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Abstract—Clouds have become appealing platforms for run-
ning not only general-purpose applications but also real-time
applications. However, current clouds cannot provide real-time
performance for virtual machines (VM) for two reasons: (1) the
lack of a real-time virtual machine monitor (VMM) scheduler on
a single host, and (2) the lack of a real-time aware VM placement
scheme by the cloud manager. While real-time VM schedulers do
exist, prior solutions employ either heuristics-based approaches
that cannot always achieve predictable latency or apply real-
time scheduling theory that may result in low CPU utilization.
We observe the demand and advantage for co-hosting real-time
(RT) VMs with non-real-time (regular) VMs in the same cloud.
On the one hand, RT VMs can benefit from the easily deployed,
elastic resource provisioning provided by a cloud; on the other
hand, regular VMs can fully utilize the cloud without affecting the
performance of RT VMs through proper resource management
at both the cloud and hypervisor levels. This paper presents
RT-OpenStack, a cloud management system for co-hosting both
real-time and regular VMs. RT-OpenStack entails three main
contributions: (1) integration of a real-time hypervisor (RT-Xen)
and a cloud management system (OpenStack) through a real-
time resource interface; (2) an extension of the RT-Xen VM
scheduler to allow regular VMs to share hosts with RT VMs
without jeopardizing the real-time performance of RT VMs;
and (3) a VM-to-host mapping strategy that provisions real-time
performance to RT VMs while allowing effective resource sharing
among regular VMs. Experimental results demonstrate that RT-
OpenStack can support latency guarantees for RT VMs, and at
the same time let regular VMs fully utilize the remaining CPU
resources.

I. INTRODUCTION

An important advantage to run real-time applications in a
cloud is computing power, which makes cloud computing an
attractive choice for hosting computation-intensive real-time
tasks, such as object recognition and tracking, high-definition
video and audio stream processing, and feedback control
loops in general. For example, a gaming console can use the
computing power in the cloud to provide better image quality
to the end user [1]. Prolonged latency for such applications
often leads to frustrating or unacceptable experience to end
users. As a result, such applications require latency guarantees.

Despite the growing demand for running real-time appli-
cations in the cloud, however, current clouds provide limited
support for such guarantees. Most clouds allow users to specify
only the number of Virtual CPUs (VCPUs) associated with a
VM and/or their CPU shares. Furthermore, cloud management
systems often oversubscribe the system to better utilize the
resources. As a result, if a co-locating VMs consumes lots

of resources, other VMs on that host will suffer performance
degradation, which is known as the “noisy neighbor” problem
in cloud computing.

The lack of systematic support for latency guarantees
has led cloud providers and users to develop proprietary
application-level solutions to cope with resource uncertainty.
For example, Netflix, which runs its services in Amazon EC2,
constantly monitors the resources used by each VM. If one
VM cannot meet its performance requirement (usually due
to a co-located noisy neighbor), Netflix shuts down the VM
and restarts it on another host, hoping that the newly located
host is less crowded [2]. Moreover, Netflix developed a tool
called “chaos monkey” [3], which introduces artificial delays
to simulate service degradation and then measures whether the
application can respond appropriately. An alternative solution
is to pay for dedicated hosts for running real-time applications,
which usually results in resource under-utilization and may not
be cost-effective.

This paper presents RT-OpenStack, a holistic solution to
co-host real-time and non real-time (regular) VMs, which
entails three main contributions: (1) integration of a real-
time hypervisor (RT-Xen) and a cloud management system
through real-time resource interfaces; (2) extension of the
RT-Xen VM scheduler to allow regular VMs to share hosts
without jeopardizing the real-time performance of RT VMs;
and (3) a VM-to-host mapping strategy that provisions real-
time performance of RT VMs while allowing effective resource
sharing by regular VMs. This paper focuses only on the
CPU resources; extension to other resources like networks
and storage are left to future work. Also note that while this
paper focuses on using OpenStack and Xen, the approach
can be easily applied readily to other hypervisors and cloud
management systems.

