is not overly restricted. In particular, triangulations
restricted to this space usually exist for practical inputs, and the optimal triangulation in this space
approximates well the optimal triangulation of the polygon. This makes our algorithms a practical
solution when working with real world data.
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Abstract

Triangulation of 3D polygons is a well studied topic of research. Existing methods for finding triangulations that
minimize given metrics (e.g., sum of triangle areas or dihedral angles) run in a costly O(n4) time [BS95,BDE96],
while the triangulations are not guaranteed to be free of intersections. To address these limitations, we restrict
our search to the space of triangles in the Delaunay tetrahedralization of the polygon. The restriction allows us
to reduce the running time down to O(nz) in practice (O(n3) worst case) while guaranteeing that the solutions
are intersection free. We demonstrate experimentally that the reduced search space is not overly restricted. In
particular, triangulations restricted to this space usually exist for practical inputs, and the optimal triangulation
in this space approximates well the optimal triangulation of the polygon. This makes our algorithms a practical

solution when working with real world data.

1. Introduction

Given a 3D polygon (a closed loop of non-intersecting line
segments), a triangulation of the polygon is a set of non-
intersecting triangles that connect the vertices on the poly-
gon and form a disk-like surface bounded by the polygon
[BDE96]. Computing the triangulation is an important step
in many geometry processing tasks, such as computing dis-
crete minimal surfaces [PP93], lofting surfaces from curve
sketches [NISAQ7,JC08], and filling holes on scanned data
[BS95, Lie03]. The triangulation usually serves as the base
domain that allows for further refinement and smoothing.

If many triangulations are available, often times the one
that minimizes some metric is sought. A triangulation with
minimal sum of triangle areas would be desirable for com-
puting discrete minimal surfaces. On the other hand, min-
imizing the squared sum of dihedral angles between adja-
cent triangles produces fair surfacesthat areideal for sketch-
based modeling [RSW*07]. For hole-filling, a triangulation
whose normals match with thosein the surrounding triangles
is preferred [Lie03]. We consider an optimal triangulation
as one that minimizes the sum of some weighted combina-
tion of per-triangle metrics (e.g., area, perimeter, and normal
derivation from pre-existing triangles) and bi-triangle met-
rics (e.g., square sum of dihedrals).

Finding triangulations is a difficult problem. Barequet et
al. showed that deciding if a3D polygon istriangulableisan
NP-hard problem [BDE96], not to mention computing the
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optimal triangulation. To make the problem tractable, previ-
ous works typically ignore the non-intersecting requirement
of the triangulation [BS95, Lie03]. In this case, the optimal
triangulation can be computed in polynomial time by asim-
ple extension of the classical dynamic programming algo-
rithm for triangulating a 2D polygon [Gil 79,K1i80]. Besides
creating possibly intersecting surfaces, an important practi-
cal limitation of this approach is its prohibitive cost. If bi-
triangle metrics are used in the objective function, the dy-
namic programming algorithm would take O(n%) time and
O(n3) space for n polygon vertices. In our implementation,
we found that the agorithm would take minutes for just a
few hundred vertices and easily exceed memory limits on
desktop computers for slightly larger inputs.

In this paper, we present a significantly more efficient
way to compute non-intersecting, close-to-optimal triangu-
lations. The key observation behind our method is that the
more likely set of surface connections occurs between parts
of the polygon that are close in space. We use this observa-
tion to restrict our search for triangulations over the space
of triangles that arise from the Delaunay tetrahedralization
of the polygon vertices. The restriction brings several bene-
fits. First, any triangulation in this space is guaranteed to be
free of self-intersections. Second, the optimal triangulation
in this space, which we call the Delaunay-restricted optimal
triangulation (DOT), can be computed in O(n3) timein the
worse case and O(n2) space using dynamic programming.
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In practice, we notice that time complexity is O(n?) or bet-
ter for most inputs, and our implementation can triangulate
polygons with thousands of vertices in seconds while con-
suming little memory. Last but not |east, we have observed in
extensive experiments that the DOTs exist for a broad range
of input polygons and are reasonable approximations of the
optimal triangulations.

Our use of the Delaunay complex is akin in spirit to the
work of Shamos and Hoey [SH75], who used the Voronoi
diagram (dual of the Delaunay complex) to speed up vari-
ous proximity-based tasks in 2D. While the idea is simple,
we believe that our method is the first practical and robust
(albeit approximate) solution to the problem of optimal tri-
angulation of 3D polygons. Our technical contributions are:

e We give detailed algorithms for computing DOT by ex-
tending a previous agorithm for triangulating a 2D poly-
gon (Section 3).

e We perform theoretical analysis and experimental valida-
tions of the properties of the agorithms, including the
complexity, the existence of the solutions, and the qual-
ity of the triangulations (Section 4,5).

