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Abstract

Understanding the pathogenesis in the early stages of late-onset Alzheimer’s disease

(AD) can help in gaining important mechanistic insights into this devastating neurode-

generative disorder. Integration of multiple computational approaches to address the

different levels of information embedded in microarray data, such as networks of co-

expressed genes, functional annotation modules, and cis-regulatory elements shared by
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co-expressed genes, leads to greater understanding of complex diseases such as AD. We

use our recently developed methods for co-expression network analysis (CoExp) and

genome-wide motif identification (WordSpy) along with functional annotation cluster-

ing on single cell expression data to analyse AD. CoExp automatically identified 6 clus-

ters/modules, each of which represented a biological process perturbed in AD. Inter-

estingly, AD related genes like APOE, A2M, PON2, MAP4 and cardiovascular diseases

(CVD) associated genes such as COMT, CBS, WNK1 all congregated in one of the six

modules. This module that contained 18 disease associated (cardiovascular, neurodegen-

eration, diabetes, stroke) genes had the maximum number of hub genes. Some of the

disease related genes were also hub genes while many of them were directly connected to

one or more hub genes. Further investigation of this disease associated module unveiled

significant cis-regulatory elements that were significantly similar to the binding sites of

transcription factors involved in AD and CVD. Our results showcase extensive links be-

tween genes associated with AD and CVD at the co-expression and co-regulation levels

and provide strong supporting evidence to the hypotheses linking CVD and AD.

1 Introduction

Late-onset Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder of the

brain and is the commonest form of dementia. A systems biology approach is an efficient way

to analyse complex diseases, such as AD, that are polygenic and have multiple, interacting genes

contributing to the spectrum of variation.

We perform a transcriptome-based analysis of AD by combining our newly developed co-

expression network (CoExp) and genome-wide motif identification (WordSpy) methods to study
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Single cell microarray expression data

Use SAM to identify statistically significant differentially expressed genes 

Build gene co-expression networks
Identify dense networks / modules
Identify hub genes

Use EASE to identify 
enriched GO categories

Co-expression network tool

WordSpy

Identify enriched cis-regulatory elements 
in clusters with AD enriched genes

Check for clusters enriched with genes linked to
Alzheimer’s disease

Figure 1: Sequence of steps taken to analyse incipient Alzheimer’s disease (AD) from single cell expression

data. We apply co-expression network analysis and WordSpy (motif finding) in an integrated manner to

study AD and reveal connections to other conditions such as cardiovascular diseases and diabetes.

early response genes in AD(Ruan and Zhang, 2006b, 2008; Wang and Zhang, 2006). In the first

stage, CoExp is used to construct modules of tightly correlated genes (i.e. high similarity in their

expression profiles). In the next stage, WordSpy identifies regulatory cis-elements (motifs), which

are then used to group genes within a module based on the motifs they share. The analysis follows

the procedure shown in Figure 1.

The present work unveiled 1663 genes that are differentially expressed in AD. CoExp was ap-

plied to these genes resulting in 6 modules of co-expressed genes, each module representing key

biological processes perturbed in AD. Within the 6 modules we identified 107 highly connected

(‘hub’) genes, many of which play important roles in AD. Functional annotation clustering based

on association to human diseases resulted in the identification of 18 disease related (cardiovascu-
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lar diseases, AD/neurodegenerative diseases, stroke and diabetes) transcripts aggregating in one

module (referred to as the disease associated module). Some of these 18 genes were also hub

genes, while many of them were directly connected to one or more hub genes. Further analysis

of the disease associated module using WordSpy1, resulted in several cis-regulatory elements that

matched binding sites of transcription factors involved in diseases that are known to co-occur with

AD. The final result is a set of co-expressed and co-regulated modules describing the higher level

characteristics linking AD and cardiovascular diseases.

