Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-86-1

1986-01-01

LSIM User Manual

Roger D. Chamberlain

Lsim is a gate/switch level digital logic similar. It enables users to model digital circuits both at
the gate and switch level and incorporates features that support investigation of the simulation
task itself. This user's manual describes the procedures used to specify a circuit to Isim and
control the simulation of the circuit (i.e., specifying inputs vectors, running the simulation, and
monitoring output signals).

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Chamberlain, Roger D., "LSIM User Manual" Report Number: WUCS-86-1 (1986). All Computer Science and
Engineering Research.

https://openscholarship.wustl.edu/cse_research/825

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/825?utm_source=openscholarship.wustl.edu%2Fcse_research%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

LSIM USER MANUAL

Roger D. Chamberlain

WUCS-86-1

January 1986

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

lLeim User NHanual

by

Roger D. Chamberlain

Leim is a gate/switch level digital logic simulator. 1t enables
usergs to model digital circuits both at the gate and switch level and
incorporates features that support investigation of the simulation task
iteself. This wuser's manual describes the procedures used to specify a
circuit to lgim and control the simulation of the circuit (i.e.» speci-
fying inputs vectors, running the simulation, and monitoring output sig-

nals).

=]=

Leim User NManual

by

Roger Chamberlain

There are tuwo major tasks involved in simulating a digital cir-
cuit. The first, s8pecifying the circuit to be simulated. is accom-
plished through the use of a textual circuit description language.
Circuit descriptions are processed by a translator and put into a form
that can be used by lgim. The translation is performed by the girc
circuit compiler. The second tagk is the actual simulation of the
circuit. A set of interactive commands has been included to facili-
tate control of the simulation from within lsim. In addition. the
state of the circuit can be retained by the simulator for use at a
later time. This allows the user to resume work exactly where he or
she left off at a previous session. The flow of information involved

with the use of girc and lgim is represented graphically in Figure 1.

This document describes the model of the real world that is imple-
mented by the simulator, the format of the circuit description f{file

that is input to circ. and the interactive commands input to lsim.

An understanding of the model implemented by +the simulator is
essential for the proper use of lsim. There are aluays differences in
the resulte of a simulation and physical reality.» and an understanding
of the way the simulator views the real world can help the uger to
minimize those differences. Also disussed are the results that can be

obtained from the egimulator. both about the simulated circuit and

Circuit
Description
File

b

Cire
Circuit
Compiler

¥

Compiled
Circuit
File

4

Interactive |——=>{ Lein (=] Saved
Commands Logic Circuit
Simulator |[e=—> File

d

Simulation
Results

Figure 1. Lgim and Circ

about the simulation task itself.

1. SINMULATION MODEL

An important coneideration in any simulation is the model of the
real world that the simulator executes. Since any model is inherently
limited in what characteristice it takee into consideration. a
knowledge of the way lsim models digital circuits is an essential

first step in the proper use of the simulator.

l1.1. Logical States

The voltage levels that are associated with signal 1lines are
modeled in lsim by one of 7 logical states. These states are further

divided into two major types, stable states and transient states.

There are 4 stable states:

1 high

o low

X undefined

z high impedance

The high state is used to model a high voltapes or a logical "1". The
low state is used to model a low voltage. or a logical "0O". Undefined
is used to represent an unknown state, when little is known about the
voltage level of the signal. High impedance is used to model the high

impedance output of components that have tri-state outputs.

There are 3 transient states:

r rising
f falling
t trangition to/from high impedance

These states are used to represent intermediate states during a tran-
sition between stable states. The rising state is used during a tran-
gition from low to high, the falling state is used during a transition
from high to low, and the last state is is used as its name implies,

during a transition to or from a high impedance state.

The three transient states are only wutilized in the variable

delay model discussed below. The unit and fixed delay models only use

the first four stable states.
1.2. Current Drive Capabilities

Although lsim models signal levels with 7 logical states, there
are some circuit characteristics that regquire additional information
for proper operation. The most notable characteristic is the con-
struction known as a wired OR connection, where two or more component
outputs are directly tied together and drive the same signal line. If
the components that are tied together have tri-state outputs and all
but one of them are in the high impedance state. there is no trouble
involved in determining the resulting state of the signal. it simply
follows the logical state of the enabled component output. However.
if two or more component outputs are enabled and are in two or more
different states, additional information is needed to determine the

resulting state of the signal.

For this reason. lsim models the output current drive capability
of a component as one of two values. either strong or weak. Strong
drive capability i intended to repreeent a direct connection to an
established voltage source, either the pouwer supply, ground, or a con-
nection to an active transistor whose other side is connected to power
or ground. Veak drive capability is intended to represent a resiative
connection to an established voltage source. such as the resistive

pullup provided by a 4:1 depletion mode transistor in NMOS designs.

With the additional current drive capability information avail-

able. the sgimulator is now able to determine the resulting logical

-5

state of the signal in wired DR connectionz. In a two component wired
OR connections 1f one component has a high output and a weak high
drive capability and the other component has a low output and a strong
louw drive capability, the resulting signal state is low. If both com-
ponent outputs have the same drive capability and different output

states. the resulting state of the signal is undefined.
1.3. Delay Hodels

There are three delay models supported within lsim., the wunit
delay model, the fixed delay wmodel. and the variable delay model.
They each provide different types of information about the circuit

being simulated.

The simplest delay model supported is the unit delay model. Tim-
ing issues are completely ignored in this model and all components are
assumed to have a delay of one unit. This unit delay is not intended
to have any relationship with actual time, but instead is used to pro-—
vide a mechanism for providing functional simulation of the circuit

without the overhead involved with more accurate timing simulations.

The second delay model supported is the fixed delay model. Lsim
treats each component as having a2 fixed low to high propagation. high
to low propagation. enable, and disable time associated with each out-
put. Whenever the component is evaluated and it is determined that an
output is to change state, 2 compenent output modification event is
scheduled in the event queue for the current time plus the fixed time

associated with the delay through the gate. For worst case analysis

-5=-

the maximum delay through a gate is specified as the fixed delay.

However, the umser can specify typical delayes if he or she so desires.

The most accurate delay model takes into account the fact that
not all components can have a fixed propagation delay associated ;ith
them. but are more realistically modeled by a wvariable time range
within which the output modification is assumed to take place. The
variable delay model uses a minimum and maximum valuve associated with
each of the delay times specified. and signal levels are modeled by
the transient states rising, fallings and tranmition to/from high

impedance during the time between the known stable states.
1.4, Timing Specifications

There are a total of 12 different delay specifications associated
with the delay through a component as well a8 setup and hold times
that can be associated with component inputs. Of the 12 delay specif-
ications, 4 are for use with the fixed delay model and 8 are used with
the variable delay model. The timing diagram shown in Figure 2 illus-
trates two of the four delay mspecifications that are used with the
fixed delay model. low to high and high to low propagation delay. The
cutput enable time and output disable time follow a similar pattern

for going te and from the high impedance state.

Timing diagrams that illustrate the variable propagation delays
are given in Figure 3. The ambiguous regions are the points at which
the =signal is represented by one of the transient logical states.

Note that the maximum time is measured from the point at which the

1
component input

o

1
component output

o

Tplh =————

{<7=>! I<I>I
- Tphl

Figure 2. Fixed delay gpecifications

maximum Tplh

- -I:———— minimur Tphl
| {mmdmm > i< 21

1
component input j%;ﬁ

1 I
N
component output EZZZZ \
0 | k

| <——>1 1< >1

minimum Tplh ~——v

maximum Tphl

Figure 3. Variable delay specifications

signal reaches its final value,
general rule of thumb is t
scheduling of transient states

stable states cause the schedul

not from where the change begins.

A

hat input transient states cause the

for the component output and input

ing of stable output states.

-8-

Setup and hold times are used to specify input timing require-
ments for memory elements. The setup time associated with an input to
a component tells hou long the logical state of the input signal must
be gtable before the data is latched into the component by the clock
input. Violation of the setup time is detected by the simulator and
reported to the user as an error condition. The hold time tells how
long the logical state of a component input must remain stable after
the data has been latched by the clock input. Violation of the hold
time is treated similarly to the setup time. The time the data is
latched by the clock input is dependent upon the type of component
involved, a level sensitive D flip flop is latched on the falling edge
of the clock input, while an positive edge triggered £flip flop is

latched on the rising edge.
1.5. Error Detection

There are several types of errors that can ocecur in a digital
circuit. Setup time and hold time violations have already been men—
tioned. In addition. lsim detects spike errors and signal level

errors.

A spike condition occurs when one or more input values to a com-
ponent are modified before a scheduled output change has time to pro-
pagate though the component. This might be the case if there are
static hazards in the circuit. Since such conditions are not neces-
sarily considered erroneous in synchronous circuit design, lsim allouws

error detection to be turned off using the noerr command.

