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ABSTRACT - This paper considers the problem of virtualizing the resources of a network processor (NP) in order to 
allow multiple third-parties to execute their own virtual router software on a single physical router at the same time. 
Our broad interest is in designing such a router capable of supporting virtual networking. We discuss the issues and 
challenges involved in this virtualization, and then describe specific techniques for virtualizing both the control and 
data-plane processors on NPs. For Intel IXP NPs in particular, we present a dynamic, macro-based technique for 
virtualization that allows multiple virtual routers to run on multiple data plane processors (or micro-engines) while 
maintaining memory isolation and enforcing memory bandwidth allocations.

1. INTRODUCTION  
Network virtualization holds strong promise as a means for developing and deploying 

innovative network architectures and services in a commercially viable next-generation global-
scale Internet [1]. If networks are to be virtualized in a manner similar to large-scale overlay 
networks such as PlanetLab [2], then virtualizable routers, such as Washington University’s 
diversified router [3], must be developed.  

For a router to support virtualization, the primary processing components in the line cards 
must also support virtualization. Modern routers use specialized processor, referred to as network 
processors (NPs), to handle data-plane packet processing at router ingress and egress. However, 
the current generation of NPs is designed to handle traditional network processing workloads, 
and, as such, their designs do not incorporate mechanisms to support virtualization. Specifically, 
most NPs are designed assuming that all NP resources will be under the software control of a 
single application. In the virtualization context, however, we expect a given router to support 
more than one virtual router concurrently, requiring the router’s physical resources to be shared. 
The aim is to allow multiple third-parties to develop software that can run simultaneously in the 
same router safely with good performance guarantees.  

Such sharing introduces new requirements for safety and provisioning. Just as operating 
systems rely on process scheduling and virtual memory mechanisms to provide isolation and 
resource allocation between multiple programs, so too must a router support isolation and 
provisioning of the physical resources to multiple virtual routers. 

In this report, we focus on the specific requirements and challenges that arise when network 
processors are used to support multiple virtual routers within a single physical router. While the 
issues we raise apply generally to network processors, in order to keep the discussion concrete we 
will consider the specific examples and solutions for the Intel IXP family of network processors.  

Our main contribution is to show that programs executing on the two types of processors 
available in NPs, the control and data plane processors, require different types of virtualization 
support. Traditional virtualization techniques appear effective for control processors, since they 
are organized as traditional processors and host fully featured operating systems. Data plane 
processors, such as the Intel IXP micro-engines, require other methods, however. In addition to 
discussing virtualization from this perspective, we describe a dynamic, macro-based approach for 
virtualizing the data-plane processors and enforcing memory isolation and memory bandwidth 
provisioning. 

The remainder of this paper is organized as follows. Section 2 provides a background 
discussion of network processors and the Intel IXP network processors in particular. The 
requirements for NP virtualization are discussed in Section 3. Section 4 surveys mechanisms for 
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Figure 1. Generic Network Processor 

control processor virtualization, while Section 5 discusses the topic of data-plane processor 
virtualization. The paper concludes with a concise summary of our model of virtualization in 
Section 6 and acknowledgements in Section 7. 

2. BACKGROUND ON NETWORK PROCESSORS  
Figure 1 shows the logical organization of a typical NP. Packets arrive at the input block at 

the left, where they are stored in one of a number of separate queues. They leave from the output 
block at right. The Micro Engines (ME) perform the bulk of the data processing. This multi-core 
architecture allows the NP to efficiently exploit packet-level parallelism [4,5]. Packets may be 
passed through the MEs in a pipelined fashion, with each ME performing a portion of the 
processing, or they may be distributed to different PEs over the central bus, with each packet 
being completely processed by a single ME. The central bus also provides access to external 
SRAM and DRAM through the Memory Interface (MI) and to an external control bus via the Control 
Interface (CI). Each ME typically has a local memory used to store program instructions and 
several distinct hardware Thread Contexts (typically 4-8), each of which includes a register file, 
program counter and other essential per-thread information. MEs are typically able to switch from 
one thread context to another in a single clock cycle, allowing the processor to continue 
processing, even when some threads are blocked waiting for a memory access to complete. Each 
ME may also have multiple functional units, allowing it to exploit instruction-level parallelism 
within a single thread. The device is managed by a central Management Processor (MP).  

To see how this generic organization corresponds to a real commercial NP, we now consider 
the Intel IXP. 