Our work is significantly different from that by Miller et al.(Miller et al., 2008) as we use a

different co-expression network building method (CoExp) to generate modules of co-expressed

genes and then identify cis-regulatory motifs in a module. CoExp is a spectral algorithm that was

designed to optimise a modularity function and automatically identify the appropriate number of

modules(Ruan and Zhang, 2006b, 2008). The cis-regulatory elements discovered in the promoter

regions of disease related genes provide further insights into the possible transcriptional regulation

of the genes involved in AD and their connection to other diseases, such as cardiovascular diseases,

stroke and diabetes. Moreover, the single cell dataset, which is less noisy compared to mixed cell

microarray data, is more recent(Dunckley et al., 2006) compared to those analysed by Miller et

al. Most importantly, unlike multiple studies comparing AD and ageing(Ricciarelli et al., 2004;

Miller et al., 2008; Pereira et al., 2007), to the best of our knowledge, our study is the first that

has identified links between cardiovascular diseases, AD/neurodegenerative diseases and diabetes

using a transcriptome-based systems biology approach. Lastly, the AD expression data that we

analyse are from the entorhinal cortex, a region of the brain known to be the germinal site of AD.

Despite the differences between our study and that by Miller et al., we have established interesting

1CoExp and WordSpy can be retrieved from http://www.cse.wustl.edu/ ∼zhang/
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links between the two studies, thereby highlighting the commonalities between AD, ageing, and

cardiovascular diseases. We believe that analyses such as ours and that by Miller et al. are the

pieces of a puzzle that will result in a more comprehensive understanding of complex diseases

such as Alzheimer’s and its link to other conditions/diseases.

2 Data and Methods

2.1 Data

Pathologically AD is characterised by the presence of neurofibrillary tangles (NFT) in the neurons

of the entorhinal cortex and hippocampus. Dunckley et al. dataset consists of 13 normal controls

(Braak stages 0–II; average age: 80.1 years) and 20 AD affected (Braak stages III–IV; average

age: 84.7 years) samples obtained by laser capture microdissection (LCM) from the entorhinal

cortex(Dunckley et al., 2006). Braak stages III–IV is considered ‘incipient’ AD(Rossler et al.,

2002; Braak and Braak, 1991). In this dataset, 1000 neurons were collected from each of the 33

samples via LCM.

Data were normalised using gcRMA(Irizarry et al., 2006). Probesets were mapped to genes

using DAVID(Dennis et al., 2003). Probesets that did not map to any gene name and those match-

ing to hypothetical proteins with no known functions, at the time of writing this manuscript, were

removed. When multiple probesets mapped to the same gene, only the probeset with the highest

mean was selected. Differentially expressed genes were selected using significance analysis of

microarrays (SAM)(Tusher et al., 2001).
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2.2 Construction of co-expression networks

We use a network-based approach to identify modular structures/clusters embedded in microarray

gene expression data. The co-expression network (CoExp) method constructs co-expression net-

works from microarray data and then uses a spectral based clustering method to identify subgraphs

within the network(Ruan and Zhang, 2006b, 2008). Each node in the network is a gene and edges

represent expression similarities between genes. The idea is that genes involved in the same func-

tional pathway are directly connected to each other or linked via short paths. After the network is

created, the nodes are clustered into different dense subgraphs. Most clustering algorithms require

the user to specify the number of clusters/modules. However, CoExp uses a spectral based cluster-

ing algorithm that optimises the modular function proposed by Newman and Girvan(Newman and

Girvan, 2004) to automatically determine the appropriate number of modules(Ruan and Zhang,

2006b, 2008). The CoExp is easily scalable to large networks. Further evidence of its robustness

can be found in (Ruan and Zhang, 2008, 2006a).

EASE (http://niaid.abcc.ncifcrf.gov/home.jsp) was used to identify overrepresented biological

processes in each module as well as perform functional annotation clustering based on association

to human diseases.

2.3 Identification of regulatory cis-elements

The interaction of transcription factors (TFs) and cis-acting DNA elements determines the gene

activity under various environmental conditions. Identifying functional TF binding sites, however,

is not trivial, since TF binding sites are usually short and degenerate, and are often located several

hundred to thousand bases upstream to the translational starting sites. Here we combine several
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data sets and a whole-genome analysis method to discover short DNA sequence motifs that are sta-

tistically enriched in the promoters of genes in the same co-expression module and are associated

with gene co-expression.