9

A signal error resultis shen a signal that is connected to more
than one component output is driven by a strong current drive capabil-
ity in more than one logical state. For example. if one component
output was driving the signal with a strong "1" (high) state and
another component output was driving it with a strong "0" (louw) mtate.
a signal error will result. In cases such as thiss the error is
reported if error reporting has not been disabled. and the logical

state of the signal is set to "x" (undefined).
2. A SINPLE EXANPLE

In order to bring together an understanding of hou to simulate a

digital circuit with lsim., a complete example is presented below.
2.1, Circuit Specification and Compilation

The first step involved in simulating a circuit is describing the
properties of the circuit in a machine readable format. This circuit
degcription must include information such ag the gates to be simu-
lated, their interconnections, delays, and other properties. In order
to facilitate this description, the circ circuit compiler has been
developed to translate a text file description of the circuit of
interest into a format readable by lgim. Figure 4 ig the schematic
diagram of a simple three gate digital circuit that will serve as an
example for explaining the use of circ and lsim. Note that there are
labels on every component and signal line. This labeling proceses is
the first step involved in generating a circuit description for input

to circ. A complete description consists of at least the following

~10-

norl

notl

dout.h

dout.l

clk.h

Figure 4. Example circuit

parts:

general delay specifications
component type definitions
environment specification
netlist description
This is fully discussed in later in this document. A limited discus-

gion is given below, along with the description of the example circuit

(Figure 5).

There are tuo delay specifications defined, called comdel and
memdel. "Comdel™ and "memdel" are user selected identifiers that will
be referenced later when defining component types. They associate
minimum. maximum. and fixed low to high propagation. high to lou pro-
pagation, output enable, and output disable times with the given iden-

tifier.

-i]=

Example circuit apecification

begin circuit
begin delays
comdel = (B8,12,12 $ 2,3,3)ns;
memdel = (4,66 & 4.6,6)n88
end delays:
begin types
nmos_inv = (not. dc=(weak. strong). comdel);
nmos_nor = {(nor. 2, dc=(weak, strong). comdel);
dflip_flop = (dff, st = 3ns, ht = 1lns, memdel):
end types:
begin environment
inputs = (a.h.b.hsclk.h)?
outputs = (dout.h.dout.1):
end environment:
begin components
norl = (nmos_nor., inputs (a.h, b.h)s outputs = (di.l}))3
notl = (nmos_inv, inputs {di.1l). outputs = (di.h)):
ffl = (dflip_flop. inputs = (¢lk.h» di.h),
outputse = {(dout.h. dout.1)):

end components:
end circuit:

Figure 5. Example circuit specification

There are three component types defined by the user in the cir-
cuit descriptions nmos_inv, nmoa_nor. and dflip_fleop. They reference
the built~in functions not. nor, and dif, respectively. ¥Not and nor
are standard combinatorial gates, dff is a level sensitive D flip
flop. The other parameters in the type definition indicate the number
of inputs, output current drive capability, setup time. hold time. and
delay specification to be associated with the type. Default wvalues

are used when a particular parameter is not explicitly given.

The environment specification defines the primary inputs to the
circuit as the signals a.h., b.h» and clk.h and the primary outputs

from the circuit as dout.h and dout.l.

-12-

The netlist description is where the actual componentgs themselves
first get mentioned. Norl and notl! are defined as components of types
nmos_nor and nmos_inv respectively. with their respective input and
output =signals indicated. The gate named £ffl is defined as a com—
ponent of type dflip_flop with input msignals clk.h and di.h and output
gignals dout.h and dout.l. The order of the input signals is impor-
tant in the description of ffl, since that is how circ determines
which signal is the clock signal and which is the data. The same is
true for the output signals as well, the order they are specified
determines which is the true output and which is the complemented out-

put.

If the text of Figure 5 is stored in a file named circuit.ci,

circ must now be invoked in order to translate this text file into a

format readable by lsim. The following command.

% circ circuit.ci circuit.ls

inputs the file circuit.ci and puts the resulting translated descrip-
tion in the file circuit.ls. This file will be read in the next sec-

tion to input the circuit description into lsim.

2.2. Interactive Simulation

Once a digital circuit has been specified and compiled using

cire, it is ready to be simulated. I1f lsim is invoked with circuit.ls

as an argument.

% lgim circuit.ls

-] 3=

the file circuit.ls is aesumed to be a previously compiled circuit

description and is read in to the simulator. At this point, ls2im out-

pute a message concerning the input file and the current s=imulated
time. outputs a prompt.

Simulator state input from file circuit.ls

Current simulated time = 0 units.

lsim>
and waits for an interactive command to be entered by the user. Some
of the more important.commands are those involved with describing the
inpute to the simulated circuit and the form of the output required.
The following commands set up these parameters for the current exam-
ple.

1sim> set 0 a.h

lgim> input b.h 0000000011111111 p

lgim> input clk.h 00001100 p
1sim> watch a.h b.h di.l di.h eclk.h dout.h dout.]

Isim> output 1
The first command establishes a static low level (i.e. "O") at the
primary input signal a.h. The second twe commands define periocdic
vaveforms to drive the primary input signals b.h and clk.h. The
waveforms generated by these commands are shown in Figure 6. The b.h
input has a period of 16 unitse and the clk.h input has a period of
8 units. The watch command tells the simulator which signals are to
be output on a periodic basis,» and the last command, output, specifies
that the output period i=s to be 1 unit. In this example, the default
unit delay model is used. Thus, delays through circuit componente are

each one generic time unit. The periode referred to in the input and

~14~

1
a.h

0

1
b.h

0

N I N B O A B

Figure 6. Input waveforms

o

output commands are also in terms of these generic units.

The status of all the signals being watched can be determined at
any time during the simulation through the use of the status coammand.
Figure 7 shous a sample terminal seesion that includes all of the com—
mands that have been issued up to the current time. The "x" indicated
a8 the logical state of the signals di.l, di.hs dout.h, and dout.l is
to signify that the voltage level of the signal is undefined. The
state of the other three signals was established by the previously
executed sot and input commanda. The numbers in the final column are
included to associate a signal with the appropriate coluan of the oﬁt-
put of a simulation run. Thie will be clarified in the next couple of

paragraphs.

Once the signals for the primary inputs have been established,
the simulation is ready to begin. The following two commands will run

the simulation for 32 time units, or 4 clock cycles with a clock

-15~

% lgim circuit.ls

Simulator state input from file circuit.ls
Current simulated time = 0 units.

Igim> set 0 &a.h

1sim> input b.h 0000000011111111 p

1sim> input clk.h 00001100 p

lgim> watch a.h b.h di.1 di.h clk.h dout.h dout.l
Izim> output 1

1gsim> status

a.h = 0 (watched) (1)
b.h = 0 (yatched) (2)
di.l = x (watched) (3)
di.h = % (watched) (4)
clk.h = 0 {(watched) (5)
dout.h = x (watched) (6)
dout.1 = x (watched) (7}
leim>

Figure 7. Sample terminal session

period (signal clk.h) of 8 units.

Isim> halt 32

Isim> start
The first command teille lgim to halt the simulation run at
time = 32 units. The second command initiates the simulation. The

output of the simulator is given in Figure 8.

The numbers found at the top of each column of output correspond
to the signals being watched. The correlation between the numbers and
the signal names can be determined by examining the output of the
status command given in Figure 7. The input waveforms from Figure B
can be seen in columns 1 (a.h}, 2 (b.h)» and 5 (elk.h). The remaining
signals can be seen to change 1 unit after their respective inpute

change. Signal! di.l1 changes 1 unit after b.h changes and di.h

-16=

lgin> start

1

units

N L

12
13

15
16
17
18
19
20
21

22

0

23
24

31

32 units.

Simulztion halted at time

1sim>

Simulator output

Figure 8.

i unit

change

Signals dout.h and dout.]

switches 1 unit after that.

The vertical orientation of the

goes high.

clk.h =signal

the

after

on

be printed

output is chosen to gimplify long outputs that are to

formg =and +to improve the portability of the system among

continuous

positioning

curser

standard terminals by not requiring any special

-17-

capabilities. An improvement that is planned ie to provide a graphic

output format similar to that provided by a digital logic analyzer.

At this point the user could proceed in a number of directions.
The current simulation could be continued by specifying another halt
command followed by a start command. the delay model could be changed
to either fixed delay or variable delay through the use of the init
command, the current state of the simulation could be stored in a disk
file with the save command, a previously saved simulation could be
input with the read command. or the seesion could be terminated with
the quit command. The details of all available options available for

specifying circuites to circ and for controlling simulations from

within lgim are discussed in detail below.
3. CIRCUIT COMPILER

This section describes the input to cire, the circuit compiler
used in conjunction with lsim. First a description is given of the
parameters that are specified about various parts of the circuit.

Then the input syntax for circ is presented.
3.1. Circuit Specification

The following information is supplied to cire. The input syntax

used to specify the information is described in the next section.

=]18=

Signals

Each signal im given a unique name for identification.
Components

unique name for identification

logic function
number of inputs (only for variable input gates)

names of input signals
names of output signals
output signal driving capability
timing information
louw to high, high to low propagation time
output enable time, output disable time
setup, hold time
Some of the above information has default values associated with the
logic function. but these may be overridden for individuasl components.
The logic functions that are available for defining circuits are
described in Appendix A, Along uwith the functions themselves. the

appendix gives the default values for the other parameters agsociated

with the function.
3.2. MNacro Definitions

Macro definitions are allowed in the circuit description
language. The macro circuit is described just a=s any other circuit,
with the exception that the macro must be given a name so that it can
later be specified as a component in a larger circuit. When referenc—
ing a macro,» the macro name is given as the logic function of the com-
ponent in place of one of the built-in functions. Macros may be
nested. as long as the referenced macro has been defined earlier.

