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Priority Assignment for Real-Time Flows in
WirelessHART Sensor-Actuator Networks

Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen
Washington University in St. Louis

Abstract—Recent years have witnessed the adoption of wireless
sensor-actuator networks as a communication infrastructure for
process control applications. An important enabling technology
for industrial process control is WirelessHART, an open wireless
sensor-actuator network standard specifically developed for pro-
cess industries. A key challenge faced by WirelessHART networks
is to meet the stringent real-time communication requirements
imposed by feedback control systems in process industries.Fixed-
priority scheduling, a popular scheduling policy in real-time
networks, has recently been shown to be an effective real-
time transmission scheduling policy in WirelessHART networks.
Priority assignment has a major impact on the schedulability of
real-time flows in these networks. This paper investigates the open
problem of priority assignment for periodic real-time flows for
feedback control loops closed through a WirelessHART network.
We first propose an optimal priority assignment algorithm based
on branch and bound for any given worst case delay analysis. We
then propose an efficient heuristic search algorithm for priority
assignment. We also identify special cases where the heuristic
search is optimal. Simulations based on random networks andthe
real topology of a physical sensor network testbed showed that the
heuristic search algorithm achieved near optimal performance
in terms of schedulability, while significantly outperforming
traditional real-time priority assignment policies.

I. I NTRODUCTION

Wireless Sensor-Actuator Networks (WSANs) are an
emerging communication infrastructure for industrial process
control. A feedback control system in process industries (e.g.,
oil refineries) is implemented in a WSAN for process moni-
toring and control applications. To maintain the stabilityand
acceptable control performance, the networked control loops
impose stringent reliability and real-time requirements for
communication between sensors and actuators [16]. To meet
these requirements in harsh industrial environments, Wire-
lessHART has been developed as an open WSAN standard
with unique features such as centralized network manage-
ment, multi-channel TDMA, redundant routes, and channel
hopping [2], [7]. With the adoption of WirelessHART, recent
years have seen successful real-world deployment of WSANs
for process monitoring and control [7]. As they continue to
evolve in process industries, transmission scheduling issues are
becoming increasingly important for WirelessHART networks.

In this paper, we consider a WirelessHART network that
supports feedback control loops through periodic real-time
data flows from sensors to controllers and then to actuators
through the network. In particular, we focus on priority assign-
ment for real-time flows whose transmissions are scheduled
based on a fixed priority policy. Due to its simplicity and
efficiency, fixed priority scheduling is the most commonly

adopted real-time scheduling strategy in CPU scheduling and
traditional real-time networks (e.g., Control-Area Networks).

Recent study has shown that fixed priority scheduling is an
effective policy for real-time flows in WirelessHART networks
and developed worst case delay analysis that can be used
for efficient schedulability test [13]. Priority assignment has
a significant impact on the schedulability of real-time flows.
However, optimal priority assignment for WirelessHART net-
works is a challenging and open problem that has not been
addressed in the literature. An ideal priority assignment should
not only enable real-time flows to meet their deadlines, but
also work synergistically with real-time schedulability tests
to support effective network planning and efficient online
admission control and adaptation.

For a given schedulability test, a priority assignment al-
gorithm is optimal if it can find a priority ordering under
which a set of flows is deemed schedulable by the test
whenever there exists any such priority ordering. Since an
optimal priority assignment is NP-hard for all but a few special
cases of little practical interest, simple heuristics suchas
Deadline Monotonic and Rate Monotonic policies are adopted
in practice in real-time networks [12]. However, as shown in
our simulation results in this paper, the effectiveness of these
heuristics in real-time scheduling for WirelesHART networks
is far from the optimality.

This paper is the first to address the optimal priority assign-
ment problem for real-time flows in WirelessHART networks.
Specifically, our key contributions are four-fold: (1) We design
an algorithm based on branch and bound that is optimal for any
given schedulability test based on worst case delay analysis;
(2) We then propose an efficient heuristic search algorithm for
priority assignment; (3) We identify special cases where the
heuristic search is optimal. (4) We present simulation results
based on both random networks and the real topology of a
physical sensor network testbed. Our results showed that the
heuristic search algorithm achieved near-optimal performance
in terms of schedulability, while significantly outperforming
traditional real-time priority assignment policies.

In the rest of this paper, Section II describes the Wire-
lessHART network model. Section III formulates the priority
assignment problem. Section IV analyzes important properties
of existing schedulability tests that lead to key insights under-
lying the priority assignment approach. Sections V and VI
present the optimal and the heuristic algorithm, respectively.
Section VII presents the simulation results. Section VIII re-
views the related works. Section IX concludes the paper.



II. W IRELESSHART NETWORK MODEL

We consider a WirelessHART network consisting of field
devices, a gateway, and a centralized network manager. Afield
deviceis a sensor, an actuator or both, and is usually connected
to process or plant equipment. The gateway provides the host
system with access to the network devices. The network man-
ager is located at the gateway and has the complete information
of the network. It creates schedules, and distributes amongthe
devices. The unique features that make WirelessHART partic-
ularly suitable for industrial process control are as follows.

Limiting Network Size.Experiences in process industries
have shown the daunting challenges in deploying large-scale
WSANs. The limit on the network size for a WSAN makes the
centralized management practical and desirable, and enhances
the reliability and real-time performance. Large-scale networks
can be organized by using multiple gateways or as hierarchi-
cal networks that connect small WSANs through traditional
resource-rich networks such as Ethernet and 802.11 networks.

