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Abstract
Radio power management is of paramount concern in

wireless sensor networks that must achieve long lifetimes
on scarce amounts of energy. While a multitude of power
management protocols have been proposed in the literature,
their usage in real-world systems has been limited by the
lack of system support for the flexible integration of differ-
ent power management policies with a diverse set of applica-
tions and network platforms. This paper presents theUnified
Power Management Architecture (UPMA)for supporting ra-
dio power management in wireless sensor networks. In con-
trast to the monolithic approach adopted by existing power
management solutions, UPMA provides (1) a set of standard
interfaces that allow different sleep scheduling policiesto be
easily implemented on top of various MAC protocols at the
data link layer, and (2) an architectural framework for com-
posing multiple power management policies into a coherent
strategy based on application needs. We have implemented
UPMA on top of both the Mica2 and Telosb radio stacks
in TinyOS-2.0. Microbenchmark results demonstrate that
UPMA does not incur a significant decrease in performance
when compared to existing monolithic implementations. We
also provide a set of case studies that not only demonstrate
the flexibility of UPMA, but also its ease of use.

1 Introduction
Energy is a scarce resource in many wireless sensor net-

works (WSNs). As wireless communication is often a major
source of energy consumption, a multitude of radio power
management protocols have been developed. Despite fruit-
ful research on various power management protocols, how-
ever, it remains difficult for developers to incorporate suit-
able power management strategies into their systems based
on the needs of a specific application. In particular, a key
limitation of existing solutions is the lack of system support
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on the first page. To copy otherwise, to republish, to post on servers or to redistribute
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for flexibleandcomposablepower management strategies for
diverse applications and platforms.
Flexibility. Different power management strategies are usu-
ally designed for different types of applications. For exam-
ple, some sleep scheduling protocols [1] save significant en-
ergy while introducing considerable communication delays.
In contrast, several other protocols [2, 3] are specificallyde-
signed to minimize the impact of sleep schedules on com-
munication delays. Moreover, some protocols [4, 5] are op-
timized for a special class of applications such as data col-
lection that require periodic network traffic. Consequently, a
power management protocol that is effective for habitat mon-
itoring applications may be unacceptable for surveillanceap-
plications with stringent real-time requirements. It is there-
fore desirable to allow developers to flexibly select and in-
tegrate the most suitable power management protocols into
their system based on the specific characteristics of their ap-
plications. However, the current power management pro-
tocols are often tightly coupled with other system compo-
nents. As a result, a system is often limited to a specific
power management strategy that cannot be easily extended
or replaced. For example, commonly used MAC protocols
often adopt specific sleep scheduling policies. S-MAC [2]
implements a synchronous sleep scheduling algorithm while
B-MAC [6], by default, only supports asynchronous sleep
scheduling. The implementations of the sleep scheduling
policies that exist for S-MAC and B-MAC are highly de-
pendent on the implementations of other MAC level func-
tionality (e.g., CSMA, clear channel assessment, etc.). This
dependence restricts applications from being able to choose
the best sleep scheduling policy possible, independent from
the MAC level functionality they require.
Composability. While earlier research usually focused on
developing individual power management protocols in iso-
lation, the presence of multiple tasks running on the same
network may require conflicting or complementary power
management policies in order to be most efficient. For ex-
ample, different data collection tasks may specify different
duty cycles that result in incompatible sleep schedules. On
the other hand, both clustering and sleep scheduling may be
used simultaneously to conserve energy while achieving the
required level of agility needed by surveillance applications.
An appropriate combination of the two strategies may result
in further energy savings that cannot be achieved by either
strategy alone. Therefore a key challenge faced by devel-



opers is to effectively integrate multiple power management
policies into a coherent strategy for a network.

To address the above challenges, we have developed the
Unified Power Management Architecture (UPMA)to support
flexible radio power management in WSNs. In contrast to
the monolithic approaches adopted by existing power man-
agement solutions, our architecture separates power manage-
ment strategies from other system functions. Making this
separation allows for the effective coordination of multiple
power management strategies through a standard set of in-
terfaces and abstractions.

Specifically, we make the following primary contributions
in this paper: (1) We design and implement a set of interfaces
that allow different sleep scheduling policies to be easilyim-
plemented on top of various MAC protocols at the data link
layer. This separation gives different applications the ability
to choose the sleep scheduling policy that is best suited to
its needs. (2) We propose an architectural framework that al-
lows multiple sleep scheduling policies to coexist in a system
without interfering with one another. These policies can be
implemented independently and then integrated within the
architecture as desired. (3) We demonstrate the practicality
of our approach by implementing our architecture on top of
both the Mica2 and Telosb radio stacks in TinyOS-2.0 [7],
the second generation of the TinyOS operating system. (4)
We provide micro-benchmark results demonstrating that the
architecture does not cause a significant decrease in perfor-
mance when compared to existing monolithic implementa-
tions of the same radio power management strategies. (5)
Finally, we provide two case studies that not only demon-
strate the flexibility of this architecture, but also its ease of
use.

The rest of this paper is organized as follows. Section
2 reviews related work on sensor network architectures and
power management protocols. Section 3 presents the design
of the UPMA architecture. Section 4 describes the imple-
mentation of UPMA on TinyOS-2.0. Section 5 presents the
experimental results. Finally, Section 7 concludes the paper.

2 Related Work
Our architecture is related to the on-going research effort

in defining sensor network architectures [8, 9]. In particular
our work is inspired by and aims to complement the Sen-
sor Network Architecture (SNA) proposed by UC Berkeley.
The primary goal of SNA is to create an all encompassing
architecture for wireless sensor networks. It aims to sup-
port increasingly diverse protocols as well as multiple hard-
ware platforms. Initial steps toward the realization of SNA
have been made with the definition of a narrow waist around
which technologies at different network layers can be de-
veloped independently. This narrow waist is known as the
Sensor-net Protocol (SP) [10], and exists between the net-
work and data link layers of a traditional networking proto-
col stack. SP achieves flexibility by allowing multiple data
link and network technologies to be used simultaneously on
a single node, while preserving efficiency by allowing them
all to share data in a standardized way. Although various
power management strategies can be made to run both above
and below the SP layer as desired, there is no facility built

into SP that allows for the flexible integration of multiple ra-
dio power management strategies interacting across multiple
layers. To our knowledge, UPMA is the first unified archi-
tecture for flexible radio power management in WSNs.