2.1 Intel IXP Network Processor Organization 
The IXP family of NPs consists of networking-specific chip-multiprocessors (CMPs) with 

processor core counts ranging from 4 to 17. The IXP2850 is the high-end offering, targeting a line 
rate of 10 Gbps; its organization is shown in Figure 2. To provide this level of performance in 
software, the IXP2850 runs at a 1.4 GHz clock frequency and features one XScale control 
processor (which corresponds to the management processor in Figure 1), a high-performance 
ARM-compatible processor which hosts embedded Linux or a real-time OS and implements 
management and control functions, and 16 MEs, which supply the data plane packet processing 
and do not host an OS.  

The MEs are six-stage, RISC-like processors with an instruction set architecture enhanced for 
network processing. The MEs are multithreaded, with hardware support for 8 thread contexts, 
providing single-cycle context switches via a non-preemptive hardware thread scheduler; 
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accordingly, the ME features 256 general-purpose registers and an addressing mode that allows 
one thread to access them all. The MEs each have a number of hardware assists that are 
accessible to programs as instructions, including a 16 entry content addressable memory (CAM), 
and a hash unit. The arrows in Figure 2, connecting neighboring MEs, represent next-neighbor 
(NN) registers, which can be used to implement high-bandwidth, low-latency communication 
between neighbors (the registers are typically managed as a ring). Like many other embedded 
systems, the MEs have no hardware support for floating-point operations. In place of instruction 
and data caches, MEs each have an 8K-entry control store, which is organized as an SRAM, and a 
local data memory 2KB in size. The ME architecture is illustrated in Figure 3.  

Additionally, the IXP2850 supports several external SRAM and DRAM channels to meet the 
high memory bandwidth requirements of high-performance networking workloads. The SRAM 
controller supports advanced operations, such as queue/ring semantics and atomic operations. The 
presence of the crypto engines, which are capable of line rate 3DES, AES, and SHA-1 
(de)encryption of packet data, distinguishes the IXP2850 from the IXP2800; otherwise, the two 
are identical.  

The collection of blocks in the IXP diagrams labeled SPI/CSIX, RBUF, and TBUF are part of 
the media switch fabric (MSF). The MSF is the unit that that provides network I/O. SPI is a chip-
to-chip protocol that, for example, connects the IXP to one or more Gigabit Ethernet media 
access controllers (MACs). CSIX is a standard protocol for connecting chips to switch fabrics. 
The MSF provides packet I/O via receive and transmit buffers (RBUF, TBUF); packets are staged 
through these buffers under the control of software running on the MEs. 

The collection of blocks labeled Scratch, Hash, and CSRs are part of the SHaC unit which 
provides 16 KB of on-chip scratch SRAM and controller supporting message queues and rings as 
well as atomic operations, a configurable Hash unit, and control-status registers (CSRs) for 
controlling and querying IXP operation. 

The PCI interface allows the IXP to attach to control plane devices, such as disks and 
Ethernet ports. All units on the chip are connected by a collection of high-speed, unidirectional 
buses and arbitration units. 

Applications developed for the IXP are typically structured as packet processing pipelines, 
thus the IXP has many features to support pipelining across MEs, including: next-neighbor 
registers between MEs, inter-thread and programmer-controlled inter-core signals in hardware, 
and on-chip and SRAM-based message rings and queues. 
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Figure 2. IXP2850 Organization. 
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The XScale is programmed like any other Linux-based system. The MEs can be programmed 
in either their assembly language, or with a variation of the C programming language called 
Micro-C. Micro-C is neither a superset nor a subset of ANSI C. It allows C-language syntax for 
data and control structures, but requires special annotations to variable declarations, for example, 
to accommodate the heterogeneous memories provided by the IXP. Other C-language restrictions 
include: no support for floating-point data; and no support for recursive functions since the MEs 
do not have fast access to a stack. Many IXP features must be accessed with assembly macros, 
since not all features can be expressed in Micro-C semantics. 

The IXP2850 is just one instance of a family of IXP NPs. As an additional example, the IXP 
2400 is architecturally similar to the 2850, but targets 4 Gbps line rates; it features a 700 MHz 
clock rate, 8 MEs, fewer memory interfaces, and no crypto engines. As we will see, our 
experimental results use the IXP 2400 since that was the platform we had access to at the time 
these experiments were conducted. 
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Figure 3. IXP Micro-engine (ME) Architecture. 

2.2 Intel IXA Software Architecture 
Networking applications consist of three levels of functionality: management, control, and 

data. The management plane exports user interfaces for: system configuration, service 
management, organization and user-level policies, statistics, and system startup and shutdown. 
The control plane implements the protocols and applications that govern the operation of 
applications and network services; resource provisioning protocols and reservation and 
management of shared data such as route tables are examples of control plane functions. Finally, 
the data plane is responsible for normal packet and flow processing and forwarding at line rates. 