Time Division Multiple Access (TDMA).In contrast with
CSMA/CA protocols, TDMA protocols provide predictable
communication latencies, thereby making themselves an at-
tractive approach for real-time communication. In Wire-
lessHART networks, time is synchronized and slotted. The
length of a time slot allows exactly one transmission and its
associated acknowledgement between a device pair.

Route and Spectrum Diversity. Spatial diversity of routes al-
lows messages to be routed through multiple paths to mitigate
physical obstacles, broken links, and interference. Spectrum
diversity gives the network access to all 16 channels defined
in IEEE 802.15.4 physical layer and allows per time slot
channel hoppingto avoid jamming and mitigate interference
from coexisting wireless systems. Besides, any channel that
suffers from persistent external interference isblacklistedand
not used. The combination of spectrum and route diversity
allows a packet to be transmitted multiple times, over different
channels over different paths, thereby handling the challenges
of network dynamics in harsh and variable environments at the
cost of redundant transmissions and scheduling complexity.

Handling Internal Interference. Due to difficulty in detecting
interference between nodes and the variability of interference
patterns, WirelessHART allows only one transmission in each
channel in a time slot across the entire network, thereby
avoiding spatial reuse of channels [7]. Thus, there are at most
m concurrent transmissions across the network at any slot,
with m being the number of channels. This design decision
effectively avoids transmission failure due to interference
between concurrent transmissions, and improves the reliability
at the potential cost of reduced throughput. The potential loss
in throughput is also mitigated due to small size of network.

With the above features, WirelessHART forms a mesh
network modeled as a graphG = (V, E), where the node-set
V consists of the gateway and field devices, and the edge-setE
is the set of communication links between the nodes. A node
can send, receive, and route packets but cannot both send and
receive in the same time slot. In addition, two transmissions

that have the same intended receiver interfere each other. A
transmission involves exactly one pair of devices connected
by an edge. Therefore, two transmissions that happen along
edgesuv andcd, respectively, areconflictingif (u = c)∨(u =
d) ∨ (v = c) ∨ (v = d). Since conflicting transmissions
cannot be scheduled in the same slot, transmission conflicts
significantly contribute to communications delays.

III. PROBLEM DEFINITION

Real-time flows.We consider a WirelessHART network with
a set of end-to-end flows. Associated with every flow are a
sensor node called thesource, an actuator called thedestina-
tion of the flow, and one or more routes connecting its source
to destination through the gateway (where controllers are
located). Each flow periodically generates a packet at its source
which has to be delivered to its destination within a deadline.
A flow may need to deliver its packet through multiple routes.
If the delivery through a route fails or some link on a route is
broken, the packet can still be delivered through another route.
In a schedule, time slots must be reserved for transmissions
through each route associated with a flow for redundancy. For
schedulability test and priority assignment purposes, through
each of its associated routes a flow is treated as an individual
flow with the same deadline and period. Therefore, from now
onward the term ‘flow’ will refer to flow through a single
route. That is, an original flow withφ routes is consideredφ
flows each with a single route. Thus, we consider there aren
flows denoted by the setF . Each flowb ∈ F is characterized
by a periodTb, a deadlineDb ≤ Tb, a source, a destination,
and a route from its source to destination through the gateway.
For each flowb ∈ F , the number of transmissions required to
deliver a packet through its route is denoted byCb. Thus,Cb

is the number of time slots required by flowb ∈ F .

End-to-end delay. For a flow, if a packet generated at slot
r is delivered to its destination at slotd then itsend-to-end
delay for this packet is defined asd − r + 1. The worst case
end-to-end delay of flowb ∈ F is denoted byLb.

Fixed priority scheduling.In afixed priority scheduling policy,
each flow has a fixed priority. At any time slot, among all
ready transmissions that do not conflict with the transmissions
already scheduled in the same slot, the transmission of the
highest priority flow is scheduled on an available channel.

Schedulability. Transmissions are scheduled usingm chan-
nels. The set of periodic flowsF is calledschedulableunder
a scheduling algorithmA, if A is able to schedule all trans-
missions inm channels such that no deadline is missed, i.e.,
Lb ≤ Db, ∀b ∈ F .

Schedulability test.For A, a schedulability testS is sufficient
if any set of flows deemed schedulable byS is indeed
schedulable byA. S is necessaryif any set of flows deemed
unschedulable byS is indeed unschedulable byA. S is exact
if it is both sufficient and necessary. For a set of flows, an
end-to-end delay analysisprovides a sufficient schedulability
test by showing that, for every flow, an upper bound of its
worst case end-to-end delay is no greater than its deadline.
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Priority assignment. In priority assignment, our objective is
to assign a distinct priority to every flow. Given setF of n
flows, we have priority levels1 to n denoted by setP =
{1, 2, · · · , n}. Any priority assignmentor ordering is, thus, a
one-to-one functionf : P → F , wheref(i) = b if and only if
the priority of flowb ∈ F is i ∈ P . A priority level i is higher
than another priority levelj if and only if i < j, i.e., a lower
value represents a higher priority. Given a priority assignment,
hp(b) denotes the set of flows whose priorities are higher than
that of flow b.