Existing approaches to radio power management fall into
two basic categories: transmission power control and sleep
scheduling. Transmission power control [11] reduces the en-
ergy consumed for transmission by adjusting the transmis-
sion power of the radio. Sleep scheduling reduces energy
wasted during idle listening by scheduling the radio to sleep.
The architecture presented in this paper is only designed for
use with sleep scheduling protocols. The architectural sup-
port for transmission power control is left as future work.

Sleep scheduling has proven to be very efficient and can
extend the system lifetime of WSNs by many orders of mag-
nitude. Two basic types of sleep scheduling protocols ex-
ist: synchronous and asynchronous. In synchronous proto-
cols, each node in a network runs with the same (or similar)
duty cycle as its neighbors, and they are all synchronized to
begin their wake-up/sleep intervals at the same time. Sev-
eral energy-efficient MAC protocols that use synchronous
sleep scheduling include S-MAC [2], IEEE 802.15.4 [12]
and IEEE 802.11 PSM [13]. In contrast to synchronous sleep
scheduling protocols, asynchronous ones allow individual
nodes to wake up and go to sleep on their own schedules1.
Asynchronous sleep scheduling can be found in the various
TDMA family of protocols [14] and recent delay-efficient
sleep protocols [15, 6, 16, 17].

Each type of power management protocol has its own
pros and cons. For instance, asynchronous protocols, such
as the Low Power Listening (LPL) scheme implemented in
B-MAC, do not require clock synchronization among nodes
and can adapt to changing network activity. They may intro-
duce additional energy costs, however, by transmitting long
preambles and unnecessarily waking up nodes due to over-
hearing. Synchronous protocols, on the other hand, may be
particularly energy efficient when used with applications that
have predictable workloads. While these protocols do re-
quire the overhead of clock synchronization, they can be de-
signed to wake up nodes “just in time”, based on the timing
patterns of applications in the network. One limitation of
synchronous protocols, however, is their long delay in com-
munication due to a long period of inactivity when all nodes
are synchronized to sleep. Recently, several adaptive sleep
techniques [2, 3, 5] have been proposed that help to mitigate
the impact of sleep scheduling on communication delay. In-
stead of proposing yet another sleep scheduling protocol, our
work focuses on developing a unified architecture for flexi-
bly integrating the use of different radio management proto-
cols within a single WSN system.

3 Design of UPMA
Supporting a diverse set of power management strategies

in wireless sensor networks requires a strong architectural
foundation. The architecture itself must be powerful enough
to support a wide range of existing power management so-
lutions, yet flexible enough to scale as more innovative tech-

1Nodes using these protocols may still require clock synchro-
nization to determine the time slot in which they should operate



nologies continue to emerge. Specifically, this architecture
must be able to meet the following criteria. (1) It must be
scalable, i.e. the set of interfaces defined must be rich enough
to support all existing strategies as well as strategies that have
not yet been proposed. (2) It must allow for composability,
i.e. all power management strategies built within this archi-
tecture must adhere to the use of the same set of interfaces for
interacting with the rest of the system. (3) Individual power
management strategies should have independent implemen-
tations, and network protocols/applications should not rely
on the presence of any particular one. (4) It should be possi-
ble to spread each strategy across multiple layers in the tradi-
tional network protocol stack, and any number of individual
strategies should be able to coexist at each layer. (5) It should
support the creation of cross-layer coordination polices that
govern the interaction between power management strategies
existing at different layers.

In this section we present a radio power management
architecture that meets each of the requirements specified
above. While our discussion is limited to the support of
sleep scheduling polices alone, the ideas presented can be
expanded to support power management strategies that exist
across multiple layers.
3.1 Architectural Overview

Power management strategies require that applications
specify some of the parameters they need in order to oper-
ate. For example, S-MAC requires an application to specify
a radio’s duty cycle period, while B-MAC requires the time
between different check intervals to be specified. If a single
power management strategy is used by multiple applications
on the same node at the same time, each of these applications
may specify different, or even conflicting values for some of
these parameters. A method is needed to combine the para-
meters supplied by each application into a single coherent set
of data. Once these parameter values have been aggregated,
the result can be passed on to the radio power management
strategy in use. Since some strategies may be more appro-
priate for different application scenarios than others, and the
choice of which strategy to use should not depend on the spe-
cific type of radio in use, a set of interfaces must be defined
that allow each power management strategy to control the
power state of the radio in a standardized way. These inter-
faces must be specific enough that they encapsulate all of the
functionality required by each of the radio power manage-
ment protocols existing today, yet generic enough that they
are usable by power management strategies that will be de-
veloped in the future.

When the only power management strategies existing in
a system consist of sleep scheduling protocols, the architec-
tural support required to satisfy the 5 criteria outlined insec-
tion 3 can be seen in Fig. 1.

The following subsections describe each of the compo-
nents depicted in Fig. 1 in greater detail. ThePower Man-
agement Abstractioncomponent is described first, followed
by a discussion of the thePower Managercomponent along
with its internalAggregator. This section concludes with a
description of the set of interfaces that need to be exposed
by each radio implementation in order to allow various sleep
scheduling protocols to be developed on top of them.

RadioDutyCycling LowPowerListening Other Interface

Application 3Application 2

Power Manager

MAC

PHY

Aggregator
Aggregator

LPL SSS Other Sleep SchedulerBasic Sleep Scheduler …

DutyCycling Table

OnMode

OffMode

LPL Table

Mode

Preamble

Other Table

Param 0

Param 1

Power Management 
Abstraction

PreambleLengthChannelMonitor RadioPowerControl

…

…

Application 0 Application 1

Figure 1. Radio Power Management Architecture

3.2 Abstraction Component
The Power Management Abstractionis functionally

equivalent to a set of buffers used to store the parameters sup-
plied to a sleep scheduling policy by each of its users2. These
buffers take the form of a table, with one table existing per
interface. The rows in each table are used to store each of the
parameters supplied through that tables interface, while the
columns are used to separate those parameters specified by
different applications. By keeping the parameters required
by each interface in a separate table, only those tables map-
ping to the actual power management strategy in use will
need to be included at any given time. By organizing these
tables in such a way, the amount of memory required by the
application is significantly reduced. Furthermore, by allow-
ing an application to provide parameters to each interface
as if it were communicating directly with the power man-
agement policy itself, applications can be developed without
consideration for other applications that could potentially co-
exist along with them.