2. Previous Work

Thetriangulation of a2D polygonal domainisawell-studied
problem in computational geometry [ES96]. A triangula-
tion exists for every simple polygon. Gilbert [Gil79] and
Klincsek [K1i80] independently developed an O(n?’)-time
and O(nz)-space algorithm for computing the triangulation
that minimizes that sum of total edge lengths (also known as
the minimum weight triangulation). The agorithm, based on
dynamic programming, constructs the optimal triangulation
of alarger domain from the optimal triangulations of smaller
sub-domains. The algorithm has been extended to handle
hole vertices within the polygon [GBL05] but the time com-
plexity scales exponentially with the number of holes. Note
that the general problem of minimum weight triangulation
of aset of 2D pointsis NP-hard [MRO6].

The triangulability of a 3D polygon was studied by Bare-
quet et a. [BDE96], who proved its NP-hardness by re-
duction from 3-SAT. The paper studied the triangulability
of several specia classes of polygons. In particular, a knot-
ted polygon has no triangulation, and any polygon with a
non-intersecting projection on a plane or sphere can be tri-
angulated. However, it is not clear from this work whether
triangulations exist for polygons that arise in practical ap-
plications, such as curve sketches or hole boundaries. One
of the contributions of this current work is giving empirical
evidences that DOT (which isatriangulation) existsin most
practical cases.

If self-intersections are allowed in atriangulation, one can
easily extend the method of Gilbert and Klincsek to find an
optimal triangulation in R that minimizes the sum of per-
triangle metrics, such as area [BS95, Lie03]. The extension

has the same time and space complexity asthe 2D algorithm.
To yield smoother surfaces with minimal twisting, Liepa at-
tempted to minimize the sum of dihedral angles between
neighboring triangles [Lie03]. His algorithm, however, uses
agreedy heuristic that does not guarantee to find the optimal
triangulation. Barequet et al. [BDE96] mentioned an O(n4)-
timeand O(n®)-space extension of the method of Gilbert and
Klincsek that can find the triangulation that minimizes bi-
triangle metrics. However, we are not aware of any imple-
mentation of this extension for practical applications, which
is probably due to the high computational cost. In the lit-
erature of hole-filling, greedy heuristics guided by distances
[MD93] or angles [WLGO03,VPKO05] are often used for trian-
gulating ahole boundary. However, these heuristicstypically
do not have guarantees of optimality.

Several methods are capable of creating intersection-free
triangulations, but they are either applicable to a narrow
range of input curves or limited in the range of output tri-
angulations. When the polygon is sufficiently planar, one
can first project the polygon to a best-fitting plane, triangu-
late the planar projection, and finally lift the triangles to 3D
[RW97]. However, the planarity condition is overly strict for
practical spatial polygons, whether they are curve sketches
or hole boundaries. On the other hand, the method of Rose
et al. [RSW*07] can produce a surface from any curve net-
work by iteratively extracting the surface on the convex hull
and computing the convex hull of the remaining curve parts.
While the method generates appealing surfaces for sketch
inputs, the output surfaces are limited to those that are close
to being developable. It isnot suited for finding surfaces that
minimize other objective functions (e.g., minimum area). In
contrast, our agorithms produces surfaces minimizing any
choice of per-triangle and bi-triangle metrics, and it can be
applied to complex, highly non-planar 3D polygons.

While the paper is only concerned with the problem of
triangulation, there are various techniques for directly cre-
ating a smooth surface that spans a spatial curve, without
the need of an initial triangulated domain, using techniques
such as Radial Basis Functions[BPB06,BMS* 10], Moving-
Least Squares [WOO07] and B-spline fitting [KSI*07]. In the
literature of hole-filling, the surrounding geometry of ahole
or prior knowledge of the shape can be utilized to further
improve the geometry of the filling patch; see the survey
in [Ju09]. We omit detailed review of these methods as they
are beyond the scope of this paper.

Our work builds on the large body of work and knowledge
on Delaunay tetrahedralization. It is well-known that there
are O(n?) simplices in the Delaunay tetrahedralization of n
pointsin R, Thisis atight upper bound when the points are
sampled along a spatial curve [AADOQ7], which is the type
of inputs in our setting. The incremental flipping algorithm
of Edelsbrunner and Shah [ES96] can produce the Delau-
nay tetrahedralization in expected time O(nz). In our work,
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we use the implementation of this algorithm in the publicly
available package Tetgen [Si09].

3. Algorithms

The input of our algorithms consist of any closed, non-
intersecting 3D polygon C and the set of al triangle facets S
inthe Delaunay tetrahedralization of the verticesinC (which
we call the Delaunay triangles). In addition, the user can
specify any choice of per-triangle and/or bi-triangle metrics,
as well as the weights to combine them. The output is the
DQT, or noneif thereisno triangulation restricted to the De-
launay triangles (see more discussion in Section 4).