The rest of the paper is structured as follows: In Section II
we introduce background information on Xen and OpenStack,
and their key limitations for supporting RT VMs. We then
describe the design and implementation of RT-OpenStack
in Section III and present our experimental evaluation in
Section IV. After reviewing related work in Section V, we
conclude in Section VI.

II. BACKGROUND

We first introduce Xen and our previous work on RT-
Xen. We then review the OpenStack cloud management system
and its scheduling components. We identify their limitations



in supporting real-time applications alongside general purpose
applications which motivate the design of RT-OpenStack.

A. Xen Virtual Machine Monitor

Xen [4] is a type-1 (bare metal) open-source virtual ma-
chine monitor (VMM)1 used in commercial clouds, such as
Amazon EC2 and RackSpace. It sits between the hardware
and operating systems. From the scheduling perspective, each
virtual machine (called a domain in Xen) contains multiple
virtual CPUs (VCPUs) that are scheduled by a VMM scheduler
on a host with multiple physical CPUs (PCPUs). At boot time,
Xen creates a privileged domain called domain 0, which is
responsible for managing the other guest domains. By default,
Xen uses a credit scheduler based on a proportional scheduling
policy: each VM is associated with a weight, which represents
the share of CPU resource it will receive relative to other
VMs. The system administrator can also specify a cap per VM,
which is the maximum CPU resource that can be allocated to
each VM. As the credit scheduler does not consider timing
constraints of the applications, it is not suitable for real-time
applications [5, 6].

B. RT-Xen

We have designed and implemented RT-Xen [5, 7, 6],
a real-time scheduling framework for Xen. In RT-Xen, each
VCPU is represented by a resource interface comprising three
parameters: budget, which decides the amount of time a VCPU
is allowed to run per period; period; and cpumask, a set of
the PCPUs on which the VCPU is allowed to run. The current
multi-core scheduler in RT-Xen supports a rich set of real-time
scheduling policies including earliest deadline first (EDF) and
rate monotonic (RM) priority schemes, global and partitioned
scheduling policies, and different budget management schemes
such as deferrable servers and periodic servers. Our experi-
mental results have shown that RT-Xen can provide real-time
performance guarantees to the applications running in VMs.
Among all the combinations of real-time scheduling policies,
global EDF (gEDF) with deferrable server worked best in our
evaluation [6].

However, RT-Xen has two drawbacks in supporting RT
VMs in a cloud. First, RT-Xen employs compositional schedul-
ing analysis (CSA) [8] to compute the resource interfaces
of VCPUs needed to guarantee the real-time performance of
applications running in the VMs. While CSA provides the
theoretical foundation for providing real-time guarantees on
RT-Xen, the resource interfaces computed based on the CSA
are often conservative due to the pessimism of CSA. As
a result, provisioning CPU resources based on the resource
interfaces may lead to significant CPU underutilization (around
60% in our previous experiments [6]). Second, there is no
differentiation between RT and regular VMs. Both RT and
regular VMs are scheduled using the same type of resource
interface, and the regular VMs must be incorporated into the
underlying compositional schedulability analysis even though
they do not require any latency guarantees. Therefore, if we
directly apply the current RT-Xen in a cloud, the host may
be under-utilized, and the regular VMs may further reduce the
resource utilization.

1we use hypervisor and VMM interchangeably

C. OpenStack

OpenStack [9] is a popular cloud management system. It
adopts a centralized architecture and consists of interrelated
modules that control pools of CPU, memory, networking, and
storage resource of many machines. When integrated with Xen,
a special agent domain is created on each host to support these
resource management functions in co-ordination with domain
0 of the host.

We now review three aspects of OpenStack that are critical
for managing the performance of VMs: (1) the resource
interface that specifies the resource requirement of a VM; (2)
an admission control scheme for each host to avoid overload;
and (3) a VM allocation scheme that maps VMs to hosts:

Resource Interface: The resource interface in OpenStack
is represented by a pre-set type (called a “flavor”). The cloud
manager can configure the number of VCPUs, memory size,
and disk size. A user cannot specify the specs for each VCPU,
which may be necessary to provide real-time performance
guarantees.