Figure 1 shows how this abstraction layer can be used to
store parameters supplied through theRadioDutyCycling
andLowPowerListening interfaces. These interfaces will
be described in greater detail in section 4.1. As newer sleep
scheduling polices are developed, each with their own set of
newly defined interfaces, tables can be created for use in this
abstraction layer as needed. In this way, the architecture is
scalable as required by criterion (1) from Section 3.

2These users could be applications, packet schedulers, etc.Al-
though Fig. 1 shows each of them to be an application, they could
potentially exist at any level of the network protocol stack



3.3 Power Manager Component
The Power Managercomponent is used to perform two

separate functions. It is used to both aggregate parameters
supplied to each power management strategy through the
Power Management Abstractionas well as coordinate the use
of multiple power management strategies so that they do not
interfere with one another.

In the same way that thePower Management Abstraction
allows multiple applications to coexist without knowledge
of one another, thePower Managerallows multiple power
management strategies to coexist. They can be implemented
as if they are the only strategy that will ever exist in any
given system at any given time. The combination of these
two architectural components provides an intermediate layer
between applications and power management strategies that
allow each of them to be developed as if they communicate
directly with one another. The burden of coordinating their
usage is left to thePower Managercomponent. A developer
may easily change the coordination approach by replacing it
with the appropriate aggregation policy. In this way, criteria
(3), (4), and (5) from section 3 have been met. Namely, that
each power management strategies has its own implemen-
tation, independent of the network protocols that use them
(3), any number power management strategies can be used
in the system simultaneously (4), and coordination between
different power management polices is possible using the ag-
gregation component (5). Two example aggregation policies
are described in Section 4.
3.4 Interfaces with the MAC Layer

The final criterion specified in Section 3 that has not yet
been met (2) is to allow for composability, forcing all power
management strategies built within this architecture to ad-
here the same set of interfaces for interacting with the restof
the system. In order to meet this criterion, a standard set of
interfaces must be defined for allowing different power man-
agement procotols to communicate with the radio. As our
investigation is limited to sleep scheduling policies alone,
we only identify those interfaces required by power manage-
ment strategies of this type. They can all be exposed through
the MAC layer of a traditional radio stack implementation.

Existing MAC protocols can be broken up into three dif-
ferent classes: contention based, non-contention based, and
hybrid [18]. Contention based MAC protocols usually per-
form CSMA and rely on clear channel assessment (CCA) to
determine if a radio channel is free or not. Examples of con-
tention based MAC protocols include B-MAC and S-MAC.
Non-contention based ones, rely on TDMA schedules to de-
termine when packets should be sent, and do not require any
sort of clear channel assessment to be performed. TRAMA
[19] is a typical TDMA MAC protocol. Hybrid based proto-
cols such as 802.15.4 [12] and Z-MAC [20] are a mixture of
both.

Some sleep scheduling policies rely on the existence of a
particular type of MAC while others do not. For example, the
sleep scheduling policy used by B-MAC (Low Power Lis-
tening) needs to perform CCA in order to determine whether
the radio should be active or not. Since only CSMA based
MAC protocols provide this sort of functionality, Low Power
Listening is compatible with them alone. TDMA based pro-

tocols, on the other hand, do not rely on any special inter-
faces for performing CCA. They only require an interface for
turning the radio on and off at intervals based on their time
schedules. Hybrid protocols obviously require both. Figure
2 shows the interfaces necessary to support sleep scheduling
policies of all types.

Figure 2. Proposed MAC level architecture with sleep
scheduler outside of radio implementation

Three interfaces are made available through the MAC
layer for use by different sleep scheduling protocols. Al-
though, each of the interface definitions provided in this sec-
tion are written in nesC [21], the architectural ideas pre-
sented are fundamental, and do not rely on any implemen-
tation in particular. If a particular MAC layer is unable to
provide one of these interfaces it may be limited to the types
of sleep scheduling policies that can be built on top of it. Ide-
ally all radio stack implementations should be able to provide
each of these interfaces, but in practice this may not always
be possible. Each interface is described in greater detail be-
low.

The RadioPowerControl Interface:
The first of these interfaces is theRadioPowerControl. This
interface allows a radio to be switched between its on and off
power states. It must be implemented by all types of MAC
protocols, since without it, power control of the radio is not
possible.

interface RadioPowerControl {
async command void on();
async event void onDone(error_t error);
async command void off();
async event void offDone(error_t error);

}

The user of this interface calls theon() command to put
a radio into the “on” state and begin receiving transmissions.
Once the radio has been fully switched on, theonDone()
event is signalled to signify that the operation has completed.
The same holds true for theoff() command and its corre-
spondingoffDone() event when powering the radio down.



The ChannelMonitor Interface:
The second interface is theChannelMonitor interface. This
interface is used to expose the clear channel assessment
(CCA) capabilites of the radio. This interface may only be
implementable by CSMA based MAC protocols. If this in-
terface is not exposed, the use of certain sleep scheduling
protocols (such as Low Power Listening) will not be possi-
ble.

interface ChannelMonitor {
command void check();
async event void free();
async event void busy();
event void error();

}

Thecheck() command can be called by a sleep schedul-
ing policy to determine if a radio channel is busy or not. If
the CCA algorithm implementing this interface determines
that the channel is busy, it signals thebusy() event. If it de-
termines that the channel is free, it signals thefree() event.
If for some reason the CCA algorithm cannot complete its
operation, it will signal anerror() event to allow the sleep
scheduler to decide what it should do next.

