Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-94-26

1994-01-01

Efficient Quality of Service Support in Multimedia Computer
Operating Systems

Raman Gopalakrishna and Guru M. Parulkar

This report describes our approach towards providing quality of service (QoS) guarantees for
network communication within the endsystems to support multimedia applications. We first
address the problem of QoS specification by identifying a set of application classes and their
QoS parameters that cover the communication requirements of most applications. We then
describe the QoS mapping problem, and show how requirements for resources (such as the
CPU, the network interface adaptor and network connections) can be automatically derived
from the application QoS parameters. We then deal with the QoS enforcement issue in which we
describe techniques for scheduling protocol processing... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Gopalakrishna, Raman and Parulkar, Guru M., "Efficient Quality of Service Support in Multimedia Computer
Operating Systems" Report Number: WUCS-94-26 (1994). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/347

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/347?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/347

Efficient Quality of Service Support in Multimedia Computer Operating Systems

Raman Gopalakrishna and Guru M. Parulkar

Complete Abstract:

This report describes our approach towards providing quality of service (QoS) guarantees for network
communication within the endsystems to support multimedia applications. We first address the problem
of QoS specification by identifying a set of application classes and their QoS parameters that cover the
communication requirements of most applications. We then describe the QoS mapping problem, and
show how requirements for resources (such as the CPU, the network interface adaptor and network
connections) can be automatically derived from the application QoS parameters. We then deal with the
QoS enforcement issue in which we describe techniques for scheduling protocol processing threads in
order to reduce context switching overhead, as well as derive sufficiency conditions in order to provide
predictable performance. We integrate all these solutions in a protocol implementation model. The key
feature of the model is that protocols are part of the application process and are processed using
protocol threads with individual scheduling attributes derived using our QoS mapping method. We
propose several performance improvement techniques for application level protocol implementations
that can reduce the high cost of data movement and context switching in these implementations. A
significant component of this work will consist of implementation and experimentation which will result in
significant contributions of practical utility.

https://openscholarship.wustl.edu/cse_research/347?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/347?utm_source=openscholarship.wustl.edu%2Fcse_research%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient Quality of Service Support in
Multimedia Computer Operating Systems

Raman Gopalakrishna
Guru M. Parulkar

WUCS-94-26

October 7, 1994

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

St.Louis, MO 63130-4899

Abstract

This report describes our approach towards providing quality of service (QoS) guarantees for network
communication within the endsystems to support multimedia applications. We first address the problem of
QoS specification by identifying a set of application classes and their QoS parameters that cover the com-
munication requirements of most applications. We then describe the QoS mapping problem, and show
how requirements for resources (such as the CPU, the network interface adaptor and network connections)
can be automatically derived from the application QoS parameters. We then deal with the QoS enforce-
ment issue in which we describe techniques for scheduling protocol processing threads in order to reduce
context switching overhead, as well as derive sufficiency conditions in order to provide predictable perfor-
mance. We integrate ali these solutions in a protocol implementation model. The key feature of the model
is that protocols are part of the application process and are processed using protocol threads with individ-
ual scheduling attributes derived using our QoS mapping method. We propose several performance
improvement techniques for application level protocol implementations that can reduce the high cost of
data movement and context switching in these implementations. A significant component of this work will
consist of implementation and experimentation which will result in significant contributions of practical

utility.

1. Introduction

The integration of continuous and discrete media (or multimedia) is an important trend, and recent developments in
the areas of high-speed broadband networks, multimedia computer workstations, and applications such as hyperme-
dia navigation, bear witness to this fact. The term distributed multimedia has been used to describe the emerging sce-
nario in which a single integrated network will carry a wide variety of media (such as video, audio and traditional
data) and endsystems (i.e host computers) will process these different media in the same way as discrete data. This
report is concerned with the support needed at endsystems (such as multimedia workstations) to provide performance
guarantees for network communication to multimedia applications. Our work is targeted towards networks that can

provide guaranteed service on a per connection basis, such as broadband networks based on ATM!. Such networks are
able to support a mix of traffic types and are said to have multiservice capability. This report describes the software
architecture of the /O (networking) subsystem in the host, and some of the mechanisms used in implementing it, that
allow multimedia applications to benefit from the multiservice capabilities of the network.

1.1 Motivation

Emerging broadband networks [27] will be capable of transporting a variety of media, both continucus (such as
video) as well as discrete (data). This capability is due to the high transmission rates that are possible using optical
fiber, and to the use of fast packet switching technology. Meanwhile, enhancements to endsystem hardware allow
them to store and process continuous media (CM) data and communicate them over network connections much in the
same way as discrete data [18, 25, 33]. These two developments have opened up a plethora of multimedia applica-
tions that use the capability of the network and the endsystems to provide services to users that were not possible
before.

An important aspect of multimedia applications is that they require performance guarantees from the endsystems (for
processing) as well as from the network (for communication). For example, the broadband network provides each
user a connection (or a virtual circuit) over which it carries user data, and to each connection it provides performance
guarantees that are referred to as quality-of-service (QoS) guarantees. The term QoS refers to values of parameters
such as bandwidth, delay, and loss that determine the essential features of the network service. These values can be
negotiated between each connection (user) and the network. The term guarantee refers to the ability of the network to
honor its obligation of ensuring that each connection gets its negotiated QoS throughout its lifetime. QoS guarantees
are necessary to support CM traffic that have time-critical transport requirements. It must be noted that multimedia
applications have diverse {and often conflicting) processing and transport requirements that must be supported. For
example, high bandwidth is required by applications such as visualization, imaging and video distribution. Applica-
tions such as distributed computing and distributed interactive simulation (DIS) are less bandwidth intensive, but are
very intolerant to delay. Therefore, supporting these applications in the emerging network and endsystem environ-
ments is an important priority of many research efforts.

Much research{ 14, 45] has been conducted on how to provide QoS guarantees in networks (such as ATM). However,
less has been done to provide performance guarantees for processing in endsystems. In order to meet the processing
requirements of multimedia applications, enhancements are needed in both the host hardware and software [5].
Firstly, the data paths in the host must have sufficient capacity to move time-critical, high volume CM data between
hardware components such as storage units, processing elements, memory and the network interface. Furthermore,
enough processing power must be available to process the data. The networking subsystem (communication proto-
cols, network device driver etc.), and the host operating system (08), must ensure that the aggregate hardware capac-
ity is shared between the application processes according to their individual QoS requirements. Satisfying all these
requirements presents significant challenges, and it is widely recognized that an integrated design of the hardware
and software components is necessary to meet end to end QoS requirements of applications.

1. ATM stands for Asynchronous Transfer Mode and is the technology of choice for broadband networks.

Qctober 7, 1994 2z

Until recently, research in QoS guarantees has been focussed on how to multiplex network connections over network
components (switches and links) in a manner that satisfies QoS parameters negotiated with the network. However,
these guarantees are not “end-to-end”, because they are preserved only between the network access nodes that con-
nect the endsystems. Unless we can effectively control the processing of data sent/received on these connections by
the communication subsystem within the endsystem, QoS guarantees cannot be made to the application.

The main motivation for this work is that emerging multimedia applications will need end-to-end performance guar-
antees for network communication, and effective support at the endsystems is necessary in order to achieve this.
Below, we briefly indicate some problems that we face to reach this goal.

1.2 Brief Statement of Problems

Specification of QoS requirements is necessary to provide performance guarantees. QoS Specification is a difficult
problem for several reasons.

* An endsystem must support applications with widely varying communication needs and Qo8 parameters. There-
fore handling a large variety of QoS specifications at the endsystem is a problem.

* Applications may only be aware of high level parameters that are specific to the application. Specifying require-
ments in terms of network level, and system level QoS parameters poses a problem.

An endsystem has several components (or resources) involved in network communication. Examples of resources are
the CPU, memory, and the network interface adaptor (or NIA). These resources are managed by the 0S so that they can
be shared by all applications. If the QoS requirements of an application can be expressed in terms of requirements for
these resources, the problem of maintaining QoS is converted to a resource management problem. To be able to do
this, the 08 has to be aware of the relationship between QoS parameters requested by an application and resource
requirement parameters. Examples of resource parameters are network connection bandwidth and process scheduling
attributes. The derivation of resource requirements from QoS requirements is referred to as the QoS mapping problem
and is an important component of the solution to providing performance guarantees in endsystems.

The resources mentioned above are shared among different application processes each with different requirements.
For example, a resource such as the CPU must be scheduled to satisfy the requirements of each user. Memory must be
partitioned amongst applications and managed during the course of execution. The goal of scheduling and enforce-
ment is to ensure that each application gets its share of the resource, while keeping resource utilization high. Because
multimedia applications must handle time-critical data, scheduling must be real-time. By real-time we mean that
tasks in a multimedia application have deadlines associated with them, and each task must complete before its dead-
line. Scheduling endsystem resources keeping this requirement in mind is a crucial part of maintaining QoS.

Studies of protocol performance have shown that the major portion of the cost of protocol processing is due to data
movement and context switching {4, 71. This is because memory bandwidth and interrupt latency have not improved
as much as processor performance. Data movement in protocel implementations occurs when data has to move
between protection domains or between the memory and network devices. Context switching occurs when control
passes from one thread of execution to another {either in the same or different address space) or due to hardware
events such as network interrupts and scheduling interrupts. The cost of these operations mainly depends on the pro-
tocol implementation model (also referred to as transport system architecture [35]). Developing an implementation
model that maintains QoS, as well as keeps data movement and context switching costs low, is crucial to the success
of multimedia applications and therefore is an important problem. Since real-time scheduling requirements require
the scheduler to exercise stricter control over the order of process execution, the context-switching problem gets
exacerbated and techniques to reduce them are needed. Therefore, we have to ensure that the solutions we propose to
maintain QoS are not at the expense of efficiency or utilization.

1.3 Statement of Goals

In brief, our goal is to extend the notion of QoS to within the host—from the network interface driver, through the
protocol layers, and upto the application threads that generate and consume data. We want to develop an integrated

October 7, 1994 3

solution at the endsystems that takes application specified QoS parameters, uses these to determine local and network
resource requirements, and enforces the usage of endsystem resources. Furthermore, we want to achieve the same
efficiency, if not better, of state-of-the-art protocol implementations so that end-to-end QoS guarantees can be real-
ized without reducing system utilization.

As part of the deliverables of this research, we are developing a prototype protocol suite implementation that incorpo-
rates our solutions to each of the problems mentioned in Section 1.2. The software deliverables will include an imple-
mentation of the automated mapping procedure described in Section 3.4, an implementation of the scheduling
mechanism described in Section 4.2, and an implementation of our solutions to overcome the overheads in data
movement and context switching described in Section 5.3. The plan of work at the end of Section 3, 4, and 5 gives a
more detailed description of what kind of results we plan to achieve.

1.4 Outline of Report

This report is organized as follows. Section 2 states our assumptions about the endsystem model. The details of the
model are not part of the research and are included only for introducing terminology and for the sake of complete-
ness. The readers may choose to skip those portions that they are already familiar with. The next three sections deal
with the three components of the problem statement: Section 3 deals with the QoS specification and mapping prob-
lem, Section 4 deals with CPU scheduling, and Section 5 deals with the problems in data movement and context
switching in the protocol implementation model we have adopted. In each of these sections, we present the statement
of the problem, highlight the innovative ideas in our solution, and describe each solution in detail. This is followed by
discussion of trade-offs that we will study in our research, and a review of related work in that area. Section 6 pre-
sents an example that illustrates various aspects of our solution. Certain details have been left to the appendices that
appear in the end.

2. End-system Model

We begin by presenting a model! for the endsystem that will serve as a reference for our discussions. We describe the
application model, the process model and the IPC model. We identify the set of resources that are mainly involved in
the network communication. For each of these resources, we specify the resource model that we will use and justify
the choices we propose.

2.1 Application Model

‘We model a multimedia application as a pipeline consisting of several modules. A module represents some function-
ality implemented in software/hardware. A software module resides in a protection domain that could either be the 08
kernel or a user process. A module can be regarded as a pipeline stage that has data units coming in at a certain rate,
uses certain compute time to process a unit of data, and has data units going out at some rate. We assume that the
compute and communication requirements of modules can be estimated, or derived from application specifications.
In the case of network communication for example, a sender transport protocol can be regarded as a module that takes
in application data, and generates protocol data units (PDUs) to be passed on to a downstream module (such as the
NIA). In this case, the incoming bandwidth to the protocol module is determined by the rate at which the application
generates data units and the processing time is the time to do transport protocol processing. The outgoing bandwidth
is determined by the rate at which PDUSs are generated and may be higher than the incoming bandwidth because a PDU
has a protocol header addition to data. We show a typical pipeline with three stages in Figure 1.

Application Protocol NIA
— ! Module || Module [gt Module .

FIGURE 1. Application Model

October 7, 1994 4

2.2 Process Model

The process is the basic unit of resource management and consists of an address space and one or more of threads of
execution that share the address space. There are two kinds of threads namely kernel threads and user threads. Kernel
threads are known to the kernel and managed by the system scheduler. On one (or more) kernel threads, several user
threads can be scheduled. User threads are scheduled by a user level scheduler that is linked to the user program but
the management of user threads is transparent to the kernel. The system scheduler tracks the CPU usage of kernel
threads in each process but not of user threads. Context switching between user threads is an order of magnitude less
expensive than between kernel threads, and so for efficiency reasons user threads are often preferable, We assume
protocol processing is done using threads, which implies that communication protocols are part of the user process
(as opposed to being in the kernel). Likewise, application and protocol buffers are part of the user address space [24,
39]. This assumption has implications on data movement and context switching that will be discussed in Section 5.