Admission Control: Admission control in OpenStack is
referred to as “Filtering”. OpenStack provides a framework
where users can plug-in different filters. Many filters are
provided, which focus on checking sufficient memory, storage,
as well as for VM image compatibility. Two of the filters
are related to the CPU resources: (1) the core filter, which
uses a VCPU-to-PCPU ratio to limit the maximum number of
VCPUs per host (By default, this ratio is set to 16:1, which
means if there are 4 PCPUs in a host, the filter can accept
up to 64 VCPUs); (2) the max VM filter, which limits the
maximum number of VMs per host (By default, this value
is set to 50). Clearly, these filters cannot provide real-time
performance guarantees to real-time VMs allocated to a host
given the coarse-grained nature of the heuristics used.

VM Allocation: After the filtering process, OpenStack
needs to select a host on which to place the VM. This is
referred to as “Weighing”. By default, OpenStack uses a worst-
fit algorithm based on the amount of free memory on each
host.

While OpenStack is widely used in genenral purpose cloud,
it cannot support real-time VMs demanding latency guarantees.
First, the resource interface is inadequate. A user can configure
only the number of VCPUs, and cannot specify the resource
and timing granularity needed to achieve real-time perfor-
mance guarantees. Second, the VM allocation heuristics ignore
real-time requirements and allocate VMs based on coarse-
grained metrics that are insufficient for provisioning real-time
performance guarantees. In the filter stage, OpenStack uses
heuristics to decide whether a host is suitable for the VM. In
the weighing stage, the current scheme is based on memory
and ignores CPU demands that also must be set to satisfy the
latency requirements of applications within the VMs.

III. DESIGN AND IMPLEMENTATION

A real-time cloud management system for co-hosting real-
time and general purpose VMs should have the following
characteristics:

• It should provide a real-time resource interface for the
VMs that exposes the amounts of resources needed to



TABLE I: RT-OpenStack for real-time and regular VMs

Resource Interface Admission Control VM Allocation
RT VM CSA Existing Filters + RT-Filter RT-Weigher

Regular VM Full CPU Existing Filters Existing Weighers

ensure timing guarantees of the applications running
within the VMs, such as the number of VCPUs
required by each VM and their real-time parameters
(e.g., budgets and periods).

• It should deliver the resources, according to the speci-
fication, to the real-time VMs. To achieve this, a real-
time VMM scheduler at the host level is required.

• It should perform an appropriate VM-to-Host map-
ping, which should maintain the schedulability of real-
time VMs without overloading the hosts.

• It should be able to co-host general purpose VMs with
real-time VMs.

• It should be work-conserving and maintain a high
CPU utilization in each host.

We have designed RT-OpenStack, which works at both the
single host level and the cloud management level to address
these requirements. At the host level, we designed RT-Xen
2.1, an extension of RT-Xen 2.0 that can co-host real-time
VMs with regular VMs, maintaining the real-time resource
provisioning to real-time VMs, while regular VMs can fully
utilize the remaining resources. At the cloud management
level, we provide a RT-Filter that forms admission control on
each host for real-time VMs, and a RT-Weigher that allocates
real-time VMs based on CPU resources.

A. Co-scheduling RT and regular VMs at single host level

In RT-Xen the resource interface of a real-time VM is
computed using compositional scheduling analysis (CSA) the-
ory [10], which ensures that if the host has sufficient resource
to feasibly schedule the VCPUs specified by the interfaces,
then all applications running within the VMs are schedulable.
We add an “rt” flag for each VM, and re-order the run queue
based on this value, as shown in Figure 1.

Fig. 1: Run Queue Architecture in RT-Xen 2.1

A run queue holds all VCPUs with tasks running, and the
scheduler always picks the head (as allowed by cpumask) to
make the scheduling decision. We divide the VCPUs into two
categories: with or without of budget. Within each category, we
strictly prioritize the real-time VMs’ VCPUs over the regular
VMs’ VCPUs. Therefore, the regular VMs do not affect the
compositional schedulability analysis of the real-time VMs. At
the same time, they can utilize the remaining CPU resources.