The PreambleLength Interface:
The third and final interface is thePreambleLength inter-
face. This interface allows a sleep scheduling policy to dy-
namically change the length of the preamble associated with
a particular outgoing packet. The exposure of this interface
through the MAC layer has been motivated by a set of rep-
resentative asynchronous sleep scheduling protocols suchas
the Low Power Listening scheme implemented in B-MAC.
In this protocol, the number of preambles sent with each
packet needs to be set dynamically. The exposure of this
interface will most likely play an important role in the de-
velopment of future sleep scheduling policies based on Low
Power listening.

interface PreambleLength {
async command void set(uint16_t numBytes);
async command uint16_t get();

}

4 Implementation
An implementation of the architecture described in the

previous section has been created for TinyOS-2.0. We have
chosen to use TinyOS-2.0 as our implementation platform
since it is still maturing and does not yet have many protocols
developed for it. Our hope is that as people start moving
implementations of their power management protocols from
TinyOS-1.x into TinyOS-2.0 in the near future, they will do
so within the architecture presented here.

In this section we first present how we have exposed the
appropriate interfaces through the MAC layer implementa-
tions in TinyOS-2.0. We provide sample implementations
of both Low Power Listening and the Simple Synchronous
Sleeping (SSS) on top of these newly exposed interfaces. A

third policy called Basic Synchronous Sleeping (BSS) is also
introduced that is functionally similar to SSS but provides
a different type of interface to the user. By providing im-
plementations of both synchronous, and asynchronous sleep
scheduling policies we are able to show the flexibility of the
architecture in allowing them to exist on top of two very dif-
ferent radio platforms (Mica2 and Telosb).

An implementation of the entire UPMA is also presented.
We have created two different instantiations of the architec-
ture, using two different sets of power management policies
and two different aggregation polices. We use the two po-
lices to demonstrate how multiple applications can be made
to interact with multiple sleep scheduling protocols. By a
simple change of aggregation policy we are able to change
the semantics of how this interaction takes place. Implemen-
tations of the applications and sleep scheduling policies are
never altered, and the only changes made are within the ag-
gregation components themselves.

4.1 Interfaces with the MAC Layer
In this section we show how to use the interfaces be-

tween UPMA and the MAC layer to implement both syn-
chronous and asynchronous sleep scheduling policies on top
of B-MAC in TinyOS-2.0. In order to do this, the origi-
nal B-MAC implementation needed to be modified in two
distinct ways. First, the built in sleep scheduling policy as-
sociated with B-MAC (Low Power Listening (LPL)) had to
be removed. Second, our newly presented interfaces had to
be exposed through the MAC layer so that they could inter-
act with an external sleep scheduler implementation. Three
different sleep scheduling protocols were built on top of B-
MAC using these newly exposed these interfaces: LPL, SSS,
and BSS. LPL is the traditional asynchronous sleep schedul-
ing policy that was previously built into B-MAC, while SSS
and BSS are two synchronous policies that have been devel-
oped to demonstrate the generality of the interfaces.

In our current implementation, the modified B-MAC ex-
poses the complete set of interfaces described in section 3.4
on the Mica2 radio stack, while only a subset are exposed on
Telosb. Due to the limitations of Chipcon CC2420 radio3,
only theRadioPowerControl interface has been exposed on
the Telosb radio. Because of this limitation, the new LPL has
only been implemented on the Mica2 radio stack, while SSS
and BSS have been implemented on both of them. All im-
plementations can be easily ported to other radio platforms
supporting the set of standard interfaces specified by UPMA.
The following three subsections describe the implementation
of these sleep scheduling protocols in more detail.

4.1.1 Low Power Listening
Low power listening allows a radio to sleep for long pe-

riods, waking up periodically to check if a packet is coming

3In the CC2420 radio, the clear channel assessment algorithmis
internal to the radio chip and not easily exposed to externalcompo-
nents as part of theChannelMonitor interface. The CC2420 radio
hardware also limits the packet size, including any preamble bytes
necessary. ThePreambleLength interface would therefore not al-
low preambles of arbitrary length. Note that the same limitations
also make it difficult to implement LPL even if it were inside B-
MAC



in on the radio channel or not. If no packet is present, it
goes back to sleep until the next time it is supposed to check.
Packets are sent with preamble lengths equal to the size of
each node’s sleep interval so that no packets will be dropped
simply because its destination node was asleep when it was
sent. It allows a user to specify two different parameters: the
time interval between subsequent checks for activity on the
radio channel, and the preamble length for outgoing packets.
Figure 3 shows our new implementation of LPL as a separate
component, and how it uses the standard interfaces defined
in the previous section to interact with the modified B-MAC
that no longer includes LPL.

(a)

(b)

(c)

Figure 3. Interaction of platform independent LPL im-
plementation with radio level interfaces

This figure depicts three situations in which the new LPL
may use the interfaces provided by the MAC layer to per-
form its sleep scheduling duties. During startup (Figure 3(a),
an application specifies the LPL mode of operation (i.e. the
check interval to use along with its corresponding pream-
ble length) through theLpl interface provided by LPL (1).

The MAC layer then retrieves the newly specified preamble
length through thePreambeLength interface (2), and LPL
turns the radio off through theRadioPowerControl inter-
face (3). Once the radio has been completely shut down (4),
a timer is set based on the check interval specified by the
application (SLEEPTIME)(5).

One of two conditions could then occur. In both cases
(Figure 3(b), 3(c)) the timer will expire (1) and the channel
will be checked for activity (2). An event will then come
back signifying that the channel is either busy or free (3),
and the timer will be reset with one of two values. If the
channel was free (Figure 3(b)), the timer is reset to its check
interval length (SLEEPTIME)(4) and the radio is shut off
(5)(6). If the channel is busy, however,(Figure 3(c)) the
the timer is set to allow an entire packet to be received
(MAX PACKET LENGTH)(4), and the radio is turned fully
on (5)(6).

4.1.2 Simple Synchronous Sleeping
We have designed and implemented a synchronous sleep

scheduling protocol known as SSS (Simple Synchronous
Sleeping) on top of the separated version of B-MAC. SSS
relies on time synchronization of all nodes in a network to
precisely control their duty cycles. The duty cycle of the ra-
dio is tunable through the following interface.

interface RadioDutyCycling {
command error_t setModes(uint8_t onMode, uint8_t offMode);
command error_t setOnTimeMode(uint8_t onMode);
command error_t setOffTimeMode(uint8_t offMode);
event void beginOnTime();
event void beginOffTime();

}

A higher layer uses this interface to set the duty cycle of
the radio and be notified whenever it has been switched on
or off. Since the start of every radio’s duty cycle must be
synchronized, all nodes having the same duty cycle will be
able to communicate with each other during the on time of
the radio and conserve energy during the off time. Figure 4
shows our implementation of SSS and how it uses the inter-
faces presented in the previous section to interact with the
radio.