Briefly, we first download the promoter sequences for human ORFs from the DBTSS database

(Wakaguri et al., 2008). Each promoter includes 1000bp upstream and 200bp downstream se-

quences relative to the transcription starting site, defined from full length cDNA data. From this

data set we extract n sets of promoter sequences (referred to as experimental sets), where n is

the number of co-expression modules. The i-th experimental set contains the promoter sequences

of genes in the i-th co-expression module. The complete set of human gene promoters is used

as the background set. We then run WordSpy, a steganalysis-based genome-wide motif-finding

method(Wang and Zhang, 2006), on each experimental set in order to discover statistically sig-

nificant k-mers (motifs) (for k = 6, 7, 8, 9, 10) according to a generative model of the promoter

sequences.

Each k-mer identified by WordSpy is then subject to two filtering steps. In the first filtering

step, we select motifs that are specifically enriched in the experimental set. We count the number

of instances that a k-mer appears in the experimental set (denoted by x) and in the background set

(denoted by b). Then we compute the probability that we would expect by chance at least the same

number of occurrences in the experimental set given the number of occurrences in the background

set. This probability is computed using the cumulative hyper-geometric distribution as follows -

P (x, b, Ni, N) =
min{x,b}∑

k=x

(Ni
k )(N−Ni

b−k )

(N
x )

(1)

where Ni and N are the sizes of the i-th experimental set and the background set, respectively. We

filter out the k-mers that have a p-value ≥ 0.01.
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The second filter is used to select motifs that are associated with strong and significant co-

expression patterns. For each motif remaining after the first filtering phase, we obtain a set of genes

(‘target set’) in which each gene in this set contains the motif in its promoter region. We compute

the average pair-wise Pearson correlation coefficients, denoted by pcc, from the expression profiles

of the genes in the target set. Furthermore, we randomly sample 100 control sets of genes from the

background set that have the same size (i.e. number of genes) as the target set, and compute the

pcc of each control set. The mean and standard deviation (denoted by mpcc and spcc, respectively)

of the pcc values for the control sets are then used to compute the Z-score of the pcc value for the

target set as follows -

Zscore =
(pcc−mpcc)

spcc
(2)

A motif is retained only if its pcc > 0.4, and its Z-score > 2.

Finally, the motifs that have passed both filters are compared to the known TFBS in the JASPAR

database(Sandelin et al., 2004). We pre-filter the TFBSs in the databse that have information

content ≤ 6 bits, since these TFBSs are short and have high degeneracy and, hence, may match

to some known motifs by chance. Then we compute the best un-gapped alignment between the

motifs (n-mers) and the known binding sites (position specific weight matrices) using a metric

called the information score, which is the same metric used in the Matlnspector program(Quandt

et al., 1995) included in the TRANSFAC suite. We consider a motif match to a known TFBS if the

information score is ≥ 0.8.
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3 Results and Discussion

SAM identified 1663 differentially expressed (DE) genes between AD samples and controls at a

false discovery rate (FDR) of 0.11%(Tusher et al., 2001). All the enriched biological processes of

the transcripts is shown in Table S1 in the supplemental data files. Many of the processes known

to be affected in Alzheimer’s are enriched in the list of 1663 transcripts.

3.1 Modular organisation of significant genes via co-expression networks

The co-expression network method (CoExp) was applied to the set of 1663 genes and resulted in

6 modules(Ruan and Zhang, 2006b, 2008). Figure 2 shows the resulting adjacency matrix and

Figure 3 shows the co-expression network.

The two disconnected groups of modules in Figure 3 represent 2 groups of anti-correlated ex-

pression patterns. Transcripts in modules 3,4,5 and 6 are downregulated and those in modules 1 and

2 are upregulated. The group on the left in Figure 3 (modules 1 and 2) contains many transcripts

involved in cell differentiation, neuron development, immune response, stress response, etc., while

the group on the right contains genes involved in negative regulation of metabolism, protein trans-

port, sodium ion transport, etc. Table 1 shows the top enriched GO biological processes (p < 0.05)

in all 6 modules.