Recursive macro definitions are not supported.

19

The macro facility is provided for two reascns. One, if the cir-
cuit congists of multiple copies of a group of components, macro
definitions can greatly decrease the guantity of user generated input
required to s8specify a circuit. This is often the case for digital
circuits. Two, the ability to define a large functional wunit as =
macro can help sinplify the specification of a large circuit by allou-
ing one to include an independently specified subsection of the cir-
cuit without concern for naming conflicts between the subsection and
the remainder of the circuit. This is analogous to the ability to use
the same name for more than one variable in block structured program-

ming languages.
3.3. Input Syntax

The following is a description of the input syntax of circ, the
¢ircuit compiler deeigned for use with lsim. The circuit description
ig divided into five sections. delay specifications, type definitions.
macro definitions, environment specification, and netlist description.
All identifiers in the circuit description must consist of a sequence
of letters, digitsy and the characters *.', *_', ‘[', *1', and *'7,
starting with a letter or the character '[', Comments begin with =2
‘#' and continue to the end of the line. The overall block structure

is as follows:

20

begin circuit
delay specifications
type definitions
macro definitions
environment specification
netlist description

end circuit:

The delay specifications and macro definitions are optional. Each of

the five sections is described in detail below.

The first section. delay specifications. associates a name with a
set of delay values. The name is later referenced when the delay
values are to be associated with component types and individual com—
ponenta. The syntax is:

begin delays

delayname = (low to high propagation times %

high to low propagation times %
enable times % disable times) timescale:?

(low to high propagation times %
high to low propagation times $
enable times $ disable times) timescale;

delayname

end delays;

where each of the four times may consist of:

minimum time., maximum time. fixed time

for the corresponding change. Not all four times need be specified.,

default conditions are interpreted as follows:

(a) -> (a a 0.0,0% 0.0,0)
(a $ b) -> {(a $b% 0,0,0% 0,0,0)
(a ¢ % c) -> (a ascégoc)
(a$b % c) -> (a$ b %c $c)

-]

The meaning of each time spacified ie somewhat self-evident. the Ilow
to high propagation timese refer to the time required for a low to high
trangition of a component output, the high to low propagation times
refer to a high to low transition. the output enable times refer to
the time required to leave a high impedance state. and the output dis-
able times refer to the time required to enter a high impedance state.

The time scale is one of the following:

as milliseconds
us microseconds
ns nanogeconde
pa picoseconds

The default scale is nanoseconds. The following conditions must hold

for the delay times:
minimun time $ fixed time < maximum time

I1f the fixed time is not given, it defaults to the maximum tiﬁa. lf
either the minimum or maximum times are not given, they default to the
fixed time. 1f only one time is given, all three times take the given
value. The above rules apply to &l] time specifications. low to high
and high to low propagation times, enabie times+ and disable times.,

and are checked by circ to ensure that they are mst.

The following delay specification is from the example circuit

described previously:

begin delays
comdel = (8,12,12 % 2,3,3)na3
memdel = {(4,6,6 ¢ 4,6.,6)ns;
end delays:

-2P=

It defines two delay specifications., called comdel and memdel. Comdel
indicatee a minimum louw to high propagation delay of 8 ns, a maximum
and fixed low to high propagation delay of 12 ns,» a ninimum high to
low propagation delay of 2 nsa, and a maximum and fixed high to low
propagation delay of 3 ns. The enable and dieable times all default
to 0 ns. Memdel has a2 minimum low to high and high to low propagation
delay of 4 ns, as well as maximum and fixed propagation delays ot

6 ne. Its enable and disable times also default to O ns.

The delay specifications given above provide sufficient informa—
tion for the simulator to model the circuit using a unit. fixed. or
variable delay model. The model that is actually used depends upon

the interactive commands given by the user during the simulation run.

The second section of the input to circ: type definitions., asso-
ciates the following information about a component type with a unique
name to identify the type:

logic function
number of inputs
setup and hold times

output driving capability
delay specification

The syntax of the type definition section is?

begin types
typename = (function. inputs, st=setuptime. ht=holdtime,
de=(high_drive_capability, low_drive_capability).
delayname)

typename = (function, inputs, st=setuptime, ht=holdtime,
de=(high_drive_capability. low_drive_capability).
delayname);
end types:

The parameters associated with a type definition are listed belou!

function reference to a built-in function
inputs nuaober of inpute (for variable input gates only)

st setup time

ht bhold time

dec output high and low current drive capability

delaynanmne previously defined delay specification

The only essential piece of information is the function. All other
parameters have a default value associated with the function. These

default values. along with a list of the available built-in functions,

are provided in Appendix A.

Again referring to the example described previouesly, the follow~
ing type definitions were made:
begin types
nmos_inv = (not. dc=(weak. strong). comdel):

nmos_nor = (nor. 2. dc=(uweak., strong), comdel};
dflip_flop = (dff, st = 3ns,» ht = Ilns. memdel);

end types:
There are three type definitions given in the above example. Nmos_inv
references the built-in function not., specifies a weak, or resistive.
high drive capability. specifies a strong low drive capability, and

references the previously defined comdel delay specification.

Nmos_nor referencee the nor built-in function. indicates that there
are to be two input signals to components of this type. and specifies
the same drive capability and delay specification as the nmos_inv
type. The dflip_£flop type definition references the built-in function
dff, a level sensitive D flip flop that retains the D input at its
outputs when the tlock input goes low if the setup and hold times are
met. It has a setup time of 3 ns» a hold time of | nsy» and references
the memdel delay specification. The drive capability for this type

defaults to stirong high and strong low.

The third section consists of macro definitions., Hacros are used
to associate a single name with a group of components. The syntax for

defining macros is as follows:

begin macro macroname
environment specification
netlist description

end macro}

begin macro macroname
environment specification
netlist description
end macro}
The environment specification and netlist description are syntacti-
cally the same as the sections described below. The environment

gpecification defines the inputs and outputs of the macro,. and the

netlist description defines the internal details of the macro.

The fourth section of the input to ¢irc is the environment

specification. This section identifies the primary inputs and outputs

~25-

of a circuit or a macro definition. The input syntax is as follous:

begin environment
inputs = (signalname, signalname, ...)3
outpute = (signalname, signalnamer ...)}
end environment?
Circ requires that all signale be driven by at least one component
output or be listed as primary inputs. An error message ie generated
if this requirement is not met. Although it is possible to s=et the

value of any signal. periodic input waveforms can only be specified

for primary inputs.

The final section is the netlist description. This is where the
individual components that make up the circuit or macro are specified
and their interconnections indicated. The type definitions given pre-
viously are referenced here and the following additional information
is given for each component:

unique name

names of component input signals
names of component ocutput mignals

The syntax for the netlist deecription is:

begin components
componentname = (typename.
inputs = {(signalname. sjignalname, ...)»
outpute = (signalname. signalname, ...)):

componentname = (typename.
inputs = (signalname, signalname, ...)»
outputg = (gignalname, signalnames, ...))¢

end components;

-26~

The typename can be either a type defined in the type definitions sec-
tion of the gircuit description or a macroname defined in the macro
definitions section. I[f it iB a macro. the input signals and output
signale refer to the primary inputs and outputs indicated in the macro
definition., 1[It is important for the number of inputs and outputs teo
correspond exactly with the number in the referenced type or macro,
otherwise an error will result., [f the netlist description is within
2@ macro definition, other macros can still be referenced as component
types, provided that the referenced macro has been previously defined.
In other words. no forward references are allowed when defining mac-

ros.

The following example illustrates the use of macros in describing
a circuit for input to circ. The circuit to be described., shouwn in
Figure 9(a), is an B bit even parity generater. The tuwo blocks of the
circuit that are surrounded by the dotted lines are the same, and are
therefore excellent candidates to be defined as a macro. The circuit
inside the blocks is shown again in Figure 9(b). The macro is given
the name "evenpar4"” to signify that it is a 4 bit even parity genera-
tor. The complete circuit description is given in Figure 10. The
components lxor and hxor are actually references to the macro even-
par4, and are expanded into the 3 components that make up the macro
during compilation by circ. The inpute and outputs listed with lxor
and hxor are placed into one to one correspondence with the signals
listed as inputse and outputs in the environment specification within

the macro definition.