During startup (Figure 4(a)), an application specifies the
mode of operation for SSS (length of on and off times within
a single duty cycle period) through theRadioDutyCycling
interface (1). A timer is then set to the on time specified by
the application (2), and the radio is switched on (3). Once the
radio has been fully switched on (4), the application is sig-
naled notifying it of this event (5). After this timer expires,
SSS alternates the on and off states of the radio according
to the time intervals specified by the application. The steps
taken in each situation can be seen in in Figure 4(a) and Fig-
ure 4(b) respectively.

Our implementation of SSS shows that a synchronous
sleep scheduling protocol can be built on top of the stan-
dard interfaces exposed by our MAC layer implementation.
It is conceivable that MAC protocols such as S-MAC that
have synchronous sleep scheduling protocols built into them
should be separable in the same way that LPL was separable
from B-MAC. In the future, it is hoped that making such sep-



(a)

(b)

(c)

Figure 4. Interaction of platform independent SSS im-
plementation with radio level interfaces

arations will be unnecessary and that MAC protocols will be
implemented without sleep scheduling protocols in the first
place. They will instead be implemented on top of the MAC
through the interfaces presented here.
4.1.3 Basic Synchronous Scheduler

This general purpose sleep scheduler can be told by an
application directly when (as well as for how long) to power
the radio on and off using the following interface.

interface DutyCycleTimes {
command turnOnFor(uint32_t onTime);
command turnOffFor(uint32_t offTime);
event void ready();

}
Calling theturnOnFor() andturnOffFor() commands

does not necessarily indicate that the radio will be turned on
or off immediately. BSS will signal theready() event to a

user whenever it is ready to turn the radio either on or off.
Once this event returns, the radio will be either turned on
or off based on whetherturnOnFor() andturnOffFor(),
was called most recently. A timer will be started based on the
value supplied to that command. In order to duty cycle a ra-
dio, the user of theDutyCycleTimes interface can alternate
calls toturnOnFor() andturnOffFor() commands within
the body of theready() event. If no calls toturnOnFor()
or turnOffFor() are made between subsequentready()
events, the timer is restarted with the same value it had pre-
viously, and the power state of the radio remains unchanged.

BSS is similar to SSS in many ways. Both SSS and BSS
require time synchronization for all nodes in a network. They
both turn the radio on and off for certain time durations as
specified by the user. They also both interact with the MAC
layer through theRadioPowerControl interface. The pri-
mary difference between the two is that SSS allows an ap-
plication to specify a periodic radio duty cycle, while BSS
requires that the on and off time be specified each time the
radio is ready to make another transition. While BSS may be
more general, SSS can be much more convenient for certain
applications.

4.2 Duty Cycle Aggregation
We have implemented an instantiation of UPMA that uses

the aggregation component to combine the duty cycling re-
quirements of multiple applications. This implementation
of UPMA allows applications running simultaneously to in-
dependently specify their own duty cycling requirements
through theRadioDutyCycling interface of UPMA. The
Power Management Abstraction keeps track of the on and
off times supplied by each application, and the Power Man-
ager aggregates this data to produce a sleep schedule that
combines the requirements of all applications into a single
coherent schedule. The Power Manager then uses this sched-
ule to inform BSS of the next on and off intervals through its
DutyCycleTime interface, and BSS turns the radio on and
off accordingly.

Specifically, the Power Manager aggregates the duty cy-
cles of multiple applications according to an OR policy as
shown in Figure 5.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Time (ms)
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Duty Cycle 1

Aggregate Duty Cycle

Figure 5. Aggregation of multiple duty cycles

This aggregation policy is implemented as follows. (1)
All duty cycles are shifted to begin at the same time instant.
(2) They all run periodically according to their own schedule.
(3) If any oneof the duty cycles requires the radio to be on
at any particular point in time, the radio will be turned on.
(4) Only if all duty cycles indicate that the radio should be
turned off will the radio ever be turned off.



The schedule of on and off times resulting from
this policy may not be expressible using the original
RadioDutyCycling interface. It will be periodic in na-
ture, but may contain multiple on and off durations within
each of its cycles. In Figure 5 we see thatDuty Cycle 0
has an on time duration of 200ms and an off time duration
of 800ms, whileDuty Cycle 1 has both an on and off time
duration of 200ms. the period ofDuty Cycle 0 is therefore
1000ms, while the period ofDuty Cycle 1 is just 400ms.
In order to find the period of theAggregate Duty Cycle
schedule, the least common multiple of the periods of each
duty cycle being aggregated needs to be determined. In this
case it is 2000ms. Since multiple on and off periods will ex-
ist within this period, BSS is the most appropriate choice for
executing the aggregated schedule.
4.3 Duty Cycle/PEAS Aggregation

The second instantiation of UPMA we have developed
demonstrates how to coordinate the use of two different
power management strategies with multiple applications run-
ning on top of them. To present this policy, we introduce an
existing power management protocol known as PEAS [22].
PEAS is a backbone maintenance protocol for wireless sen-
sor networks that can be used to control the density of ac-
tive nodes in a network as well as the frequency with which
new nodes will become active once those active nodes start
to die out. When nodes first wake up in a PEAS enabled
network, they send out a probing message to determine if
any of their neighboring nodes are awake and operating. If
they do not hear any responses they decide to becomeactive
and turn their radios on accordingly. Once a node has be-
come active it will remain active until its power supply has
been depleted. Active nodes take on the the responsibility of
responding to probing messages sent by inactive nodes. If
inactive nodes hear one of these responses, they return im-
mediately to sleep and wait some predetermined amount of
time before sending out the next probe. The amount of time
they have to wait changes dynamically based on the number
of active nodes within their probing range as well as the fre-
quency with which other inactive nodes send out their prob-
ing messages.