2.3 TPC Model

The 1PC model defines the abstraction seen by applications for sending/receiving data. The IPC services are imple-
mented in the communication subsystem (CS). In our model, the sending(receiving) application process is viewed as a
source{destination) of end-to-end data units such as for example a video frame, an image file, or an RPC message. The
application specifies QoS parameters in terms of these data units to the C5 on the source (and destination) which must
allocate and manage resources so that these parameters are satisfied. We assume that application specific functionality
of the €S is implemented by an application thread in the application process. These functions include application ori-
ented error contrel [16] and presentation functions for example. The application thread also does segmentation(reas-
sembly} of the end-to-end data units that are moved across the C$ interface into application data units (AnuUs) before
passing them on to the transport protocol. In most 05s (such as UNIX) the interface to the protocols is referred to as the
IPC interface because protocols are implemented in the kernel. The 1PC interface functions (such as send/recv) are
standardized so that an application can use a wide range of communication protocols without having to be rewritten
for each protocol. In our model, we retain the standardized IPC interface, but the protocol code is part of the user pro-
cess and is run by a pretocol thread. Typically a network connection that carries end-to-end data with a given QoS
has a separate protocol thread that processes PDUs carried on that connection. Finally the protocol threads for all con-
nections (in different processes} interact with the network driver in the kernel. The driver maintains the incoming and
outgoing packet queues for all connections and does other control operations (such as programming the NI1A) that
require kernel privileges. The IPC model is shown in Figure 2.

./}pfliatial %)S-l"aﬁm_gte(s
- ------ ERREREEEE AEEEEEEEE R R L
2 | g g ! Application Threads
L5
;Lq I IPC Interface |
| |
5 / Protocol Threads
~— User-Kernel Boundary —
5]
Packet Queues Z
[}
-
g
Network Connections o
z
FIGURE 2. IPC Model

October 7, 1994 5

2.4 Schedulable Resources

In order to provide QoS guarantees, resources required to perform communication subsystern activities must be
reserved (either physically or statistically) for each application. Furthermore, these resources must be scheduled
among applications so that the reservations made are honored. We will be concerned with two schedulable resources
that are {ocal to the host — the CPU, and the NIA. The 05 is responsible for managing these resources, The network
connection is a non-local resource that must be setup by the 0s on behalf of applications. Each resource has a
resource model that defines the syntax (such as parameters and permissible values) that applications use to make
requests, and the semantics of the request parameters,

In the next three sections we present the model we assume for the CPU, NIA, and the network connection resources.
For truly end-to-end QoS maintenance, every local schedulable resource (e.g., disk, /O bus, etc.) that the application
uses to generate/consume data from the network must be reserved and scheduled according to application QoS
requirements. However, we focus only on the CPU and the NIA because they must be involved in any network commu-
nication, and considering other resources would considerably enlarge the scope of our problem.

2.4.1 The CPU Scheduler Model

The CPU does the application and protocol processing associated with communication, and is therefore crucial to
maintaining QoS. The fundamental abstraction or resource mode! for the CPU that is provided by the 05 is the process
or thread. For our purposes of providing guaranteed share of processing time we consider a real-time thread model.
While a lot of real-time models have primarily been developed for process control and other embedded systems, real-
time schedulers intended for general purpose computing are becoming available primarily to provide support for
multimedia applications. These schedulers provide real-time periodic threads with different priority schemes for con-
trolling pre-emption. A typical candidate is the Mach 3.0 RT-threads package [40] that will be used as a reference
model for our examples. The salient features of the scheduler are described below.

Real-time Thread Model. A periodic RT-thread has two main attributes that describe its CPU requirements. The
first is the period T, that is the interval between successive invocations of the thread. The second is the computation
time C, that is the time a thread needs to run in each period or invocation. The scheduler creates {invokes) a new
thread at the beginning of every period and sets it up to begin executing at a fixed entry point in its program. The
deadline D of a thread is the time by which it should complete its task starting from when it becomes ready, and is
usually assumed to be the time when the next period begins. The utilization of a thread is equal to C/T and the sum
of all thread utilizations is the total CPU utilization. There is also a priority associated with each RT-thread. A running
thread, can be pre-empted by a higher priority thread any time during its period. Several priority schemes for real-
time scheduling are known [19]. Priority schemes are classified as static or dynamic depending on whether the prior-
ity of a thread is fixed during its lifetime or changes over time. The thread model is shown in Figure 3.

Tlp- time

D S+T D S+2T

3: start time T: Period
D:Deadline C: Compntation time

FIGURE 3. Mach 3.0 Real-Time Periodic Thread
Rate Monotonic (RM) Priority. In the rate monotonic scheme, the priority is proportional to the rate of the

thread. The smaller the period, the higher is the priority. Since the period of a thread is fixed at creation time, the pri-
ority is static. An example of a dynamic priority scheme is the earliest deadline first (EDF) scheme. In this scheme, the

Qctober 7, 1994 6

thread that has the earliest deadline has highest priority. Both these schemes have been shown to be optimal in the
sense that if any static or dynamic scheme can schedule a set of threads so that they all meet their deadlines, then they
can also be scheduled by the rate-monotonic or earliest-deadline-first schemes respectively. For the rate monotonic
and earliest-deadline-first schemes, there exists a schedulability criterion that can decide based on the total utiliza-
tion, whether all threads can be guaranteed to meet their deadlines [23]. We choose to use the rate-monotonic priority
scheme for implementing the application and protocol threads and the justification for this is provided below.

Justification for Choice of Model. We choose periodic threads because they can easily express CPU require-
ments over an extended time duration. Periodic threads are a natural choice for M traffic such as video, although the
thread period may be much smalier than the frame period. Even in the case of “bursty” sources (large file transfers),
because the time to transfer the burst is much larger than typical thread periods, a periodic thread can be setup to do
the processing once the burst starts. After the burst is completely processed the thread can be made inactive until the
next one arrives (maybe after some random interval). The periodic model is not suited for intermittent short messages
that arise in RPC and distributed algorithim applications because the processing time per message (within the commu-
nication subsystem) is comparable to a typical thread period. However if the message traffic extends over a longer
duration then periodic threads can again be used.

The rate-monctonic priority scheme has been chosen because of its simplicity. The earliest-deadline-first scheme
requires threads to be sorted according to deadlines and therefore has higher run-time costs compared to the rate-
monotonic scheme. The disadvantage of the rate-monotonic scheme is that, to guarantee that all threads will meet
their deadlines, the total utilization must be kept below 88% (in the average case). The earliest-deadline-first scheme
on the other hand can guarantee the full 100% of the CPU capacity. Qur objective is not to critically evaluate these
schemes, but to take one of these schemes and modify it in order to reduce the context switching overhead. Our solu-
tions however can be applied to both cases. This is the rationale behind our choice of rate-monotonic priority scheme.

2.4.2 The NIA Model

Access to the network from the host (and vice-versa) is through the network interface adaptor (NIA) or adaptor for
short {4, 8, 9, 36]. The adaptor is controlled by the network driver as shown in Figure 2. The driver programs the NIA
according to the requirements of each connection, responds to interrupts generated by the NiA, and does other control
operations required of a device driver. The NIA operates concurrently with the CPU and can read and write main mem-
ory without any CPU intervention using DMA. For example, while a protocol thread is generating PDUs to be sent on its
connection and placing them in memory, the NIA could be transmitting data enqueued earlier on this (or another) con-
nection. Therefore send and receive operations from memory can proceed concurrently with application and protocol
processing.

An important task performed by the NIA is scheduling the transmission of outgoing data. Data is sent in the form of
fixed size cells on network connections and controlling the timing of cell transmissions on connections is referred to
as pacing. Pacing ensures that the rate at which data is sent on a connection conforms to the peak (and in some cases
average) bandwidth reserved for it from the network. This is important because the QoS guarantees provided by the
network are contingent upon this rate being honored by the sending host. Pacing is implemented by the NiA hardware
on a per connection basis. To preserve (oS, the choice of pacing parameters are important, and the parameters
depend on the pacing scheme used. We consider a pacing scheme below, that can control both the rate at which cells
are sent out on a connection and the queueing delay at the NIa for each connection.

Hierarchical Round Robin (HRR) Pacing. This scheme was proposed for doing pacing at the output ports
of ATM switches and has also been demonstrated in a hardware implementation [21]. The pacing scheme enforces the
peak bandwidth for each connection. When an application process generates a burst (a video frame for example), the
HRR scheduler in the adaptor paces the transmission of cells in the burst at the peak rate allocated to the connection.
‘Fo maintain the average rate, the host must control the rate at which the bursts are generated by scheduling the appli-
cation appropriately. In the HRR scheme, there are a number of levels and each connection is assigned to one of these
levels. The total link bandwidth is partitioned among these levels by assigning a frame time for each level, and allo-
cating a certain number of slots for a level in its frame time. A slot represents a cell transmission, and in each frame
time the number of slots allotted places a limit on the number of cells belonging to connections in this level that can

Qctober 7, 1994 7

be sent. For a given ievel, the connections in it get cell slots in a round-robin manner during each frame time. Lower
levels have smaller frame times (and higher priority) than higher levels. Since a connection at each level is given
some slots every frame time, connections assigned to lower levels have to wait for a shorter time before they are ser-
viced. The frame time for level I is the basic cycle time which is the smallest in the system. If there are n; slots in a

level 1 frame, then b, slots are given away to higher levels and the remaining (n[-b,) slots are used for the level |
connections.

iy

b
i

FIGURE 4. Out of a frame time of 10 slots in level 1, 3 slots are allocated to higher Tevels

Similarly, level 2 has n, slots and a frame time FT, = (n,/b;) - n,. This is because every n; slot times it gets b,

slots, and it needs ny slots in all. Out of these n, slots, b, slots would be given away to levels higher than 2 and so on.
In general, the frame time at level i is the interval between serving a slot in successive frames and is given by
FT; = (n,/b;} - (ny7by) .. (n;_,/b; _p) | n;. The bandwidth alotted for level i is (n; —b,) /FT;. Thus the
scheme statically partitions bandwidth among levels by appropriate choice of n; and b; for each level. A connection at
level i that gets a; of the n; slots, gets a bandwidth of a/FT; cells/sec. It will have to wait at most FT; cell times before
it is first serviced after it is enqueued for transmission (start-up delay). Since the smallest value of a;is I, the smallest

value of bandwidth at level i is 1/FT; and defines the minimum “granularity” of bandwidth partitioning for that

level.

Justification for choice of HRR. As before, our objective is not to argue the merits of any pacing scheme but
to choose a prototypical scheme that can serve as a model. Qur main focus is to demonstrate how to derive pacing
parameters from QoS specifications for the given model. Since the HRR scheme requires support from NIA hardware,
in our implementation we will use whatever pacing support is available from the network adaptor. We are in the pro-
cess of designing an adaptor [11] that provides a single parameter pacing control. The scheme is equivalent to a HRR
scheme with one level and we propose to use it for our experiments.

2.4.3 The Network Connection Model

A network connection represents a “data pipe” that carries fixed size cells from one (or more) source hosts to one or
more destination hosts. For our purposes we assume that applications use half-duplex connections between a single
source {(host or endpoint) and a single destination. We assume that QoS requirements are specified for the peak band-
width, the average bandwidth (over some interval), and the maximum delay that a cell can experience. Accordingly,
we assume a model proposed in [14] in which these requirements are specified by the following parameters.

¢ The minimum cell interarrival time x_. = (peak bandwidth).
® The minimum value of the average cell interarrival time X,ye OVveran interval T (average bandwidth).

¢ The source to destination delay bound for each cell.

The model guarantees that if the host conforms to the peak and average bandwidth specified above, the connection
will be provided the requested cell delay bound (and the requested bandwidth).

Justification for Network Model. The network connection mode! presented above allows applications to
control the two important parameters (bandwidth and delay) for a connection. The performance of this model has
been studied in [14] and implementations of the model have also been reported. While network connection models

October 7, 1994 8

that provide control on other parameters (such as delay jitter) could also have been considered, the described model is
sufficient for our needs. As before, our interest is in demonstrating how QoS parameters drive the choice of network
connection attributes.

3. QoS Specification and Mapping

Having looked at the endsystern model, we are now ready to present the first problem: the specification of QoS
parameters and their mapping to resource requirements according to the resource models presented above. In this sec-
tion, we state the problem and present our solution. We then describe the work in progress and give an overview of
the related work.

3.1 Problem Statement

We have seen that QoS requirements for an ATM network connection are specified using parameters as shown in
Section 2.4.3. However, at the application level, the choice of which parameters to specify and how to assign values
to them needs to be addressed. Furthermore, each module In our application model uses certain resources to carry out
its activity. The QoS specified by the application affects the requirements for all these resources and this results in the
problem of mapping the QoS parameters to the specific resource requirements for each module. These two problems
are further clarified below—

. Specification: There are two problems in specifying QoS. Firstly, there is a wide diversity in the types of applica-
tions and their communication requirements. It would be impractical however, to allow the same diversity in the
types of QoS specifications because the system would have to support all these types. Secondly, an application
uger or programmer may be able to specify QoS parameters at a high level of abstraction, but low level parameters
are needed to be able to determine CPU and NIA requirements. An example of the second problem is a distributed
interactive simulation application that knows to specify only the rate at which it wants to process messages since
this is the most important parameter from its viewpoint. However the application may not know the detailed
resource requirements to support its needs and therefore cannot specify it.

2. Mapping: As mentioned before, several system components are involved in network communication and the
requirements specified above must be projected onto each of them. Due to the need to keep application specifica-
tions simple, and due to the fact that an application may not even be aware of the resources involved in supporting
its communication, the application QoS parameters must be mapped by the communication subsystem to the
resource requirements according to the resource model. For example, in the network connection model (as per
Section 2.4.3), QoS parameters (such as delay, bandwidth and loss) are specified at the level of cells. However, at
the application level the delay is measured end-to-end using, Iarger units of data. Similarly, the bandwidth refers
to effective application-to-application throughput, and the unit of error control is usually an ADU. The mapping
operation must convert application parameters to lower layer parameters. Another example of the mapping opera-
tion occurs when the transport layer may use control connections (to exchange control messages) that are invisible
to the application. The QoS parameters for these connections must be chosen by the transport subsystem.