We will present two agorithms, one that handles only
per-triangle metrics, and another that is less efficient but ca-
pable of handling both per-triangle and bi-triangle metrics.
The first algorithm, DOT 1, is a direct application of the 2D
triangulation method of Gilbert and Klincsek [Gil 79, K1i80]
(GK) with minor modificationsto use any per-triangle metric
and to restrict the search to S. Compared with previous ex-
tensions of GK to 3D polygons [BS95, Lie03], DOT 1 uses
a restricted search space while these other works consider
all possible triangles connecting any triplets of polygon ver-
tices. The second algorithm, DOT 2, extends DOT 1to handle
bi-triangle metrics. The extension closely follows the strat-
egy given in [BDE96] while restricting the search to S.

3.1. DOT 1. handling per-triangle metrics

Since our objective function is an additive sum of metrics,
the optimal triangulation of the whole curve (or a curve seg-
ment) consists of optimal triangulations of its segments (or
sub-segments). This is the key idea behind the GK algo-
rithm.

Let usrepresent a“segment” of the curve by apair {e,d},
where e is some edge (which may or may not lie on the
curve) present in thetriangle set S and & isabinary flag (0 or
1) denoting the “side” of the edge e where the curve segment
lies (see Figure 1 (a)). We use the convention that the O side
of an edge e on the input curve is the side where the rest of
the curve lies. We can relate the “cost” (i.e., sum of metrics)
of the optimal triangulation of this segment, cost (e, d), to the
cost of its sub-segments as:

cost (e, d) :min(oo.,tennﬂ[gl (w(t)+ Y cost(ej,Alt,ei))))

9] i=1,2

()
Here, I1[e, d] denotes the list of trianglesin S incident to e
and lying on the side §, w is a per-triangle metric function,
e1,e, are the other two edges of the triangle t that are not
e, and A(t,e) returns the side of e that is opposite to t (see
Figure 1(a)). Note if IT[e,8] = @, the cost is infinity since
there are no triangulations of the segment {e, 5}.

The recursive property above leads naturally to a recur-
sive algorithm for computing the optimal triangulation of C
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Figure 1. Notations used in the algorithms.

restricted to triangles in S. However, a naive implementa-
tion would easily have exponentially large complexity, asthe
depth of recursion can be as large as O(||C||). The remedy,
which leads to a polynomial time algorithm, is to avoid re-
computing for the same curve segment {e, 8} multipletimes,
but rather to save the computed triangulation (and its cost) in
memory for look-up by future calls.

A pseudo-code of the algorithm is shown on the left of
Figure 2. During initialization, the adjacency table IT isfirst
built from the input triangles (which can be done in asingle
pass of S), and two tables cost]],tri[] are set up. The entry
cost[e, 8] will store the cost of the optimal triangulation of
the curve segment {e, 8}, and tri[e, 8] will store the triangle
incident to e in the optimal triangulation. The core of the al-
gorithm involves recursive cals to COST () which follows
Equation 1. Finally, the optimal triangulation is built based
on information stored in the table tri[] using another recur-
sive function TILE().

3.2. DOT 2: handling per- and bi-triangle metrics

When bi-triangle metrics (e.g., dihedral angle) are present,
the cost of a triangulation within a curve segment {e, &}
needs to be evaluated in the context of the triangle on the
other side of e. Accordingly, we augment our representation
of a curve segment to be an edge-triangle pair {e,t’} where
t’ is an triangle incident to e that lies on the other side of
the curve segment (see Figure 1 (b)). If the edge e lies on
the curve and t’ = 0, the augmented segment is the entire
input curve. A similar recursive relation to that in Equation
1 holds for the cost of the optimal triangulation of the aug-
mented segment, cost (e,t’):

cost(e,t’) = min(oo,terg[ier\&](w(t)+w(t,t )+i§l:2cost(ei,t)))
2

whered’ = A(t,e), and w(t,t’) isthe bi-triangle metric func-
tion. If the edge e lieson the curve and t’ = 0, &’ = 0.