—

(a) complete circuit

hxor
. ixorl
11____» P
i2
i3 ixore
m—| ey

ixor3

) =

(b) macro evenpar4

Figure 9. Eight bit parity generator

xorl
evenpar.h

-28~

Eight bit parity generator

begin circuit
begin delays
xordel = (10 % 10)ns;
end delays;
begin types
ttl_xor = (xor., dc=(strong, strong), xordel):;
end types:;
begin macro evenpar4
begin environment
inputs = (il,i2,i3.14);
outpute = (evenpl:
end environment:
begin components
ixorl (tt}_xor, inputs=(il,i2), outpute=(intl)):
ixor2 (ttl_xor, inputs=(i3.id4), outputs=(int2)):;
ixor3 = (ttl_xors, inputs=(intl.int2), outputs={(evenp)):
end components;
end macro;
begin environment
inputs = (d0.h,dl.h.d2.h.d3.h.d4.h,d5.h.d6.h.d7.0h)3
ocutputs = (evenpar.h)?
end environment:
begin components
lxor = {(evenpar4, inputs=(d0.h.dl.hyd2.h»d3.h)+ outputs={(lpar));
hxor = (evenparé4, inputs=(d4.h,d5.h.d6.h,d7.0h), outputs=(hpar));
xorl = (ttl_xor., inputs=(ipar.hpari. outputs=(evenpar.h)):
end components;
end circuits

Figure 10. Parity generator circuit description

There are a couple of things worth noting at this point that per—
tain to the use of macros. MNote that the components and signal lines
inside the macros are not labeled in Figure 89(a). Vhen the user
vishes to identify a particular point within a macro to the simulator,
the name is input by identifying the macro, typing a */’, and then

identifying the point within the macro. For example, the command

watch Ilxor/intl

=28~

tells lgim to watch the intl signal within the Ilxor macro. Unique
pointe within nested macros are identified by extending the above
notation with additional macro names separated by /' characters. The
signals listed in the environment specification of the macro are
referenced by the name under which they =are known in the circuit
description one level up:. where the macro is called and input and out-

put signal names are given.
4. INTERACTIVE CONTROL

The parametere used in controlling the simulated circuit fall
into two major categories, those that are fixed for the duration of a
gimulation run, and those that can be modified during the run. Fixed
parameters include the number of logical states used in the simula-
tions+ the delay model used in the simulation. and the resolution of
simulated time (the smallest increment of time representable during
the simulation). Modifying these parameters requires the circuit to
be reinitialized and the simulation to start again at time = 0. The
second category is the set of dynamically modifiable parameters.
These parameterg may change several times during a gingle simulation
run. They generally contrel the operation of the simulator: input
specification, output specification., traced signals. watched signals.

error reporting. forced signals and components, and data collection.

4.1. Fixed parameters

Parameters that are fixed for the duration of a simulation run:

30

Nuamber of logical atates
4 high» low, high impedance. undefined
(for use with unit or fixed delay model)
7 highs louw., high impedance. rising. falling.,
transition to/from high impedance, undefined
(for use with variable delay model)
Delay model
unit delay
fixed delay
variable delay

Time resolution

The unit delay model is used to test the functional accuracy of
the circuit, without concern for timing issues. All components are
simulated with 2 delay of 1 unit, where the unit is not associated
with any real time value. This model provides for the fastest execu-
tion time.» but provides only functional information about circuit per-

formance.

The fixed delay model is used when a more accurate timing model
ig desired, Components are modeled by a fixed time delay. for worst
cage analysis a maximum propagation delay would be used. The delay
can vary from component to component. and the low to high and high to

lou propagation delays can be different as well.

The most accurate timing model supported is the variable delay
model. Propagation delays through individual components are charac-
terized by a maximum and a minimum value. and the output =signal goes
to an intermediate logical state during the time interval between the

maximun and minimum propagation delays.

-3i-

There is a potential tradeoff between the execution time of the
simulator and the resolution of the simulated time clock. This is due
to the assumptions made about event distribution that were used to
speed up the event gqueue processing. WVith a very fine simulated time
resolution it is possible to defeat the assumptions, slowing down the
processing of the event queue and thereby elowing doun the simulation
as z whole. As long as the ratio of the time resolution to the max-
imum delay specification is somewhat less than 1000, the assumptions
should not be endangered and no performance degradation should result,.
For example, if the time resolution is specified at .1 ns, there
should be no problem with the above considerations as long as the max-
imum delay specification for components in the circuit is less than

100 ns=.

4.2. Simulation startup

In order to startup legim and initialize the simulation, the fol-

lowing command is given to the operating system.

% lgim circuit init

Circuit is assumed to be the output of the circ circuit compiler or
the result of a previously executed save command from within lgim.
Lsim will initially execute interactive commands from the file init if
present, as well as from the file .lsimrc in the user's home direc-

tory.

32
4.3. Interactive commands

There are a host of commands that can be interactively entered
during the saimulation. These commands are provided to control the
runtime operation of 1sim. They generally provide control over the
set of dynamically modifiable parameters associated with the simula-
tion. including input specification, output specification. tracing
gignals, watching signalss error reporting. forcing stuck-at condi-
tions on signals and components, and controlling data collection.
They also provide control over the fixed. or static. parameters
described previously. Commands are normally terminated with newline.
but can carry over to multiple lines by preceding the newline with a
‘\'., Vhen specifying a list of components or signals as arguments to
a command, the standard wildecard characters, "#' and "7', operate as
one would expect. All of the commande can be given through the use of
an indirect command file as well as directly from the terminal. The
commands are as followas
1. Alias command

alias

alias id

alias id command
Associate the string id with command so that id can subsequently be
used in place of command as an interactive input. When no arguments
are gpecified. the current list of aliases is reported. [f only id is

givens, the alias associated with id is reported. For example.

-33_

lgim> alias s Bet O

lgim> 8 a.h
will set the signal a.h to O.
2. Collect command

collect on

collect on file

collect out

collect out -p

collect out -¢c component ...

collect off

collect off -p

collect off -c component ...
Turn the data collection facilities on or off. or output data collec-
tion results, depending on the argument given. Data collection is
initially off. This is useful for monitoring small parts of the simu-
lation without clouding the data with uninteresting portions of the
task,» such as reading in the circuit description from a disk file. 1If
file is sgpecified, raw data is output to the file suitable for input
to the S statistical analysis package. The "-p" flag causes communi-
cation between partitions to be reported. The "-c” flag causes the
reporting of the number of evente processed for each component listed.

The two flags can be combined in one command.

3. Cont command

cont

cont time
Continue the simulation for the specified time. If time is not speci-
fied. the time given with the last invocation of the cont command is

assumed. This command allows the user to easily run the simulation

_34-

for a specific amount of time in a repetitive fashion, as is often the
case when simulating clocked circuits.

4. Debug command

debug on
debug off

Turn the debugging output on or off., depending on the argument given,
The initial value is off. The output supplied includes messages con-
cerning events being scheduled, retrieval of evente from the event
queue. and a variety of other messages that are conditional on compile
time suitches.

S. Force command

force state signal ...
force state -i component/inp ...
force state —o component/outp ...
Force the level of the specified signals. component inputs, or com—

ponent outputs to the given logical state. This simulates a stuck-at

condition for fault simulation. For example.,

lgim> force | a.h

puts the a.h signal in a stuck-at-1 state. The logical state of thie
signal now cannot be modified by the simulator until it is explicitly
freed using the free command described below. Component inputs and
outputs are numbered starting with 1. so the output of a gate with
only a single output would be specified by component/l. The "-i" and
"-o" <gignify that the identifiers to follow are component inputs and

ocutputse, respectively. They do not have to be immediately after the

-35_

state specification, but may follow a list of signale. A "-s" option
is also available, to Bignify that the identifiers to follow are sig-
nals. This is to allow signals to follow component inputs and outputs

on the command line. For example,

=g

force 0 ~i £

1]

force to state 0 {—-
component input to follow {----—-

component name {-———-——-—-

component input #2 <

signal to follow <

gignal name <

—— mm ms ey

s
~
i IE LI X
1

would put both the second input to the component f£f1! and the signal
a.h in a stuck-at-0 state. Wildcarding is not allouwed for component
inputs and outputs. but is supported for signals.

6. Free command

free -i %

free -o *

free signal ...

free —-i component/inp ...

free —o component/outp ...
Free the specified signals. component inputs. or component outputs
from their stuck-at fault condition as established by the force com-

sand. Thie allows the simulator to set their logical state. The "-

i"» "-o", and "-8" optionse work as in the force command. For example,

free -0 notl/sl
component output to follow {--- ' :

component name {-—-=-—--
component output #! {--——=—-—-

frees the first output of component noti from a previously specified

35

atuck-at condition., Specifying "*" as the argument frees all the com-
ponent inputs or outputs that are currently being forced. This is the
only wildcarding allowed for component inpute and outputs. Signal
wildearding is fully supported.

Z. Halt command

halt time

Halt the simulation at the specified simulated time. This command
allous the user to repain control of the simulation at some predeter-
mined simulated time.

8. Init command

init

init delmodel

init time

init delmodel time
Reinitialize the simulator state. setting gll gignals to
"x" (undefined) except the primary inputs. Delmodel must be one of
"unit". "fixed", or "variable". 1If specified, it i® used as the delay
model in further simulation. The initial delay model is unit delay.
Time is used to set the resolution of the simulated time clock. the
initial wvalue of which is 1 ns. This is the command that sets the
fixed parameters described in the previous section. Note that these

parameters can only be changed when the simulator state is being rein-

itialized. For example,
18im> init variable 100 pz

reinitializes the simulator, indicates the variable delay model is to

-37-

be wused. and s8pecifies the resclution of the =imulated clock as
100 ps» or .1 ns.
9. Input command

input signal statelist

input signal statelist p

input signal statelist time

input signal statelist p time
Specify periodic input for signal. Statelist is the sequence of logi-
cal states for the signal to traverse. A repetition factor may pre-
cede a state in the list if it is delimited by parentheses. If the
"p" is piven, the sequence of states is assumed to be repeating. This
is the mechanism used to specify periodic input waveforms. guch a=

clock signals. Time is the time associated with each state in the

lipt. the defauit value i 1 ns. For example.

input phil (489}10(49)00
input phi2 (49)00(48)10

Pt
]
|
i
1
|
]
|
I
I
1

signal name <{---- :
repetition factor
logical state
logical state

<
<
repetition factor <
<
<
<

_— ms mw ma ==

am e mww mw ww o=

logical state
logical state
indicate periodic input

T — e I = |

Defines two periodic inputs on the signals phil and phi2, each with a
period of 100 ns. The signzl phil is high for 49 ns and then low for
51 ns. The signal phi2 is low for 50 ns. high for 49 ns. and then low
for 1 ns. These two signals could then be used as 2 10 HHz two phase
non-overlapping clock input. The signal must be a primary input. one

of the signals given in the environment specification'of girc.