We have implemented a lightweight version of PEAS that
uses the same probe/reply mechanism as described above,
but uses a fixed delay time between each probing message.
Nodes that become active begin running a set of applications
as well as send PEAS reply messages in the background as
appropriate. Inactive nodes do not start their applications and
simply continue to send probing messages at a very low duty
cycle.

An aggregation policy has been created that allows
the functionality provided by PEAS to be coordinated
with the duty cycles specified by applications through the
RadioDutyCycling interface. For nodes that PEAS has de-
clared inactive, only the PEAS duty cycle is allowed to run,
and all applications become disabled. For nodes that PEAS
designates as active, the duty cycles of all applications are
aggregated together according to the OR policy described in
the previous section. Active nodes also continue to run the
PEAS duty cycle in order to be able to reply to the probing
messages sent by any inactive nodes.

By controlling the spatial density of active nodes in a net-
work, PEAS is able to provide spatial energy savings. Duty
cycling a node, on the other hand, provides temporal energy
savings by dividing up the time a node is either active or in-
active within a given time period. By combining the energy
benefits provided by PEAS with those of duty cycling the ra-
dio, the aggregation policy described in this section allows
more energy to be saved in a network than the use of either
one individually. A key advantage of UPMA is that neither
the implementation of PEAS nor the implementation of any
application needs to be altered in order to achieve these en-
ergy savings.

5 Evaluation
The previous section described sample implementations

of each of the key components required by UPMA. This sec-
tion provides experimental results exploiting the use of these
implementations.

The first part of this section provides experimental
results showing the plausibility of separating B-MAC
from its built in Low Power Listening policy and ex-
posing theRadioPowerControl, ChannelMonitor, and
PreambleLength interfaces. We provide results compar-
ing the original B-MAC implementation on Mica2 with our
newly separated one, as well as evaluate the effectiveness of
using SSS on top of both the Mica2 and Telosb MAC layer
implementations.

The second part of this section provides results for evalu-
ating the two different instantiations of UMPA described in
the previous section. The first experiment demonstrates that
this architecture has the ability to combine multiple duty cy-
cles in a way that is transparent to each of the applications
specifying those duty cycles. The second experiment shows
how multiple sleep scheduling policies can be combined to-
gether to achieve greater energy savings than each of them
could achieve individually.

5.1 Low Power Listening
The first set of experiments involve comparing the origi-

nal B-MAC implementation for the CC1000 radio on mica2
to our new implementation of B-MAC that includes LPL as a
separate component. Our experimental settings are the same
as the ones presented in [6]. We also compare the difference
in the code size between the two implementations. By show-
ing that our implementation of B-MAC is comparable to the
original one in terms of both performance and code size, we
are able to demonstrate that our architecture provides just
as good a framework for B-MAC to be implemented in as
the original one. Since our framework does not limit one
to using LPL implementation as its default sleep scheduling
policy, however, it provides much more flexibility. We per-
formed the following sets of experiments.

Throughput vs. Number of Nodes:
There is one receiver, with a variable number of senders from
1 to 4 all equidistant from the receiver at 2 feet. Each sender
transmits as often as possible with messages containing 38
bytes of data and 8 preamble bytes. We measure the total
throughput (kbits per second) at the receiver over 2 minutes.



Latency vs. Number of Hops:
Nodes are placed in a chain, with the first node being both
the source and the sink node. Messages are sent from one
node to the next until the last node in the chain is reached.
Messages are then sent in reverse back to the original sender.
The number of nodes varies from 2 to 5, resulting in 2, 4,
6, and 8 hops respectively. The sender sends 20 messages,
each containing 38 bytes of payload and a variable number
of preamble bytes depending on the length of the LPL check
interval that has been selected. LPL check intervals of ”‘al-
ways on”’, 800ms, and 1600ms were chosen, and the av-
erage latency from source to sink of each data packet was
measured.
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Figure 6. Throughput vs. Number of nodes at 100% duty
cycle for the two different LPL-BMAC implementations
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Figures 6 and 7 show exactly how similar the original LPL
implementation performs in comparison to the one using our
proposed framework. This behavior is in fact expected, since
they do indeed implement the exact same protocol. Table 1
shows the difference in compiled code size between the new
and old LPL-BMAC implementations for the two different
applications used in the above experiments.

As expected, both the RAM and ROM sizes for the new
implementation are slightly larger than for original one. The
main contributor to this increase in size is the extra timer re-

Original LPL-BMAC New LPL-BMAC
RAM/ROM RAM/ROM

SenderApp 383/11956 394/12350
ReceiverApp 705/15098 716/15560

Table 1. LPL Memory Footprint

quired by the new LPL implementation. In the original im-
plementation of B-MAC, the timer used to switch between
the different states of the radio was shared by the LPL imple-
mentation. Other contributors include additional flags and
logic needed to coordinate between the new B-MAC and
LPL layers.

5.2 Simple Synchronous Sleeping
The second set of experiments shows the performance

characteristics of our SSS implementation. The results of
these experiments show that it is easy to reuse the imple-
mentation of this sleep scheduling policy on top of two very
different MAC layer implementations. Results are given for
both Mica2 and Telosb.

The setup for each experiment found in this section are
exactly the same as those described for LPL in the last sec-
tion. For measuring throughput vs. number of nodes, SSS
was run at duty cycles of 100%, 47%, and 20%, and the to-
tal throughput was measured over 2 minutes. For measuring
latency vs. number of hops, SSS was ran at a 50% duty cy-
cle, and the average latency from source to sink for a single
packet was measured.
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Figures 8 and 9 show that SSS is able to deliver more
data on both Mica2 and Telosb when the radio duty cycle
is higher. It is not surprising that Telosb achieves higher
throughput for all duty cycles in both experiments because
data is sent at a much higher rate by the CC2420 radio than
by the CC1000 radio used by Mica2.