B. Co-hosting RT and regular VMs at cloud management level

Recall that OpenStack lacks an adequate resource interface
for VMs, and also the existing Nova-scheduler ignores real-
time scheduling analysis. We now discuss how RT-OpenStack
addresses each of these concerns:

Resource Interface: In RT-OpenStack each host runs with
the RT-Xen 2.1 scheduler, but we still need a method to pass
the real-time specification to the cloud manager when creating
a VM. One might create various VM template “flavors” with
different pre-defined values, but that would be too rigid. In
contrast, we use existing flavors which includes the number
of VCPUs, and pass three information to the OpenStack via
a scheduler hint: whether this VM is a real-time VM or not,
the total budget for all VCPUs, and a shared period for all
VCPUs. When there are multiple VCPUs in the flavor, we
evenly distribute the budget among them.

For a regular VM, a system manager usually does not know
the workload characteristics ahead in advance. Since it will not
affect the real-time VMs performance, we set the budget to be
the same as the period for regular VCPUs so that they can
use the remaining CPU resources whenever available. We also
configure the same period value for all regular VMs’ VCPUs,
so they always have the same deadline in EDF scheduling.
When multiple VCPUs share the same deadline, RT-Xen 2.1
uses round-robin scheduling among them. As a result, the
regular VMs share the remaining CPU resources evenly. Note
that for regular VMs, a user can also specify the budget to be
less than the period, which limits the CPU resources to the
regular VM. Exploration of this option is left to future work.
There are other approaches for integrating general purpose
tasks with real-time tasks [11, 12], but they either require the
general purpose tasks to follow the same task model as real-
time tasks, or they treat general purpose tasks as real-time
ones, which further reduces the utilization bound.

RT-Filter: In addition to the existing filters in the Nova
scheduler, we implemented a RT-Filter for RT VMs. It acts
as an admission controller for real-time VMs on each host.
When a real-time VM creation request is submitted, the RT-
Filter is triggered on each host. The RT-Filter reads the already
accepted real-time VMs’ information on the host, and together
with the new request, it performs the schedulability test to get
the minimal number of PCPUs to schedule those VCPUs. If
the required number of PCPUs is larger than the available
PCPUs, it rejects the request; otherwise, it accepts the request.
Note that the RT-Filter is applied only for real-time VM
request, and it considers only the real-time VMs’ information
when performing compositional scheduling analysis. In this
way, we can maintain the real-time VMs performance by not
overloading the host, while being able to accept regular VMs
to fully utilize the underlying CPU resources.

RT-Weigher: For the VM allocation (weighing) process,
we face the problem of considering at least two resources:
CPU and memory. Since this paper focuses on the CPU



resources for real-time VMs, we consider worst-fit allocation
for real-time VMs based on CPU resource only. We have
designed and implemented a RT-Weigher within the Nova
scheduling framework. The RT-Weigher works very similarly
to the RT-Filter, but returns the remaining CPU capacity on the
host. It also considers only real-time VMs when performing
compositional schedulability analysis. For the regular VMs, we
fall back to the default allocation scheme based on memory.

Table I summarizes the different treatment of RT vs. regular
VMs in RT-OpenStack. In summary, we consider only existing
real-time VMs’ information for RT VMs, and fall back to the
default schemes for non real-time VMs.

We have implemented RT-Xen 2.1 in C. We also extended
the RT-Xen tool for including the rt parameters. The RT-Filter
and RT-Weigher are implemented in Python. Both RT-Xen 2.1
and RT-OpenStack are open source and can be downloaded at
https://sites.google.com/site/realtimexen.

IV. EVALUATION

In this section, we present our experimental evaluation of
co-hosting RT and regular VMs. We first evaluate RT-Xen
2.1 on a single host to demonstrate that regular VMs do not
affect the performance of RT VMs. We then conduct a study to
demonstrate that RT-OpenStack can satisfy RT VMs’ resource
requirement when co-locating RT and regular VMs.