Optimal priority assignment algorithm.For a schedulability
testS, a priority assignment is calledacceptableif under that
assignment all flows are guaranteed to meet their deadlines
according toS. For flow b ∈ F , let Rb denote its worst
case end-to-end delay according toS. A priority assignment
is acceptabledenoted byfopt : P → F if it satisfies S,
i.e., Rb ≤ Db, ∀b ∈ F . For a schedulability testS, a priority
assignment algorithm is calledoptimal if it can find an accept-
able priority assignment whenever there exists any acceptable
assignment. That is, if there exists any priority assignment
under whichS will determine the flows as schedulable, then
an optimal algorithmis able to find that priority assignment.

IV. END-TO-END DELAY ANALYSIS

In this section, we analyze some properties of the exist-
ing schedulability tests for real-time flows in WirelessHART
networks. These properties provide key insights for an opti-
mal priority assignment algorithm, and intuition for efficient
heuristics. We focus on worst case delay analysis, a common
approach for schedulability tests in CPU scheduling [6], [11]
and WirekessHART networks [13]. These tests are based on
efficient but pessimistic analysis of end-to-end delays, that pro-
vide a sufficient but not necessary condition for schedulability.

To find an optimal priority assignment policy for a schedu-
lability test, the idea is to start from the lowest priority level,
and to upper bound and lower bound the end-to-end delays of
the flows according to the test, thereby avoiding unnecessary
options for priority assignment at higher levels. To estimate
these bounds, we identify a class of schedulability tests, named
Class-1, in which the worst case end-to-end delay of a flow
depends on the worst case end-to-end delays of higher priority
flows. The other class of tests in which the worst case end-to-
end delay of a flow is independent of the worst case end-to-
end delays of higher priority flows is named asClass-2. Our
proposed algorithms work with both classes of schedulability
tests. While Class-1 tests are usually more precise than Class-
2, Class-2 tests provide the advantages of simplifying the
search for priority assignment. In the following, we analyze
this using one representative schedulability test of each class.

A. Class-1 Schedulability Test

An example of a Class-1 schedulability test for real-time
flows in WirelessHART networks was proposed in [13]. Given
the fixed priorities of the flows, a lower priority flow can
be delayed by the higher priority ones due to (a)channel
contention(when all channels are assigned to transmissions of

higher priority flows in a slot), and (b)transmission conflicts
(when a transmission of the flow and a transmission of a higher
priority flow conflict). ∆(b, a) denotes an upper bound of the
delay that flowb can experience from a flowa ∈ hp(b) due
to transmission conflicts.Ωb(x) denotes the total delay (in an
interval of x slots) caused by all higher priority flows onb
due to channel contention. According to this test, the worst
case end-to-end delayRb of flow b is the minimum value of
y ≥ x∗ that solves Equation 1, wherex∗ is the minimum value
of x ≥ Cb that solves Equation 2 using a fixed-point algorithm.
If x or y exceedsDb, thenb is decided to be “unschedulable”.

y = x∗ +
∑

a∈hp(b)

⌈

y

Ta

⌉

. ∆(b, a) (1)

x =

⌊

Ωb(x)

m

⌋

+ Cb (2)

∆(b, a) is calculated by finding the possible conflicting
transmissions ofa and b by comparing their routes. Forb,
∑

a∈hp(b)⌈
y

Ta

⌉∆(b, a) is an upper bound of its total delay (in
an interval ofy slots) due to transmission conflicts withhp(b).
Ωb(x) is calculated based on a mapping of the transmission
scheduling in a WirelessHART network to the multiprocessor
scheduling. Specifically,Ωb(x) is the delay ofb when the
flows are executed on multiprocessor, and is analyzed using the
response time analysis considering eachRa as the worst case
response time ofa ∈ hp(b). The authors used the state-of-the-
art response time analysis for multiprocessor scheduling [11]
as a representative method to calculateΩb(x). Since schedu-
lability test is not the focus of our work, we skip its details
and refer to [13]. We point out our observations on this test.

In this test, when sethp(b) is known for b, the term
∑

a∈hp(b)⌈
y

Ta

⌉∆(b, a) can be calculated. ButΩb(x) depends
on Ra of everya ∈ hp(b) and, hence, is different for different
priority ordering amonghp(b). Therefore,Ωb(x) cannot be
calculated if we know only sethp(b). Thus, the bounds ofRb

depend on the bounds ofΩb(x). Ωb(x) non-decreases with the
increase ofRa, and non-increases with the decrease ofRa of
a ∈ hp(b). Hence, a lower bound and an upper bound ofΩb(x)
can be derived when it is calculated with a lower bound and
upper bound, respectively, ofRa for every a ∈ hp(b). Note
that

∑

a∈hp(b)⌈
y

Ta
⌉∆(b, a) is a dominating term inRb due

to high degree of conflicts in the network specially near the
gateway (since all flows pass through the gateway). Therefore,
our calculated bounds forRb, for any b ∈ F , are tight even
if we set Ωb(x) to 0 to find a lower bound, or to maximum
channel contention delay to find an upper bound ofRb.