The pseudo-code of the algorithm is shown on the right
of Figure 2. It shares a similar structure to the previous al-
gorithm DOT 1. The primary differences are that the tables
cost[],tri[] are larger now and that the recursive functions
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/I Triangulating curve C restricted to triangles S
/I with minimal one-triangle metrics w
DOT1(C,9)
build edge-triangle adjacency table IT
foreachedgeeinIlTandd=10,1
cost[e, 8]« —oo, trile,d]« null
let e betheany edgeonC  // Computing cost
if COST (e,0) # oo
return TILE (e, 0)
elsereturn null

/I Initializing

/I Building surface

COST (e,8)  // Get cost of tiling the segment {e, &}
if cost[e,8] # —oco /[ Computed before
return cost|e, 8]
eseifeisonCand 6 #£0
return O
else  // Divide the segment
cost[e, 8]« oo
for eacht € TI[e, 3]
let theedgesof t bee,eq, e
C— W(t) +COST (e1,A(t,e1)) + COST (e2,A(t, e2))
if c < costle, 9]
cost[e, 8]« c, trife,8]—t
return cost|e, ]

/I Reaching the boundary

TILE(e,8) /I Gettriangles tiling the segment {e, 8}
t— trie, d]
let the edges of t bee, e, ez
return {t} UTILE (e1,A(t,e1)) UTILE (e2,A(t,e2))

/l Triangulating curve C restricted to triangles S
/I with minimal one-triangle and bi-triangle metrics w
DOT2(C,S)
build edge-triangle adjacency table IT
for each edgee inTTandt’ € II[e, {0,1}]
cost[e,t’]«— —oo, tri[e,t']«< null
let e betheany edgeonC  // Computing cost
if COST (e,null) # oo
return TILE (e, null)
elsereturn null

/I Initializing

/I Building surface

COST (e,t’) /] Get cost of tiling the augmented segment {e,t’'}
if cost[e,t’] # —oo  // Computed before
return cost|e, t’]
elseif eisonC andt’ # null
return O
else  // Divide the segment
cost[e,t’]«— oo
for eacht € TI[e, A(t’, €)]
let the edges of t bee, e, e
c«— w(t) +w(t,t’") +COST (e1,t) +COST (ep,t)
if ¢ < cost[e,t’]
costle,t’]«—c, trife,t']—t
return cost|e, t’]

/I Reaching the boundary

TILE(e,t’) /I Get triangles tiling the augmented segment {e,t’}
t— trife,t’]
let theedgesof t bee,eq, ez
return {t} UTILE(eq,t) UTILE (ep,t)

Figure 2: Pseudo-code of algorithms DOT 1 and DOT 2. The main differences are highlighted.

COST (), TILE() are called with different parameters that
are edge-triangle pairs, instead of pairs of a single edge and
abinary flag asin DOT 1. The latter difference is the main
reason of increased complexity of DOT 2 over DOT 1 (see
next section).

4. Analysis

In this section, we give theoretical bounds on the complexity
of the algorithms and discuss conditions of the input under
which the algorithms will produce a triangul ation.

4.1. Complexity

Our complexity bounds are closely tied to the size of S,
which, as mentioned before, has complexity O(nz) for an
input polygon with n vertices. We consider the complexity
of space and time separately below.

Lemma4.1Both agorithmsDOT 1, DOT 2 use O(nz) space.

Proof: The space usage in both programs is dominated by
three tables, the adjacency table I, the cost table cost[] and
the triangle table tri[]. The size of IT is a constant factor of
the number of trianglesin S, and has O(n?) complexity. In

DOT 1, the size of cost[] and tri[] is proportional to the num-
ber of edges incident to trianglesin S. In DOT 2, their size
is same as that of I1. In both cases, the size of cost{],tri[] is
bounded by O(n?).C]

Lemma 4.2 The agorithms DOT 1,DOT 2 have worst case
time complexity of O(n?) and O(n®), respectively.

Proof: We first consider algorithm DOT 1. The initidiza-
tion stage has time complexity of O(n?), as it involves a
single pass over all triangles and the tables cost|[], tri], all
of which are bounded in size by O(n?). In the main part,
each COST (e, 8) uses constant time except when it is first
called, in which case it spawns 2||I1[e, §]|| number of other
recursive calls. So the total time complexity of this part is
O(Zeer,se{o,1} IT1[e,8]||). The sum is the size of the ad-

jacency table I, which we have shown above to be O(n?).
Finaly, the tiling stage invokes the same number of callsto
TILE() asthe number of triangles on the resulting triangul a-
tion, which has complexity O(n). So the overall complexity
of DOT 1isO(n?).

Algorithm DOT 2 has the same complexity as DOT1 in
their initialization and tiling stages. In the main part, each
COST (e,t") uses constant time except when it isfirst caled,
inwhich caseit spawns 2||TT[e, A(t’, )] || number of other re-
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cursive calls. Since there are O(n?) number of edge-triangle
pairs{e,t’} inSand ||I1[e,8]|| < n for any e, §, the time com-
plexity of this part is bounded by O(n®). Hence the overall
complexity of DOT2isO(n%). O

Since the Delaunay tetrahedralization can be computed in
expected O(n?) time[ES96], the end-to-end time complexity
for computing DOT the two algorithms are still O(n?) and
0(n®). For practical curve data, however, we have observed
that both algorithms run in O(n?) time or better (see next
section). In contrast, without restricting the search space,
previous extensions of the GK agorithm to 3D polygons
[BS95, BDE9S, Lie03] need to use O(n®) and O(n*) time
respectively for minimizing per-triangle and bi-triangle met-
rics.