In our case, the mapping problem involves deriving the network connection attributes, the adaptor scheduling
attributes (to be requested from the network driver), and the CPU scheduling attributes for the threads involved in
protocol processing (to be requested from the system scheduler).

The specification and mapping operations are illustrated in Figure 5.

3.2 Proposed Solutions

The main aspect of our solutions to the specification and mapping problem are discussed below:

October 7, 1994 9

* We choose a canonical set of application types that have substantially different communication requirements and
identify QoS attributes for each type. We claim that most of the data streams used by applications will fall into one
of these types differing only in the valnes of their QoS attributes. Therefore supporting these basic types would
serve the communication needs of all application types.

¢ For each type of application, we map the QoS attributes specified by the application to parameters of the resource
models used for the CPU, NiA, and the network connection resources. The innovative aspect of our solution is that
the communication subsystem automatically determines resource parameters after which existing resource man-
agement mechanisms of the 0S ensure that QoS is maintained. This means that protocol code need not be bur-
dened with maintaining the “timeliness™ of protocol operations during run-time. This makes user-level protocol
implementations (see Section 5) simple and efficient because no kernel interaction is needed to schedule protocol
operations.

APPLICATION QoS Spei:iﬁcation

=
g E APPLICATION & PROTOCOL THREADS NETWORK CONNECTION
S E Processing Buffer Connection
o Reqmrements Requuemenr Requzremenrs
%‘ =

PERATING SYSTEM NETWORK SESSION MANAGER
v /
)
% CONNECTION
: >Q_’ m&_@{]
%]
P t

FIGURE 5. QoS Mapping

3.3 QoS Specification

We first consider three significantly different classes of QoS requirements for network communication that applica-
tions could have. For each class, we list the QoS attributes that must be specified. We then argue that these classes are
sufficient to support many target multimedia applications.

Application Classes. We consider three types of application communication requirements. These are

1. Isochronous: This includes the domain of compressed and uncompressed continuous media (video, audio etc.), in

which data is generated and/or consumed at an endpoint at a fixed rate. The traffic is characterized by three param-
eters—frame rate, maximum frame size and average frame size, In addition, a maximum delay between genera-
tion of a frame and its display at the receiver is specified.
The motivation for specifying the maximum frame size is to determine the maximum application buffer require-
ments. The average frame size allows us to reserve less than the maximum bandwidth that would be dictated by
the maximum frame size. The delay refers to the time shift in the CM stream at the destination with respect to the
source and is measured as the time interval between the beginning of a frame at the source (typically the genera-
tion time) and its beginning on the destination (when it gets displayed).

2. Burst: This includes most cases where bulk data transfer is required. Unlike isochronous traffic, a bulk data source
does not have a natural period and generates data blocks of varying size. QoS parameters are therefore a maxi-
mum blocksize that determines buffer requirements, and either a minimum bandwidth or a maximum delay for

Qctober 7, 1994 10

each block. Delay here refers to the duration from the time the block is generated until the time it is available in
the receiver’s buffer. Delay and bandwidth are equivalent, and given the bandwidth and the size of the block, the
maximum tolerable delay can be calculated. This type of transport service would be useful in an interactive
multimedia explorer application for transferring images, documents etc. where each burst is assured guaranteed
bandwidth (or delay) bounds. We can allow these parameters to be specified on a per burst basis because the
assumption is that the burst size is large enough so that the time to allocate local resources is much smaller than
the duration of the burst.

3. Low delay: This class includes the applications that require low response time such as RPC requests/responses, and
for moving control information (such as for ACKs). As in the burst case, the QoS parameters can be specified by a
maximum message size and a maximum tolerable latency. Low latency traffic differs from the burst traffic, in that
the entire message is moved across the IPC interface (as a single ADU), and the ADU size is small enough that the
protocol does not wait for any feedback from the receiver (such as ACKs, flow credits etc.). We refer to this kind of
message traffic as message delay bounded. Bandwidth requirements for this type are very low compared to the
burst type and delay is the dominant QoS parameter.

Another kind of low latency requirement is one that specifies a message rate (message rate bounded) rather than a
per-message latency value. Although these two forms may appear to be equivalent, the former implies that the
message traffic is expected to extend for some duration at the specified rate. This allows messages to be delivered
in batches from/to the user process as long as the desired rate is maintained. This is motivated by applications
such as DIS that have large number of messages coming into an endpoint. Although these two types have low
delay as their common requirement, mapping of these two types of requirements to CPU and NIA resources is dif-
ferent. Hence they are treated as separate classes.

The four classes and their parameters are shown in Table 1.

TYPE MAX_SIZE FRAME RATE AVG SIZE DELAY BANDWIDTH
Isochronous e v v v

Burst v v

Message delay bounded '/ /

Message rate bounded Ve v

TABLE 1. QoS Specification

Justification of Classes. We argue that the four classes represent prototypical communication requirements.
The isochronous class covers the class of continuous media that will constitute a significant proportion of multimedia
traffic. Applications such as video distribution and retrieval are well known examples in this class. The burst class is
the most natural characterization of communication requirements of applications such as multimedia mail and remote
navigation through hypertext. These applications need to transfer a large block of data (e.g., pictures, images, text,
video fragments) to the destination application within a fixed interval after it has been requested. The low-delay
applications are representative of distributed computing where delay bounded messages are sporadically generated
and have very low delay requiremenis. The bounded rate messages are required to efficiently suppor sustained
incoming message traffic where the message rate needs to be guaranteed. Examples of these applications are large
scale distributed interactive simulations (DIS).

We can view the choice of classes from another angle. If we consider bandwidth, delay and ADU sizes as three inde-
pendent variables, and have a “high” and “low” requirement for each, then we have eight possible combinations. For
large ADU sizes, both low bandwidth and low delay is clearly not simultaneously possible. Similarly high bandwidth
and high delay is not possible for low ADU sizes. We also eliminate the two cases with high delay and low bandwidth
since they are not demanding in terms of performance. Of the remaining four combinations, two of them have large
ADU sizes and high bandwidth requirements, and the other two have small ADU sizes and low bandwidth require-
ments. We refer to these two categories as bandwidth critical and delay critical respectively. The bandwidth critical
category can in general tolerate larger delays than the delay critical category. However, within each category we dif-
ferentiate between applications that can predict the traffic over longer durations and those that cannot. For example,

Qctober 7, 1994 [t

in the bandwidth critical category the isochronous class can specify the interval between successive frames, whereas
the burst class cannot. Similarly in the delay critical category, the message delay bounded class cannot predict future
messages whereas the message rate bounded class can do so. This difference in predictability affects the way thread
attributes are chosen and connection parameters are chosen. In general, for traffic that is expected over a longer dura-
tion, processing of successive data units can be grouped together. In addition, the QoS parameters can be enforced for
a group of data units and not necessarily for each data unit.

Choice of QoS Parameters. The choice of parameters in each class have primarily been driven by whether the
application can give meaningful values to these parameters and whether the parameters significantly affect resource
requirements. We claim that applications do not have accurate estimates about long term (i.e average) values for their
bandwidth requirements. This is true particularly for the burst and message delay bounded case where future traffic
pattern depends on user behavior. For the burst case, specifying QoS requirements per burst suffices, because reserv-
ing host resources (such as CPU) is purely a local decision and can be done on a per burst basis. However, the time for
setting up the network connection for each burst could be significant and so we may be forced to reserve a peak rate
connection. Ideally we would like burst reservations (such as fast buffer reservation) at the network connection level
as well.

Likewise for delay bounded messages, applications typically cannot specify interarrival times using statistical mea-
sures or by other means. Therefore only a per message delay requirement can be specified. It must be mentioned that
the delay bound is not strictly adhered to and the system tries to provide the lowest possible delay for each message.

Message rate guarantees are likely to be specified only at a receiver. We have in mind multicast connections where
each endpoint receives large number of messages but sends only a few. The receiver does not need to derive connec-
tion attributes nor pacing control parameters. Only thread attributes need to be derived from the QoS parameters.

In the case of isochronous type the traffic is more predictable because of the nature of the source. The parameter
choices made here reflect the characteristics of compressed frames of cM data. For compressed CM data, the average
frame size is computed over a fixed interval and we assume there is one frame of maximum size in this interval (The
I frame in MPEG for example). Where this is not the case, an extra parameter could specify the length of the interval
over which the average size is computed. This allows us {in some cases) to keep the connection bandwidth closer to
the average bandwidth requirement than to the peak.

3.4 QoS Mapping

‘We have considered four types of QoS requirements and their parameters. The values specified for these parameters
must hold at the boundary between the communication subsystem and the rest of the application that generates/con-
sumes the data. We have seen in the IPC model that several modules operate in a pipeline fashion in the communica-
tion data path. As mentioned in Section 3.1, we must map the values of the QoS parameters to resource requirements
for each module. We describe the mapping process for a connection in the sequence in which it would actually be per-
formed during operation. Accordingly, the mapping steps are the following,.

1. We scale the application bandwidth required across each module, and partition the application specified delay
among the modules. The scaling operation gives a multiplying factor to account for the increase in the required
bandwidth due to protocol header and retransmission overheads if any. The delay partitioning gives the delay bud-
get for each module and is used to derive the requirements for the resources used by the module. We show details

of this operation in Section 3.4.1.

2. We use the delay budget and scaling factor derived earlier to determine the parameters for the network connection
(shown in Section 3.4.2.).

3. From the network connection peak bandwidth derived in the previous step, and the delay budget, we can deter-
mine the pacing attributes that must be enforced at the NIA for the given connection. This mapping is shown for
the HRR pacing model in Section 3.4.3.

4. From the network connection peak bandwidth, and the delay budget derived in Step 1, we can derive scheduling
attributes for the protoco! and application threads. This is shown in Section 3.4.4.

Qctober 7, 1994 12

3.4.1 QoS Parameter Scaling

Scaling Bandwidth Requirements. Bandwidth critical applications generate frames or blocks of data that are
presented to the communication subsystem for transmission. The splitting up of a frame or block into smaller seg-
ments such as ADUSs, PDUs and cells, requires control information in the form of headers to be appended to each such
data unit. Due to the header overhead, the actual number of bytes sent are more, which translates to an increase in
bandwidth requirement at the network connection level. Appendix A shows the derivation of a multiplying factor that
accounts for this increase.

Partitioning Delay Requirements. Unlike the bandwidth that must be scaled as we go along the data path,
delay has to be partitioned across the modules in the datapath. Figure 6 shows the end-to-end delay which is the time
that is available for an end-to-end data unit that is handed over to the communication subsysterm at the sending host,
to be delivered to the receiving application. This data unit could be either a video frame within a stream, an image
file, or a message. For our discussion, we assume that data units are processed in terms of fixed size PDUs.

From Figure 6 we see that after a PDU leaves the sending host some time elapses before it reaches the receiving appli-
cation. We call this the transit delay and is given by the sum of items 5+6+7. For a data unit to meet its deadline at the
receiver, the time at which its last PDU must leave the sender is the end-to-end delay minus the transit delay. It can be
seen that all data units that are generated during this time must leave the sending host by the end of this time in order
to meet the end-to-end delay bound. Therefore this time is called the “averaging” or “smoothing” interval because the
NIA smooths out the transmission of data units that are presented to the communication subsystem over this interval.
In the case of a CM stream, if this time is two frame periods for example, then two consecutive frames must leave the
sender at the end of every two frame periods. In the case of a burst that is presented to the communication subsystem,
all of it must leave the sender within this time.

We now consider the sending host. The smoothing interval obtained above is the deadline for the PDUs generated
within it to leave the host. We have assumed that the protocol thread generates PDUs periedically (period P) and
enqueues it at the NIA. The NIA then paces out each set of PDUs before the next set is enqueued. In Figure 6 the sum of
items 1+2 is the thread period P and itein 3 is the time taken by the NIA to begin pacing out a PDU after it is enqueued
and depends on the pacing interval parameter. As before, the time at which the last batch of PDUs must be enqueued at
the NiA is the smoothing interval minus the sum of items 1+2+3. This sum is also called the startup delay because the
NIA must wait for this time before it can start sending the first PDU. The smoothing interval minus the startup delay is
the time that is available for completing the protocol processing at the sender. It can be seen that larger the thread
pertod and the pacing interval, less is the concurrency in operation of the CPU and the NIA.

Finally, the smoothing interval minus the startup delay is also the time available for data generated in the smoothing
interval to be transmitted on the “wire™ and thus determines the bandwidth chosen for the network connection. This
transmission time is the sum of items 3+4 in Figure 6.

The delay partitioning described above reveals a lot of trade-offs. A larger value of startup delay leaves less time for
the NIA to finish sending the data, and so a higher bandwidth for the network connection is required. In addition, it
means that protocol processing must be completed in a smaller time. However, keeping the startup delay small would
lead to incurring higher scheduling cost at the endsystems. Similarly, choosing a larger value for the transit delay
reduces the smoothing interval and increases connection bandwidth and processing cost on the sender. However i1
allows the network connection to be setup with a larger delay and allows the thread period at the receiver to be targer

The way to think about these trade-offs is that, given an end-to-end delay requirement, the communication subsystem
must partition it so that the lowest possible “cost” is incurred. The cost captures the notion of optimality because sev-
eral valid partitionings may be able to meet the specified delay bound. The values obtained for each component of the
delay after the partitioning step above, are used to determine the network connection parameters, the pacing parame-
ters, and the protocol and application thread attributes as shown in the next three sections.

An important thing to note about the delay partitioning is that it does not take into account the cell delay variation
(delay jitter). This is because for large data sizes, the jitter is a small component of the total end delay. Therefore its
effect can be taken info account by using an upper bound for the cell delay.