A. Experiment Platform

Our testbed contains seven multi-core machines, configured
as follows: host 0 is equipped with an Intel 4 core chip with
8GB memory, and works as the controller; host 1 is an Intel
i7 4770 4 core machine with 8GB memory; host 2 is an Intel
i7x980 6 core machine with 12GB memory; host 3-6 are Intel
i5 4590 4 core machines with 16GB memory each. XenServer
6.2 patched with RT-Xen 2.1 is installed on all machines. On
each machine, domain 0 is configured with 1 VCPU, 1 GB
memory and is pinned to core 0; the agent VM is configured
with 1 VCPU, 3 GB memory and is also pinned to core
0. The XenServer takes around 200MB of memory on each
machine. The remaining cores and memory are used to run
the guest VMs. We use the gEDF scheduler with deferrable
server on each machine, as it was shown to work best in our
previous studies [6]. Within the real-time VMs, we apply the
LitmusRT [13] patch and use the gEDF scheduler at the guest
OS level. We disable dynamic frequency scaling, turbo boost,
and hyper-threading so that each PCPU worked at constant
speed. All other unnecessary services were turned off during
the experiment.

B. Impact of regular VMs on real-time VMs

Our previous experiments show that RT-Xen can guarantee
the real-time performance on a multi-core platform with mod-
erate overhead. Interested readers can refer to our previous
paper [6] for more details. In this paper, we focus on the
problem of co-hosting RT VMs with regular VMs.

1) RT VM’s reservation on a single core: We first demon-
strate that the regular VM cannot affect the CPU resources
allocated to an RT VM. We focus on the single-core case, and
set up the experiment as follows: We ran the experiment on 1

host, booting 1 RT VM and 5 competing regular VMs (VM1 to
VM5). They all have 1 VCPU each, and are pinned to a single
common core (through cpumask). The RT VM is configured
with a budget of 4 and period of 10, and each regular VM’s
budget is set to be equal to its period. All VMs run a CPU
busy program to take as much CPU resource as possible. We
start with only one RT VM running, then gradually enable
the CPU busy program in regular VMs, and record the CPU
resources received by the RT VM (via the xentop command).

TABLE II: CPU Utilization Test on Single Core

RT VM 40.3% 40.2% 40.2% 40.2% 40.2% 40.2%
VM 1 - 59.5% 29.8% 19.9% 14.9% 11.9%
VM 2 - - 29.8% 19.8% 14.8% 11.9%
VM 3 - - - 19.9% 14.9& 12.0%
VM 4 - - - - 14.8% 12.0%
VM 5 - - - - - 12.0%
Total 40.3% 99.7% 99.8% 99.8% 99.6% 100%

Table II shows the results. Clearly the RT VM’s perfor-
mance is not affected by regular VMs, even under stress test-
ing. We also notice that when multiple regular VMs overload
the CPU, the remaining CPU resources are distributed evenly
among them. Another observation is that all CPU utilizations
add up to at least 99.5%, which demonstrates the efficient
implementation of RT-Xen 2.1.

We repeated the same experiment with the default credit
scheduler, and set each VCPU’s cap to 40%. All VCPUs
share the same weight. As expected, the CPU resources are
equally distributed between the running VMs, and there is
no difference among the RT VMs and regular VMs. Due to
the relatively large scheduling quantum (30 ms) in the credit
scheduler, the numbers obtained via xentop varied by +- 2%,
so we do not include those numbers here. Note that the system
administrator can adjust each VCPU’s weight to make the
RT VM receive a certain amount of resources. However, this
requires a global knowledge of all the running domains, and
also needs re-adjustment whenever there is a change in the
number of VMs. In contrast, when a system administrator
allocates a certain amount of CPU resources to a RT VM,
it will not change regardless of the number of regular VMs.

2) Schedulability of RT VMs: It is also important to show
that RT-Xen 2.1 can provide CPU resources to each RT VM
at right time to meet the real-time application’s deadlines. We
set up this experiment as follows: Each RT VM’s contains
two real-time tasks, with period randomly selected from 20
ms to 33 ms, and execution time randomly selected from 10
ms to 20 ms. For the underlying VCPU parameters, we iterate
through all periods that are less than 30 ms, then use CSA to
generate the required budget for each VCPU. After getting all
combinations, we pick the one with the minimal total VCPU
bandwidth and use it.