The Intel Internet Exchange Architecture (IXA) software architecture [6] reflects this 
structure, as does the IXP hardware organization itself. Management plane operations are 
typically implemented on a host computer attached to the router. Control plane operations are 
typically implemented on the XScale processor. Data plane functions are primarily implemented 
on MEs, except for rare and error conditions which are usually implemented on the XScale. This 
overall structure is illustrated in Figure 4. As can be seen, a generic receive, process, transmit 
application is shown.  
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Figure 4. Generic Structure of Software Architecture. 

3. REQUIREMENTS FOR VIRTUALIZATION  
Since our aim is to consider NP virtualization within the specific context of network 

virtualization, we have the option of either considering NP virtualization in a completely generic 
way, or, alternatively, in the context of supporting virtual routers.  

A generic approach to NP virtualization would consider all resources to be available for 
shared access and would call for mechanisms to provide isolation and provisioning in each 
instance. A more specific view of virtualization could define a subset of resources to be shared, 
with the rest considered to belong to the system and unavailable for direct end-user access. This 
specific view would restrict the placement of third-party, allowing it only to be added to well-
defined portions of the infrastructure. 

Consider, for example, the system illustrated in Figure 5. This software architecture is based 
on software plugins [7], which allow the programmer to add application-specific packet filters 
and associate them custom processing blocks. In this instance, rather than virtualizing the entire 
NP, a subset of the system is made available via the plugin API. Such an API could conceal many 
details and those corresponding subsystems of the NP would not therefore need to be virtualized. 
This example is attractive since the plugin model has proved to be simple and effective in both 
software and hardware [8]; thus, the extension to network processor software is a natural one. On 
the other hand, such an API would limit the flexibility given to developers. To see how such an 
API might limit the portion of the NP touched by authors of virtual router code, consider the 
following operational description. 

In Figure 5, the input processing block: performs link-level (e.g., Ethernet) decapsulation and 
examines incoming packet headers; forwards packet payloads to the packet storage manager, 
which validates the packets, and stores payloads in DRAM; and passes a buffer descriptor 
containing much of the known header, which includes an ID for the virtual network that is 
carrying the packet, plus a pointer to the payload, on to the packet classification (PC) block. The 
PC block classifies the packet, using a key constructed in a manner specific to the virtual 
network, and passes along the resulting queue ID and descriptor to the queue manager (QM) 
block. The output processing block receives buffer descriptors for outgoing packets from the QM 
block, and performs validation, link-level encapsulation, and packet transmission. For example, 
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an IP-based virtual network could be implemented by a third party using a series of plugins that 
provided: IP header extraction (and initial classifer key construction routine), IP packet 
verification, IP lookup, and IP header and checksum construction. Note that in this example, each 
packet would take multiple round trips through the packet classifier, plugin, and, possibly, queue 
manager subsystems. All blocks shown are implemented on micro-engines, with the exception of 
the control processor which refers to the XScale processor and its Linux operating system. In this 
example, the third-party developer would not need to have access to the MSF or buffer allocation 
subsystems since those are handled by the infrastructure. 

Whether we consider generic or specific virtualization, we must consider virtualizing access 
to resources on both the control and data plane processors. In each instance, we must consider 
virtualizing: thread execution, access to memory, memory bandwidth, and access to special-
purpose hardware assists. In the case of the IXP, special-purpose hardware assists such as the 
cryptography units are accessed in the same way that memory is accessed. Thus, we need not 
consider it in its own category. There are examples of hardware resources that cannot effectively 
shared through memory mapping techniques, such at the IXP’s MSF, so in those cases we will 
assume that these specialized resources are part of the system infrastructure and not made 
available to virtual routers for direct manipulation. 

As we will see, control processor virtualization is relatively straightforward due to the 
presence of a modern operation system. Virtualizing MEs, however, is less clear and will require 
new software or hardware mechanisms.  