October 7, 1994 13

At Sending Host

source host
CPU ™ NIA

@ CPU scheduling delay

network

— Time to enqueue first PDU
destination host @

at Nia after processing

\(D NIA [CPULpMEM i
@I @ Scheduling delay at NlA
)
\Q < @ Transmisston time
L
\ @ g @ Network delay
@ .l 2
9
I = At Receiving Host
_\ first PDU "CIZJ
=
@__ nd| @ CPU scheduling delay
@‘ @ Time to process a PDU
last PDU Y

FIGURE 6. Partitioning Delays

We also do not explicitly mention buffer requirements for jitter removal at the receiver while describing the delay
partitioning process. However it can be easily seen that the smoothing interval at the sender also corresponds to the
smoothing interval at the receiver and can be used for jitter removal.

3.4.2 Mapping to Network Connection Parameters

In this section the derivation of the peak and average bandwidths of the network connections for bapdwidth critical
applications is discussed. In the case of the delay critical connection types, only the delay parameter is relevant. Since
we have assumed connection delay to be constant, we will not discuss the delay critical case.

Deriving Bandwidth Parameters. Given the smoothing interval, we need to estimate the maximum amount
of data that can be generated in this time because this data must leave the sending host by the end of this interval. The
size estimate, along with the smoothing interval and startup delay values derived earlier, determine the peak band-
width of the connection as shown below for the two types.

1. Burst: We consider the case when bandwidth can be reserved on a per burst basis. In this case, given the requested
throughput and the size of the burst we can estimate the end-to-end delay. We then partition the delay as shown
above and obtain the smoothing interval and the startup delay. Therefore given the burst size, and the time that
remains after subtracting the startup delay from the smoothing interval, we can calculate the network connection
bandwidth as shown in Appendix A.2. If no burst reservation scheme is available, we could use the specified max-
imum buffer size to calculate the end-to-end delay and obtain the network connection bandwidth as before. If the
actual burst sizes are large enough that the startup and transit delays do not dominate the end-to-end delay, then
the actual throughput will be close to the requested value.

October 7, 1994 i4

2. Isochronous: There are two cases depending on whether the frames have constant size or variable size (due to
some compression schemes). We use the application specified delay QoS parameter and partition it to obtain the
smoothing interval and the startup delay. For constant size frames, the amount of data in this interval is the frame
size multiplied by the number of periods in the interval. As before, we use this size and the value of the smoothing
interval minus the startup delay, to estimate the connection bandwidth as shown in Appendix A.2.

For variable sized frames we get the benefit of having a larger smoothing interval. This is because the maximum
frame size may occur only once in several frames (MPEG video). Therefore we may assume that only one frame in
the smoothing interval has the maximum size specified in the QoS, and for the other frames we can use the value
specified by the average frame size parameter. This allows us to choose the connection bandwidth to be closer to
the average rate at which data is generated rather than the peak. This is shown in Figure 7 in which the transmis-
sion of two successive frames is smoothed out over two time periods.

SENDER NETWORK RECEIVER
0_ Frame N 0
AN N
X
T Frame N+1 Tl ¢ 'SntmOthling T
% T ' interva _
A : N
N N
L 2T L4 21

3T | FA Frame N, N+1

FIGURE 7. Smoothing Interval

The totai delay is three frame periods and after subtracting propagation delays we have two frame periods for the
smoothing interval. The maximum amount of data that can be generated in two consecutive frame times is the
sum of the maximum size frame and the average frame size. The transmission of the maximum size frame can
“spill over” to the next frame time without violating the delay bound. At time ‘3T the receiver has two frames
that can be played back at times ‘3T and ‘4T".

3.4.3 Mapping to Pacing Parameters

The pacing parameters must ensure that outgoing cells on the connection are paced out at the peak rate (derived
above), and the delay at the NIA is within the permissible value calculated in the delay partitioning step. For band-
width eritical connection types we show how pacing parameters are chosen so that the network connection bandwidth
derived in Section 3.4.2 is maintained. For delay critical connection types we show how pacing parameters must be
chosen to ensure low delay. We assume the HRR model introduced in Section 2.4.2.

Maintaining Peak Bandwidth. In the HRR scheme, for each connection we must choose a level (that deter-
mines the frame time) and some number of slots in this level (that determines the bandwidth). Starting at the lowest
level (highest bandwidth granularity), we check if the requested connection bandwidth is higher than the minimum
bandwidth granularity at that ievel. If this is not the case, we consider levels in increasing order and choose the first
level that satisfies the condition. Suppose the level chosen has n; slots, a bandwidth granularity of B;, and the

requested bandwidth is B, Then the number of slots °k” allotted to this connection must satisfy k = I'B re q/ Bi"l JgIf

these many slots are available then they can be assigned to the connection. Section 6 shows a complete example of
how these choices are made.

(Octobar 7, 1994 15

However if not enough slots are available at a level some reassignment of the hierarchy must be done. We do not dis-
cuss the details of this procedure here but mention a few options and their trade-offs. One option is to simply assign
the connection to a lower level that has unused slots. The disadvantage of this is that some link capacity may go
unused. The other option is to move to a higher level that has enough free slots. However this increases the required
number of slots, and it is less likely that they will all be available. Another problem with this is that it increases the
frame time which contributes to the startup delay. Finally, slots from lower level may be moved to higher levels. This
operation entails changing the hierarchy structure and there are run-time overheads associated with doing this.

Maintaining the Delay Bound at the NIA. The main feature of the HRR scheme is that it can provide a
range of levels (i.e frame times) and control the bandwidth assigned to each level. Since delay critical connections
cannot estimate bandwidth requirements accurately, the only pacing parameter that we try to control is the delay at
the NIA. In particular, we would like to provide each message the lowest delay, We therefore assign these connections
to the level that has the smallest frame time. This is because the maximum delay for a connection at the NIA is the
frame time of its level. The number of slots assigned to a connection must be enough to accommodate its maximum
message size. The NIA fills in the level 1 slots with cells belonging to low-delay connections queued in some order
(possibly FIFO). The advantage of this is that the percentage of link bandwidth allocated to delay critical connections
is bounded. If messages are generated fairly infrequently then they will be guaranteed the lowest delay in the system.

3.4.4 Mapping to Thread Attributes

We now consider the choice of scheduling attributes for the protocol and application threads. We assume the periodic
thread model introduced in Section 2.4.1. The discussion here assumes that each of them execute as separate kernel
threads. For efficiency reasons however, we may implement them as user level threads and have a single KT that runs
the user threads. The discussion below does not apply to the processing of delay bounded message connections
because they are not periodic in nature. We first look at the factors affecting choice of thread attributes and show how
to choose the attributes of these threads.

Choice of Thread Periods . The rate at which cells are paced out on a connection, and the PDU size together
determine the time period required to send one PDU. In order to keep up with the NIA, the protocol thread at the sender
must process a PDU once every such period. Similarly the application thread period depends on the time taken to
transmit an ADU. However if we setup a thread to generate one PDU every period then a context switch is required for
every PDU. Therefore if the thread period is comparable to the context switch time then a large fraction of time is
spent for scheduling, and utilization will be adversely affected.

However since the upper limit on the period can be as much as the startup delay, we can reduce the context switch
overhead by choosing a larger value for the thread period and process a barch of PDUs in each peried. The use of
batching is further described below.

Batching. Batching is the technique used to make an appropriate choice of thread period. If a batch of By, PDUS are
processed per invocation of a protocol thread, the thread period obtained above, gets multiplied by the factor By, Sim-
ilarly the application thread uses a batch factor B 4. The batch size must be chosen so that the period is a large multi-

ple (say 100) of the context switch time. However the period cannot be made arbitrarily long because in the worst
case one pericd must elapse before the first batch of PDUs are generated and handed over to the NIA for transmission.
This reduces the concurrency in the operation of the CPU and the NIA. Moreover the period cannot be set to a value
that would violate the startup delay bound determined in the delay partitioning step. Therefore the choice of the
batching factor must be made after evaluating the tradeoffs mentioned above. Expressions for the periods of applica-
tion and protocol threads are derived in Appendix A.3.

3.5 Work in Progress

We are in the process of defining an AP to the €S that incorporates our choice of classes and parameters for QoS spec-
ification. This APT will be similar to the * socket ' interface but the connect and accept calls will have parame-

October 7, 1994 16

ters to specify QoS. We highlight issues relating to two main aspects in QoS mapping that are being worked out. The
first relates to the methodology for mapping and the second relates to implementation issues that arise in the host
communication subsystem.

Mapping Methodology: Having developed the mapping methods described earlier we want to evaluate how
well they perform in practice. In particular, we want to check if the values derived for the network connection
attributes, pacing parameters, and thread attributes give good performance in a particular implementation environ-
ment.

We first consider the choice of network connection attributes. We have mentioned the trade-off between bandwidth
and delay while describing the mapping method. We are specifically interested in knowing whether bursty cM data
{such as MPEG video) can take advantage of higher tolerance to delay by reducing the connection bandwidth require-
ment. We plan to stody this issue by experimenting with the endsystems and network testbed available to us. In addi-
tion, we want to consider alternate network models (e.g the ATM forum standards) that require attributes such as delay
jitter and various kinds of losses to be specified and study how these attributes must be chosen.

An important question we will like to settle concerning the NIA model based on the HRR scheme, is whether the num-
ber of levels, their bandwidth granularities, and frame times can be chosen statically. We currently do not have any
implementations of this scheme to experiment with. Therefore we will use an NiA implementation under development
that provides just two levels of pacing control [11] and study its effectiveness.

There are several issues that we are considering in order to make the choice of thread attributes for protocol process-
ing. Each protocol requires an analysis of the communication subsystem components to identify the application and
protocol threads, and the time they take to process a unit of data. Depending on the complexity of the protocol code,
these times may be either constant or vary with the protocol state and runtime options. The estimation of these times
can either be done by static analysis of protocol code instructions or by inserting probes during runtime. We are
investigating how to estimate these times automatically. We will also measure system parameters such as context
switching time and timer overheads in order to determine lower bounds on thread periods. These times may not be
constant and may vary with system load. We will use these measurements to pick a value of B, because it determines
the thread period and thereby affects the startup delay. We have identified an implementation platform and we are
deciding the set of target protocols for the four classes of applications. Some of the measurements that we expect to
take are the following.

* Guarantees: The most obvious measurement is whether the QoS parameters specified at the communication sub-
system boundary are being maintained. For example, in the isochronous case, we could measure end 1o end delay
and see if it meets specified bounds. Similarly for the burst case, we could measure the application level through-
put delivered. Through these measurements, we will study the effects of different loads, traffic mixes and QoS
parameter values on the guarantees provided.

» Varigbility: One of the capabilities that we expect to have is the ability ic change QoS requirements during runt-
ime and see if the system tracks the changes. This can be measured for example by having a “dial” that the appli-
cation can use to change its bandwidth requirement and measure the delivered throughput as before.

s Loading: Most measurements of network performance today are on unloaded systems to determine peak perfor-
mance. However we would like to see steady performance under various load conditions. We expect to be able to
measure as a function of total load the integrity of requested QoS parameters per application.

Implementation: One of our goals is to incorporate the automatic mapping procedures into a communication
subsystemn and make it profocol independent. This suggests that a general purpose library be provided that can be
used by protocol code to derive resource attributes from the QoS parameters provided to it. We expect the library ron-
tines to be able to derive scheduling attributes for the protocol and application threads, pacing attributes, and network
connection attributes. The library will have a resource dependent set of routines that depend on the particular resource
models available, and a set of resource independent routines that will be called by the protocol code during the setup
phase. Using this we expect to validate our claim that protocol code need not be aware of platform dependent
resource management issues.

October 7, 1994 17

3.6 Related Work

* Specification — QoS specification comprises two aspects namely, choice of parameters and choice of application
classes.

QoS Parameters: The specification of QoS has mostly been a datalink and network layer issue, and dealt with
from the point of view of network service design. Because the basic service provided by the network is transmis-
sion and routing, the QoS parameters pertain to these services. Only recently has the need for supporting continu-
ous media (CM), led to transport layer QoS specifications for individual applications [28, 6, 30]. However these
parameters are mainly intended for specifying network requirements and not endsystem requirements, and in most
cases directly map to network QoS parameters. As a result, the number of parameters are large and at a low level,
and application users are typically unaware of what values to provide for each parameter. For example in [28} traf-
fic source characteristics are specified with upto 11 quantities (maximum data unit size, period, number of datu
units in a period etc.), and QoS is separately specified with upto 5 quantities (max delay, granularity of data error
etc.). Same traffic models such as Linear bounded arrival processes (LBAP) that are meant to describe application
traffic have been used in several efforts [2, 3, 29, 42}. However, this model does not capture traffic types such as
¢M for example, and is not sufficient in itself.

Application Types: Several application types have been considered to facilitate QoS specification, In [34] two
types namely, stream and message are provided in order to support CM data traffic and message traffic. In [46] four
classes of applications are considered — unreliable real-time (video, audio), reliable real-time (process control),
unreliable nonreal time (datagram) and reliable nonreal time and suitable parameters are chosen to quantify
requirements in each class. In general, most work has considered guaranteed service to only predictable traffic
such as CM data. In addition there is a proliferation of types that are special cases of a general class. Therefore
these choices are either not comprehensive, or they are too redundant. Almost none of them deal with a mix of
requirements that includes both low latency and high bandwidth types.

* Mapping — The two main issues that have been addressed are the mapping methodology and its implementation.
Methodalogy: Most of the work deals with mapping from QoS specifications to the network connection parame-
ters. For example, translation from transport parameters to network connection bandwidth and delay parameters is
shown in [28]. In [2] an economic cost model is used to partition application specified delay across the data path.
However there no single solution for mapping QoS specifications for each class, to both local and network
resources. Mapping to CPU scheduling parameters is shown in [34] for the stream and message application types.
However, no specific thread model is used, and the parameters chosen do not ensure that QoS guarantees will be
met. Mapping to the special case of a token ring network adaptor parameters is shown in [42].

Implementation: In most cases, the mapping operations are done by a local server and is not part of the 0S. The
server also does an admissibility test to determine if the requested QoS an be provided. This is described in [29]
where a QoS brokerage service is used to translate between application QoS and network QoS and an adnussion
service is used to map between application and network parameters to local system parameters. The problem with
this approach is that the server must have information about processing requirements of all supported protocols,
application types and local resources. A separate server is unnecessary if mapping functions are part of each pro-
cess and the process directly makes resource requests from the 0s.