As can be noted from Table 1, many processes linked to Alzheimer’s, such as immune response,

inflammatory response, cell development and differentiation (due to a large number of cancer

related genes), etc. are upregulated in incipient AD(Norris et al., 2005; Y et al., 2001). Processes

related to actin are downregulated in AD(Kojima and Shirao, 2007). Table 2 shows the most

significant KEGG pathways represented by the genes in each module. Although, there was no
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Figure 2: The adjacency matrix representation of the coexpression network. The graphical representation

of this matrix is in Figure 3. Modules are labelled c1, c2, c3, c4, c5 and c6. Modules c1 and c2 refer to the

group on the left in Figure 3 and the modules c3, c4, c5 and c6 refer to the one on the right. The dots refer

to the intra- and inter-module edges between the genes.
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Table 1: Top enriched GO biological processes in each module (p < 0.05)
Module Activity Ease score

Module 1 Protein biosynthesis 7.14E-06

Cell development 2.37E-05

Cell differentiation 4.88E-05

Macromolecule biosynthesis 8.56E-05

Cellular nerve ensheathment 1.11E-04

Neuron development 2.22E-04

Regulation of action potential 4.37E-04

Module 2 Response to other organism 0.004

Immune response 0.014

Defense response 0.020

Response to stress 0.029

Protein kinase cascade 0.030

Integrin-mediated signalling pathway 0.030

Myeloid cell differentiation 0.040

JAK-STAT cascade 0.042

Module 3 Homophilic cell adhesion 2.58E-11

Cell-cell adhesion 2.74E-09

Nervous system development 3.44E-09

Ion transport 0.007

Gamma-aminobutyric acid signalling pathway 0.009

Secretory pathway 0.019

Small gtpase mediated signal transduction 0.028

Sodium ion transport 0.036

Module 4 Cellular physiological process 6.91E-05

Transcription from RNA polymerase II promoter 0.008

Protein transport 0.014

Post-chaperonin tubulin folding pathway 0.019

Ubiquitin cycle 0.037

Module 5 Negative regulation of metabolism 0.011

Actin filament depolymerisation 0.025

Barbed-end actin filament capping 0.025

Negative regulation of actin filament depolymerisation 0.025

Negative regulation of protein metabolism 0.025

Module 6 Protein transport 0.008

Cell organisation and biogenesis 0.011

Membrane fusion 0.028

RNA processing 0.029

RNA splicing 0.042
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Table 2: Over-represented KEGG pathways in each module (p < 0.05).

Module KEGG pathway Ease score

Module 1 Ribosome 8.16E-07

Translation 3.41E-14

Module 2 Phospholipid degradation 0.013

Module 3 Signal transduction 0.002

Phosphatidylinositol signalling system 0.005

Module 4 Neuron development 2.22E-04

Module 6 Nucleotide metabolism 0.036

over-represented KEGG pathway in module 5, several genes involved in the negative regulation of

metabolism, actin filament depolymerisation, glucose metabolism, lipid biosynthesis were present.

Modules 2,3,4,5 and 6 represent processes previously associated to AD in multiple studies(Norris

et al., 2005; Y et al., 2001; Kojima and Shirao, 2007). Module 3,4,5 and 6 contain genes that

have decreased expression levels. In particular, module 5 contains processes related to glucose

metabolism. Recent work has shown decreased expression of energy metabolism genes(Liang

et al., 2008). Our results further confirm this observation. Based on the results obtained thus far,

each cluster/module can be a representative of some biological processes - module 1 represents

protein synthesis, module 2 is linked to phospholipid degradation, module 3 is associated with

signalling systems, module 4 represents neuron development and modules 5 and 6 are associated

with metabolism.

The modular organisation of genes led to the following investigative steps - (a) the identification

of module(s) associated with human diseases, (b) the identification of hub / highly connected genes

within the modules, (c) the examination of the expression level of brain derived neurotrophic factor

in the AD subjects, and (d) the identification of cis-regulatory elements from the promoters of
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genes.

This prompted an in-depth examination of module 1.

3.1.1 Module associated with cardiovascular diseases and diabetes

When EASE (http://niaid.abcc.ncifcrf.gov/home.jsp) was used to perform functional annotation

clustering based on the genes’ association to human disorders/diseases, module 1 was the only

module that had 18 disease associated genes (see Table 3). The connection to human condi-

tions and diseases was made by EASE using the Genetic Association Database (geneticassocia-

tiondb.nih.gov). Modules 2-6 did not have a significant enrichment for any human disease.