Note that the granularity of virtualization can have a strong influence on the difficulty of this 
problem. If a virtual router is allocated, at a minimum, one dedicated IXP, then we need not 
consider IXP virtualization at all. If the minimum allocation is a dedicated ME, rather, then inter-
ME isolation and provisioning must be provided. As we will see, one straightforward way to 
accomplish this is simply to partition the MEs among the different virtual routers and provide 
protection registers to regulate which part of the physical memory is available to each ME. This 
approach makes it easy to provide a static memory partitioning, but will need to be extended to 
enable the memory space available to different MEs to be adjusted while the system is operating. 
In conventional processors, paged virtual memory systems allow programs to operate securely 
within their own virtual memory system. However, paged virtual memory systems have too much 
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Figure 5. Sample Virtual Router Infrastructure. 
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overhead to enable the fine-grained context switching that must take place in a virtual router. An 
alternative is to use some form of segmented virtual memory instead. 

If individual ME contexts are the unit of allocation, then we must consider virtualizing the 
internal ME resources as well. Since our intended usage does not require multiple virtual routers 
to share a single ME, however, we do not explore this degree of virtualization. 

In the following two sections, we discuss control and data-plane processor virtualization in 
turn. 

 

4. CONTROL PROCESSOR VIRTUALIZATION  
Virtualizing the control processor involves dividing up resources, such a memory, I/O 

devices, and CPU cycles among different domains.  This must be accomplished in such a way as 
to provide isolation and resource accounting, scalability, and fairness.  Three ways to accomplish 
this are system virtualization via virtual machines (VMs), and specific OS image virtualization 
such as Linux vservers [9].   

One approach to virtualizing the control processor is to provide each virtual router with its 
own virtual machine and operating system, which allows it to view itself as the only occupant of 
that CPU.  Two related ways of accomplishing this are virtual machines and virtual machine 
monitors.  VMs, such as VMware [10], provide a fully emulated virtual machine on which an 
operating system and its associated applications to run unmodified, but often at the expense of 
performance.  VMMs, such as Xen [11], improve performance by using paravirtualization, where 
the underlying processor is only partially virtualized.  This requires porting the operating system 
to run on the VMM, but no modifications to user applications are necessary.  While both 
VMWare and Xen are currently only available for the x86 architecture, the creators of Xen claim 
that x86 represents the worst case for virtualization; it should be relatively easy to achieve similar 
results on another architecture.     

Xen incurs very little overhead; on most workloads, it is able to achieve over 90% of the 
performance of a non virtualized Linux host.  It is designed to be scalable to over 100 domains 
running simultaneously, and provides strong resource and performance isolation among them.  
Even malicious programs such as fork bombs do not greatly affect the performance of other 
domains.  Domains can be created and destroyed dynamically, and resource accounting for each 
domain is provided.   

Linux vservers provide an alternative to system virtualization.  Vservers are a modification to 
the Linux kernel that allows user space processes to be given their own root file system and 
allocated their own resources, but with lower overhead, since each instance does not need its own 
kernel or virtualized machine.  They can be used to provide protection for everything from an 
individual process to an entire distribution and are attractive because they are more scalable and 
perform better.  Fewer resources are used since each domain does not need its own kernel and 
emulated machine environment, and further savings can be had by applying the concept of 
unification- resources such as shared libraries, which are read only and are used in different 
domains, can be shared by those domains.  Depending on the application, this may be a better 
approach than a VM or VMM.  However, if a particular application needs to run a modified 
kernel, or different domains need different versions or configurations of the kernel, the vserver 
approach would not work.   

There are many options for control processor virtualization, depending on the exact 
requirements.  Linux vservers are lightweight, easier to implement, and more portable, but 
VMMs such as Xen provide more functionality, and can still be quite scalable and fast.  All these 
methods provide the isolation, resource accounting, and scalability needed in any virtualization 
scheme.  However, neither of these solutions have, to our knowledge, been ported to the IXP’s 
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XScale processor. While this may involve a more difficult that usual port of the software, there is 
no clear technical reason why either scheme could not be made to work in this context. 

 

5. DATA PROCESSOR VIRTUALIZATION 
As described in the following sections, virtualizing data-plane processors involves three 

categories of virtualization. The first concerns scheduling threads of execution to ensure that the 
real-time requirements of individual virtual routers are satisfied.  The second issue considers how 
the memory architecture can be managed to provided memory access isolation between virtual 
routers. The third concerns provisioning memory bandwidth among virtual routers. Section 5 
concludes with a discussion of the performance overheads associated with our NP virtualization 
approach. 

5.1 Virtualizing Threads  
There are two natural methods of using the parallel processing resources in a modern NP. 

One is to organize the processing as a pipeline, with each processor handling one stage in the 
pipeline. While pipelining has some important advantages, it can be difficult to break down 
programs into a large number of computationally balanced steps.  The second common way to 
use the parallel processing resources is to distribute packets to processors, letting one processor 
fully handle each packet. This approach is inherently more flexible and makes programming far 
more straightforward. It does raise other issues, some of which may require architectural 
extensions to NPs in order to realize the full benefits.  