4.2. Existence of solutions

Since not al 3D polygons are triangulable, a polygon may
not have any triangulation that is restricted to the Delau-
nay triangles. We say that such polygons are not Delaunay-
triangulable. For these polygons our agorithm will fail to
return any solution. Figure 3 show two such examples. The
hexagon in (a) was found by Barequet et. a. [BDE96] and
is a 3D polygon with the fewest vertices that cannot be tri-
angulated (the authors proved that any polygon with vertices
fewer than 6 is triangulable). The polygon in (b) is a spiral
square coil where the square turns have non-equal diameters.
The polygon is triangulable, according to the sufficient con-
ditions proven in [BDE96], because it has a non-intersecting
projection the view plane in (c). However, our agorithms
return no solution for thisinput.

Figure 3: A hexagon that is not triangulable (a), and
two views of a triangulable 24-vertex polygon that is not
Delaunay-triangulable (b,c).

To evaluate whether our algorithms are suited for a par-
ticular application, it would be useful to have some geo-
metrically characterizations of the kind of inputs that are
Delaunay-triangulable. We next offer some preliminary re-
sults in this direction by giving a few necessary and suffi-
cient conditions. Unfortunately, just like the general trian-
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gulability problem [BDE96], we do not have conditions that
are both necessary and sufficient. In the next section, we will
resort to extensive experimental results to demonstrate that
most practical polygons are indeed Delaunay-triangulable.

Lemma 4.3 A polygon is not Delaunay-triangulable if

1. itisknotted, or
2. some polygon edges are not Delaunay (i.e., not incident
to any Delaunay triangles).

Proof: It is obvious that each edge of the input polygon
needs to be incident to some Delaunay triangles for a trian-
gulation to exist. Also, it was shown that any knotted poly-
gonisnot triangulatable [BDE96], which also impliesthat it
is not Delaunay-triangulable. [

It is worth pointing out that the two necessary conditions
are fairly mild in practice. If the input polygon is intended
to bound some disk-like surface, then the polygon cannot be
knotted. Also, any 3D polygon can be turned into one whose
edges are al Delaunay by subdividing the polygon edges.
In particular, the edge subdivision algorithm of Shewchuk
[She02] (which he calls “edge protection”) returns a prov-
ably good output in which the new vertices are placed no
denser than a constant factor of the local feature size of the
original polygon. Alternatively, if the polygon is sampled
from some smooth space curve (which is typical for sketch
inputs), the polygon edges are always Delaunay as long as
the samples are placed denser than the local feature size of
the curve (Theorem 12 in [ABE98]—athough the theorem
was stated in 2D, the statement and the proof can be easily
extended to higher dimensions).

The two necessary conditions are not sufficient for apoly-
gon to be Delaunay-triangul atable. For example, both poly-
gons in Figure 3 meet the two criteria. On the other hand,
it is easy to show that a specia class of polygonsis aways
Delaunay-triangulable:

Lemma 4.4 A 3D polygon whose edges are Delaunay and
al lying on the convex hull of the polygon is Delaunay-
triangulatable.

Proof: If the polygon is planar, we simply take the Delau-
nay triangles lying in the interior of the polygon. In the non-
planar case, the convex hull has a spherical topology and
the polygon is a simple closed curve on the convex hull. By
Schoenflies theorem, the polygon divides the convex hull
into two patches with disk topology. Since the convex hull
consists of Delaunay triangles and that all polygon edges are
Delaunay, each patch is a triangulation restricted to the De-
launay triangles. [

Note that this last condition is stricter than the sufficient
condition for triangulability given in [BDE96], which states
that every polygon with a non-intersecting projection on
some sphereistriangulable.
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5. Results

We now present experimental results of our implementation
of the algorithms. The implementation was done in C++ and
closely follows the pseudo-code in Figure 2. The tests were
done on an 8-core workstation with 12GB of memory (with
2GB available to our program). The test suite includes both
piecewise smooth curves, which are typical for sketching in-
puts, and synthetically generated hole boundaries on trian-
gular meshes. These results validate the complexity bounds
given in the previous section and demonstrate the existence
and optimality of DOT for these practical data.