B. Class-2 Schedulability Test

Now we present a schedulability test of Class-2. An optimal
priority assignment policy for this test is comparatively easier
since the worst case end-to-end delay of a flow can be
derived whenever its higher priority flows are known. Such
an observation has been made previously in [9], [10] for
priority assignment in multiprocessor scheduling by exploiting
the analogy with that in uniprocessor scheduling [5].
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When Rb is calculated using the fixed-point algorithm in
Equation 2 for flowb, x∗ represents the worst case response
time of b when the flows are executed on multiprocessor.
Now, to determineRb using Equation 2,x∗ for flow b ∈ F
is calculated based on the polynomial-time response time
analysis for multiprocessor proposed in [6] as follows.

x∗ = Cb +









1

m

∑

a∈hp(b)

min(Wb(a), Db − Cb + 1)







 (3)

whereWb(a) = λb(a).Ca+min(Ca, Db+Da−Ca−λb(a).Ta);
andλb(a) = ⌊Db+Da−Ca

Ta
⌋.

Here x∗ for flow b is a function ofCb, Db, and ofCa, Ta,
and Da of every a ∈ hp(b), which remain unchnaged over
every priority ordering amonghp(b). Hence,Rb can be found
using Equations 1 and 3 when the sethp(b) is known. This
test, hence, represents Class-2 schedulability tests.

V. PRIORITY ASSIGNMENTUSING BRANCH AND BOUND

In this section, we exploit the observations made in Sec-
tion IV on the classification of schedulability tests and develop
an optimal priority assignment algorithm based on branch and
bound. Given a schedulability testS and setF of n flows,
if there exists any acceptable priority assignment, then the
optimal algorithm is able to find that assignment. If no accept-
able assignment exists, then it returns a priority assignment
that is likely to be good for schedulability of the flows. The
proposed algorithm is compatible to any Class-1 and Class-2
schedulability test (Section IV). We also analyze some special
cases where the algorithm runs in pseudo polynomial time.

The idea underlying branch and bound is to lower bound
and upper bound the worst case end-to-end delay according to
S of every flow in an acceptable priority assignment. Starting
from the lowest priority level, the algorithm explores different
options, in the form of a search tree, for assigning priorities
at higher levels. For a possible acceptable assignment in a
subtree, if, for every flow, an upper bound of its worst case
end-to-end delay according toS happens to be no greater
than its deadline, then the subtree is asufficient branchand
all other branches are discarded. Upper bounding the delays,
thus, provides asufficient conditionthat guarantees that an
acceptable assignment can be found in a branch. For a possible
acceptable assignment in a subtree, if, for every flow, a lower
bound of its worst case end-to-end delay according toS is no
greater than its deadline, then the subtree is designated asa
necessary branch. Thus, lower bounding the delays provides a
necessary condition. Any branch that dissatisfies this condition
is guaranteed not to lead to an acceptable assignment, and is
discarded as anunnecessary branch.

Having the above idea, the search starts from any initial
priority assignmentf : P → F . If an acceptable priority
assignment exists, then it can be found by reorderingf . Every
node in the tree performs a reordering of the priorities, thereby
representing a new priority assignment. Specifically, the search
starts reordering from the lowest priority leveln. When it
reaches priority levell ≥ 1, a node hasl−1 options to assign

priority l− 1. For every option, it generates a child node. The
branches in the subtree rooted at each child node represent
different reordering from level1 to l − 1. Consideringf as
the priority assignment at a node, we introduce the following
notations to establish the bounds in its subtree:

• R
opt
f(i): denotes the worst case end-to-end delay off(i)

according toS in an acceptable priority assignmentfopt.
• Rub

f(i): denotes an upper bound ofRopt
f(i).

• Rlb
f(i): denotes a lower bound ofRopt

f(i).
• fl,k: denotes the priority assignment from levell to k in

f , where1 ≤ l ≤ k ≤ n (Figure 1). Inf , a partial priority
assignmentfl,k is calledacceptableif fl,k = fopt

l,k , i.e.,
the assignment from priority levell to k in f is the same
as that in an acceptable priority assignment.

• R∞

f(i): denotes an upper bound of the end-to-end delay
of f(i) under infinite number of channels, i.e., when
f(i) experiences no channel contention and is delayed
only due to transmission conflicts with the higher priority
flows. Therefore, for flowf(i), R∞

f(i) is calculated using
Equation 1 withx∗ being replaced byCf(i).

A. Upper Bound of Worst Case End-to-End Delay

The upper bounds are calculated based on the observations
made in Section IV. Specifically, an upper bound of the worst
case end-to-end delay of a flow is determined by considering
the upper bounds of its higher priority flows.

In a priority assignmentf , let the assignmentfk+1,n from
level k+1 (≤ n) to n has been decided to be in an acceptable
assignment. To decide whether the assignmentfl,k from level
l (≤ k) to k is also in that acceptable assignment, the upper
boundRub

f(i) for everyf(i), l ≤ i ≤ k, is calculated as follows.

• The set{f(j)|1 ≤ j < l} is considered as the set of
higher priority flows off(l). Whenl = 2, Rub

f(1) for flow
f(1) is set toCf(1). When l > 2, Rub

f(j) of every flow
f(j), 1 ≤ j < l, is set to its deadlineDf(j).

• If l ≤ m, flow f(i), l ≤ i ≤ m, does not experience
any channel contention, and henceRub

f(i) = R∞

f(i). For
every other flowf(i), m < i ≤ k, Rub

f(i) is calculated
according to schedulability testS usingRub

f(j) as the worst
case end-to-end delay off(j) for everyj < i.

• If l > m, then for every flowf(i), l ≤ i ≤ k, Rub
f(i) is

calculated according toS usingRub
f(j) as the worst case

end-to-end delay off(j) for everyj < i.