One of the key issues is how to schedule the use of processing resources to ensure fair 
treatment of different flows or to satisfy real-time requirements. While there are some similarities 
between scheduling the use of link bandwidth and scheduling the use of processing capacity, 
there are also some significant differences. First, when scheduling the processors in an NP, there 
are multiple processors to choose from and certain packets may be constrained in their choice of 
processor (they must run on a processor that has the required code available and if there is per 
flow state information that is retained between packets within a processor’s local memory, all 
packets of the flow must run on the same processor). Second, packet execution times are highly 
variable and much less predictable than packet transmission times on a link. This requires 
adjustments to scheduling policies that depend on knowing in advance, how much time is needed 
to process a given packet [12]. 

An alternative to scheduling packets is to associate application data flows with processing 
threads and schedule the threads, rather than scheduling packets. There are two big advantages to 
this approach. First, some packets take much longer to process than others (a 4 KB packet 
requiring 500 instructions per byte of data will take 2 ms to process, assuming instructions can be 
processed at the rate of one per ns). We may prefer to interrupt processing of such long packets to 
avoid imposing excessive delays on packets that require only a little processing. Second, some 
applications may not follow the strict packet-in, packet-out paradigm. They may generate 
multiple output packets for each input packet, or may produce fewer packets than they receive. It 
can be difficult to handle such applications in the context of a purely packet-driven scheduling 
mechanism. 

Thread (or process) scheduling has been used extensively in conventional time-shared 
computing systems. There are some important differences that arise when we consider thread 
scheduling in the NP context. First, to achieve the requisite real-time performance, the time-slice 
duration must be much shorter in an NP than in a conventional time-sharing system (say 100 μs, 
instead of 10 ms) and the overhead for switching contexts must be a small fraction of the time-
slice duration. Second, thread scheduling must take into account the quality of service 
requirements of the associated packet flows. While both of these issues arise in real-time systems 
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contexts, the requirements are more stringent for NPs than in most real-time systems (typical real-
time systems process hundreds or thousands of events per second, while NPs serving 10 Gb/s 
links may process hundreds of millions of packets per second). It’s important to recognize that the 
availability of multiple hardware thread contexts does not address the larger thread scheduling 
issue. Hardware thread contexts are only meant to reduce the impact of memory latency on 
processor performance. They do not address the real-time aspects of thread scheduling. Also, if 
individual flows are assigned separate threads, the total number of threads handled by a processor 
can be much larger than the number of hardware contexts. 

To apply time-slicing to processors with multiple hardware thread contexts, we must 
generalize the notion of time slice to reflect the resources used by the thread rather than simply 
elapsed time (this could be measured simply in terms of the number of instructions executed by 
the thread, or using a more complex metric that reflects the varying costs associated with different 
instructions). A thread selected for execution would be allowed some fixed amount of 
computation (a processing slice) before being suspended and replaced with another thread. Of 
course, a thread that becomes blocked waiting for input would be suspended and replaced with 
another thread. When a thread context becomes free, we can select from among the ready-to-run 
threads using the same type of virtual-time methods used for scheduling packets. Indeed, because 
processing is no longer associated with specific packets, the scheduling decision can be made 
somewhat simpler. 

For maximum flexibility, we would like to avoid having to implement the thread scheduler in 
hardware. At the same time, we need to keep the scheduling overhead very small. The key to 
minimizing the overhead of a software scheduler is to speed up the saving and restoring of the 
thread context. Block copies of the thread context to and from external SRAM are essential for 
this purpose. One elegant way to structure the scheduling operation is to equip each thread 
context with two protected registers, a thread image register and a next thread register. Whenever 
a thread is suspended, it is copied to memory at the location specified by the thread image register 
(typically, thread images will be stored in external SRAM) and then the next thread register is 
used to retrieve a new hardware thread context. Once the new context is loaded, the new thread 
begins executing. The system software can use this mechanism to start the thread scheduler 
whenever a normal processing thread completes. Once the scheduler decides which thread should 
go next, it writes this value in its next thread register and suspends itself, triggering the switch to 
the new thread. Using fast Quad Data Rate SRAM, thread contexts supporting 16 general purpose 
registers and other required per thread state can be transferred between SRAM and memory in 
under 50 ns, leading to an overhead of about 200 ns to switch from one processing thread to 
another (including the switches to and from the system thread). If the scheduler data structures are 
located in SRAM and the scheduler makes no more than a few tens of independent memory 
accesses, it should be possible to complete the whole thread switch in less than a microsecond. 
This is small enough to allow processing slices as short as the equivalent to about 10 μs of 
uninterrupted computation. Longer slices (equivalent to say 100 μs of computation) will reduce 
the overhead further and are probably still short enough to satisfy most real-time requirements. 
Flows consisting of widely spaced packets requiring only a small amount of computation can 
incur significant overhead due to flow switching, since these flows will process a single packet at 
a time and may require less that 10 μs of computation per packet. For such flows, it may not be 
practical to associate each individual flow with a separate thread. By structuring the program so 
that a single thread handles multiple flows, we can reduce the effective overhead of thread 
switching, at the cost of less effective traffic isolation among flows.  