We also compared our results with previous extensions
of the GK agorithm to triangulating 3D polygons [BS95,
Lie03], which search over all possible triangles for the opti-
mal triangulation while allowing self-intersections. To im-
plement these extensions, we simply re-use our code for
DOT 1,DOT 2 but feeding it with the set of al triangles in-
stead of only the Delaunay triangles. We also got rid of
the adjacency table T1, since the triangles on one side of
an edge can now be inferred directly from the indices of
the two vertices of the edge. We thus created two new
programs GK1, GK2, the former handling only per-triangle
metrics, and the latter capable of handling both per-triangle
and bi-triangle metrics. Note that our implementation, which
uses recursion, is more costly than the implementations
in [BS95, Lie03], which uses the more standard iterative
dynamic programming approach. However, both ours and
theirs share the same asymptotic complexity.

5.1. Test data

To evauate our algorithm on the kind of curves from
sketched-based interfaces, we first consider polygons that
are sampled from unknotted piece-wise smooth curves with
various shapes, as shown on the left of Figure 4:

e Monkey: Uniform samples on the boundary curve of a
monkey saddle.

e Mobius: Uniform samples on the boundary of a Mobius
strip.

e Spiral: Uniform samples on two spirals, one shifted up-
wards from another, and on the straight line segments that
connect the ends of the spirals.

e Moment: The “moment curve” whose ith vertex has coor-
dinates p; = {i,i%,i%}.

Note that Moment was originally used to demonstrate the
O(nz) upper bound of the number of simplicies in a De-
launay tetrahedralization. This is because there is a tetra-
hedron connecting every four distinct points of the form
{pi, Pi+-1,Pj, Pj+1} for any i, j. To demonstrate the O(ng)
upper bound of the time complexity of our algorithm DOT 2,
we create an additional example, which we call Twist, that
connects vertices of Moment in a crisscross manner (see bot-
tom left of Figure 4). Specifically, assuming there are an odd

number n of vertices on Moment, they are connected as

P1;Pn—1,P3,Pn—3;---; P4, Pn—2, P2, Pn.

That is, take the list of vertices on Moment with odd, as-
cending indices and interleave with the list of vertices with
even, descending indices. Note that the edges of Twist are
still Delaunay, by the very property of Moment. In our tests,
we range the number of vertices in each example from 50 to
5000.

Our second test data is a suite of synthetically generated
hole boundaries on meshes. Each hole starts from a ran-
domly selected triangle on the mesh and grows to a spec-
ified number of triangles. At each step of growth, we ran-
domly select a none-hole triangle that is incident to the hole
boundary and whose inclusion in the hole resultsin abound-
ary homeomorphic to the original boundary (in this way, the
boundary curve remains unknotted). Finally, the edge subdi-
vision algorithm of Shewchuk [She02] is applied to the hole
boundary to obtain a polygon with Delaunay edges.

To generate curves with varying shapes and complexity,
we used the Happy Buddha and the head portion of David
from the Stanford Scanning Repository. Both meshes have
non-trivial shapes and Buddha has a complex topology. For
each mesh, we generated 1000 holes with size ranging from
100 to 10K triangles, which cover up to 20% of the surface
area. Severa of these holes are shown on the top of Fig-
ure 5. Note that the hole boundaries can be highly contorted
and far from being planar, particularly when the holes cover
more surface areas. Although real-world holes on scanned
data seldom cover this much of the surface, we created these
large holes mainly to investigate Delaunay triangulability in
more complex and non-typical scenarios.

5.2. Performance

The performance of our algorithms on the polygons sampled
from smooth curvesis plotted in the 3rd and 4th columns of
Figure 4. We used triangle areametric for DOT 1 and the sum
of squared dihedral metric for DOT 2. Observe that, as the
number of samples increases, the growth rates of time and
space of DOT 1,DOT 2, as well as of the time taken by Tet-
gen to generate Delaunay triangles, are at worst quadratic in
all examples (except for the time of DOT 2 on Twist, which
will be discussed below). This agrees with our theoretical
analysis earlier. The actual amount of time and space con-
sumed for each example is highly correlated with the num-
ber of Delaunay triangles (plotted in the 2nd column). Also
note that DOT 1 is more efficient than DOT 2, even though
they share the same growth rate in performance.

The only outlier in our results is Twist, which causes al-
gorithm DOT 2 to exhibit cubic growth in running time - the
theoretical upper bound. This can be explained as follows.
Note each polygon edge e = { pi, pi+1} on Moment becomes
an interior edge on Twist, where there are Mod(2i — 1,n)
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Figure 4: Piecewise smooth curves used in our tests (1st column) and plots of the number of Delaunay triangles (2nd column),
the running time of Tetgen, DOT1 and DOT 2 (3rd column), the space usage of DOT1 and DOT 2 (4th column), and the
optimality under area, perimeter, and dihedral metrics (last column). The growth rate of time and space (as the slope of the
best-fitting line in the log-log space) is noted in the legends. The Delaunay triangles in Moment and Twist were generated by
combinatorial enumeration, since Tetgen gave numerical errors due to the large difference in the scale of coordinates.

and Mod(n — 2i — 1,n) Delaunay triangles respectively on
the two sides of the edge. One can find O(n) such edges,
which we call hinge edges, that are incident to O(n) Delau-
nay triangles on both sides. For each hinge edge e, the DOT 2
agorithm has to invoke O(n) calls COST (e, t’) for somet’
on one side of e, and each cal spawns O(n) new calls to
compute the cost of the triangulation on the other side of e.
The complexity of these callsfor each hinge edgee isO(n?),
and the total complexity over al O(n) hinge edgesis O(n3).