Figure 10 demonstrates that SSS is able to synchronize
the on time of multiple nodes in a multihop network. If all
on times were not synchronized, then some packets would
undoubtedly have been dropped between the source and the
sink.Once again, the higher data rate of the CC2420 radio ac-
counts for the difference in performance between the telosb
and the mica2 platforms in this experiment.
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Overall, the results of these experiments have shown the
following: (1) Implementing LPL using our framework does
not have any adverse affects on its performance. (2) Ex-
posing the proposed MAC layer interfaces may produce a
slight increase in code size, but it allows much more flex-
ibility when choosing the sleep scheduling policy that is
most appropriate. (3) Both asynchronous and synchronous
sleep scheduling policies can be easily implemented on top
of these interfaces in both a platform independent and MAC
level independent manner.

5.3 Combining Multiple Duty Cycles
In this subsection we evaluate the instantiation of UPMA

that combines duty cycles specified by multiple applications.
The network used in this set of experiments is a one-hop
cluster consisting of a master Telosb node and a number
of slave Telosb nodes. Each slave node runs a sensing ap-
plication that periodically sends packets to the master node.
Although each node only runs a single application, up to 6
different applications can be running in the network at any
given time. The on time of the duty cycle for each applica-
tion is 200ms, with off times of 200ms, 600ms, 1.4s, 3s, 6s,
and 12.6s, respectively. Each application sends a packet of
66 bytes (including header and payload) at a random time
within the 200ms active period of each duty cycle. The mas-

ter node is able to receive packets from each application by
running an aggregate duty cycle according to the OR policy
described in section 4.2.

This experiment is conducted by systematically increas-
ing the number of applications present in the network at any
given time. The first run of experiments consists of the mas-
ter node and two slave nodes running the application with the
lowest duty cycle. Two more slave nodes running the appli-
cation with the next highest duty cycle are then added in each
following run. Each run lasts for 320 s. Figure 11 shows the
delivery ratio measured at the master node for each run. We
can see that the delivery ratio remains close to 100% as the
number of applications increases. Once all six applications
(total 12 nodes) have been added to the network, however,
we do begin to see a slight increase in the number of packets
that are lost.
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Figure 11. The delivery ratio measured at the master
node.

Figure 12 shows the duty cycle measured at the master
node. A 100% duty cycle corresponds to the radio always be-
ing on, and a 0% duty cycles corresponds to the radio always
being off. The duty cycle was calculated by instrumenting
the CC2420 radio stack with a 32 KHz timer in order to mea-
sure the amount of time spent in each radio state. We can see
that the duty cycle measured at the master node matches the
predicted curve, verifying the correctness of the combination
logic of the aggregator. As a baseline we also show the pre-
dicted duty cycle of the master node if no aggregation policy
were used. This duty cycle is simply calculated as the sum of
the duty cycles of all applications in the network. As shown
in Figure 12, performing the combination will always yield
a lower overall duty cycle than not performing it.
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The results in this section demonstrate that UPMA is ca-
pable of correctly combining the duty cycles specified by
multiple applications, and that combining these duty cycles
according to some aggregation policy can potentially lead to
lower energy consumption.
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5.4 Combining Duty Cycles with PEAS
In this section we evaluate the instantiation of UPMA that

combines PEAS with applications that are able to specify
their own duty cycles. The network consists of a master
Telosb node and 15 slave Telosb nodes placed within a 5×3
grid. Each slave node runs both PEAS as well as an appli-
cation that is able to specify its own duty cycle. Six appli-
cations are possible, each with a duty cycle period of 3.2s.
The on times of each duty cycle range from 200ms to 1.2s in
steps of 200ms. PEAS runs with a duty cycle period of 16s
and an on time of 200ms. Inactive nodes send PEAS probe
messages at some random time within their 200ms on period,
and active nodes send a packet to the master node at some
random time during their on period. Although all nodes are
within communication range of each other, the probing range
of PEAS is limited to 1.5 times the grid width.

In this set of experiments we measure the total energy
consumed by the radio for all nodes in the network. The
amount of energy used by each radio is measured as the sum
of the energy consumed in each of four different radio states:
idle, receiving, transmitting, and sleeping. We first measure
the total time that the radio spends in each radio state by in-
strumenting the Telosb CC2420 radio stack with a 32 KHz
timer. We then calculate the energy consumed in each state
by multiplying the total time the radio spends in that state
by the power consumed in that state. These power consump-
tion values are all taken directly from the CC2420 data sheet
[23]4.

Figure 13 shows the total energy consumption of all nodes
in the network using three different power management poli-
cies. The energy consumed using each policy is measured,
and their results are compared. The first policy matches the
one described in section 4.3. Under this policy, the radio is
turned on and off according to the duty cycle of the sens-
ing application only if PEAS chooses it to be one of its ac-

4There are two different sleeping modes available on the
cc2420. In the sleeping mode benchmarked here, the transmitter is
turned off while the crystal oscillator and voltage regulator remain
on. In the data sheet this state is referred to as IDLE.

tive nodes. All other nodes only wake up and perform the
probing process of PEAS every 16s and remain asleep at
other times. In the second policy, all nodes operate according
to the duty cycle specified by their applications, and PEAS
functionality is disabled. In the third policy, the opposite is
true. All nodes only run PEAS, and the duty cycling capa-
bilities of each application are disabled. As a baseline for
comparison, the energy consumed using this third policy is
shown in Figure 13 by a level straight line.

We can see from Figure 13 that the policy combining
PEAS with each application duty cycle yields the lowest en-
ergy consumption. These energy savings are achieved by (1)
allowing PEAS to choose the subset of nodes that will actu-
ally run each application, and (2) allowing those nodes cho-
sen by PEAS to run at their application-specified duty cycle.
Overall, the energy consumption under the combined pol-
icy implemented in UPMA is 57−86% lower than running
PEAS alone and 42−63% lower than duty cycling alone.

The results in this section demonstrate the power of com-
bining complementary power management protocols using
the UPMA framework. By using the Power Manager compo-
nent to combine the sue of the these protocols, more energy
can be saved than by using either one of them individually.

6 Conclusion
We have presented UPMA, a unified architecture for flex-

ible radio power management in wireless sensor networks.
UPMA is comprised of three key components: (1) a power
management abstraction that allows multiple applications
and protocols to specify their desired sleep policies indepen-
dently; (2) a power manager that aggregates multiple policies
into coherent sleep schedules; and (3) a set of standard in-
terfaces allowing sleep scheduling policies to be separated
from MAC layer implementations, thus enabling different
combinations of sleep scheduling protocols and MAC proto-
cols. We have demonstrated the flexibility of UPMA through
two case studies in which different sets of sleep scheduling
policies have been incorporated into this architecture using
two different aggregation policies. We have also demon-
strated that the separation of sleep scheduling from the data
link layer only introduces minimum overhead on Mica2 and
Telosb radio stacks on TinyOS-2.0.