5.2 Virtualizing the Memory Address Space  
We first consider the memory architecture of a typical NP. NPs such as the Intel IXP have a 

fixed instruction memory, a small amount of local scratch memory, plus off-chip SRAM and 
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Figure 6. Segmented VM with pooled segment registers 

DRAM. Rather than attempting to reduce memory access latency, each processor has multiple 
hardware thread contexts to tolerate the potentially long latency of memory access. Typically, 
none of the memory is organized as a hardware cache. It’s up to the programmer to manage the 
different types of memory (registers, on-chip SRAM, off-chip SRAM, DRAM). This gives the 
programmer great flexibility, but at the cost of a more complex memory model which makes 
programming much more difficult.  One consequence of a fixed control store is a maximum 
program size – typically, each ME has access to a store of 2-8K instructions. This fact makes an 
instruction cache all the more appealing, since small programs would execute entirely from 
cache, but larger programs could still be executed. One complicating factor is the interaction 
between the cache and multiple thread contexts. Unless the cache associativity matches the 
number of active contexts, the overall performance can be poor. Caches can also represent a 
hidden cost, when switching among different flows, since flows can experience poor performance 
until the cache “warms up.”  

5.2.1 Hardware Enhancements for Address Space Virtualization  

Another important issue regarding the memory architecture is protection. An NP hosting 
multiple virtual routers will execute a variety of different programs at different times. While 
network operators are expected to strictly control which programs can be executed, there is still a 
need for memory protection to prevent faulty programs from corrupting data belonging to other 
programs. In conventional processors, memory protection is provided through the virtual memory 
(VM) subsystem. NPs need a lighter-weight alternative than the conventional paged VM system. 
The real-time nature of NPs rules out swapping threads to and from disk, so conceivably one 
could use paged VM, but eliminate swapping. Unfortunately, the large page tables that define the 
memory maps in paged VM systems are too large to fit in a processor’s local on-chip memory. 
The standard solution to this problem is to cache memory mapping information in a Translation 
Look-aside Buffer (TLB), but it’s not clear how effective a TLB can be in processors supporting 
rapid switching among multiple hardware thread contexts. 

An alternative is to provide a segmented virtual memory is to equip each ME with a set of 
segment registers, each consisting of a pair of virtual memory addresses (defining a range of 
memory locations) and a physical memory address defining the first location in physical memory 
corresponding to the first virtual memory address in the range. When a program executing on the 
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processor attempts to access a memory location, the virtual address of the memory location is 
compared to the ranges of all the processor’s segment registers and the associated physical 
address is then computed using the segment register with the matching range. If there is no 
matching range (or multiple matching ranges), a memory access error occurs. The flexibility of 
this approach is limited only by the number of segment registers. Assuming that the allocation of 
memory to processors is not extremely dynamic, a fairly modest number of registers (say 16) can 
provide ample flexibility at a low implementation cost. Alternatively, each hardware thread 
context in the processor can be equipped with its own set of segment registers, allowing each to 
operate within a separate virtual memory space. Figure 6 shows a more scalable version of this 
approach, in which the processor provides a pool of segment registers that can be dynamically 
assigned to thread contexts. This allows some thread contexts to use more segment registers than 
others to accommodate more dynamic virtual memory usage patterns.  Given enough segment 
registers per thread, different segments can be used for the stack, other private data, shared data, 
and code, allowing different threads to easily share the same code in a read-only segment.   