We should point out that Twist is an extremely pathologi-
cal case that rarely arisesin practice, and the complexity of
DOT 2 was observed to be quadratic or lower for al other
test datain our experiments. A possible reason of the practi-
cal complexity of DOT 2 could be that there are usualy very
few hinge edges in a 3D polygon. However, deriving condi-
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tions of a polygon under which DOT 2 uses quadratic time
awaits further study.

The performance of our algorithms on the hole data set
is shown on the right of Figure 5 (top-right and bottom-left
plots). Each dot in the plots represents an individual hole
boundary in our data set. Observe that the growth rates of
time and space for both DOT 1, DOT 2 are now close to be-
ing linear. Note that the number of Delaunay triangles aso
growsin aclose-to-linear fashion. Triangulation ishighly ef-
ficient for this practical data set, taking only a fraction of a
second and hardly any memory for hole boundaries contain-
ing thousands of points.

We now compare the performance of our algorithms with
that of GK1, GK2. Since their time and space consumptions
depend only on the number of vertices in the polygon and
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Figure 5: Examples of synthetic hole boundaries on meshes used in our tests (left) and plots (right) of the number of Delaunay
triangles, the running time of Tetgen, DOT 1 and DOT 2, the space usage of DOT 1 and DOT 2, and the optimality under area,
perimeter, and dihedral metrics. The growth rate of time and space (as the slope of the best-fitting line in the log-log space) is

noted in the legends.

not on the actual coordinates, we only need to test them on
one data set (e.g., Monkey). The results are plotted in Figure
6, with GK1 using the triangle area metric and GK2 using
the sum of squared dihedral metric. In agreement with the
analysisin [BDE96], GK 1, GK 2 take respectively O(n®) and
O(n*) time (with O(n?) and O(n®) space). Note that GK2
becomes too slow (taking a couple of minutes) even for a
few hundred points, and quickly exhausts system memory
as the size of the input continues to increase.

Log-Log plot of running time Log-Log plot of space usage

time (sec)

——GK2:40
——GKl:3.1

space (VIB)

——GK2:30
——GKL: 19

100 150 200 300 100 150 200 300

Figure 6: Running time and space usage of algorithms
GK1,GK2, which search for the optimal triangulation over
the set of all possible triangles.

5.3. Delaunay triangulability

Our algorithms returned solutions on al of our test data
(smooth curves plus 2000 hole boundaries) except for 32
hole boundaries on the Happy Buddha. The hole in the
vast majority of these failure cases (28 out of 32) covers
over 10% of the surface area of the model, and the small-
est hole covers 5% of the surface area. The hole boundaries
all have very convoluted shapes (see Figure 7). Given that
polygons like these typically do not arise in practice, we be-
lieve the algorithms will return solutions for the majority of

the practical data, whether they are piecewise smooth curve
sketches or hole boundaries on real-world meshes. However,
the chance of success may decrease with increasing com-
plexity of the polygon shape. Since Delaunay triangulabil-
ity implies triangulability, our results also suggest that most
practical 3D polygons are triangulable.

5%

Figure 7: Hole boundaries covering various ratios of the
surface area that are not Delaunay triangulable.

5.4, Optimality

Our agorithms only compute approximate solutions to the
much harder problem of optimal triangulation considering
al possible triangles. In R?, researchers have shown that
the Delaunay triangulation of a point set does not in general
minimize the sum of edge lengths. In fact, the sum of edge
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lengths in a 2D Delaunay triangulation may be longer than
the minimum by afactor of Q(n) for n points[MZ79,Kir80].
Here we will explorethe optimality of DOT for triangulating
a 3D polygon. We will independently consider three com-
monly used metrics to minimize, the sum of per-triangle ar-
eas, the sum of per-triangle perimeters (which is similar to
the sum of edge lengths), and the sum of bi-triangle squared
dihedrals. For each metric, the optimality of DOT is mea
sured as the ratio of the cost of the optimal, but possibly
self-intersecting triangulation produced by GK2 (which isa
lower bound of the cost of the true optimal triangulation)
over the cost of DOT.