The upper bound calculation is shown as Procedure
Sub(f, l, k). In this procedure, S(f(i)) returnsf(i)’s worst
case end-to-end delay according toS using Rub

f(j) as the
worst case end-to-end delay off(j) for every 1 ≤ j < i.
Sub(f, l, k) returns false if the upper bound is greater
than deadline for any flowf(i), l ≤ i ≤ k. Otherwise, it
returnstrue. Thus, if Sub(f, l, k) returnstrue, then it is a
guarantee that there exists a priority assignment among the
flows {f(j)|1 ≤ j < l} such that using that assignment (from
priority level 1 to l − 1), and the current assignmentfl,k (
from level l to k), the resulting assignment from level1 to k
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is the same as that in an acceptable assignment. Sub(f, l, k)
thus provides asufficient conditionto determine if reordering
f1,l−1 can guarantee an acceptable assignment. Any partial
assignmentfl,k is said tosatisfySub(f, l, k), if Sub(f, l, k)
returnstrue.

From our discussions in Section IV, in the above upper
bound calculation,Rub

f(i) for everyf(i), l ≤ i ≤ k, includes
its exact delay due to transmission conflicts (according toS).
This delay is a dominating term in the worst case end-to-end
delay of a flow due to high degree of conflicts in the network
specially near the gateway (since all the flows pass through
the gateway). As a result, our upper bound estimation becomes
precise, thereby making the sufficient condition strong.

bool Sub(f, l, k)
begin

if l = 2 then Rub
f(1) ← Cf(1);

else
for j = 1 to l− 1 do Rub

f(j) ← Df(j);
end
if l ≤ m then

l′ = min(m, k);
for i = l to l′ do

Rub
f(i) ← R∞

f(i); /* Exact value */

if Rub
f(i) > Df(i) then return false;

end
l← l′ + 1;

end
for i = l to k do

Rub
f(i) ← S(f(i)); /* Using test S */

if Rub
f(i) > Df(i) then return false;

end
return true;

end
Procedure Sub(f, l, k): Upper Bound Calculation

Theorem 1:Let f : P → F be any priority assignment. If
there exists an acceptable priority assignmentfopt

1,l−1, 2 ≤ l ≤
n+1, among flows{f(i)|1 ≤ i < l}, then, forfl,k, l ≤ k ≤ n,
Rub

f(i) calculated in Procedure Sub(f, l, k) is an upper bound

of Ropt
f(i) for everyf(i), l ≤ i ≤ k.
Proof: First, let S be a Class-2 schedulability test (Sec-

tion IV). For each flowf(i), l ≤ i ≤ k, we know its higher
priority flows, andRub

f(i) does not depend on anyRub
f(j) where

j < i. Hence,Rub
f(i) = Ropt

f(i).
Now, let S be a Class-1 schedulability test (Section IV).

For any i, l ≤ i ≤ k, such thati ≤ m, flow f(i) does not
experience any channel contention. Hence,Rub

f(i) = R∞

f(i) =

Ropt
f(i) holds. For anyi, l ≤ i ≤ k, such thati > m, Procedure

Sub(f, l, k) computesRub
f(i) for flow f(i) according toS by

considering the upper boundsRub
f(j) for every higher priority

flow f(j) wherej < i. Hence, based on our observations in
Section IV,Rub

f(i) is an upper bound ofRopt
f(i).

Theorem 2:Let there exists an acceptable priority assign-
ment fopt : P → F . Let f : P → F be any priority

n1    2 l-1   l k k+1.  .  . .  .  ..  .  .

f
1,l-1 f

l,k
f
k+1,n

Fig. 1. Priority assignmentf at a node

assignment such thatfk+1,n satisfies Sub(f, k + 1, n). Then
fk+1,n = fopt

k+1,n, i.e., priority assignment from levelk + 1 to
level n in f is the same as that in an acceptable assignment.
In other words, there is an ordering of priorities from level1
to k in f that will give an acceptable priority assignment.

Proof: Assume to the contrary that there exists no priority
ordering among the flows{f(j)|1 ≤ j ≤ k} for which fk+1,n

is a part of an acceptable priority assignment. Therefore, there
must be at least one flowf(j), 1 ≤ j ≤ k} that cannot be
assigned any priority from level1 to k. This implies that we
must be able to assign some priorityj′, wherek < j′ ≤ n,
to this particular flowf(j) since there exists an acceptable
priority assignment. But its worst case end-to-end delay ata
lower priority levelj′ must be no less than that at the higher
priority level j. That is, if f(j) is schedulable at the lower
priority level j′, it must be schedulable at the higher priority
level j which contradicts our assumption.

Lemma 3:Let there exists an acceptable priority assign-
ment fopt : P → F . Let f : P → F be any priority
assignment such thatfk+1,n = f

opt
k+1,n, 0 ≤ k < n. Now

if fl,k, 1 ≤ l ≤ k satisfies Sub(f, l, k), thenfl,n = fopt
l,n.

Proof: Since fl,k, 1 ≤ l ≤ k satisfies Sub(f, l, k), by
Theorem 1,Rub

f(i) ≤ Df(i) for every flowf(i) wherel ≤ i ≤

k. Again, this worst case end-to-end delay off(i), l ≤ i ≤ k,
does not depend on priority assignment infk+1,n since each
flow f(i′) with i′ > k is a lower priority flow. Thus, for each
f(i) with l ≤ i ≤ n the upper bound of worst case end-to-end
delay is no greater than its deadline. Therefore, there exists
an ordering of priorities among the flows{f(j)|1 ≤ j < l}
for which every flowf(i) with l ≤ i ≤ n is schedulable at
priority level i. Hence, the priority assignmentfl,n is a part
of an acceptable priority assignment.