Segmented VM is rarely used in conventional computer systems, in large part because it can 
lead to fragmentation of the memory space. This is particularly an issue in systems that swap 
segments to and from disk. In the NP context, these concerns are reduced, since there is no 
swapping and since NP programs can be more reasonably constrained in their memory usage 
(static memory and bounded stack size) than can programs in a general-purpose time-shared 
computer system. 

scratch_op[ args ] 
sram_op[ args ] 
dram_op[ args ] 
  with args := op, xfer, src_op1, src_op2, size_arg, indirect_st, 
               indirect_arg, sig 

 op: read or write 
 xfer: the transfer register(s) to store to/read from 
 src_op1, src_op2: These 2 are added together to form the starting 

address of the operation.   
 size_arg: either a number (1-8) or if doing an indirect ref, 

max_1 to max_16 
 indirect_st: the statement to execute just before the memory 

operation if doing an indirect ref.   
 indirect_arg: 0 if doing an indirect_ref, 1 otherwise 
 sig: sig_done[signal name] or ctx_arb[signal name] 

 
Figure 7. Macro interfaces for memory API. 

5.2.2 Software-based Memory  Protection 

We implemented a technique for memory protection in software on the IXP that is similar to 
a software enforced segment register.  Each ME has a set of 6 registers- two each for DRAM, 
SRAM and the Scratchpad, representing the upper and lower bounds of the memory segments 
allocated to that ME.  Wherever a raw memory access is made, it is replaced with a macro that 
dynamically checks to make sure that the request stays within the allocated segments.  If it does 
not, an interrupt is raised and the ME is paused.  In a fully implemented system, a process on the 
Xscale will then handle the error. As we will see in Section 5.4, these macros involve very little 
overhead. The macro API is shown in Figure 7. 
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.while(i < 1000) 
  sram_op[read, $xfers[0], 0, sram_begin, 8, X, FALSE, sig_done[sig1]] 
  sram_op[read, $xfers[8], 30, sram_begin, 8, X , FALSE, sig_done[sig2]] 
  sram_op[read, $xfers[16], 40, sram_begin, 8, X , FALSE, sig_done[sig3]] 
  sram_op[read, $xfers[24], 50, sram_begin, 8, X , FALSE, sig_done[sig4]] 
  sram_op[read, $xfers[32], 60, sram_begin, 8, X , FALSE, sig_done[sig5]] 
  ctx_arb[sig1, sig2, sig3, sig4, sig5] 
  alu[i,i,+,1] 
.endw 

Figure 8. Test code. 

5.3 Virtualizing Memory Bandwidth  
In addition to providing memory protection, a virtualized NP must provide bandwidth 

guarantees for each separate virtual router.  A good virtualization scheme will guarantee a certain 
amount of bandwidth to each ME, provide for fair allocation under high loads and properly 
account for the amount of resources used by each ME.  Ideally, excess capacity could be given to 
MEs that can utilize it.   

Resource allocation on the MEs is not as easy to achieve as it is on the control processor, 
since there is no operating system or other centralized entity to arbitrate among them.  The most 
direct way to implement bandwidth virtualization would be with enhancements to the memory 
controller.  Such a smart controller could be configured to allocate different amounts of 
bandwidth to different MEs, and could then schedule memory requests from each ME 
accordingly.   

We implemented a technique for bandwidth rationing in software on the IXP that uses macros 
to replace memory access instructions.  Each ME is allocated a set of tokens sized in proportion 
to the percentage of allocated bandwidth; at any given time, the number of remaining tokens is 
kept in a well-known register.  When the ME makes a memory access, the macro checks to see if 
there are enough tokens left to satisfy that request before issuing the memory operation.  If there 
are, that number of tokens is subtracted from the total and the memory instruction is executed.  If 
not, it must wait for the number of tokens to be replenished.  Tokens are replenished when the 
MEs receive a signal from a process running on the Xscale whose sole task is to periodically set 
this replenishing signal for all the MEs. The macro API is the same as the bounds-checking 
macros, and is shown in Figure 7.    

In the context of virtualizing an ME to support virtual routers, it is assumed that the system 
administrator will have tools to parse all the programs before loading them into the hardware to 
ensure that these virtualization macros are being used (i.e. there are no bare accesses to memory) 
and that global registers needed to support them are not accessed by the user programs. 

5.4 Implementation & Evaluation  
As described above, we have explored software methods for implementing some of the 

virtualization requirements on a current generation Intel IXP network processor.  We report 
results for the IXP 2400, since at the time these experiments were run our laboratory only had 
access to those hardware platforms. Specifically, we have implemented software schemes for 
memory protection and bandwidth rationing on a per microengine basis.  The implementations 
are described above in the relevant sections; this section describes their effectiveness and impact 
on performance.  Our example results illustrate SRAM access, but comparable results can be 
obtained for the other memory types. 