We plot the optimality for the smooth curves and hole
boundaries respectively in Figure 4 (last column) and 5 (bot-
tom right plot). Due to the high computational cost of GK2,
we only considered polygons containing up to afew hundred
vertices. Observe that the DOTs minimizing the area metric
are consistently close to optimal triangulations in both data
sets. This agrees with the fact that the Delaunay triangles
tend to connect nearby polygon parts. The DOTSs minimiz-
ing the perimeter metric are fairly close to optimal on hole
boundaries, but are less optimal on smooth curves. In both
types of data, the optimality of DOT drops with the increas-
ing size of input, which is reminiscent of 2D Delaunay tri-
angulations [MZ79, Kir80]. On the other hand, DOTSs mini-
mizing the dihedral metric are consistently close to optimal
on smooth curves (except for Mobius) but much less so on
hole boundaries.

In sum, the optimality of DOT seems to have a great de-
pendence on the specific shape of the polygon when us-
ing perimeter or dihedral metrics, whilethe area-minimizing
DOT seems to be close-to-optimal in most cases. In Fig-
ure 8 we take a closer look at the Mobius example where
the optimality of DOT is low under both perimeter and di-
hedral metrics. In this case, the results of GK2 contains no
self-intersections, and hence they are the optimal triangula-
tions. Note that the perimeter-minimizing optimal triangu-
lation uses many “ear-cutting” triangles, while the dihedral-
minimizing optimal triangulation usesafan of trianglesorig-
inating from a single vertex. Many of the ear-cutting or fan
triangles are not Delaunay, resulting in higher cost of the
DOTs.

The flexibility of handling different metrics and their
combinations allows our algorithm to be able to generate
a wide range of triangulations. In Figure 9 we show sev-
eral variations of triangulations created for two input poly-
gons, using objective functions such as minimal triangle ar-
eas, minimal sguared dihedrals, maximal squared dihedrals
(which maximize twisting), minimal deviation with bound-
ary normals, and their combinations.

6. An application

Sketch based modeling systems have been developed that
allow users to rapidly create networks of space curves that
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DOT

Optimal triangulation

dihedral-minimizing

perimeter-minimizing

Figure 8: Comparing DOTs of Mobius (top) with optimal
triangulations (bottom) under two different metrics.

define 3D shapes [BBS08]. As a final example, we apply
our agorithmsto compute triangulations of some real-world
sketch inputs. Given a network of sketched spatial curves,
we first apply the method of Abbasinjad et al. [AJA1l] to
extract individual loops of curvesthat form the patch bound-
aries. Then each patch was triangulated individually by min-
imizing the sum of squared dihedral metric using our al-
gorithm. Starting from the initia triangulation, we can ob-
tain a final surface using refinement [Lie03] and smooth-
ing [AJC11] operators. The results for two sketch inputs,
Roadster and Spider, are shown in Figure 10.

7. Conclusions and Discussion

We introduced efficient algorithms for computing approxi-
mately optimal triangulations of 3D polygons by restricting
the search space to the Delaunay complex. Besides avoid-
ing self-intersections, the algorithms have significantly bet-
ter efficiency than previous attempts at this problem. We
give complexity bounds of the algorithms and provide em-
pirical evidence that the complexity is often much lower
(at worst quadratic) for polygons in practical applications
such as curve sketches and hole boundaries. We also showed
through experiments that most practical polygons are Delau-
nay triangulable, and with the right choice of the minimizing
metric, the Delaunay-restricted optimal triangulation (DOT)
can well approximate the optimal triangulation.

The work opens up several interesting questions concern-
ing Delaunay-restricted triangul ations of a3D polygon. How
to characterize polygonsthat are Delaunay triangul able? Can
we derive theoretical bounds on the approximation error of
DQTs, particularly when minimizing the area metric? And
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Figure 9: Variations of triangulations generated by our algorithm for Spiral (top) and Monkey (middle). Prescribed boundary

normals, if present, are shown as arrows.

Figure 10: ILove Sketch curve data [BBS08] with resolved
patches [AJA11] (top) is first triangulated minimizing the di-
hedral angle bending using our method. The surface is then
refined using the method of [Lie03], and a final boundary
normal conforming bi-Laplacian surface is produced(shown
bottom) using the method of Andrews et. al [AJC11].

can we prove the quadratic complexity of our dynamic pro-
gramming agorithms for practical polygons?

It is conceivable that the dynamic programming approach
can be used to triangulate more general inputs, such as mul-

tiple 3D polygons that bound a single surface. It would be
interesting to see if the restriction to the Delaunay trian-
gleswould result in efficient algorithms asit did for asingle
polygon. Another direction of extension is the problem of
tiling a 3D polygon by a surface with non-zero genus. Note
that many un-triangulable polygons, such as knots, can have
tilings with non-trivial topology. Again, the questions listed
above apply to these extended scenarios as well.
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