4. QoS Enforcement

We use the term “QoS enforcement” to refer to the policies and the mechanisms used by the communication sub-
system for scheduling resources. The schedulable resources have been identified as the CPU, the NIA and the network
connection. For the network and the NIA resources, the host communication subsystem is only involved in deriving
and allocating the connection and pacing parameters. It does not enforce these requirements during operation because
scheduling cell transmissions is done in the NIA and switch hardware and does not require 0S8 intervention. The CPU is
the only resource that is scheduled among threads by the 05. We view the scheduling of threads on the CPU as sched-
uling of batches or bursts of PDUs. In this section, we state the problems that arise in the scheduling of protocol
threads on the CPU, mention key features of our solution, and then describe our implementation of the scheduling
mechanism. The work in progress and a review of related work are also presented.

Qctober 7, 1994 18

4.1 The CPU Scheduling Problem

The goal of scheduling is to ensure that the CPU is shared among threads in a manner that satisfies their requirements
(expressed as thread attributes) while keeping CPU utilization high. Furthermore, to provide performance guarantees,
it is necessary to have a schedulability criterion to decide if a new thread can be admitted into the system without vio-
lating requiremnents of existing threads. The problems that we face in achieving this are as follows.

1. Pre-Emption Control: We have adopted a real-time scheduling policy based on rate-monotonic priorities in order
to provide performance guarantees. The RM policy is pre-emptive and is intended to provide hard real-time guar-
antees. The main problem with pre-emptive scheduling is that a higher priority process must be scheduled as soon
as it becomes ready. As a result there are a large number of pre-emptions as compared to quantum based schedul-
ing schemes. Each scheduling operation involves a context switch and the cost of context switching has been
shown to dominate protocol processing even in current implementations where there is no explicit scheduling[7].
Therefore minimizing pre-emption is important to attain efficiency.

2. Improving Predictability: For the RM scheme, there exist simple schedulability tests to decide if a set of threads
are schedulable. Some tests also take into account the overheads due to timer handling and context switching.
Since we have modified the basic RM scheme to reduce pre-emption, these tests cannot be used as they are. We
therefore need to come up with sufficiency conditions that can be used to check if a set of threads are schedulable
under our modified scheme.

3. Tracking Usage: In the periodic thread model, the scheduler must ensure that each thread conforms to its allotted
execution time in each period. One way to do this is for the scheduler to track the time the thread runs on the CPU
{across multiple context switches if necessary) and forcibly terminate it after its time quota is over. Since a proto-
col thread must enqueue the PDUS at the NIA before terminating, the kernel must ensure that it does not terminate
the thread before this happens, This is difficult because the kernel is unaware of the thread status. An alternative
would be to let the user threads to track their own usage. However using time as a measure of usage in this case
may involve system call overheads and lead to awkward programming style. Therefore the problem is to deter-
mine a measure of CPU usage other than time, and to eliminate the need for explicit policing and enforcement of
CPU usage by the kernel scheduler.

4.2 Solution outline

The main aspects of our solution to the problems mentioned above are—

» We preempt a running thread only after it has processed some minimum amount of data since it was last sched-
uled. This means that every time it yields the processor, it has some PDUs that can be passed on to the NIA. The
operations of enqueuneing/dequeuveing of PDUs at the driver (as well as yielding the processor) can be done in a sin-
gle context switch.

¢ For the pericdic threads, we bound the number of pre-emptions that the thread can experience during each period.
We then derive sufficiency conditions for the threads to be schedulable.

+ 'We use the count of PDUs processed by the threads as a usage measure rather than time. Furthermore, the kernel
scheduler does not preempt a running thread when it loses priority, but only notifies it of this condition using a
field in shared memory. The protocol thread then yields the CPU by itself after it enqueues/dequeuves PDUs at the
driver.

4.3 CPU Scheduling Solutions in Detail

Delayed Pre-emption. The idea behind our proposed solution is that whenever a process (consisting of applica-
tion and protocol threads) is scheduled, it runs until it generates (or consumes) a minimum number of PDUs even
though a higher priority process may become ready while it is running. The rationale behind this is that, if a thread at
a sending host has to yield the CPu, then it can make a single system call that combines the operations of enqueueing
PDUSs processed so far and yielding the cPU. Likewise, for a receiving thread, the PDUs that have been completely pro-

October 7, 1994 19

4.6 Related Work

CPU Enforcement. QoS enforcement issues especially CPU scheduling has been dealt with extensively in the con-
text of multimedia. We describe the related work according to the choice of priority, the implementation mechanisms.
and the ability to provide guarantees.

¢ Priority Scheme: The priority scheme commonly used is either RM, EDF or a mix of the two. The use of EDF is
described in {17, 34,42] in which a logical deadline is associated with each message and the process that has the
earliest deadline is run. There are several problems with these approaches. Firstly, a context switch could poten-
tially be associated with each message. In addition, messages in different processes are often processed serially
and this is unsuitable for use with an ATM like network in which it is preferable to cycle through each connection
sending small amounts of data from each message. The EDF scheme requires that user processes must keep track
of time and calculate deadlines for each message which could be a cumbersome procedure and could involve con-
text switching. The choice of RM is made when periodic threads are used [26]. However, the need to reduce the
context switching costs in RM is not addressed. Policing of usage in each period is done using the reserve mecha-
nism. However, the relationship between the reserve, and the amount of protocol processing time required is not
easy to estimate and could vary for each period. Therefore the merits of tracking usage using reserves is not clear.
In addition, the need for integrating the thread scheduling policy and the scheduling of transmission of bursts is
ignored in all this research.

s [mplementation Mechanism: [17] proposes an implementation policy called split-level scheduling, To ensure that
the thread with the globally highest priority is run, the nser level scheduler function has access to the priority of all
threads in memory shared with the kernel. If the user scheduler detects that the running process does not have the
earliest deadline, it yields the CPU. If this condition is detected by the kernel, the running process is pre-empted.
However, the use of asynchronous pre-emption is inefficient if data has to passed on to the Nia for transmission.
The implementation also ignores the context switches needed to pass data to the network interface. In addition.
there is no suggestions for reducing the number of context switches between different processes. Implementation
issues are largely ignored in the other solutions that we have described.

¢ Providing Guarantees: None of the enforcement solutions above take into account context switching time in the
schedulability tests. Potential overload conditions could result if there is no control over pre-emptions. In [29]
there is need for two tests—a local schedulability test, and a global schedulability test of the transport processing in
the kernel. Our solution makes this unnecessary by placing all protocol processing in a single domain,

Our solution rectiftes many of the above problems in scheduling protocol processing operations. It is specifically
designed for integrating protocol processing with NIA operation. Accordingly, the scheduling policy, the usage track-
ing mechanism, and the cooperation between user threads and the kernel scheduler are integrated with network inter-
face operations such as data movement and event handling. We expect that this integration will result in significant
performance gains over other implementations.

5. Protocol Implementation Model

In this section we examine the issues relating to our choice of the protocol implementation model (PIM). The PIM has
a significant effect on performance because it determines the costs due to data movement across address spaces, and
across CPU caches and between devices in the communication path, and context switches associated with movement
of data. We first describe the main features of the protocol implementation model we have adopted and the rationale
behind our choice of the model. We state the problems that we shall address, especially those that arise due to the
mechanisms we plan to use to provide performance guarantees in the endsystems. We will then describe our proposed
solutions and how they will be implemented. We conclude with a discussion of trade-offs and a review of other solu-
tions that have been reported.

October 7, 1994 22

5.1 Application Level Protocol Implementation Model

In current state-of-the-art implementations, the communication subsystem is implemented in the kernel and s
accessed by user processes through a high level 1PC interface (such as sockets). This model is referred to as the kernel
resident protocol model. In this model, the kernel maintains state for all protocol sessions in protocol control blocks
(pcCes). It schedules protocol operations, and handles network events for all sessions. The kernel coordinates network
1/0 for all processes, which involves moving data across protection domains, and process scheduling.

With the emergence of connection oriented networks such as ATM, it is possible to move network data directly to/
from the process space based on the connection identifier and so the need for the kernel to demultiplex data has been
removed. Furthermore, protocol processing can be done in the user process itself and so the protocol code can be part
of the user program. This model is referred to as application level protocol (ALP) model. In this model, protocol code
maintains the PCBs only for the sessions involving the process. It also handles protocol events such as packet arrivals
and time-outs for these sessions. Therefore the user—kernel boundary is now at the network interface driver level
rather than at the IPC level. The advantages of the ALP model is that there is no central agent (such as the kernel) that
handles all protocol activity and it has the flexibility that comes with user level implementations.

The main implication of the ALP model on providing QoS guarantees for protocol processing is that by controlling the
resource allocation to each process (or thread), we can control the QoS offered to each protocol session. This cannot
be done quite as easily when protocol processing is done in the kernel because there is no readily available account-
ing mechanism for resources that the kernel uses.

5.1.1 Key Features of ALP Implementations

We list some of the common architectural features found in ALP implementations. The architectural compeonents may
be realized with different implementation techniques depending on the system. Relevant features are —

1. Separation of Protocol Services: A communication session consists of a setup phase, a data transfer phase and a
release phase. These operations are supported by separate protocol services. The setup and release phases occur at
the “boundary” of a session, and involve operations such as resource reservations, name resolution and negotia-
tion with a service provider. Therefore these control operations need to be implemented by a trusted server. The
server also maintains state information that is shared by all sessions such as routing tables, name to address map-
pings and so forth, Other than the setup and release phases, the protocol services related to data transfer are part of
each application process and mainly determine performance. This separation of protocol services is also called
protocol decomposition.

2. Logical Protoco!l Layers: As a result of protocol decomposition, a protocol layer is not confined to a single
address space such as the kernel, but exists in multiple processes. A transport protocol layer that implements the
data transfer service could be active in many processes simultaneously. Therefore such a layer is referred to as a
logical protocol layer. This is in contrast with the KRP model in which a layer can be readily identified as a set of
code modules and its data structures (PCBs) that is part of the kernel.

Since we are concerned with providing QoS for data transfer, we only discuss the protocol processing issues relating
to this. However in order to evaluate our solutions we will need to implement other aspects of ALP model as well.

5.2 Problem Statement

It is recognized that a major portion of protocol processing time is spent in moving data. For example, in the KRP
model, data has to be moved between the user process and the kernel and between the host memory and the NIa [22].
In addition to memory access cost, moving data across protection boundaries involves context switches, Similarly
asynchronous interrupts cause context switches and affect protocol performance. As mentioned before, the cost of
these operations depends on the implementation model.

For the ALP model, we discuss when these operations occur and the problems they pose for performance. We will
draw comparisons with the KRP model because this is the state-of-the-art, and our objective is to achieve at least as

October 7, 1994 23

good performance as existing implementations. The operations are the following.

1. Data Passing: In the ALP model the data units that move across the user—kernel boundary are PDUs, whereas in the
kernel resident protocol model the units of data are ADUs. Because an ADU is broken up into several PDUs, moving
PDUSs one at a time between user and kernel using system calls will be very inefficient because of the mode-switch-
ing involved. Therefore, the existing mechanism used to pass PDUs across the user—kernel boundary will be ineffi-
cient.

2. Data Copying: Apart from the overhead of system calls, moving the contents of a PDU across the user—kernel

boundary is also expensive. On the send side, a PDU is either copied or mapped! (by modifying page tables) into a
kernel buffer from where the NIA can access it. On the receive side, data received into kernel buffers is mapped to
user buffers. Because the cost of page mapping operations can be high depending upon the system, mapping data
pages for every send/receive operation for a PDU is not efficient.

3. Asynchronous Event Processing: Processing of asynchronous protocol events such as packet arrival and timer
expiry are usually triggered by interrupts. However event driven processing conflicts with the processing order
dictated by the priority based scheduling policy that we have adopted for maintaining QoS. In addition, interrupts
cause context switches and so the problem of how to handle asynchronous protocol events with minimal interrupt
overhead must be addressed.

4. Control Operations: In the ALP model all protocol processing is done in user space and therefore protocol opera-
tions that require kernel capability have to be done using system cails. Because system calls are expensive, ALP
implementations are put at a disadvantage compared to KRP implementations. The operations that need system
support are—

a) Refransmission: A transport PDU that is passed to the network driver for transmission may need to be retrans-
mitted later due to errors. In the ALP model, the user protocol code that buffers the PDUs will have to move the
PDU again to the kernel, whereas this is avoided in the XRP model because the kernel maintains the huffers.
This extra data movement could lead to worse performance for ALPs.

b} Timer Operations: Protocol code often needs to do time related operations on a per-packet basis such as setting
a retransmission timer, or putting timestamps in the header. In the ALP case, system calls have to be made to do
these operations. Similarly asynchronous timer events such as timer expiry that are handled by the kernel must
now be passed on to the user protocol thread and this could cause context switching. Doing timer operations
and handling timer interrupts efficiently in the ALP model is thus an important problem.

c) Page Remapping: A protocol that receives misordered data needs to do page remapping to make the data con-
tiguous. Misordering happens when a PDU is lost and its successor is written in its place by the NiA. If the pro-
tocol is in the user space, system calls will be necessary to do this. Because system calls are expensive, system
support for page remapping is necessary.

A solution to these problems is necessary to make ALP implementations compare favorably to KRP implementations.
These solutions are outlined in the next section.

5.3 Solution Outline

* We use data structures in shared memory between each process and the driver to share information about outgoing
and incoming PDUs. As mentioned in Section 4.3, a single system call is made by a sending protocol thread to
combine the operations of yielding the CPU as well as enqueueing PDUs for transmission. Control information
about these PDUs are written in fields in the shared data structures and organized as a linked list. Similarly, the
driver creates a linked list of such data structures that describe incoming PDUs that are examined by the protocol
thread when it runs. This drastically reduces the use of system calls to pass PDUs between a protocol thread and
kernel.