=38=

10. Link command

link file
link file entrypoint ...

Dynamically link the specified file to lgim so that the entrypoints
can be called using the run command. 1f no entrypoints are specified.
" gin” is assuned.

1. Noerr command

noerr signal ...
noerr —¢c component ...

Ignore error messages concerning the given gignals or components. The
"-c* signifies that the identifiers to follow are components. It does
not have to be immediately after the noerr command, but may follow a
liat of signals. A "-s" option is also available, to signify that the
identifiers to follow are signala. This is to allou signals to follow

components on the command line. For example.
lgim> noerr ~c #

turns off error reporting for all components in the circuit? spike
errors. setup time violations, and hold time violationa are not longer
reported to the user when they occur.

12. Output command

output time
output -t time
output otff

Periodically output the logical state of watched signals. The peried

-39-

is set by the input time. If the "-t* option is given. output is
assumed to be going to the termimal &and the column headers are
repeated every 24 lines. 1f the argument is "off", periodic output is
stopped.

13. Quiet command

quiet on

quiet off
Turn quiet mode on or off, depending on the argument given. Quiet
mode determines whether the commands executed as the result of a

source command or the third argument to lsim are echoed to the termi-

nal,. The initial value is off., echoing takes place. This command is
useful when using long indirect command files and it is annoying to
watch all the output that is generated.

14, Quit command

quit

Exit lsim and return to the operating system.

I

Read command

read file

Input a circuit description from file. The file should either be the
output of the cire circuit compiler, or the result of a previously
executed save command.

16. Repterr command

-40-

repterr 2ignal ...

repterr —¢ component ...
Report error messages concerning the given signals or components.
Thig is the default condition for every circuit location. The repterr
command is provided to negate the affects of a previously specified
noerr conmand. The "-c" and "-s" options work as in the noerr com-
mand.

17. BRun command

run
run entrypoint

Execute the code at the specified entrypoint, If the entrypoint is
not given, " _gin" is used. 1t is assumed that the entrypoint was pre—
viougsly linked to lsim using the link command.

1i8. Save command

save file

Retain the current state of the simulator in file. Thig file can
later be input with the read command to continue the simulation at the
present point.

19. et command

set state signal ...

set state -c component/outp ...
Set the logical state of the specified signals or component outputs to
the given input state. The signals are only set once and can be over-

ridden at a later time by the simulator if the wsignal epecified Iis

—41_

driven by one or more component outputs. The component outputs can be
overridden if the inputs to the component change state. Signals do

not have to be primary inputs as in the input command. For example.,
lgim> set x ena.h dl.h

sets the signals ena.h and di.h to the x (undefined) state. If either
of the two signals are connected to the output of a component and the
component changes state, the signal is not forced to the wundefined
states but instead will follow the component output. Component out-
puts are numbered starting with 1. so the output of a gate with only a
single output would be specified by component/i. The "—c" gignifies
that the identifiers to follow are component outputs. It does not
have to be immediately after the state specifications but may follow a
list of signals., A "-g" opticn is also available, to signify that the
identifiere to follow are signals. This is to allow signals to follow
component outpute on the command line. Wildcarding is not allowed for
component cutputs, but is supported for signals.

20. h command

sh

Invoke an interactive version of the shell. 1£f the environment vari-
able SHELL cannot be found. /bin/cgh is invoked. This command is use-
ful only in the UNIX environment. and a compile time switch is

included to enable or disable the execution of sh.

21 Show command

42

shou gignal ...
ghow —¢ component ...

Output the logical state of the specified signale and/or components.
The "-c" signifiea that the identifiers to follow are components, It
does not have to be immediately after the show command. but may follow
a list of signals. A "-s" option is also available, to signify that
the identifiers to follow are =signals. This is to allow &ignhals to
follow components on the command line.

22. Source command

source file

Execute interactive commands from file. If the quit command is not
present in the indirect command file» return to interactive input on
completion. The source command can be nested.

23. Start command

gtart

Initiate the simulation. The simulation stops when the simulated time
specified in a halt command is encountered, or the event queue becomes
empty. The simulation can be interrupted with the interrupt signal in
the UNIX environment., Usually this is a control-C typed from the con-
trolling terminal.

24, Status command

status

Qutput the status of ail signals that are being traced, watched, or

-43-

forced.

25. Step command

step

Single step the simulation. Perform one iteration of the simulation
loop. processing one event from the event gueus.

26. Time command
time

Output the current simulated time. Time is unitlems if the current
delay model is unit delay. otherwise the units depend on the resolu-
tion of the simulated time clock.

27. Toggle command
toggle signal ...

For each siénal gpecified, if its state iz "1" set it to "0" and if
its state is "O" set it to "1".

28. Trace command
trace signal

Add the list of signals specified to those being traced. A traced
signal causes an output message to be generated whenever the logical
state of the signal is modified.

29. Unalias command

unalias id

=f =

Remove id from the list of aliases.

30. Untrace command

untrace signal ...

Remove the list of gignals from those being traced.

31 Unwatch command

unwatch signal ...

Remove the ligt of signals from those being watched.

32. Watch command

watch signal ...

Add the list of signals specified to those being watched. The logical
state of watched signale is output on a periodic basis under control
of the output command. The position of a signal in the list of
watched signals can be set by specifying a "-number” option before the

signal name. The default position is the end of the list.

4.4, QOutput Format

The output format is one of the major determining factors in
deciding whether any program is truly useful or is more of a hindrance
than 8 help. With this in mind, several coptions have been provided to
give the user some flexibility in the quantity and format of output

available from the simulator.

There are two techniques that can be used to follow the logical

state of signals in the circuit. The first technique, as demonstrated

B L=

in earlier, uses the watch and output commands to control the periodic
output of signals that are of interest. Figure 11 gives a more illus-
trative example that demonstrates the rising and falling logical
ptates along with the previouely seen high. low.» and undefined states.
Note that all of the logical states other than high and low are
printed in the center of the column and identified with the appropri-

ate symbol. The column headers are repeated every 24 lines because of

the -t option given in the output command. telling lsim that the out-
put is to a terminal. Thie insures that the column headers are on the
terminal screen during the entire run. The choice of a vertical
orientation for the =signal traces was based on twe major considera-
tions. The first was the ability to output long printouts on continu-
ous forms in an orderly manner. !f the standard output of the lsim
program is redirected to a file or the printer» there is no bias
toward the output being limited to a 24 line by B0 column screen.
Additiconal signals can be watched., spreading the output across 132
columns. and the column headers will not be repeated if the -t switch
is left off of the output command. The second consideration that
motivated the vertical output format was a desire to maintain the por-
tability of the program from one terminal to the next. A horizontal
scroll would require cursor positioning capability on the part of the
terminal that is not standard for all terminals. The vertical format

dees not require any non-standard terminal capabilities.

The second technique that is used to follow the logical state of
signals utilizes the trace command. After a signal has been listed as

being traced, every time that the state of the signal changes an

-46-

% lgim circuit.ls

Simulator state input from file circuit.ls

Current simulated time
lgeim> init variable
1gim> set O a.h

Q0 units.

1sim> input b.h (28)0rrrr(28)L£££f p
Igsim> input clk.h (16)0(8)1(8)0 p

l12im> watch a.h b.h di.l di.h clk.h dout.h dout.l

lgim> output ~t 1 ns
leim> status

a.h
b.h

= 0 (watched) (1)

(2)
x (watched}! (3}

0 (watched?

=

di.l

4)
(5)
(6)
{7)

= x (watched)
= Q0 {uwatched)

di.h

c¢lk.h

x {(watched)
= ¥ (watched)

dout.h

dout.l

l2zim> halt 64 ns
isim> start

ns

O NMITWWO

M~

12
13
14
15
16
17
18

20

21

Figure 11. Periodic output

-47-

ns

22
23

-~

o000

OO0 O0

24
25
26
27

-

28

29

30

31

32
33
34

35

36

37

42
43
ns
44

45
46
47

48
49
50
51

52

1:0

1:10

1:0

1i0
110

Bl

62

63

Simulation halted at time = 64 ns.

l2in>

Figure 1l. Periodic output (cont)

48

output statement is printed notifying the user that the change has
taken place. This technique is useful for keeping track of a large
number of infrequently changing signals when watching them all would
cause wraparound on an output device limited to 80 columns. A esample
of the output generated by the trace command is given in Figure 2.
The same inputs are used to drive the circuit as in the periocdic out-
put example earlier. The trace output is not nearly as easily read-
able as the periodic output, but can be useful if a large number of

signals sare to be monitored.