Table 3: Functional annotation clustering of genes in module 1 based on association to human

conditions/diseases
Disease/condition Genes

Neurodegeneration VWF, A2M, APOE, FTL, PON2, COMT, MAP4, TF, SERPINA3, ATP1A2, AGT

Myocardial infarction A2M, APOE, PON2, SERPINA3

Alzheimer’s disease A2M, APOE, SERPINA3, PON2

Cardiovascular VWF, A2M, APOE, PON2, COMT, WNK1, CBS, SERPINA3, TIMP1

Coronary artery disease APOE, PON2, COMT, SERPINA3

Type 2 Diabetes VWF, A2M, APOE, PCBD2, HLA-DQB1(HLA-DQB2), TIMP3, SLC2A1, AGT

These results provide a new set of evidence supporting the hypothesis that there may be a

strong association between cardiovascular disease (CVD) and the incidence of Alzheimer’s dis-

ease(STAMPFER, 2006; Rosendorff et al., 2007; STEWART, 1998). There also has been a grow-

ing body of evidence for a link between AD and diabetes(Janson et al., 2004; MacKnight et al.,

2002; Craft and Watson, 2004), with many research groups and news articles reporting that AD

may be another form of diabetes. While there are many shared transcripts in Table 3 among the
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different conditions, there are a few that are unique to the disease/condition, such as kinase defi-

cient protein (WNK1), timp metallopeptidase inhibitor 1 (TIMP1) and cystathionine-beta-synthase

(CBS) which are specific to CVD, and pterin-4 alpha-carbinolamine dehydratase/dimerization co-

factor of hepatocyte nuclear factor 1 alpha (tcf1) 2 (PCBD2), timp metallopeptidase inhibitor 3

(TIMP3), solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) and ma-

jor histocompatibility complex, class ii, dq beta 1 (HLA-DQB1) being specific to diabetes. On

the other hand, von willebrand factor (VWF), alpha-2-macroglobulin (A2M), apolipoprotein e

(APOE), paraoxonase 2 (PON2), and serpin peptidase inhibitor, clade a (alpha-1 antiproteinase,

antitrypsin), member 3 (SERPINA3) are common to most of the conditions. This indicates that

genes that are specific to CVD and diabetes, conditions commonly associated with AD, were iden-

tified to be in the same module as genes related to neurodegenerative disease, including AD. Since

the motivation behind co-expression network analysis is to identify possibly co-regulated genes, it

is possible that these genes are co-regulated. Since genes that are common as well as those that

are specific to the conditions in Table 3 are being co-regulated, it may be the reason for the clus-

tering of these conditions in epidemiological studies. Furthermore, as there are many transcripts

common to these diseases/conditions, it is plausible that similar/common biochemical pathways

are active in these seemingly different conditions. If this is the case, then common pathogenetic

mechanisms for AD and CVD can suggest a causal link between CVD and AD(Rosendorff et al.,

2007; STEWART, 1998), a hypothesis that is still controversial and under a lot of debate.

Transcripts in the modules are linked to each other based on their expression similarity. ‘Hub

genes’ are highly-connected nodes/transcripts in the network and are likely to play important roles

in the biological processes. Hub genes tend to be conserved across species and hence, make excel-

lent candidates for disease association studies in humans(Casci, 2006).
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We defined hub genes to be those genes that have 40 or more links/connections. This re-

sulted in 107 hub genes. The complete list of hub genes, their module locations, and the num-

ber of links is in Supplemental Table S2. The hub genes included general transcription factor

iiic, polypeptide 1, alpha 220kda (GTF3C1) which is involved in RNA polymerase III-mediated

transcription, microtubule-associated protein 4 (MAP4) which promotes microtubule stability and

affects cell growth(Nguyen et al., 1998), and proprotein convertase subtilisin/kexin type 2 (PC2)

which is responsible for the processing of neuropeptide precursors. Some of these hub genes -

PC2, paraoxonase 2 (PON2) and peroxiredoxin 6 (PRDX6) - have been implicated in late-onset

AD (LOAD)(Krapfenbauer et al., 2003; Shi et al., 2004; Winsky-Sommerer et al., 2003).

Since module 1 has the disease associated genes, the identification of hub genes in this module

may provide new information regarding AD, CVD and diabetes. We identified 22 hub genes with

the number of links ranging from 42 to 63 in module 1 (For the complete list of 22 hub genes, see

Table S2). The total number of hub genes in each module along with the minimum and maximum

number of links is shown in Table 4.