We ran the experiments with three PCPUs, and generated
2 RT VMs, the actual total task utilization was 2.03, while the
total VCPU bandwidth was 2.93, and they required three full
PCPU to schedule them. We again booted up two regular VMs,
and configured the cpu test program in sysbench [14] to run
in them. The program keeps calculating prime numbers, and
reports the number of rounds it achieved during a given time.
The real-time task and the sysbench task were configured to



run for 1 minute, and we recorded the results. We also repeated
the experiment with the credit scheduler.

TABLE III: Schedulability Test on Multi-Core

Deadline Miss Ratio Number of Rounds Calculating Pi
RT VM 1 RT VM 2 Regular VM 1 Regular VM 2

RT-Xen 2.1
0% 0% - -
0% 0% 1929 -
0% 0% 1280 1266

Credit
0.01% 0.5% - -
3.4% 15.3% 2596 -
73.7% 40.7% 1941 1736

Table III shows the results. We observe that in all cases, RT-
Xen 2.1 can meet the deadline requirements for real-time VMs,
and evenly distributes the remaining resources for regular
VMs. In sharp contrast, using the credit scheduler experienced
deadline misses (0.01% and 0.5%) for both real-time VMs
even when there are no interference, and the deadline miss
ratio grew up to 73.5% for RT VM 1 when there were two
regular VMs running.

Summary: On a single host, RT-Xen 2.1 can maintain
real-time VMs performance while keeping the host utilization
high by running regular VMs.

C. Pessimism of Hierarchical Scheduling Theory

We know that hierarchical scheduling theory is pessimistic
for RT VMs. This set of experiments aims to quantify that
pessimism and see how much CPU resources may be wasted
if we ran only RT VMs on a host. A single host is assumed
in this experiment. We first assume there is a fixed number
of PCPUs, and then keep submitting VM creation requests
until the CSA theory rejects the request. We record the total
CPU utilization of accepted VMs. For each VM’s request,
we randomly pick its period from 10, 20, ors 40, and also
randomly pick its utilization from 10% to 70%. Based on the
period and utilization, we can calculate its budget, using the
improved gEDF CSA theory from [15]. Note here that all the
results in this subsection are simulation results, but the core
algorithm is the same as we used in RT-Filter for RT VMs.
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Fig. 2: Simulation Result: RT-Filter

Figure 2 shows the result. On a single core, gEDF becomes
a pEDF with 100% utilization, so less than 20% of the resource
is wasted. However, once there are more than 2 cores, in all
cases more than 40% of the CPU resource is wasted. This

clearly demonstrates that scheduling RT VMs alone can greatly
under-utilize the CPU resources in a cloud.

Summary: Scheduling only RT VMs can significantly
under-utilize the CPU resources, which makes co-hosting
RT VM with regular VM desirable.

D. RT-OpenStack Case Study

This experiment was designed to evaluate RT-OpenStack
on a cluster. 7 hosts are used. There are two types of VMs
running in the cloud, RT and regular VMs.

In each RT VM, we emulate a cloud gaming server
(described in [1]), where there are two real-time tasks: a video
encoder and an audio encoder. We randomly choose each task’s
period between 20 ms to 33 ms, to emulate different frame
rates between 30 fps and 50 fps. Each task’s execution time is
randomly picked from 10 ms to 20 ms, to represent different
games, resolutions, and settings. We applied the LitmusRT [13]
patch for the RT VM and used the gEDF scheduler to schedule
real-time tasks. Compositional scheduling theory was used to
generate the VCPU parameters for the RT VM. Here we use
the same methodology as in Section IV-C, where we iterate
through all the periods for the VCPU and find the one with
minimal bandwidth. We configure all regular VMs to be a
hadoop cluster, and run the standard pi program to test its
performance.

The VM booting sequence was as follows: We first booted
the 7 hosts with RT-OpenStack, then kept creating RT VMs
until rejected. Each RT VM is configured with 1.5 G memory.
Note that each RT VM’s task set was different, so their VCPU
interfaces also were different. 11 RT VMs were created. After
that, we kept booting regular VMs with 2 VCPUs and 4G mem
each, until one wasrejected. 9 regular VMs were booted. We
also repeated the same booting sequence using OpenStack for
comparison.