1. The data has to be page aligned for mapping

Qctober 7, 1994 24

® We use buffers in the shared memory between user process and the network driver to store PDU headers and data
for both outgoing and incoming PDUs. This eliminates the need to remap pages between user and kernel on send
and receive operations. With DMA capability of the NIA, this mechanism can potentially achicve zero-copy seman-
tics.

* We avoid generating interrupts for asynchronous events and instead rely on the thread scheduler to dispatch the
thread that processes events. The scheduling of threads is done according to the attributes derived from QoS spec-
ifications by the mapping operation. We therefore describe our style as specification driven rather than evenr
driven. This approach has the added benefit of achieving interrupt free operation.

® We provide retransmission support, timer support and page remapping support for user protocol threads using a
command interface in shared memory. As before, the scheduling system call is used to trigger these operations
thereby avoiding extra system calls.

‘We discuss important aspects of these solutions below.

5.3.1 PDU Movement without System Calls

As mentioned earlier, a sending protocol thread prepares each PDU in buffers in shared memory. Similarly, the NIA
writes {using DMA) incoming PDUs into free pages in this shared memory. Since a shared memory mechanism is
already being used for scheduling (as described in Section 4.3) the same mechanism can be used for the protocol
thread and driver to share control information about outgoing and incoming PDUs. We refer to these data structures as
PDU descriptors and the details are given in Appendix B.2. Using shared memory for handshaking as opposed to
making system calls has several advantages. Firstly, a sending thread does not have to make a separate system call for
passing control information about PDUs to the driver but can use the scheduling system call to do so. Similarly, the
driver does not need to make an upcall to notify the receiving thread for every incoming PDU. Secondly, it works well
with the batching approach where a batch of PDU descriptors corresponding to the outgoing and incoming PDUS can
be formed into a linked list to be processed when the control is given to the network driver and the protocol thread
respectively. In addition, the descriptor fields can also be used to implement a generalized command-response mech-
anism between the driver and the protocol thread to do operations other than data movement,

5.3.2 Data Buffering

As we have seen, shared memory is used to implement a command and response mechanism that reduces system call
overhead. We use the same shared memory to implement a buffering mechanism so as to avoid copying and/or page
remapping. We describe the buffering mechanism and its effect on send and receive operations.

Send Side. The protocol thread allocates pages in shared memory that it will use to store the headers and the duta
of packets. Data units such as ADUs and PDUs can be represented using pairs of {virtual_address, length} values
because the application and protocol are in the same address space. Because the memory is also mapped to the net-
work driver, the buffers need not be remapped or copied when pointers to PDUs are passed through the descriptors. If
the kernel needs to access the data, it can convert the virtual addresses specified by the process to virtual addresses in
its address space because it has access to the page tables. Typically, the driver does not need to touch user data and
merely translates PDU buffer addresses to physical addresses that must be supplied to the NIA. The buffering system as
described above, allows zero-copy semantics.

Receive Side. The receive buffers are also pre-allocated and enqueued at the NIA as a linked list of page frames for
each connection. The NIA writes data into these free pages and fills in the PDU descriptors as described before. When
the receive side protocol thread is run, the driver translates these addresses to virtual addresses in the process address
space. As before PDUs and ADUs can be represented using {pointer, length} pairs. If the NIa can separate headers and
data into different buffers, then contiguity of user data can aiso be ensured. Thus no further remapping or copying
operations are necessary in most cases where network errors do not occur.

Qctober 7, 1994 25

5.3.3 Interrupt Free Receive Operation

Currently interropts are used to trigger processing of incoming packets. However the bandwidth guarantees provided
by the connection and the periodic nature of processing at the sending host ensures that data arrives at the receiver in
a predictable manner. Therefore, the processing of this data at the receiver can also be made predictable and periodic.
Interrupt free operation can be achieved by having the periodic thread mechanism of the scheduler to schedule the
thread that processes the PDUs enqueued in memory by the NIA. Of course an interrupt may be needed at the begin-
ning of a burst in order to activate the receiving thread. The important difference is that the presence of data would be
checked and would serve as an enabling condition for a thread to be scheduled but would not by itself trigger the run-
ning of thread. The checking is done to avoid running a thread that has no data to process.

5.3.4 Support for Control Operations in Protocol Processing

We describe the support that we provide for retransmission, timer operations and page remapping. The common idea
behind all three solutions is that a protocol thread delays operations that need kernel support until it reaches the point
where it has done protocol processing and must make a system call to yield the cpu, Similarly the driver delays noti-
fying the protocol thread about asynchronous events until the thread gets scheduled. Because most operations and
events occur on a per PDU basis, the PDU descriptor can be used to share the control information associated with the
system call or the event. These solutions are akin to the batching idea that we use to reduce context switching over-
head but applied to protocol control operations. The details of the solutions are in Appendix B.3

5.4 Work in Progress

Qur first objective is to implement our prototype protocol suite according to the ALP implementation model. The sec-
ond is to measure improvement in performance obtained over current implementations using the optimizations
described earlier. We will need to study the memory management and timer mechanism provided by the target 05 in
order to make the proposed changes in data buffering and event handling. The implementation plan is fairly clear
from earlier descriptions and will include the following.

* The buffer management mechanism to achieve zero-copy send and receive operations. We have to integrate this
with the shared memory mechanism that we plan to implement for scheduling protocol threads.

¢ Implement the PDU descriptor operations in the driver and in the protocol code

* Implement support for protocol control operations such as retransmission and page remapping.

Evaluation will be done by measuring best case performance of the protocol implementation without any other load
on the system. For example, raw throughput on a connection will be measured at each layer such as at the NI, the
driver, the user to driver boundary, and at the protocol thread level. These measurements will be made as a function of
data unit size. Similarly delay introduced by each layer is also measured as 2 function of data unit size.

The other implementation idea that we will evaluate is the use of specification driven scheduling of protocol events as
opposed to interrupt driven scheduling. We will quantify benefits of our approach by measuring the delay in handling
events and comparing it with the interrupt driven case.

The previous set of measurements indicate raw aggregate performance and can be used to compare our implementa-
tion with existing kernel resident implementations. However, to see if QoS guarantees are met on a per application
basis we will measure performance of each application by varying the job mix as mentioned in Section 3.5.

5.5 Related Work

Most of the work in reducing data movement and context switching overheads has been done for in kernel protocol
implementations and targeted towards improving TCP/1P performance. We will describe these solutions in order to
bring out when and where data movement and context switching occur, and how they are handled. This will help

October 7, 1994 26

understand the rationale behind many of the techniques we use in our solution. We look at various operations and the
costs associated with them

1. Data movement across protection domains: Integrated solutions to reduce data movement that make use special-
ized hardware have been proposed in [37). For general purpose hardware and generic 08 (such as UNIX) software
solutions have been proposed. The x-kernel [20, 32] is an architecture that addresses the issue of moving data
between domains among others. It uses a globally unique data structure [13} to avoid converting data from one
type to another when it crosses a domain. It also uses efficient cross domain data transfer [12] with minimal con-
text switch overhead. An implementation that reduces the number of times data is “touched” as it moves between
process buiffers and the network is described in [4, 8]. Here buffers are located in the network adaptor with check-
sum support in hardware. This reduces the number of data touches involved in data transfer from five to two.
Direct movement of data between user buffers and the network adaptor is described in {36].

2. Avoiding System Calls: The segment streaming approach [15] has been proposed to reduce the system call over-
head involved in stream 1PC. Using shared circular buffers between the user process and the kernel to pass buffer
location information, and to minimize physical copying in data transfer is proposed in [28]. System calls to sched-
ule transmission are avoided altogether by having the transport system polf control fields in the shared structure,
The memory mapped streams mechanism achieves a similar objective [17]. Upcalis are used in [34] for initiating
data transfer in an interrupt driven manner.

3. Interrupt Handling: A related issue is minimizing interrupt overhead. Clocked interrupts [36] is a technique that
uses a mixture of polling and interrupt driven operation. Similar solutions such as interrupting on a burst basis
rather than for each packet have been proposed in [11].

User level protocol implementations are fairly recent and most implementations are more expensive in terms of data
movement and context switching. They however have the potential for performing well in a connection oriented net-
work environment such as ATM because data can be demultiplexed directly to application space. In {39] a user level
implementation of TCP/IP is described that achieves performance close to kernel level implementation. Seme impor-
tant techniques (which our solution shares) are the use of shared memory between user and kernel to avoid copying
data, as well as batching PDUs to reduce context switching cost. However, our design includes several performance
enhancements over this. A similar implementation is described in [24] where the user level protocol implementation
maintains complete UNIX semantics by using a combination of vser level and kernel Ievel protocols.

6. Example

In this section we take the example of a ¢M application for video. We show all the steps involved and illustrate the
mechanisms. For the example, we assume that network connection attributes are specified as in [14]. The 0s environ-
ment is assumed to be MACH with support for real-time threads. We assume an NIA that implements HRR with param-
eters described in Section 3.4.

Application QoS Specification. We assume a video application where each frame is 225 KByte and the com-
pression is such that S, = 11.2 KB and S,,; = 5.2 KB. Therefore the average bandwidth B4 = 1.26 Mbps. We

assume delay tolerance Dy = 100 msec (3 frame periods). This example corresponds to 4 full motion video window
of size 320x240, with 24 bits per pixel, with intraframe compression ratio of 20:1 and overall compression ratio of
50:1.

Delay Partitioning. Of the end-to-end delay of three periods let us assume 1 period (33 msec) has been assigned
to latency, and 2 periods (66 msec) assigned to smoothing interval. We divide the latency equally between the sending
host, the network and the receiving host. We describe next how to derive the characteristics of the network connec-

tion.

Network Connection Characteristics. To setup a connection the average bandwidth and peak bandwidth
must be specified in terms of the average and minimum interval between successive cells x,,, and x,,,;, respectively.
Since the processing delay bound (66 msec) is equal to two periods, we can assume that two frames N and N+1 gener-

October 7, 1994 27

ated at the sender need to be made available at the receiver after 2 periods have elapsed since the beginning of frame
N at the receiver.

We assume that maximum size frames do not occur more than once within the smoothing interval. In this case we
assume that in two consecutive periods the maximum amount of data that can be generated in a smoothing interval is

Sax +5 avg = 11.2 +5.2 = 16.4 KB. To keep the smoothing delay equal to two periods, the maximum data gener-

ated in the smoothing interval must be sent out by the end of the interval. This means that 16.4 KB must be sent in 67
msec, and since each ATM cell has 48 bytes, the minimum inter cell gap X, is 0.196 msec (giving a peak bandwidth

of close to 2 Mbps). The average inter-cell gap x,,. is simply S av g/48 = (.3 msec. The cell delay bound can be
specified as 10 msec as determined by the delay partitioning.

Pacing Parameters. We assume the NIA has a HRR scheme and so we need to specify the level and the number of
slots. We assume a link rate of 155Mbps and choose 3 levels. We choose level 1 to have ny=35, b;=5 and a frame
duration of 100 microseconds. For level 2, we choose ny=127, b,=36 which gives a frame time of 415 microseconds
and a minimum bandwidth of 1.024 Mbps. The remaining 25% of the bandwidth is assigned to level 3 with a frame
time of 42.4 milliseconds and a minimum bandwidth of 10Kbps.

The bandwidth required in our example is twice the level 2 bandwidth. We therefore assign it to level 2 and choose
the number of slots (aj) as 2 cells. The delay bound of 415 microseconds is also within the limits of the startup delay.

Sender Thread Attributes. We assume that there is a single real-time kernel thread over which we run the
application and protocol thread as user level threads. If we choose an ADU size of 2 KB and a PDU size of 0.5 KB, then
an average size frame has 3 ADUs. If we process one ADU (i.e 4 PDUs) per batch, the period of the protocol thread is

Pp = (4-512/48) - 0.196 = 8.36 milliseconds.

Beginning of thread period

el
rad

scheduling delay (<= 8 msecs)

Kernel Thread scheduled ADU

- - ADU generated
PDU 1 enquened

8 msecs

PDU 1 I:D D:I pTLM

~ = PDU 4 -do-
1> Kernel Thread yields CPy
, scheduling delay at N1A (< 415 pisec)
>

Thread Period

-

B 2Mbps peak pacing

at NIA
v
t

FIGURE 8. Send Side Timing

If this is chosen as the period of the real-time kernel thread, then every 8 msecs the kernei thread is run, the applica-
tion thread does the processing associated with preparing one ADU for transmission, and passes it through the IPC
interface to the protocol thread. The protocol thread prepares 4 PDUs corresponding to this ADU and queues them at
the NIA. The protocol and application thread use the user thread scheduling primitives to exercise control over how
they run over the single kernel thread. The maximum scheduling delay is the period (8 msecs) and this is below the
tolerable bound of 10 msecs at the sender.

Qctober 7, 1994 28

7. Conclusions

We have presented a design for providing efficient quality of service support for applications. We have also described
the work in progress in order to implement the various solutions proposed. We expect that the work we have outlined
here will improve upon existing solutions to provide end-to-end QoS support. We also expect to improve the state-of-
the-art in the area of application level protocols. We hope to gain valuable experience and insight on the performance
of real applications by implementing them over our prototype network,

References.

(1]

(2]

E);

[4]

[3]

[6]

(71

(8]
[9]

(10]

(1]

(12]

(13]

[14]

[15]

Abbot, M.B., Peterson, L.L., “Increasing Network Throughput by Integrating Protocol Layers,” IEEE/ACM
Transactions on Networking, Vol.1, No.5, October 1993, pp. 600-610.

Anderson, D.P., “Metascheduling for Continunous Media,” ACM Transactions on Computer Systems, Vol. 11,
No. 3, August 1993, pp. 226-252.