B. Lower Bound of Worst Case End-to-End Delay

Similar to upper bound calculation, a lower bound of the
worst case end-to-end delay of a flow is determined by
considering the lower bounds of its higher priority flows.

In a priority assignmentf , let the assignmentfk+1,n from
level k +1(≤ n) to n has been decided to be in an acceptable
assignment. To decide whether the assignmentfl,k from level
l(≤ k) to k is also in that acceptable assignment, the lower
boundRlb

f(i) for everyf(i), l ≤ i ≤ k, is calculated as follows.

• The set{f(j)|1 ≤ j < l} is the set of higher priority
flows of f(l). Rlb

f(j) of every flow f(j), 1 ≤ j < l, is
set to its number of transmissionsCf(j).

• If l ≤ m, then flowf(i), l ≤ i ≤ m, does not experience
any channel contention and, hence,Rlb

f(i) = R∞

f(i). For
every other flowf(i), m < i ≤ k, Rlb

f(i) is calculated
according to schedulability testS using theRlb

f(j) as the
worst case end-to-end delay off(j) for everyj < i.
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• If l > m, then for every flowf(i), l ≤ i ≤ k, Rlb
f(i) is

calculated according toS using theRlb
f(j) as the worst

case end-to-end delay off(j) for everyj < i.

The procedure for calculating the lower bounds is shown
as Procedure Slb(f, l, k). In this procedure, S(f(i)) returns
f(i)’s worst case end-to-end delay according toS usingRlb

f(j)

as the worst case end-to-end delay off(j) for every1 ≤ j < i.
Slb(f, l, k) returnsfalse if the lower bound is greater than
deadline for any flowf(i), l ≤ i ≤ k. Otherwise, it returns
true. Thus, if Slb(f, l, k) returns false, it is a guarantee
that no ordering of flows{f(j)|1 ≤ j < l} can be in an
acceptable assignment. Slb(f, l, k) thus provides anecessary
condition to determine if reorderingf1,l−1 can guarantee an
acceptable assignment. Any partial assignmentfl,k is said to
satisfySlb(f, l, k), if Slb(f, l, k) returnstrue.

From our discussions in Section IV,Rlb
f(i) for every

f(i), l ≤ i ≤ k, includes its exact delay due to transmission
conflicts (according toS). This delay is a dominating term
in the worst case end-to-end delay of a flow due to high
degree of conflicts in the network specially near the gateway
(since all the flows pass through the gateway). As a result, like
the upper bounds, our lower bound estimation also becomes
precise, thereby making the necessary condition strong.

bool Slb(f, l, k)
begin

for i = 1 to l − 1 do Rlb
f(i) ← Cf(i);

if l ≤ m then
l′ = min(m, k);
for i = l to l′ do

Rlb
f(i) ← R∞

f(i); /* Exact value */

if Rlb
f(i) > Df(i) then return false;

end
l← l′ + 1;

end
for i = l to k do

Rlb
f(i) ← S(f(i)); /* Using test S */

if Rlb
f(i) > Df(i) then return false;

end
return true;

end
Procedure Slb(f, l, k): Lower Bound Calculation

Lemma 4:Let f : P → F be any priority assignment. Let
fopt be an acceptable priority assignment such that there exists
an ordering among flows{f(j)|1 ≤ j < l} which is also in
fopt. Then, forfl,k, l ≤ k ≤ n, Rlb

f(i) calculated inSlb(f, l, k)

is a lower bound ofRopt
f(i) for everyf(i), l ≤ i ≤ k.

Proof: Similar to Theorem 1,Rlb
f(i) = Ropt

f(i) for every
f(i), l ≤ i ≤ k, whenS is a Class-2 schedulability test.

Now, let S be a Class-1 schedulability test (Section IV).
For any i, l ≤ i ≤ k, such thati ≤ m, flow f(i) does not
experience any channel contention. Hence,Rlb

f(i) = R∞

f(i) =

Ropt
f(i) holds. For anyi, l ≤ i ≤ k, such thati > m, Procedure

Slb(f, l, k) computesRlb
f(i) for flow f(i) according toS by

considering the lower boundsRlb
f(j) for every higher priority

flow f(j) wherej < i. Hence, based on our observations in
Section IV,Rlb

f(i) is a lower bound ofRopt
f(i).

Corollary 1: For any given priority orderingf : P → F ,
if fl,k, l ≤ k ≤ n, does not satisfy Slb(f, l, k), then
no acceptable priority assignment can be found fromf by
reordering the flows from level1 to l − 1.

C. Branch and Bound

Now we structure the search for an acceptable priority
assignment into a branch and bound framework. Starting from
an initial assignment, the algorithm performs a reorderingof
the priorities at every node of its search tree, thereby creating
a new assignment. Specifically, the search starts from the
lowest priority level and investigates if any flow that has
higher priority in current assignment can be assigned this
lower priority and generates a child node representing thisnew
assignment. The branches are discarded or explored based on
the lower bounds and upper bounds calculated for a branch.