Figure 3 shows the VM allocation scheme for RT-
OpenStack. We can see that the RT VMs were evenly dis-
tributed among the 7 hosts, and the regular VMs were booted
on hosts with enough memory to take advantage of the
remaining CPU resources. Because we configure each regular
VM’s VCPU budget to be the same as its period so it can fully
use the CPU resources, we did not show their CPU resource
in the figure.

In sharp contrast, Figure 4 shows the allocation by Open-
Stack. The worst-fit algorithm based purely on memory is used,
and the first 11 RT VMs are being packed on hosts 3-6. As a
result, these 4 hosts’s CPU resources are overloaded.

After all the VMs were ready, we ran the hadoop workload
in the regular VMs, and at the same time started the real-time
tasks in the RT VMs. When the hadoop workload finished, we
manually terminated the real-time task in each RT VM and
recorded its deadline miss ratio.

Table IV shows the results. The RT-OpenStack + RT-Xen
combination experienced no deadline miss in 11 RT VMs, and
finished the hadoop task in 435 seconds; In contrast, using
the same RT-OpenStack allocation scheme but with the credit
VMM scheduler, 8 out of 11 RT VMs experienced deadline
misses, and 2 of them had deadline miss ratio larger than 50%



TABLE IV: Deadline Miss Ratio in each RT VM, and Hadoop finish time

Deadline Miss Ratio Hadoop finish time
VMs RT 1 RT 2 RT 3 RT 4 RT 5 RT 6 RT 7 RT 8 RT 9 RT 10 RT 11 Regular VMs

RT-OpenStack+RT-Xen 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 435 s
RT-OpenStack+Credit 3% 1% 54% 35% 21% 14% 0% 0% 51% 35% 0% 254 s
OpenStack+RT-Xen 9% 0% 0% 0% 2% 0% 0% 0% 41% 11% 0% –
OpenStack+Credit 37% 31% 61% 13% 75% 29% 30% 36% 73% 47% 32% 314 s
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Fig. 3: RT-OpenStack VM Allocation
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Fig. 4: OpenStack VM Allocation
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Fig. 5: Actual CPU Resource Usage for RT-OpenStack

(RT VMs 3 and 9). However, the hadoop tasks finished in
254 seconds, which is 3 minutes faster than with the RT-Xen
scheduler. This is to be expected as in the Credit scheduler,
the regular VMs have more chances to get more resources.
When using the OpenStack allocation scheme with the RT-Xen
scheduler, the hadoop computation makes no progress at all.
So we terminated the experiments at 5 minutes and report only
the deadline miss ratios in RT VMs. Four RT VMs experienced
deadline misses: we further examined the allocation and found
3 of them weres being allocated on the same host (host 6).
This illustrates that although RT-Xen can prioritize the CPU
resources to RT VMs, due to the allocation scheme, on host 6
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Fig. 6: Actual CPU Resource Usage for RT-OpenStack

there are not enough CPU resources. The OpenStack + Credit
combination experienced the worst deadline miss ratios for all
RT VMs. This again demonstrated that the default allocation
scheme pays no attention to the CPU requirement, and the
credit scheduler makes no discrimination of that. Also, the
hadoop computation task finished 1 minutes later than the RT-
OpenStack + Credit combination, due to CPU overloading on
hosts 3-6.

Since the hadoop program takes longer to finish in the
RT-OpenStack + RT-Xen combination, we are also interested
whether the host is fully utilized or not. We repeated the
experiment, and during it, recorded each domain’s actual CPU



consumption for 10 seconds. Figure 6 shows the results. Com-
paring the actual allocation with the CPU resourced claimed
by RT VMs in Figure 3a led to the following insights: (1)
although the claimed CPU resources almost reached the limit,
the actual CPU consumption by the RT VM is much less than
the claimed ones. This further shows the pessimism of the
hierarchical scheduling theory, and motivates co-hosting real-
time VM with regular VMs; (2) on hosts 3 to 6, the actual total
CPU utilization had already reached the limit, which means
any improvements by the hadoop program will affect the real-
time performance of RT VMs. On host 2, the actual CPU
allocation for non real-time VMs has reached 200%, which is
the upper limit for 2 VCPUs.