There is no restriction on the number of signals that can be

watched or traced. The usefulness of the periodic ocutput is seriously

% lsim circuit.ls

Simulator state input from file circuit.ls
Current simulated time = O units.

1sim> init variable

lsim> set O a.h

1sim> input b.h (28)0rrrr(28)1££££f p

1sim> input clk.h (16)0(8)1(B)0 p

1sim> trace dout.h dout.l

Igim> status
dout.h

dout.1

Isim> halt 64 ng
l1sim> start

x (traced)}
% (traced)

It n

Signal dout.h modified from % to O at time = 22 ns.
Signal dout.l modified from x to | at time = 22 ns.
Signal dout.h modified from O to r at time = 52 ns.
Signal dout.1 modified from 1 to £ at time = 52 ns.
Signal dout.h modified from r to I at time = 54 ns.
Signal dout.l modified from £ to O at time = 54 ns.
Simulation halted at time = 64 ns.

18im>

Figure 12. Trace output

-49-

degraded. however, if enough signale are watched to cause the output
lines to wrap around. There is no reason why some signals could not

be watched uhile others are traced.
5. PROGRAMMING INTERFACE

In addition to the interactive interface. lsim supports a pro-
gramming interface designed to allow the generation of test vectors
and running of the simulation in an automated fashion. The additional
code supplied by the user is linked into lsim at run time using the

link interactive comwand and is initiated with the run command.

There are three header files that are needed when writing code to
be linked to lsim, they are "types.h", "mwacros.h", and "lsim.ext.h".
The calls available are as follous:

1. Sntor

struct signaltype #*sntor(name)
char #*name:

Given a signal name, sntor returns a pointer to the signal record or
NULL if it cannot find the signal.

2. Trace

int trace(signal)
struct signaltype *signals

Given a signal pointer, trace enables the tracing of the signal. TRUE
is returned if successful., FALSE is returned if the signal cannot be
found or is already being traced.

3. Untrace

50

int untrace(signal)
struct signaltype #signal:
Given a signal pointer. untrace disables the tracing of the signal.
TRUE is returned if successful, FALSE is returned if the signal cannot
be found or ig not currently being traced.

4, Set

a— =

int set(signal.state,time)
struct signaltype *signal’
int state,time:.
Given a gignal pointer, a state, and a time, set schedules an event to
set the signal to the state at the given time. The state must be from
a list of provided states, The time is in picoseconds. [f there is
no problem with the input. the scheduling takes place and TRUE is

returned., otherwise FALSE is returned.

2. &Start

-

struct signaltype #start()

Start initiates the simulation. [t returns a pointer to a mignal that
indicates which traced =signal changed its value. NULL is returned
when the simulation terminated due to a HALTRUN event or an empty
event queue.

6. Halt

int halti(time)
int times

Given a time., halt schedules a HALTRUN event for the given time. 1

the input time is 1less than the current time, FALSE is returned.

Otheruvise,» TRUE is returned.

7. Cont

struct signaltype #cont(time)
int time:;
Cont combines the halt and start calls into one entry point. A HAL-
TRUN event is scheduled for crtime+time and the simulation is ini-
tiated. Cont returns a pointer to a signal that indicates which
traced signal changed its valua. NULL is returned when the simulation
terminated due to a HALTRUN event or an empty event queue.
B. Force s
int force_s(signal.state)
struct signaltype *signal’
int state:
Given a signal pointer and a state. force_s establishes a stuck-at
condition on the gmignal. The state must be from a list of provided
states.
8. Force i
int force_i(comp.conn,state)
struct comptype *comps
int conn.gstate;
Given a component pointer. input connection. and a state. force_i
establishes a stuck-at condition on the component input. The state
must be from a list of provided states.

10. Force o

_52—

int force_o(comp,conn.s8tate)
struct comptype ¥comp:
int conn.,state;’
Given a component pointer. output connection, and a estate. force_o
establishes a stuck-at condition on the component output. The state

must be from a list of provided states.

11. Free s

int free_s{signal)
struct signaltype #signal;

Given a signal pointer, free_s eliminates any stuck-at conditions that
existed on the =ignal.

12. Free i

int free_i(comp.conn)
struct comptype ¥comp’
int conns

Given a component pointer and input connection, free_i eliminates any
etuck-at conditions that existed on the component input.

13. Free o

int free_o(comp,conn)
struct comptype #*comp;
int conn;

Given a component pointer and output connection. free_o eliminates any
stuck—at conditions that existed on the component output.

14. Command

int command{str)
char #str;

53

Command allows the programmer to use any of the interactive commands
by providing a text string containing the command. TRUE is returned

if the command is 3 valid command. FALSE is returned otherwise.

6. DEBUGGING TOOLS

As a help in debugging both the connectivity of circuits and the
operation of the simulator itself, the lsread state debugger is avail-

able. Vhen invoked with the following format.
% leread circuit

the circuit description specified is read in and a human readable ver-
gion is output to stdout. Included in this description is the connec-
tivity of the circuit. the state of each signal and component, the

event queue. and the trace 1list (the list of items being traced.

watched:, or forced).

Appendix A

Component Types Available with Lsinm

The available compeonents are:

and AND gate

Inputs: variable (default 2}

Outputs: 1

Default delay: (1.,1,1 % 1,151 % 0,0,0 % 0,0,0)nm

Qutput driving capability?! function of component ({(default
atrong high and low)

Bugs: None known.

or OR gate

Inpute: variable (default 2)

Outputs: 1

Default delay: (1,1.1 % 1,1, $ 0,0,0 % 0.0,0)ns

Output driving capability: function of component
strong high and low}

Bugs: None known.

(default

nand NAND gate

Inputs: variable (default 2)

Outputs:? 1

Default delay: (ls1,1 % 1.1,1 % 0,0,0 & 0,0,0)nnB

Output driving capability: function of component (default
strong high and low)

Bugs: None known.

nor NOR gate

Inputs: variable (default 2)

Outputs: 1

Default dEIQY: (1.1,1 ¢ 1,1.,1 ¢ 0,00 % G,0.0)nm

Output driving capability: function of component (default
strong high and low)

Bugs: None knoun.

-55-

exclusive OR gate

xor
Inputse: 2
Outputa: 1
Default delay: (1.1.1 % 1,1,1 % 0.0,0 % 0.0,0)ns
Output driving capability: function of component (default
strong high and low)
Bugs: None knoun.
not NOT gate
Inputs: 1
Outputss: 1
Default delay: {(l1.1,1 % 1+1,1 % 0,0,0 % 0,0,0)n8
Output driving capabilityd! function of component (default
strong high and low)
Bugs: None known.
buff non-inverting buffer
Inputs: |
Outputs: 1
Default delay: {}l,1.,1 % 1.,1.1 ¢ 0,0,0 % 0,0,0)ns
function of component (default

Output driving capability?

strong high and low)

Bugs: None known.

dff

etdff

level sensitive D flip flop

Inputs: 2 (¢clock=1l, data=2)
Outputs: 2 (true=l. complementead=2)
Default delay= {l1+1+1 % 1,1+1 % 0:.0,0 ¢ 0,0,0)n\s

Output driving capability: function of component

strong high and low)
Note: Output follows input when clock is high,

latched when clock goes low.
Buge: None knowun.

positive edge triggered D flip flop

Inputs: 2 (clock=l, data=2)

Qutputs: 2 (true=l, complemented=2)

Default delay: (l,1.1 ¢ 1,1-1 % 0,0,0 % 0,0,0)ns

Dutput driving capability: function of component
strong high and low)

Note: Input is latched when clock goes high.

Bugs: None known.

(default

input is

(default

-56-

rsff RS flip flop

Inputs: 2 (set=l, reset=2)

Ouvtputs: 2 (true=l, complemented=2)

Default delay: (1.1.,j % 1.1,! % 0.0.0 % 0,0.0)ns

Output driving capability: function of component (default
strong high and low!}

Bugs: None knoun.

jkEif JK flip flop
Inputst: 3 (clock=l, J=2, K=3)

Outputs: 2 (true=l, complemented=2)
(1,11 % 1.1»1 % 0,0,0 & 0,0.0)nm

Default delay:
Output driving capability: function of component
strong high a&nd low)
Note: Input is latched when clock goes high.
Bugs: None known.
jkreff JK flip flop w/set reset
Inputs: S5 (clock=1l., J=2, K=3. Bet=4, reset=5)
Outputs: 2 (true=l, complemented=2)
Default dEIEyz (1.1.,1 ¢ 1,1,1! % 0,0,0 % 0,0,0)18
Output driving capability: function of component
strong high and low)
RS inputs

Note: JK inputs are latched when clock goes high,

are asyncronous.
Bugs: None known.

passtran n channel bidirectional pass transistor

Inputs: 2 (gate=1, source=2)

Qutputs: 1 (drain)
Default delay: (0,0,0 $ 0,0.0 % 1,1,1 & 1,1,1)ns

Output driving capability: function of input signal
Note: Input #2 and output #1 are treated the same., both
actually 1i/0 connections.
80 gpike errorg are not checked for.

Bugs: None known.

{(default

(default

It is not an inertial gate.