Anderson, D. P, Govindan, R., Homsy, G., Wahbe, R., “Integrated digital continuous media: A framework
based on MACH, X11 and TCP/IP,”

Banks, D.,Prudence, M., “A High-Performance Network Architecture for a PA-RISC Workstation,” IEEE
Journal on Selected Areas in Communications, Vol.11, No.2, February 1993, pp.191-202.

Blair, G.S. et al., “The role of operating systems in object oriented distributed multimedia platforms,” Techni-
cal Report MPG-92-51, 1991, Distributed Multimedia Research Group, Lancaster university, Lancaster U.K.

Campbell, A., Coulson, G., Hutchison, D., “A Multimedia Enhanced Transport Service in a Quality of Service
Architecture,” Internal Report MPG-93-22, Department of Computing, Lancaster University, 1993,

Clark, D. D., Yacobson, V., Romkey, I, Salwen, H., “An analysis of TCP processing overhead,” IEEE Commu-
nications Magazine, 27(6) 1989, pg. 23-29.

Dalton, C. et. al., “Afterburner,” JEEE Network, July 1993, pp. 36-43.

Davie, B.S., “The Architecture and Implementation of a High-Speed Host Interface,” [EEE Journal on
Selected Areas in Communications, Vol. 11, No.2, Feb 1993,

*“The Dis Vision — A Map to the Future of Distributed Simulation,” prepared by the DIS Steering Commiitiee,
October 1993.

Dittia, Z.D., Cox, LR., Parulkar, G.M., “Catching up with Networks: Host /O at Gigabit Rates,” Technical
Report WUCS-TR-94-11, Dept. of Computer Science, Washington University in St.Louis.

Druschel, P, Peterson, L.L., “High-performance cross-domain data transfer,” Technical Report TR 92-11,
Dept. of Computer Science, The University of Arizona, Tucson. March 1992.

Druschel, P, Abbot, M.B., Pagels, M. A., Peterson, L.L., “Network subsystem design,” IEEE Nerwork, July
1993, pp. 8-17.

Ferrari, D., Verma, D.C., “A Scheme for Real-Time Channel Establishment in Wide-Area Networks,” IEEE
Journal on Selected Areas in Communications, Vol.8, No.3, April 1990, pp. 368-379.

Gong, E, Parulkar, G.M., “Segment Streaming for Efficient Pipelined Televisualization,” Proceedings of the
IEEE Military Communications Conference, MILCOMM 1692,

October 7. 1994 2q

[16]

[17]

[18]

[19]

(201

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

£30]

(31]

[32]

[33]

Gong, F, Parulkar, G.M., “An Application Oriented Error Control Scheme for a High Speed Transport Proto-
col,” Technical Report WUCS-92-37, Dept. of Computer Science, Washington university in St.Louis. Submit-
ted for publication.

Govindan, R., Anderson, D. P., “Scheduling and IPC mechanisms for continuous media,” 13™ ACM Sympo-
sium on Operating Systems Principles, 1991,

Hayter, M., McAuley, D., “The desk area network,” ACM Operating Systems Review, Oct 1990.

Herrtwich, R.G., “An Introduction to Real-Time Scheduling,” Rechnical Report TR-90-035, International
Computer Science Institute, Berkeley, California, July 30 1990.

Hutchinson, N. C., Peterson, L. L., “The x-kernel: An architecture for implementing network protocols,” {EEE
Transactions on Software Engineering, Vol. 17, Yan 1991, pp.64-76.

Kalmanek, C.R., Kanakia, H., Keshay, S., “Rate Controlled Servers for Very High-Speed Networks,” IEEE
Global Telecommunications Conference GLOBECOMM, San Diego, December 1990.

Leffler, 5.J. et. al., “The design and implementation of the 4.3BSD Unix operating system,” Addison-Wesley
publication,

Liu, C.L., Layland, J.W.,, “Scheduling Algorithms for multiprogramming in a Hard-Real-time Environment,”
Journal of the Association for Computing Machinery, Vol. 20, No. 1, January 1973, pp.46-61.

Maeda, C., Bershad, B. N., “Protocol service decomposition for high performance networking,” /4th ACM
Symposium on Operating Systems Principles, Dec 1993, pp.244-255.

Massachusetts Institute of Technology, “Telemedia, Networks and Systems group Annual Report,” July 1991 -
June 1992, AR-001, Massachusetts Institute of Technology.

Mercer, C.W,, Stefen Savage, Tokuda H., “Processor Capacity Reserves for Multimedia Operating Systems,”
Technical Report CMU-CS-93-157, School of Computer Science, Carnegic Mellon University, Pittsburgh, PA
15213, May 1993.

Minzer, S.E., “Broadband ISDN and Asynchronous Transfer Mode(ATM),” IEEE Communications Maga-
zine,Sep 1989, pp. 17-24.

Moran, M., Wolfinger, B., “Design of a continuous media data transport service and protocol,” Tech. Rep. TR-
92-019, Computer Science Division, University of California, Berkeley, Apr 1992,

Nahrstedt, K., “Network Service Customization: End-Point Perspective (Proposal),” Technical report MS-
CI5-93-100, University of Pennsyivania, Computer and Information Sciences Department, December 1993,

Nahrstedt, K., Smith, J.M., “An Application Driven Approach to Networked Multimedia Systems,” {/8th Con-
Jerence on Local Computer Nerworks, Minneapolis, MN, September 1993,

Neufeld, G.W. etal. Parallel host interface for an ATM network. IEEE Network, July 1993, pp. 24-34,

O’Malley, 5. W,, Peterson, L. L. A Dynamic Network Architecture. ACM Transactions on Computer Sys-
tems. Vol. 10, No. 2, May 1992, pg. 110-143.

Richard, W. D., Cox, J. R., Gottlieb, B., Krieger, K., “The Washington university multimedia system,” Techni-
cal Report WUCS-93-01, Dept. of Computer Science, Washington University in St. Louis, Jan 1993.

QOctober 7, 1994 30

[34]

[35)

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Robin Philippe, et al., “Implementing a QoS Controlled ATM Based Communications System in Chorus,”
Internal Report MPG-94-05, Department of Computing, Lancaster University, March 1594,

Schmidt, D. C., Suda, T., “Transport system architecture services for high-performance communications sys-
tems,” JEEE Journal on Selected Areas in Communicarions, Vol. 11, No.4, May 1993, pg. 489-506.

Smith, J.M., Traw, C.Brendan S., “Giving Applications Access to Gb/s Networking,” IEEE Network, July
1993.

Sterbenz, J., Parulkar, G.M., “Axon Host-Network Interface Architecture for Gigabit Communications,” Pro-
tocols for High-Speed Networks, IT, Marjory Johnson (Editor), Elsevier Science Publishers B.V. (North Hol-
land), 1991, pp.211-236.

Thekkath, C. A., Levy, H. M., “Limits to low latency communication on high-speed networks,” ACM Transac-
tions on Computer Systems, Vol. 11, No. 2, May 1993, pg. 179-203.

Thekkath, C.A., Nguyen T.D., Moy Evelyn, Lazowska, E.D., “Implementing Network Protocols at User
Level,” ACM SIGCOMM, Ithaca, NY, September 1993, pp.64-72.

Tokuda, H., Nakajima, T., Rao, P., “Real-Time Mach: Towards predictable real-time systems,” Proceedings,
USENIX 1990 Mach Workshop, Oct 1990.

Turner, 1.S., “New Directions in Communications,” IEEE Communications Magazine, Vol. 24, No. 10, Oct
1986, pp. 8-15.

Vogt, C., Herrtwich, R.G., Nagarajan, R., “HeiRAT: The Heidelberg Resource Administration Technique
Design Philosophy and Goals,” IBM European Networking Center (Internal Report).

Wolman, A., Voelker, G., Thekkath, C.A., “Latency Analysis of TCP on an ATM network.” Technical Report
93-03-03, Department of Computer Science & Engineering, University of Washington, Seattle, Marcl 1993.

Wright, D.J., To, M., “Telecommunication Applications of the 1990s and their Transport Requirements,” JEEE
Network Magazine, March 1990, pp. 34-40.

Zhang, Hui, Keshav,S., “Comparison of Rate-Based Service Disciplines,” Proceedings of the ACM SIG-
COMM, 1991, pp. 113-121.

Zitterbart, M., Stiller, B., Tantawy, A. N., “A model for flexible high-performance commmunication sub-
systems,” I[EEE Journal on Selected Areas in Communications, Vol. 11, No.4, May 1993, pg. 507-518.

October 7, 1994 31

APPENDIX A: QoS Mapping Details
A.1 Deriving the Bandwidth Scaling Factor

In Section 3.4.2 we derive from the QoS parameters of an application, the number of bytes of user data that must
leave the sending host during the smoothing (or averaging) interval. Due to header overheads, the actual number of
bytes sent at the data link layer is higher. To estimate this we consider the simple example of a sender with an appli-

cation thread and a protocol thread for a connection as shown in Figure 9. We assume that S;, is the number of bytes
of user data that need to be sent in a fixed interval.

g A Application SinP Protocol

2 gl Thread | " gl Thread | g
A S A P g P
t s out f g out

FIGURE 9. Module Requirements

A_A _P_P
Let S H ,S ,H be the sizes of the ADU and its header, and the PDU and its header respectively. Because of the

header that must be attached to each ADU, the number of bytes the application thread generates in one period has to be

scaled up and is given by.
A
n

S tA=(1+HA/SAJ-Si

ou

The data generated by the application layer must be sent out by the protocol Iayer in the same amount of time. There-
fore we have a multiplying factor due to protocol header overhead, and the number of bytes is given by.

P P, P P
Sout = (1+H /s)xSin

Therefore the final multiplying factor 8¢ is a product of the factors derived above and is given by
se=(1+0%/8%). (14057

A.2 Deriving Network Connection Bandwidth Parameters

In Section 3.4.1 we derive from the delay QoS parameter specified by an application, the time allotted for sending
data generated during the smoothing interval ty,,. In order to determine the peak bandwidth we must also determine
the maximum amount of data S,,,c that can be generated by the sender during the smoothing inerval, In order 10
meet the specified delay bound, S, bytes of data must be sent out in time tg,,;. These two guantities allow us to cal
culate the peak bandwidth requirement. After scaling S, by the scaling factor derived above, we get the number of
cells that must be sent out per second as,

(Sirans* S¢748) /1

trans
Here the cell payload is assumed to be 48 bytes. The peak bandwidth expressed as the minimum spacing between
cells X, is given by,

tSlTl

X . =
Sp) /48

min (S

trans

For calculating the value of Xx;y,, we need to know the average bandwidth. For the burst application type, this is not
known and so the value of X,y is 8et t0 Xpi,. For the isochronous case, we use the value S, specified for average

October 7, 1994 32

frame size in the QoS parameter. This means that Sqvg number of bytes of frame data must be sent out in each period

T. Therefore we have
T

fave T (5, 50748

A.3 Deriving Thread Attributes

In Section 3.4.4 we present the tradeoffs involved in the choice of the thread attributes. The period of a thread
depends on how much time it has to process a data unit (such as a ppU). This time depends on the peak rate at which
PDUs are sent (or received) on the network connection. If a batch of PDUs need to be processed per period, then the
period gets multiplied by the batch factor, Given these quantities, we show how thread attributes are derived.

1. Isochronous: We begin with the protocol thread. If By, is the batch factor or number of PDUS prepared by the send-
ing protocol thread per period, each of size S, then the period Py is the time taken by the NIA to send these PDUSs.
This time is given by the following expression.

Pp = (Bpx Sp) “Xin” 48
and is the tine to transmit a batch with 48 being the cell size, The execution time required by the thread is the pro-
cessing time required to prepare B, PDUs. Let t, be the processing time per PDU. The execution time C,, for the
protocol thread within each period is given by Cp = Bp Xt

The same calculations can be done for deriving the application thread attributes. Because typical ADU size is
larger than the PDU, the batching factor B, for the application thread is less than for the protocol thread. Therefore

if C, is the execution time for the application thread and t, is the time to process an ADU we have,

Pn = (Ba x Sa)) xmin/48’ Ca = Ba X ta

Typically P, is greater than or equal to P, and the batching factors could be chosen so that B, is some multiple of
the number of PDUSs in a ADU.
2. Burst: The analysis is exactly same as above

3. Message Rate Bounded: The only difference between this case and the previous ones is that the batching factor is
same for both the application and protocol threads. This is because each ADU corresponds to a single PDU. If we
represent the number of messages per batch as B, and the requested message rate as Rpngg then the period P is

given by P = B/R__ g The value of C is the time needed to do both application and protocel processing of a

single batch of ADUs and PDUs by the application and protocol threads respectively.

Qctober 7, 1994 33

APPENDIX B: Scheduling and Protocol Support

B.1 Data Structure for Scheduling

In Section 4.4 the use of a shared data structure between user and kernel was proposed to control the scheduling of
periodic threads. The idea behind the scheme is that the protocol thread polls the data structure to see if a higher pri-
ority thread is ready and waiting. Similarly the kernel looks at the structure when a thread with priority higher than
the running thread becomes ready, to see the number of PDUs generated so far. The data structure is explained in
Figure 10 The protocol thread uses a pdu_count field in the structure to indicate how many PDUs have been processed
so far and the kernel uses a yield_request ficld to indicate if a higher priority thread has become ready. These fields
are used as follows—

pdu_count

yield_request
Bp
bp
FIGURE 10. Shared Structure for Scheduling

1. pdu_count: This field shows the number of PDUs that have been processed by the running thread since it was
scheduled on the CPU. This field is set to 0 when the thread is run. Whenever a protocol thread, at a sending host
for example, generates a PDU it increments this count. When a higher priority thread becomes ready, the scheduler
checks this field value. If the value is greater than by, it takes the set of PDUs processed so far and enqueues them at

the NIA before it schedules the higher priority thread to run. The case when the count is less than by, is discussed
below.
2. yield_request: If a higher priority process has become ready but the running thread has not yet generated b, PDUS,

the kernel writes into this field to indicate to the running thread that it must yield the CPU when it completes pro-
cessing by, PDUs. It then resumes the thread. The thread checks this field every time it completes processing a PDU

and yields the CPU by calling into the driver function that enqueues/dequeues PDUs when it has completed by
PDUS.