Table 4: Number of hub genes and their range of connections/links in each module

Module No. hubs Range of links

Module 1 22 42 – 63

Module 2 17 41 – 56

Module 3 15 40 – 68

Module 4 14 40 – 65

Module 5 20 40 – 73

Module 6 19 40 – 81
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As shown in Table 4, module 1 had the maximum number of hub genes. The transcript with

the largest number of links in module 1 is MAP4 with 63 connections. Table 5 shows the number

of links for the 18 disease associated genes.

Table 5: Number of links of the 18 disease associated genes from module 1 and the number of

connections they have with other hub genes

Gene No. links No. hub genes it is connected to

VWF 16 2

A2M 17 3

APOE 18 3

FTL 18 3

PON2 51 8

COMT 17 0

MAP4 63 1

TF 16 3

SERPINA3 18 3

ATP1A2 45 6

AGT 27 5

TIMP1 14 2

WNK1 17 1

CBS 16 3

PCBD2 16 0

HLA-DQB1 15 2

SLC2A1 14 1

TIMP3 14 0

It can be seen from Table 5, that PON2, MAP4 and atpase Na+/K+ transporting, alpha 2

(+) polypeptide (ATP1A2) are hub genes. The overexpression of MAP4 results in the inhibi-

tion of organelle motility and trafficking(Bulinski et al., 1997) and can also lead to changes in cell

growth(Nguyen et al., 1998). ATP1A2 is a subunit of an integral membrane protein which is re-
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sponsible for establishing and maintaining the electrochemical gradients of Na and K ions across

the plasma membrane(Dennis et al., 2003). These gradients are essential for osmoregulation, for

sodium-coupled transport of a variety of molecules, and for electrical excitability of nerve and

muscle(Dennis et al., 2003). While the downregulation of ATP1A2 has been linked to migraine

related conditions(De Fusco et al., 2003), the effects of its upregulation has not been documented.

PON2 has been implicated in AD(Shi et al., 2004) and cardiovascular diseases (Table 3).

MAP4 is directly linked (linkage implies similarity in gene expression profile) to other dis-

ease/condition associated genes such as VWF and WNK1. Increased expression of semaphorin

3b (SEMA3B) (semaphorin pathway) inhibits axonal elongation(Blalock et al., 2004), which has

been implicated in AD(Blalock et al., 2004). MAP4 is also connected to SEMA3B. Many of the

18 disease associated genes are linked to one or more hub genes (see Table 5). Although, not all

the disease associated genes are hub genes themselves, most of them are directly linked to one or

more hub genes, which implies that they may play a role via hub genes in the biological processes

represented by the module.

3.1.2 Decreased levels of brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF) is well known for its trophic functions and has been im-

plicated in synaptic modulation, and the induction of long-term potentiation (LTP)(Yamada et al.,

2002; Tyler et al., 2002). Decreased levels of BDNF has been linked to Alzheimer’s and depres-

sion(Tsai, 2003; Laske et al., 2006; Karege et al., 2002). Recently, low levels of BDNF has also

been associated with diabetes(Krabbe et al., 2007).

BDNF goes through post-translational modification i.e. converted into mature BDNF by plas-

minogen (PLG) (http://www.genecards.org). The neurotrophic tyrosine kinase, receptor, type 2
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(NTRK2/TrkB) is a receptor for BDNF(Haapasalo et al., 2002).

BDNF was not present in our list of 1663 significant genes. However, TrkB and serpin pep-

tidase inhibitor, clade e (nexin, plasminogen activator inhibitor type 1), member 2 (SERPINE2)

were present in the set of 1663 genes and located in module 1. Plasminogen activator inhibitor

type 1 (PAI-1) proteins inhibit plasminogen (PLG) activators(Huber et al., 2001). Therefore, if

the level of PAI-1 is high in the AD affected samples, plasminogen activators are being inhibited,

resulting in decreased levels of mature BDNF. Interestingly, the expression levels of TrkB and

PAI-1 were elevated in the AD samples. However, TrkB is downregulated following the binding

of BDNF(Sommerfeld et al., 2000). Therefore, due to an increased level of PAI-1, mature BDNF

could not be produced, which in turn could not bind to TrkB. Hence, from this analysis it can be

concluded that high levels of TrkB and PAI-1 implies decreased levels of BDNF, which is very crit-

ical for the survival of neuronal populations. This probably leads to neuronal death in this cohort

of AD affected subjects.