-57-

pptran p channel bidirectional pass transistor

Inputs: 2 (gate=l, source=2)

Outputs: 1 (drain)

Default delay: (0.0,0 $ 0.0,0 % 1,1,} % 1,1,1)n\

Output driving capability: function of input signal

Note: Input #2 and output #1 are treated the same.
actually i/0 connections.
80 spike errors are not checked for.

Bugg: None known.

unptran n channel unidirectional pass transistor

Inputs: 2 (gate=i{, source=2)

OQutputs: 1 (drain)
Default delay: (0.0.0 % 0:,0,0 ¢ 1,1,1 % 1+1:1)n8

Qutput driving capability: function of input signal

Note: This component will not help detect sneak paths. it
unidirectional only.
Bugs: None knoun.
upptran p channel unidirectional pass transistor
Inputs: 2 (gate=1, source=2)
Qutputs: 1 (drain)
Default delay: (0,0.0 & 0,0.0 % 1,1.,1 & 1,1,1)ns
Output driving capability: function of input signal
it

Note: This component will not help detect snezk paths,

unidirectional only.
Bugs: None knowun.

resistor registor

Inputs: |1
Outputs: 1
Default delay:
Output driving capability!
weak high and low)

(1.1,1 $ 1.1,1 ¢ 0:+0:0 % 0,0,0)nns

Note:
ly i/0 connections.

spike errors are not checked for.
Bugs: None knoun.

both are
It i not an inertial gate.

is

is

function of component (default

Input and output are treated the same. both are actual-
It is not an inertial gate, =o

-58_

linedelay line delay component

Inputs: 1

Qutputs: |
Default delay: (1.1 % 1+1,1 % 00,0 % 0,0,0)ns
Output driving capability: function of input signal

Note: It is not an inertial gate, o spike errors are not

checked feor.
Bugs: None known.

arbiter arbiter component

Inpute: 2

Outputs: 2
Default delay: (l.,1.,1 % 1.1.1 ¢ 040.0 % 0.0,0)n8
Output driving capability: function of component
gtrong high and low).
Bugs: Variable delay not tested.

roneously reported.

(default

Spike errors might be er-

5G9

Appendix B

ldentifiers and Reserved Vords

An identifier is a string of the following characters:
a-z A-Z 0-9C 1. _°

It mugt begin uwith 2 letter or the character "[" and muet not be one of
the regerved words. The reserved words are as follows:!

begin

end
circuit
delays
types
macro
environment
components
ns

us

ns

ps

inpute
outputs
strong
weak

st

ht

de

CIRC(1WW) UNIX Programmer's Manual CIRC{1WL)

NAME
circ — circuit compiler for digital logic simulator

SYNOPSIS
circ infile [outfile 1

DESCRIPTION
Circ inputs a textual circuit description from infile and generates a
ciruit description in gutfile suitable for reading by lsim. Infile can
be a “=" to indicate that input is to come from the standard input. If
outfile is not specified, standard out isc assumed.

AUTHOR
Roger Chamberlain

SEE ALSO
lsim(1WU) » lsread(1WU) ., lscnt {(1WU)
R. D. Chamberlain., Lsim User Manual. Tech Rep. WUDS-86-1. Dept. of Comp.
Sci.» Washington Univ,. St. Louis, MO.
R. D. Chamberlain, Lsim: A Gate-Switch Level Logic Simulators M. S.
Thesis. Dept. of Comp. Sci.. Tech Rep. WUCCSD-17985-13. Comp. and Comm.
Res. Center. Washington Univ.. St. Louis. MO.

BUGS

There are a few things that are supported in lsim that the input
language to circ is not robust enough to handle.

¢ tufF

with

Hon 15 B pxtes
fined o it note

Printed 1/13/87 17 July 1984

LSCNT (1WU) UNIX Programmer's Manual LSCNT (1 WL

NAME
lscnt - component count for digital leogic simulator

SYNOPSIS
Iscnt filename

DESCRIPTION
Lscnt inputs a circuit description from filename and generates a count
of all the components which is sent ta stdout.

AUTHOR
Roger Chamberlain

SEE ALSO
Isim(1WU), circ(1W), lsread(iWl)
R. D. Chambetlain, Lsim User Manual. Tech Rep. WUCS-86-1. Dept. of Comp.
Sci.» Washington Univ.. St. Louis. MD.
R. L. Chamberlain, Lsim! A Gate-Switch Level Logic Simulator. M. S.
Thesis, Dept. of Comp. Sci.. Tech Rep. WUCCSDH-1985-13. Comp. and Comm.
Res. Center, Washington Univ., St. Louis. MO,

BUGS

If the circuit description file is not well formed. nothing will be out-
put.

Printed 1/13/87 17 July 1986

LEIM(1WU) UNIX Programmer®*s Manual LSIMCLWWL

NAME

Isim - digital logic simulator
SYNOPSIS

Isim [circuit [init 1]
DESCRIPTION

Lsim is a digital logic simulator that models circuits using a discrete
event simulation algorithm. It supports unit. fixed. and variable delay
models. Signal levels are represented by one of seven logical states:

high

low

high impedance

undefined

rising

falling

transition to/from high z

Lo i Y T 2t R o I o

The last three of which are only significant when using the variable
delay model.

Lsim inputs a circuit description from the file circuit and interac-
tively simulates the circuit. Circuit should either be the output of
the girc circuit compiler or the result of a previously executed save
command from within lsim. Lsim will initially execute commands from the
file jnit if present. as well as from the file .lsimrgc in the user's
home directory.

Commands are normally terminated with newline. but can carry over to
multiple lines by preceding the newline with a *\’. When specifying a
list of components or signals as arguments to a command. the standard
wildcard characters, "' angd ‘7', operate as aone would expect. The fol-
lowing commands are recognized interactively from the terminal as well
as in the files init and .lsimrc.

alias

alias id

alias id command
Associate the string id with command so that id can subsequently
be used in place of command as an interactive command. When no
arguments are specified. the current list of aliases is reported.
If only id is given. the alias associated with id is reported.

collect on

collect on file

collect out

collect out —-p

tollect out -c component ...
collect off

coellect off —p

Printed 1/13/87 1B November 1786 1

LSIMC1WL)

UNIX Programmer's Manual LSIM(1WWL

collect off -c component ...

cont
cont

debug
debug

force
force
force

free
$ree
free
free
free

Printed 1/1

Turn the data collection facilities on or off, or output data coi-
lection results., depending on the argument given. Data collection
is initially off. 1If file is specified, raw data is output ta the
file suitable for input to the S statistical analysis package.

The "-p" flag causes communication between partitions to be
reported. The "-c" flag causes the reporting of the number of
events processed for each component listed. The two flags can be
combined in ane command.

time
Continue the simulation for the specified time. If time is not
specitied. the time given with the last invocation of the cont

command is assumed.

on

off

Turn the debugging ouftput on or off. depending on the argument
given. The initial value is off. The output supplied is probably
ungdeciphetable unless you understand the internals of the simula-
tor,

state signal ...

state —i component/inp ...

state —o component/outp ...

Force the level of the specified signals. component inputs. or
component outputs to the given logqical state. This simulates a
stuck—at condition for fault simulation. Component inputs and
outputs are numbered starting with 1. so the output of a gate with
only a single output would be specified by component/1. The "—i"
and "-o" signify that the identifiers to follow are component
inputs and outputs, respectively. They do not have to be immedi-
ately after the state specification. but may follow a list of sig-
nals. A "-s" option is alsp available, to signify that the iden-
tifiers to follow are signals. This is to allow signals to follow
component inputs and outputs on the command line. Wildcarding is
not allowed for companent inputs and outputs. but is supported for
signals.

-3 *

signal ...

-i component/inp ...

-0 component/outp ...

Free the specified signals, component outputss or component inputs
from their stuck—at fault conditien. This allows the simulator to
establish their logical state. The "-i", "-o", and "-s" opticns
work as in the force command. Specifying "#" as the argument
frees all the romponent imputs or outputs that are currently being
forced. This is the only wildcarding allowsd for compenent inputs
and outputs., 8Signal wildcarding is fully supported.