Our virtualization mechanisms seem to work well.  The memory protection scheme adds 8 
instructions per memory access.  The bandwidth rationing scheme adds 6 instructions per access.  
Together, they represent 14 more instructions per access.  While this might appear to be a 
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significant multiplier, we observe that two factors mitigate the effect. First, the real cost of the 
additional instructions must be weighed against the 100-300 cycles spent waiting for the 
operation to complete. Second, even programs that spend most of their time executing memory 
operations are not necessarily dominated by these additional instructions. In fact, when running a 
memory bound test program, shown in Figure 8, they combined for 0.07% increase in instruction 
execution cycles.   

Overall, there is no significant performance reduction when using the macros. When 
executing the program in Figure 8 in a single ME, with both bounds checking and rate limiting 
enabled, the ME is able to consume nearly the same amount of peak bandwidth, assuming that 
enough credits are provided. As required, the memory protection scheme successfully pauses an 
ME whenever it attempts to access memory outside its allocated segment.   

To demonstrate that bandwidth can be accurately provisioned, we ran the test program on 
eight MEs on an IXP 2400.  The token refresh rate used was 3 us and the maximum number of 
tokens was varied.  Figure 9 shows the effect on effective bandwidth per microengine as a 
function of the maximum number of tokens.  The fact that the plot is fairly linear over a long 
range implies that we should be able to obtain very fine grained control on the amount of 
bandwidth allocated to each ME.  We note that at around 35K tokens, the aggregate SRAM 
bandwidth consumed approximately equals the total available bandwidth. The average effective 
bandwidth achieved assuming infinite tokens is shown in Table 1. Further tests show that 
changing the amount of tokens given to each ME results in a different effective bandwidth for 
each.   

 

Table 1. Average effective bandwidth in bytes/sec with effectively infinite tokens 
 No Macros Bounds 

checking 
Bandwidth 
limiting 

Both 

Effective 
Bandwidth 
(Gbps) 

0.819 0.819 0.817 0.817 

Effective bandwidth per ME

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 6000 11000 16000 21000 26000 31000 36000 41000

Max Tokens

Ef
fe

ct
iv

e 
B

an
dw

id
th

 
(G

bp
s)

 
Figure 9 Average effective bandwidth per ME (8 total)  as a function of 

token count. 
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6. VIRTUALIZATION SUMMARY & CONCLUSION  
In this paper, we have considered the problem of virtualizing network processor resources. In 

the context of providing support for network virtualization in Intel IXP-based routers, we have 
presented a model for virtualization that can be summarized with the following points. 

 Virtual routers are allocated an execution context on the XScale processor via either 
Xen or Linux vservers; 

 Virtual routers are allocated one or more MEs; 
 Each ME is allocated a percentage of the address space and bandwidth at each 

external resource (e.g., SRAM, DRAM, Scratch); 
 Third-party programmers use macros that do bounds checking and rate limiting; 
 The router administrator scans ME binary/assembly/source for compliance, verifying 

that there are no illicit “raw” accesses to external resources. 
The use of Xen or Linux vservers for XScale virtualization is straightforward since it is a 

traditional example of processor virtualization. While porting either system to the IXP may pose a 
challenge, the strategy is clear. 

In order to ensure that software running on a given ME only accesses its allocated memory 
region, our memory access macros perform dynamic bounds checking on each memory reference.  
The bounds are established when the program is loaded and are kept in reserved system registers.  

To enforce bandwidth provisioning, these macros also perform rate limiting. Our approach 
uses a credit-based scheme to limit each ME to a specified number of memory operations within a 
window of time. Credits are decremented with each operation and refereshed periodically by a 
system process running on the control processor. In our implementation, these credits are 
maintained in reserved system registers. Dynamically at each reference, the macro checks for 
refresh a signal and to see if enough credits remain to carry out the requested memory operation 
(the current version blocks the code until enough credits are available).  

Safe use of these macros requires an administrative policy that A) forbids memory accesses 
that do not use the provided macros and B) requires that programs leave reserved system registers 
unmodified. Such a policy can be enforced by scanning all provided software for compliance. 

Our initial experimental evaluation on the IXP 2400 network processor suggests that this 
approach is feasible and demonstrates the two key aspects of our system. First, bounds checking 
and rate limiting can both be performed with negligible overheads. Second, our rate limiting 
scheme can effectively provision memory bandwidth: the scheme can be used to support uneven 
allocations (nearly all bandwidth allocated to one ME) as well as balanced allocations (in which 
all available bandwidth is shared dynamically).  
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