B.2 The PDU Descriptor Structure

In Section 5.3.1 a mechanism to initiate sending/receiving of PDUs without explicit system calls is proposed. The idea

struct PDU_descriptor {
struct buf_list {
char #*buffer;
struct buf list *next;
3
int command_flags;
int command_words [NCMD] ;
int status_flags;
int status_words [NSTS];
struct PDU_descriptor *next;
}:
FIGURE 11. PDU Descriptor

October 7, 1994 34

is to use a data structure called the PDU descriptor in shared memory that contains information such as buffer
addresses, commands and arguments that request the driver to perform various operations on a PDU, and fields to store
the results of these operations. Figure 11 shows the fields in the PDU descriptor data structure. The descriptor is a
structure in shared memory that is used to pass control information about PDUs between the protocol threads and the
network driver. It can be viewed as parameters in a system call that passes data to the kernel. The buf_1ist field is
a linked list of buffer addresses that contain the PDU. Command_flags are used by the protocol thread to request
the driver to perform operations on the PDU. Typical operations are retransmission timer setup and release operations.
Arguments needed by these requests are placed in the command_words field. Similarly the driver can set the
status_fIlags to indicate the status of various operations that it performed on the PDU. The next field is used to
link PDU descriptors. The usage of these descriptors for the send and receive cases is described below.

Send Side. The protocol thread prepares a descriptor for each PDU from a free list of descriptors in shared memory.
The buf__1ist field is a linked list of virtual addresses of buffers that hold the PDU. When the driver gets control
(see Section 4.3), it converts these addresses to physical addresses and enqueues the descriptor at the NIA. If more
than one PDU is generated per period, the protocol descriptors for these are formed into a linked list and enqueued by
the driver. The NIA traverses the descriptor list, and for each PDU paces out data from its buffers without involving the
CPU. After sending out a PDU completely, it sets a bit in the status_flags field and possibly other local error con-
ditions if any (e.g., DMA underrun). The protocol thread when it gets scheduled again, reclaims the descriptors of
PDUs that have been sent out. The command_f1ags field is used to implement control functions relating to sending

PDUs. Figure 12 shows the organization of the data structure in memory,

PDU descriptors .. buffers

descriptor_addr > __l:I._l:'

B, by]

PDU_count enqueued _D_D
yield_request _.D—D

send command area

RY

HOST MEM:

NIA

FIGURE 12. Send Side Data Structures

Receive Side. The protocol thread prepares a list of PDU descriptors that point to free buffers as before and

PDU descriptors data buffers

descriptor_addr

B, 0, I

PDU_count dequeued _D—D
yield_request ___D—D

recv command area

RY

T MEM

H

FIGURE 13. Receive Side Data Structures %I

enqueues it at the NIA. We assume that data buffers are pre-atlocated from the shared memory area and put on a free
list for the connection and that the NIA can traverse this free list. As PDUs are received, the data is written into the
buffers, and control information associated with it is written into a available free descriptor. After the PDU has been

Qctober 7, 1994 35

received, the NIA writes the address of its buffers in the PDU descriptor, sets a bit in status_flags field. Subse-
quent PDU descriptors are formed into a linked list as in the sending case. When the receiving protocol thread is
scheduled by the driver (see Section 4.3) it goes through the list of descriptors that have been received and processes
them. The command_flags field is used to implement control functions. Figure 13 shows the organization of the
memory.

B.3 Support For Control Operations in Protocol Processing

As seen in Section 5.3.4 control operations that need kernel privileges need to be implemented without additional
system calls in order to make ALP implementations efficient. These operations include retransmission support, timer
management and page remapping operations. The details of how these operations are carried out is given below.

1. Retransmission: Every time period a sending protocol thread generates a batch of PDUs and enqueues it for trans-
mission. If the protocol needs to retransmit & PDU at a later time, it must not free the PDUs until it receives an
acknowledgment (ACK) from the recipient. The sending protocol may use a control connection to receive ACKs
and we assume a control thread processes these ACKs.

‘When the sending thread is invoked during its next period, it takes the descriptors for PDUs that have been marked
as sent by the NIA and puts them on a list awaiting ACKs. There is a timer associated with each PDU deseriptor that
is loaded with the maximum time that the sender will wait for an ACK before retransmitting the packet. When an
ACK is received, the thread of the control connection frees the PDUs that have been successfully received. It also
requests the driver to clear the timers associated with acknowledged PDUs when it yields the CPU. If a retransmis-
sion timer does expire, the kernel sets a flag in the status_flags field of its PDU descriptor. Every time the
sending thread runs, it checks the status field and enqueues the PDU to be retransmitted. The benefit of this scheme
is that timer set and reset operations do not need system calls. Furthermore, the timer expiry event need not be
handled by the user protocol threads and the retransmitted PDU need not cross the user kernel boundary again.

2. Timer Operations: Timer operations need to be supported through the command interface if the user processes
cannot access system time without making system calls. When a sending thread calls into the driver with a list of
PDU descriptors it can request the retransmit timer to be set for a certain interval by setting a bit in the
command_f1ags field. The sender may alse specify if the timer is to be set after the last byte of the PDU is sent
or when its first byte is read out. In any case, the driver sets the timer and if it expires, it handies the timer interrupt
and writes the status in the status_flags as described earlier. Another service related to time, is to set times-
tamps on PDUs that are sent and received. The driver may be requested to insert a timestamp at a fixed offset
within a PDU before passing it to the NIA (in the case of send) and to the receiving thread (in the receive case)

3. Remapping Support: As mentioned earlier, if the NIA can separate headers from data and no PPU is dropped by the
network, the data gets written contiguously in the recipient’s address space and no further remapping is neces-
sary!. However, when a PDU gets lost, the NIA writes the next one In its place thereby destroying contiguity. When
the protocol thread runs and detects this, it must remap the data units that were sent after the lost PDU. Also when
the lost PDU is received correctly, it must be mapped it to its right position. When the protocol needs to remap.
instead of making a system call, it creates a remap request structure. The structure is a pair of addresses where the
first field is the current address and the second field is the new address. When the receive thread calls into the
driver to schedule itself out, it passes a list of remap structures. The kernel does this remapping before scheduling
in the next thread.

B.4 Pseudo Code for a Sending Protocol Thread

‘We present the high level description of how a protocol developer would have to organize the protocol code follow-
ing the techniques presented earlier. We take an example of a sending transport protocol thread that uses an acknowl-

1. Of course PDU size must be some multiple of page frame size.

October 7, 1994 16

edgment based scheme to do retransmission. The code segment illusteates how PDUs are moved between user and

kernel, how the thread interacts with the scheduling mechanism, and the scheduling protocol control operations.

send_thread () {
/* Check status of PDUs sent in earlier periods */
for each pdu_descriptor that is marked as “SENT” by NIA
if retransmission is not regquired
free both PDU and its descriptor;

else

move descriptor to ACK wailt_list;
for each descriptor on ACK wait_list

if retransmit-timer has expired, add descriptor to to_send list;

/* Now generate the next batch of PDUs */

while there is more data to send do
prepare PDU; Fill in descriptor;

i1f retransmission is required
set timer request bit in command flags field;
set timer value in command words field;

£i
update pdu_count field in shared memory;
if vield request is set transfer fto_send_list to driver;

end

/* Engqueue the batch at the driver and yield CPU */
transfer to _send list to driver and yield CPU,.

October 7, 1994

37

cessed during its current run could be put back in the free list. We have seen how the mapping operation in
Section 3.4.4 specifies the number of PDUs {Bp) that need to be processed every period. Similarly, in order to ensure
that useful work is done for every scheduling operation, we specify the minimum number of PDUs (bp) that must be
processed before a thread yields the cPU. This number is chosen during thread creation time to be a certain fraction of
the batching factor B,

The choice of b, for a thread is determined by two conflicting criteria. In order to meet deadlines of higher rate
threads, the time to process by, PDUs should be a small percentage of the minimum thread period in the system. How-
ever, for efficient operation, it should be significantly larger than the time it takes to process a context switch and the
agsociated network driver operations to enqueue/dequeve PDUs. If bp =B p/ f then during a single invocation {i.e

thread period) a thread can be pre-empted at most £ times.

Schedulability Testing. We have derived criteria for making the choice of by for a thread without violating
deadlines of higher priority threads. We therefore have a schedulability test that takes into account the modification to
the basic RM policy. Therefore an admission control mechanism can be built into the scheduler that allows predictable
performance.

Tracking CPU Usage . Our solution to limit the number of scheduling context switches is to process some minj-
mum number of PDUs every time a thread is run. In order for a thread to keep track of the work done so far it is more
appropriate to use as a measure of usage the number of PDUs processed rather the time for which it has been running.
The reasons why this is useful are:

® The processing requirements of the protocol thread are already expressed in terms of the number of PDUs that
must be generated or consumed per invocation (the batch count derived in the mapping operation). The same
holds for the application thread that processes ADUSs. If the measure of CPU usage is the number of PDUs processed
so far, it is trivial for the protocol threads to keep track of their usage. The processing time estimated by the map-
ping process is therefore used only for the purposes of evaluating the schedulability criterion.

¢ The fact that the protocol thread can keep track of its usage, allows it to combine in a single system call, the oper-
ation of moving PDUs across the user kernel boundary as well as the operation of yielding the CPU after it has pro-
cessed a batch of PDUs. This eliminates the need for separate system calls needed for passing PDUs between the
user process and the driver. It also makes it unnecessary for the scheduler to intervene to terminate the thread once
its requested time is consumed.

The three techniques described above complement each other and can be implemented using a single integrated
mechanism. An efficient implementation of this scheme that keeps kernel intervention minimum is described below.

4.4 Shared Structure for Scheduling Protocol Threads

The solutions proposed above require a closer degree of co-operation between the user process (protocol thread) and
the kernel (network driver). We view the network driver as also implementing a thread scheduling policy because
thread scheduling and burst scheduling are closely related. For example, the scheduling component of the network
driver must know if any PDUs have been received on a connection in order to make scheduling decisions. More
importantly, the scheduling component must be able to inform a running thread whether a higher priority thread is
waiting for the CPU and it must be able to determine how many PDUs have been processed by the currently running
thread.

Our implementation uses a data structure in shared memory between each user protocol thread and kernel to maintain
control information about scheduling. The kernel writes into shared memory in order to inform a running thread if a
higher priority thread is ready. The protocol thread uses the shared memory to inform the kernel about how many
PDUs it has processed since it was last scheduled on the CPU. If a higher priority thread becomes ready before the
thread can finish processing one batch (Bp), then it yields the CPU provided it has at least completed processing of by

PDUSs in its current run.

October 7, 1994 20

The description above makes some assumptions about the way the application and protocol threads schedule packet
processing. Our description suggests that at a sending host for example, the application and protocol threads make
“vertical traces” through the code starting at the application and protocol layers, and ending at the network driver
interface, before going back to the application layer. In each trace, the application and protocol threads process user
data corresponding to one PDU before going back to prepare the next one. After completing each ppU, the protocol
thread updates the count field in the data structure, and checks if the kernel has indicated if a higher priority thread is
ready. If it detects this condition, then it continues until it has generated by, PDUs. It then calls into the driver to yield
the CPU as well as enqueue the b, PDUs. However if no higher priority thread is waiting, it increments the count field
and goes back for the next PDU. The receiving protocol thread is similarly structured. The pseudo code for a sending
protocol thread is given in Appendix B.4.

4.5 Work in Progress

‘We are working on the following problems. The first is the analysis of the modified RM priority scheme and simulat-
ing it with a realistic task set to quantify the expected reduction in context switching overhead. The second is an
implementation on a target platform, and to measure the gain in performance.

Analysis and Simulation. We have analyzed the modified RM scheme and derived conditions under which a set
of tasks are schedulable under this scheme. The result gives an upper bound on the amount by which the CPU must be
“over reserved” in order to guarantee schedulability. We have also obtained an upper bound on the number of context
switches in this scheme. We expect average case performance to be much better. This can be demonstrated only by
simulation of various task sets. Simulation will also reveal the amount of concurrency in the operation of the NiA and
the CPU that can be obtained by enqueueing PDUs generated at the NIA whenever a context swiich is made. Expecled
results are

s A tighter analytical bound on the amount by which the processor must be over-reserved,
¢ Comparison of the number of context switches in the two schemes as a function of different realistic task sets.

¢ Comparison of the benefits of the increase in concurrency in operation of the CpU and the Ni1A for different task
sets,

Implementation. Our ideas for delayed preemption and usage tracking based on PDU count have to be evaluated
in a practical setting. These features must therefore be incorporated into a standard rate-monotonic scheduler imple-
mentation. We also would like to compare performance with existing RM and EDF schemes currently in use. Usage
tracking based on PDU count has performance and fairness issues that can be addressed only by an implementation. A
performance issue is whether protocols that generate a high percentage of control PDUs or variable length PDUs will
have wide variability in the obtained QoS. We expect to also have a solution for the potential fairness problem that
could arise if a thread takes more than its share of CPU time by keeping its PDU count to be less than what it is. The
different steps in our implementation are outlined below.

¢ Shared Memory Implementation: We will implement the proposed shared memory mechanism between user pro-
cess and the kernel in order to store the data structures needed for scheduling.

¢ Scheduling Optimizations: We will implement the changes to the RM scheme as an external scheduling policy.
This feature is supported by an 0s such as Mach 3.0 which also supports the RM scheduling discipline.

* Evaluation: We expect an improvement in performance compared to a simple RM scheme especially at higher
loads. We will measure this improvement by running both schemes under differing load conditions and measuring
the QoS parameters as before.

QOctober 7, 1994 21

	Efficient Quality of Service Support in Multimedia Computer Operating Systems
	Recommended Citation
	Efficient Quality of Service Support in Multimedia Computer Operating Systems

	tmp.1439928365.pdf.MZlm7