3/87 iB November 1986

LESIMO1WL) UNIX Programmer's Manual LSIM1WLH

halt time
Halt the simulation at the specified simulated time.
init
init delmodel
init time

init delmodel time
Reinitialize the simulator state, setting all signals to
x (undefined) except the primary inputs. Delmodel must be one of
"unit", "fixed", or "variable". If specified. it is used as the
delay model in further simulation. The initial delay model is
unit delay. Time is used to set the resolution of the simulated
time clocks the initial value of which is 1 ns.

input signal statelist

input signal statelist p

input signal statelist time

input signal statelist p time
Specify periodic input for signal. Statelist is the sequence of
lpgical states for the signal to traverse. A repetition factor
may precede a state in the list if it is delimited by parentheses.
If the p is given, the sequence of states is assumed to be repeat-
ing. otherwise the final state is maintained. Time is the time
associated with each state in the list, the default value is 1 ns,.
Signal must be a primary input.

link file

link file entrypoint ...
Dynamically link the specified file to lsim so that the
entrypoints can be called using the run command. If no
entrypoints are specified, "_simn" is assumed.

noerr signal ...

noerr ~c campohent ...
Ignore error messages concerning the given signals or components,
The "-—c" signifies that the identifiers to follow are components.
It does not have to be immediately after the poerr command. but
may follow a list of signals. A "-s” option is also available. to
signify that the identifiers to foullow are signals. This is to
allow signals to follow components on the command line.

output time

output -t time

output off
Feriodically output the logical state of watched signals. The
period is set by time. If the "-t" option is given, output is
assumed to be going to the terminal and the column headers are
repeated every Z4 lines. [+ the argument is off, pericdic output
is stopped.

quiet on

Frinted 1/13/87 18 Noverber 1986 3

LSIM(1WL) UNIX Programmer®s Manual LSIM(1iW)

quiet off
Turn quiet mode gn o+ off. depending on the argument given. Ruist

mode determines whether the commands executed as the result of a
source command or the third argument to lsim are echoed to the
terminal. The initial value is off, echoing takes place.

quit
Exit lsim and return to the Shell.

read file
Input a circuit description from file. The file should either be

the output of the circ circuit compiler. or the result of a previ-
ously executed save command.

repterr signal ...

repterr -c component ...
Report error messages concerning the given signals or components.
This is the default condition for every circuit location. The
repterr command is provided to negate the affects of a previously
specified pnoerr command. The "-c" and "-s" options work as in the

noerr command,

run
run entrypoint
Execute the code at the specified entrypoint. If entrypoint is not
given. "_sim" is used. It is assumed that entrypoint was previ-
ously linked to lsim using the link command.

save file
Retain the current state of the simulator in file. This file can
later be input with the read command to continue the simulation at

the present point.

set state signal ...

set state -c companent/outp ...
Set the logical state of each of the given signals or comoonent
outputs to state. The signals are only set once and can be over-—
ridden at a later time by the simulator if the signal specified is
driven by one or more companent outputs. The component outputs
can be overridden if the inputs to the component change state.
Component outputs are numbered starting with 1. so the first
(true) output of a d flip flop would be specified by component/1.
Thig is the sam= as in the force command. The "-c" signifies that
the identifiers to follow are component outputs. They do not have
to be immediately after the state specification. but may follow a
list of signals. A "-s" option is also available, to signify that
the identifiers to follow are signals. This is to allow signals
to follow component cutputs on the command line. Wildcarding is
not allowed for component outputs. but is supported for signals.

sh
Invoke an interactive version of the Shell. If the environment

Frinted 1/13/87 18 November 1986 4

LSIM1WW) UNIX Programmet's Manual LSIM1W)

variable SHELL cannot be found. /bin/csh is invoked.

show signal ...

show —c component ...
Output the logical state of the specified giqnals and/or com—
ponents. The “—c” signifies that the identifiers to follow are
components. It does not have to be immediately after the ghow
command, but may follow a list of signals. A "-s" option is also
available. to signify that the identifiers to follow are signals.
This is to allow signals to follow components on the command line.

source file
Execute interactive commands from file. If the guit command is not
present in the indirect command file, return to interactive input
on completion. The sgurce command can be nested.

start
Initiate the simulation. The simulation stops when the simulated

time specified in & halt command is encountered. or the event
queue becomes empty. The simulation can be interrupted with the
interrupt signals: typically control-C from the controlling termi-
nal,

status
Dutput the status of all signals that are being traced. watched,

or forced.

step
Single step the simulation. Perform cne iteration of the simula-

tion loop, processing one event from the event gqueue.

time
Output the current simulated time. Time is unitless if the
current delay model is unit delay, otherwise the units depend on

the resolution of the simulated time clock.

togqqle signal ...
For each signal specified, if its state is "1* set it to "0" and
if its state is "0" set it to "1".

trace signal ...
Add the list of signals specified to those being traced. A tracsd
signal causes an ocutput message ta be generated whenever the logi-
cal state of the signal is modified.

vnalias id
Remove id from the list of aliases.

untrace signal ...
Remove the list of signals from those being traced.

Printed 1/13/87 18 November 1986 5]

LSIM{1WWL) UNIX Programmer's Manual LSIM(1WL)

unwatch signal ...
Remove the list of signals from those being watched.

watch signhal ...
Add the list of signals specified to those being watched. The
logical state of watched signals is output on a periodic basis
under control of the gutput command. The position of s signal in
the list of watched signals can be set by specifying a "—-number"
option before the signal name. The default position is the end of

the list.

In addition to the interactive interface, lsim supports a pragramming
interface designed to allow the generation of test vectors and running
of the simulation in an automated fashien. The following header files
are needed when using this interface:

types.h
macros.h
Isim.ext.h

The calls available are as follows:

struct signaltype #*sntor(name)
char *namej

Biven a signal name. sntor returns a pointer to the signal record
«or NULL if it cannot find the signal.

int trace(signal)
struct signaltype *signals

Given a signal pointer. trace enables the tracing of the signal.
TRUE is returned if successfull: FALSE is returned if the signal
cannot be fpund or is already being traced.

int untrace{signal)
struct signaltype *signals;

Given a signal pointer. untrace disables the tracing of the sig-
nal. TRUE ig returned if successfull. FALSE is returned if the
signal cannot be found or is not cwrently being traced.

int set(signal,state,time)
struct signaltype *signals
int state.time;

fGiven a signal pointer. a state, and a time, set schedules an
event to set the signal to the state at the given time. The state
must be from & list of provided states. The time is in
picosecands. If there is no problem with the input. the schedul-
ing takes place and TRUE is returned. ptherwise FALSE is returned.

Frinted 1/13/87 18 hNovember 1984 &

LSIM(IWL) UNIX Programmer's Manual LEIMAIWD

struct signaltype *start ()

Start initiates the simulation, It returns a pointer to a sighal
that indicates which traced signal changed its value. NULL is
returned when the simulation terminated due to a HALTRUN event or

an empty event queue.

int halt (time)
int times

Given a time, halt schedules a HALTRUN event for the given time.
If the input time is less than the current time. FALSE is
returned. Otherwise. TRUE is returned.

struct signaltype *cont(time)
cint times

Cont combines the halt and start calls into one entry point. A
HALTRUN event is scheduled for crtime+time and the simulation is
initiated. Cont returns a pointer to a signal that indicates
which traced signal changed its value. NULL is returned when the
simulation terminated due to a HALTRUN event or an empty event

queus,

int force_s(signal.state)
struct signaltype xsignals
int states

Given a signal printer and a state. force s establishes a stuck-at
condition on the signal. The state must be from a list of preo-

vided states.

int force_i(comp.conn,state)
struct comptype *comps
int conns.states

Given a component peointer, input connection, and a state, force i
establishes a stuck-at condition on the component input. The
state must be fropm a list of provided states,

int force_o{comp.caonn.state)
struct comptype *comps
int conn:state;

Given a component pointer, output connection. and a states force o
establishes a stuck-at condition on the component output. The
state must be from a list of provided states,

int free_s{signal)
s{ruct signaltype #*signals

Fiven a signal pointer. free s eliminates any stuck-at conditions

Printed 1/13/87 15 Novenber 1986

LSIMC1WW) UNIX Programmer's Manual LSIM(1WL

that existed on the signal.

int free_i{comp,conn)
struct comptype *comps
int conns

Given a component pointer and input connection. free i eliminates
any stuck-at conditions that existed on the component input,

int free_o(comp.conn)
struct comptype %compj
int connj

Given a companent pointer and output connection, free a eliminates
any stuck-at conditions that existed on the component output.

int commangd(str)
char *str;

Command allows the programmer to use any of the interactive com-—
mands by providing a text string containing the command. TRUE is
returned if the command is & valid command. FALSE is returned
otherwise.

AUTHOR
Roger Chamberlain

SEE ALSO
circ(lWl), lsread{lWil}, lscnt {(1WW)

R. O. Chamberlain, Lsim User Manual, Tech Rep. WUCS-86-1, Dept. of Comp.
Sci.. Washington Unmiv., 5t. Louis, MO.

R. . Chamberlain, Lsim: A Gate-Switch Level Logic Simulator, M. 8.
Thesis, Dept. of Comp. Sci.. Tech Rep. WUCTSD~1985-13. Comp. and Comin.
Reg. Center, Washington Univ.. St. Louis, MO,

BUGS
There are a multitude of features that could still be implemented.

Printed 1/13/87 1B November 1986 g

LSREAD(1WU) UNIX Programmer's Manual LSREAD (1WL)

NAME
lsread - state debugger for digital logic simulator

SYNOPSIS
lsread filename

DESCRIPTION
Lsread inputs a circuit description from filename and generates a human
readable description and sends it to stdout,

AUTHOR
Roger Chamberlain

SEE ALSO
Isim(ilWU)s circ(iW)., lscnt (1WL)
R. D. Chamberlain. Lsim User Manual, Tech Rep. WUCS5-86-1, Dept. of Comp.
Sci.. Washington Univ., St. Louis. MO.
R. [. Chamberlain, Lsim: A BGate-Switch Level Logic Simulator, M. 5.
Thesis, Dept. of Camp. Sci.. Tech Rep. WUCCSD-1985-13. Comp. and Comm.
Res. Center. Washington Univ.. St. Louis, MO.

BUGS

If the tircuit description file is not well formed. nothing will be out-
put.

Printed 1/13/87 17 July 1986

	LSIM User Manual
	Recommended Citation

	tmp.1463768645.pdf.xrX6h