In order to verify our conclusion regarding the expression level of BDNF in the AD patients in

our dataset, we examined the expression level of BDNF in the controls and AD affected samples.

We found BDNF to be decreased by 1.07 in the AD affected samples. BDNF was not selected to

be a significant gene probably because it had a small difference in the expression between controls

and affected samples. Microarrays are not sensitive enough to detect genes with low expression

levels, especially when the difference in expression is small (which can be expected in subjects

with incipient AD)(Bunney et al., 2003; Pan et al., 2006; Yue et al., 2001; Canales et al., 2006).

The fact that the selected significant genes, such as TrkB and SERPINE2, could lead to the correct

conclusion regarding the level of BDNF expression in AD affected samples, highlights the merits

of this kind of analysis of the transcriptome when handling genes with low expression levels.
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Although modules 1 and 2 have upregulated genes, genes associated with BDNF are located only

in module 1. This further emphasises the importance of module 1.

3.1.3 Comparison to the study by Miller et al. on ageing and AD

Miller et al. identified 558 transcripts that were common to AD and ageing(Miller et al., 2008).

We found more overlapping genes between our study and their’s than expected by chance (p = 3.3

X 10−10). 94 genes overlapped between 1663 significant genes from our study and 558 genes

identified by Miller et al.. Of these 94 genes, 48 were present in module 1 (greater than expected

by chance p = 9.2 X 10−10), while the overlap between 558 AD-ageing genes and genes in modules

2,3,4,5 and 6 ranged between 2 - 15. This indicates that module 1 contains the majority of genes

that have been linked to ageing and AD. Of the 48 genes that overlapped between 558 AD-ageing

common genes and genes in module 1, WNK1 and MAP4 were present. MAP4 is associated with

neurodegeneration while WNK1 is linked to cardiovascular diseases.

Furthermore, 9 genes (DAAM2, EPM2AIP1, GFAP, GORASP2, MAP4, NFKBIA, PRDX6,

TSC22D4 and UBE2D2) overlapped between 558 AD-ageing genes and the 107 hub genes identi-

fied in our study, 5 of which resided in module 1. These results further emphasise the significance

of module 1. From these results, it can be concluded that module 1 is an important link in the chain

of pathophysiological characteristics connecting AD, CVD and ageing. It represents common bio-

chemical pathways that may be affected in all these conditions.

3.2 Cis-regulatory elements and co-regulated genes

Cis-regulatory elements/motifs are regulatory elements in the promoter region of genes to which

transcription factors (TFs) bind, and regulate transcription. If a group of genes share the same
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cis-regulatory motif, then the TF that binds to the motif may regulate this group of genes. Co-

expressed modules represent genes that may be co-expressed in the cell and be a part of the same

biochemical pathways. Throughout the results in section 3.1 of our analysis, we observe that the

genes contained in module 1 is of high importance. Since module 1 is the most important module

identified in this analysis, we attempted to identify the cis-regulatory elements/motifs that may be

enriched in the upstream promoter sequences of the genes in module 1. The group of genes in

module 1 that share a motif will be a set that is co-expressed and co-regulated.

The complete set of cis-regulatory elements enriched in module 1 is in Supplemental Table S3.

A total of 89 motifs were specifically enriched in module 1 with a p-value < 0.001, and their target

genes were co-expressed with an average correlation coefficient > 0.4 and Z-score > 2 (see Data

and Methods). Of the 89 motifs, 36 matched to 26 known transcription factor binding sites (TFBS)

in JASPAR (http://jaspar.genereg.net/) with a matching score ≥ 0.8 (see Table 6). Table 6 shows

the number of genes within module 1 whose promoter region contains a motif that matched to the

TFBS of a known TF.