The search tree has as its root node a Deadline Monotonic
(DM) priority ordering. It has a maximum ofn+1 levels with
the root being at leveln + 1. If the DM priority assignment
is acceptable, then the algorithm terminates. Otherwise, the
search branches down by creating new nodes. Every node
represents a complete priority assignment a part of which is
guaranteed to be in an acceptable assignment. Therefore, be-
sides the priority assignmentf , every node has two attributesl
andk, where1 ≤ l ≤ n, l ≤ k ≤ n+1 (Figure 1). In priority
assignmentf at a node, its partfk+1,n is guaranteedto be
in an acceptable assignment;fl,k is not guaranteed but may
be in an acceptable assignment; andf1,l−1 is yet undecided.
Thus,k is the level on the path from root to this node such
that every node on this path from leveln to k+1 has satisfied
the sufficient condition. The steps of the search are:

1) The root starts withl = n + 1 andk = n since no part
of its assignment is yet final.

2) For the undecided partf1,l−1 of priority assignmentf
at a node at tree-levell, the node creates a child node at
tree levell−1 for everyi, 1 ≤ i ≤ l−1, by exchanging
the priorities betweenf(i) andf(l− 1).

3) If a child node created in Step 2 satisfies the sufficient
condition, then itsk becomes1 less than itsl meaning
that fk+1,n is now guaranteed to be in an acceptable
assignment. Hence, all other branches are discarded.
This child is expanded further by going to Step 2.

4) If a child node created in Step 2 cannot satisfy the nec-
essary condition, it is closed. Otherwise, it is expanded
further by going to Step 2.

5) The search continues creating new nodes until it reaches
a node at tree level1 wherek becomes0 which indicates
that an acceptable assignment has been found or until
there exists no unexpanded node for which neither the
necessary nor the sufficient condition is satisfied. In the
latter case, no acceptable assignment is found and the
priority assignment of the current node is returned.
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bool BB(Nodend)
begin

if nd.k = 0 then
f∗ ← nd.f ; return true; /* Acceptable */

end
for i = nd.l − 1 down to1 do

Create a Child Nodech;
ch.f ← nd.f ; ch.l← nd.l − 1; ch.k← nd.k;
SwapPriority(ch.f(i), ch.f(ch.l));
if Sub(ch.f, ch.l, ch.k) = true then

ch.k← ch.l − 1; /* Sufficient */
if BB(ch) = true then /* branch */

return true; /* found */
break; /* Cut other branches */

end
if Slb(ch.f, ch.l, ch.k) = false then

continue; /* Close this child */
else if BB(ch) = true then

return true; /* Necessary branch */
end

end
f∗ ← nd.f ; /* No acceptable */
return false; /* assignment exists */

end
Procedure BB(Nodend): Branch and Bound

input : SetF of n flows, and schedulability testS
output: f∗ : P → F , whereP = {1, 2, · · · , n}
f ←Deadline Monotonic priority assignment;
if S(f, 1, n) = true then /* DM satisfies S */

f∗ ← f ; return “acceptable assignment found”;
end
Create a Noderoot with attributesf, l, k;
root.f ← f ; root.l ← n + 1; root.k ← n;
if BB(root) = true then

return “acceptable assignment found”;
else

return “no acceptable assignment exists”;

Algorithm: B&B Priority Assignment

The pseudo code is shown as B&B Priority Assignment
Algorithm. If DM priority assignmentf is acceptable, then
Procedure S(f, 1, n) returnstrue. Otherwise, the root withf ,
l = n+1, andk = n expands by calling procedure BB(root).
The attributesl, k, and the priority assignmentf at any node
nd in the search tree is denoted bynd.l, nd.k, and nd.f ,
respectively. In BB(Nodend), if nd.k = 0 for current nodend,
then the search terminates by returningnd.f as an acceptable
assignmentf∗. Otherwise, for every flownd.f(i) starting from
i = l−1 to 1, it generates a child nodech with ch.k = nd.k at
level ch.l = nd.l − 1, and SwapPriority(ch.f(i), ch.f(ch.l))
exchanges the priorities betweench.f(i) and ch.f(ch.l). If
Sub(ch.f, ch.l, ch.k) returns true, then ch.k is updated to
ch.l − 1, and all other branches are discarded, and only this

child is expanded as a sufficient branch by calling BB(ch).
If Slb(ch.f, ch.l, ch.k) returnsfalse, thench is closed. Other-
wise, it is expanded as a necessary branch. If the tree cannot
expand any more andk > 0 at every node, then no acceptable
assignment exists, andf of current node is returned asf∗.

Theorem 5:For a given setF of n flows and a schedula-
bility test S, there exists an acceptable priority assignment of
F if and only if the priority assignmentf∗ returned by the
B&B algorithm is acceptable.

Proof: Let there exists an acceptable priority assignment
of F . According to Theorem 2 and Lemma 3, if the search
stops withk = 0 at a node, then the priority assignment of
that node must be acceptable. Suppose to the contrary the
search has stopped at a nodend with k > 0. Let the priority
assignment atnd bef . Since an acceptable priority assignment
exists, by Theorem 2, there must exist a priority orderingf ′

1,k

among flows{f(i)|1 ≤ i ≤ k} in f such thatf ′

1,k and the
current assignment inf from level k + 1 to n will give an
acceptable assignment. Hence, at least one necessary branch
must reach level1 from nd, and at least one such branch
that reaches a nodend′ at level 1 must correspond tof ′

1,k.
Nodend′ must satisfy the sufficient condition and itsnd.k′ is
updated to1− 1 = 0 which contradicts our assumption. Now,
let f∗ returned by the algorithm is considered acceptable. This
implies that the search has stopped withk = 0. By Theorem 2
and Lemma 3,f∗ must satisfyS.