Summary: The combination of RT-OpenStack + RT-Xen
can guarantee the real-time performance for RT VMs, and
let regular VMs use the remaining CPU resources.

V. RELATED WORK

This paper focuses on co-hosting RT VMs with regular
VMs, both on a single host (RT-Xen 2.1) and in a public cloud
(RT-OpenStack). We now discuss related work in both areas.

A. Single Host

In hierarchical scheduling theory there is a rich body of
work for both single-core and multi-core platforms [16, 17,
18, 19, 20, 21, 22, 23, 15, 24]. These approaches cover
different aspects of the problem, and differ in the priority
scheme used (EDF or RM), scheduling policy used (global
or partitioned), server schemes (deferrable server, constant
bandwidth server, periodic server, etc), and also the interfaces
used in a multi-core environment. However, none of them
considers the problem of co-hosting RT VMs with regular
VMs. RT-Xen 2.1 is a extension of RT-Xen 2.0, which not
only supports co-hosting RT and regular VMs, but also covers
most design dimensions and is compatible with most of the
theory, such as [22, 18, 15] and their variations. On a one-level
scheduling platform, [12, 11] discusses integrating best-effort
scheduling into real-time systems. The model they use assumes
the same task model for the best-effort tasks. In RT-Xen 2.1,
the regular VMs can run any tasks, and we use the average
CPU utilization for deciding the parameters. In the future RT-
Xen can serve as an open source platform for the community
to experiment with different scheduling approaches.

The implementation of hierarchical scheduling has been
investigated for various platforms. [25, 26, 27, 28, 29, 30]
investigate the problem of implementing hierarchical schedul-
ing in one space (user or kernel). As a result, all scheduling
decisions are made by one scheduler. In contrast, RT-Xen
performs scheduling at the VMM level, resulting in a clean
separation between the two levels of scheduling. Moreover,
compositional scheduling theory lets guest domains hide their
task-specific details from the underlying platforms, which is
suitable for cloud computing. [31, 32, 33] employ heuristics
to enhance the default schedulers in Xen. RT-Xen, on the other
hand, provides a new real-time scheduling framework to plug-
in different real-time schedulers. While the implementation
of RT-Xen is specific to the Xen platform, the approach
can be easily applied to other virtualization technologies like
KVM [34, 35] and micro-kernels [36, 37, 38].

B. Cloud Management Systems

VMWare vCenter [39] maintains each host’s utilization
between 45% and 81%, and dynamically powers up / shut
down standby hosts to save energy. The vCenter also performs
VM live migration to balance the load between multiple hosts.
We plan to investigate load balancing as future work. For
open source cloud management systems, the most related work
is [40], which also migrates VM to balance the load between
hosts. In contrast, RT-OpenStack addresses the VM placement
problem to make real-time guarantees for RT VMs.

C. Cloud Applications

Recent work also improves the real-time cloud performance
at the application level. For example, [41] focuses on improv-
ing the resource allocation for diverse datacenter workloads in
hadoop. Our work is complementary to such approaches, as
we can let regular VMs use the idle CPU resources.

VI. CONCLUSION

Real-time applications can benefit from being deployed in
cloud, which in turn raises significant research challenges to
meet the real-time requirement of such applications. Current
clouds cannot provide real-time capabilities for two reasons:
(1) the lack of a real-time virtual machine monitor (VMM)
scheduler on a single host, and (2) the lack of a real-time
aware VM placement scheme by the cloud manager. This
paper presents RT-OpenStack, a holistic solution to co-hosting
both RT and regular VMs. RT-OpenStack entails three main
contributions: (1) integration of a real-time hypervisor (RT-
Xen) and a cloud management system through real-time re-
source interface; (2) extension of the RT-Xen VM scheduler
to allow regular VMs to share hosts without jeopardizing
the real-time performance of RT VMs; and (3) a VM-to-
host mapping strategy that provision real-time performance to
RT VMs while allowing effective resource sharing by regular
VMs. Experimental results demonstrate that RT-OpenStack can
support latency guarantees for RT VMs in a cloud, and at the
same time let regular VMs fully utilize the remaining CPU
resources.
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