Transcription factors such as growth factor independent (Gfi), peroxiredoxin 2 (Prx2/PRDX2),

SP1, CAAT-enhancer binding protein C/EBP), RelA(p65), runt box 1 (Runx1), ELK-1, upstream

stimulatory factor 1 (USF1), Rel, TATA box binding protein (TBP) have been implicated in neu-

rodegenerative diseases (such as AD, Parkinson’s, and Schizophrenia)(Tsuda et al., 2005; Qu et al.,

2007; Fang et al., 2007; Santpere et al., 2006; Christensen et al., 2004; Li et al., 2004; Perez-Capote

et al., 2006; Barkett and Gilmore, 1999; Tomita et al., 2000; Kimura et al., 2007; Pastorcic and Das,

2003; Tong et al., 2004; Salero et al., 2003; Reid et al., 2004), diabetes(Ng et al., 2005), stroke and

cardiovascular diseases(Choquette et al., 2007; Komulainen et al., 2006). 139 genes in module 1

contained motifs that matched the TFBS of the known TFs associated with these diseases.
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Table 6: The 26 known TFs and the number of target genes in module 1 that have a motif in their

promoters that match to the binding sites of the known TF

26 Transcription factors No. target genes

ABI4 9

Arnt-Ahr 93

ARR10 6

Broad-complex 3 10

cEBP 20

Gfi 8

HAND1-TCF3 279

Mycn 11

Myf 8

Prx2/PRDX2 17

RELA, REL 10

RUNX1 4

Snail 49

SP1 47

TBP 6

E74A 16

ELK1 16

SPIB 16

Hunchback 6

MAX 11

USF1 11

ZNF42 5–13 27

NFIL3 5

Agamous 8

GAMYB 6

Arnt-Ahr dimer transcription factor activates genes crucial in the response to hypoxia and hy-

poglycaemia(Maltepe et al., 1997; Erbel et al., 2003). Hypoglycaemia and hypoxia have been

known to play pathophysiological roles in the complications of diabetes and AD(Catrina et al.,
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2004; Shi et al., 1997; Peers et al., 2007; Sun et al., 2006). It is well known that hypoxia has major

effects on the cardiovascular system(Germack et al., 2002). Therefore, in light of such knowledge,

it is no surprise that a large number of genes have cis-regulatory motifs that match the binding site

of the Arnt-Ahr TF.

Hand1-TCF3 and TAL1-TCF3 are components of the basic-helix-loop-helix (bHLH) com-

plexes. BHLH transcription factors are important in development (Yelon et al., 2000; Firulli et al.,

2003). An extremely high number of genes were mapped to Hand1-TCF3 since cell development

and differentiation is upregulated in AD (Norris et al., 2005; Y et al., 2001).

In summary, the fact that TFs which are active in other human diseases/disorders have their

binding motifs enriched in the set of significant genes associated with AD adds significance to the

hypothesis that many common biochemical pathways are affected in AD and CVD.

4 Conclusion

In this study, we presented an integrative systems biology approach to study a complex disease

such as Alzheimer’s disease. Along with identifying modules / clusters that illuminate higher-

order properties of the transcriptome, we identified a module that contained many genes known

to play prominent roles in cardiovascular diseases and AD. We identified several cis-regulatory

elements, some of which mapped to the binding sites of known TFs involved in neurodegenerative

and cardiovascular diseases as well as diabetes and stroke. Furthermore, since microarrays are

not sensitive to genes with very slight differences in expression from controls, we illustrated how

other genes can be used to deduce the expression difference of such genes. This is especially

critical while comparing groups that are very similar to each other.
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The link between cardiovascular diseases, diabetes and AD is a topic of growing interest. The

presence of genes and cis-regulatory elements related to cardiovascular diseases and AD in a single

module, provides strong evidence to the hypotheses connecting these two conditions. Interestingly,

this module also contained the maximum number of genes (and hub genes) related to ageing. Our

results support the notion that diseases in which the same set of biochemical pathways are affected

may tend to co-occur with each other. This may be the reason why cardiovascular diseases and/or

diabetes co-occur with AD. A comprehensive analysis incorporating AD and CVD/diabates pa-

tients along with information about their disease progression will lead to a more powerful analysis.

Such a study will shed more light into the pathophysiology of AD and associated diseases.
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Figure 3: Co-expression network with 6 modules. A node refers to a gene and the weight of an edge is the

Pearson correlation coefficient between expression profiles of a pair of genes scaled to within [0,1]. The 2

large groups are two sets of genes with anti-correlated expression patterns. The group on the left contain

all upregulated genes and the group on the right consist of downregulated genes. The length of each edge

and the position of each node/module does not have any biological meaning and are arbitrarily chosen for

proper visualisation. Best viewed in colour.
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