In the future we plan to further explore and enhance the
flexibility of UPMA by developing new approaches for ag-
gregating different power management protocols. For in-
stance, a simple but conservative approach for aggregating
multiple asynchronous sleeping policies (e.g., LPL) is to
use the minimum check interval and the longest preamble
of all active applications. Other aggregation policies may
achieve more energy savings than this simple approach. Fur-
thermore, a more sophisticated form of aggregation might
involve some sort of cross-layer optimization (e.g., sleep
scheduling and power-aware routing). A goal of UPMA is
to support complex cross-layer optimization policies to be
implemented in the aggregator, without requiring modifica-
tions to any other system components.

An important direction for future work is to integrate
UPMA within an overall sensor network architecture. A
first step in this direction is to develop interfaces that allow



UPMA to coordinate with a link layer abstraction such as
SP5. The integration with SP may potentially enable UPMA
to support more efficient power management techniques
through fine-grained interactions with network and MAC-
layer protocols. Another promising area of future work is to
integrate UPMA with the power management of other hard-
ware components (e.g., microcontrollers, sensors and flash
storage controllers) on a WSN platform. Such a holistic
power management approach will result in maximum energy
savings in real world systems.

7 References
[1] T. van Dam and K. Langendoen, “An adaptive energy-

efficient mac protocol for wireless sensor networks,” in
Sensys, 2003.

[2] W. Ye, J. Heidemann, and D. Estrin, “Medium access
control with coordinated, adaptive sleeping for wire-
less sensor networks,”IEEE/ACM Transactions on Net-
working, June 2004.

[3] R. Zheng and R. Kravets, “On-demand power manage-
ment for ad hoc networks,” inINFOCOM, 2003.

[4] N. Ramanathan, M. Yarvis, J. Chhabra, N. Kushal-
nagar, L. Krishnamurthy, and D. Estrin, “A stream-
oriented power management protocol for low duty cy-
cle sensor network applications,” inIn Proceedings of
the Second IEEE Workshop on Embedded Networked
Sensors (EmNetS-II), 2005.

[5] O. Chipara, C. Lu, and G.-C. Roman, “Efficient power
management based on application timing semantics for
wireless sensor networks,” inInternational Conference
on Distributed Computing Systems (ICDCS), 2000.

[6] J. Polastre, J. Hill, and D. Culler, “Versatile low power
media access for wireless sensor networks,” inSenSys,
2004.

[7] P. Levis, D. Gay, V. Handziski, J.-H.Hauer,
B.Greenstein, M.Turon, J.Hui, K.Klues, C.Sharp,
R.Szewczyk, J.Polastre, P.Buonadonna, L.Nachman,
G.Tolle, D.Culler, and A.Wolisz, “T2: A second
generation os for embedded sensor networks,”
Telecommunication Networks Group, Technische
Universität Berlin, Tech. Rep. TKN-05-007, Nov.
2005.

[8] U. Berkeley, “a network architecture for wireless sen-
sor networks,” http://webs.cs.berkeley.edu/SNA/.

[9] USC, “A architecture for tiered wireless sensor net-
works,” http://enl.usc.edu/projects/tenet/.

[10] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler,
S. Shenker, and I. Stoica, “A unifying link abstraction
for wireless sensor networks,” inProceedings of the 3rd
international conference on Embedded networked sen-
sor systems (SenSys), 2005.

5We have not implemented the interfaces with SP because it is
not available on TinyOS-2.0 and has only recently been made avail-
able in the Boomerang version of TinyOS-1.x.

[11] P. Santi, “Topology control in wireless ad hoc and sen-
sor networks,”ACM Comput. Surv., vol. 37, no. 2, pp.
164–194, 2005.

[12] IEEE, “Wireless medium access control (mac) and
physical layer (phy) specifications for low-rate wireless
personal area networks (lr-wpans),” inIEEE Standard
15.4, 2003.

[13] ——, “Wireless lan medium access control (mac) and
physical layer (phy) specifications,”IEEE Standard
802.11, 1999.

[14] K. Oikonomou, N. B. Pronios, and I. Stavrakakis,
“Performance analysis of topology-unaware tdma mac
schemes for ad hoc networks with topology control.”
Computer Communications, vol. 28, no. 3, pp. 313–
324, 2005.

[15] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel,
“Delay efficient sleep scheduling in wireless sensor
networks,” inIEEE INFOCOM, 2005.

[16] Q. Cao, T. F. Abdelzaher, T. He, and J. A. Stankovic,
“Towards optimal sleep scheduling in sensor networks
for rare-event detection,” inIPSN, 2005.

[17] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous
wakeup for ad hoc networks,” inProceedings of the
4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing. ACM Press, 2003, pp.
35–45.

[18] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and
J. Hou, “Real-time communication and coordination in
embedded sensor networks,”Proceedings of the IEEE,
vol. 91, no. 7, pp. 1002–1022, 2003.

[19] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-
Aceves, “Energy-efficient collision-free medium ac-
cess control for wireless sensor networks,” inSenSys
’03: Proceedings of the 1st international conference
on Embedded networked sensor systems, 2003.

[20] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-mac: a
hybrid mac for wireless sensor networks,” inSenSys
’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, 2005.

[21] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesc language: A holistic ap-
proach to network embedded systems,” inProceedings
of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, 2003.

[22] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Peas: A robust
energy conserving protocol for long-lived sensor net-
works,” in The 23rd International Conference on Dis-
tributed Computing Systems (ICDCS’03), May 2003,
pp. 169–177.

[23] Chipcon, “Cc2420 radio data sheet,” 2004.


	A Unified Architecture for Flexible Radio Power Management in Wireless Sensor Networks
	Recommended Citation
	A Unified Architecture for Flexible Radio Power Management in Wireless Sensor Networks

	tmp.1418149444.pdf.twteU