D. Analysis

Now we analyze the B&B Algorithm for some special cases
where it runs in pseudo polynomial time.

Case 1. According to Section IV, whenS is a Class-2
schedulability test, both the lower bound and the upper bound
calculated for a flow are its exact worst case end-to-end delay
according toS. That is, both the necessary condition and
the sufficient condition become exact. As a result, the search
tree consists of just one path. If there exists an acceptable
assignment, then the path reaches level1. Otherwise, it stops
at some level where no flow can be assigned that priority. In
either case, the search always hasl = k and, at every levell
(≤ n+1), it tests at mostl−1 flows. Thus the algorithm runs
in O(n2t) time, wheret is the time to calculate the worst case
end-to-end delay of a flow usingS and is pseudo polynomial.

Case 2.Based on our observations in Section IV, whenm ≥ n,
there is no channel contention and, hence,R∞

f(i) is the worst
case end-to-end delay for every flowf(i). Hence, similar
to Case 1, both the sufficient condition and the necessary
condition are exact, and the algorithm runs inO(n2t) time.
When n > m, the same thing happens when the value ofk
becomes no greater thanm during the search.

Case 3.If the DM priority assignment is acceptable, then the
search stops immediately and returns that ordering. Assigning
DM priorities takesO(n log n) time, and to verify if it is
acceptable byS, we needO(nt) time. Hence, the algorithm
runs inO(n log n + nt) time.
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VI. PRIORITY ASSIGNMENTUSING HEURISTIC SEARCH

While the proposed B&B algorithm is optimal and runs effi-
ciently in most cases (as shown in simulation in Section VII),
a faster execution time cannot be guaranteed theoreticallyfor
all the time. Therefore, in this section, we propose an efficient
near-optimal heuristic search. It is also based on the similar
strategy but is forced to discard many branches by expanding
only the branches deemed good. Hence, it runs much faster at
the cost of loosing the optimal behavior in some cases.

The B&B algorithm can take longer time mostly when it
is hard to find a sufficient branch. The key idea behind the
heuristic search (HS), therefore, is to loose this condition for
faster execution. To determine whether the subtree rooted at
a nodech is sufficient, the B&B algorithm calls Procedure
Sub(ch.f, ch.l, ch.k). The procedure determines the branch as
sufficient only if the upper bound of the worst case end-to-
end delay of every flowch.f(i), l ≤ i ≤ k, is no greater than
its deadline. Since this is an overestimate, the HS algorithm
instead checks only for current levelch.l. That is, only if
the upper bound of the worst case end-to-end delay of flow
ch.f(ch.l) is no greater than its deadline, it discards all other
branches and expands only this branch. Note that such a branch
is still good (but not guaranteed to be the best as the new
condition is not sufficient) since every node from leveln to
ch.l on this branch has either satisfied this new condition or
the necessary condition which we have previously argued to be
a strong condition because of precise lower bound estimation.

The HS algorithm considers every level fromch.l to ch.k
in Procedure Slb(ch.f, ch.l, ch.k) as the necessary condition.
Since thenew conditionSub(ch.f, ch.l, ch.l) = true does not
mean thatfl,n is acceptable, the search updatesk as long as
the new condition is satisfied on a root to leaf path, and stops
updating it after the first time the new condition is violatedon
that path. That is,ch.k is updated only ifch.k ≥ ch.l−1. The
HS algorithm is, thus, pseudo coded by making two changes
in Procedure BB(Nodend) of the B&B algorithm:

1) Replace the conditionSub(ch.f, ch.l, ch.k) = true with
Sub(ch.f, ch.l, ch.l) = true.

2) Before the statementch.k ← ch.l − 1, add the check
if(ch.k ≥ ch.l − 1).

By Theorem 2, the partial priority assignmentfk+1,n of f at
a node of the search tree in the HS algorithm is still guaranteed
to be a part of an acceptable assignment (if there exists one
at all). However, when the algorithm terminates at a nodend,
some node on a level fromnd.k to nd.l (whennd.k 6= nd.l)
on the path from the root tond may have violated the sufficient
condition which the HS algorithm is not aware of. In that case,
the algorithm is not optimal. However, our simulation studies
have shown that such cases hardly happen in practice.

Analysis. In Case 1 and Case 2 (Subsection V-D), the optimal
B&B algorithm always maintainsl = k. Hence, the new
condition used in the HS algorithm becomes a sufficient
condition. Case 1 and Case 2, thus, hold for the HS algorithm.
That is, if m ≥ n or S is a Class-2 schedulability test,
then it is optimal and runs inO(n2t) time, wheret is the

Fig. 2. Testbed topology (at transmission power of 0 dBm) in Bryan Hall
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Fig. 3. Performance under varying deadlines

time to calculate the worst case end-to-end delay of a flow
using S. Besides, Case 3 always holds for it. It trivially
dominates DM in that whenever the DM priority assignment is
acceptable the HS algorithm also determines that assignment
as acceptable and runs inO(n log n + nt) time. In other
cases for Class-1 tests, although the execution time of the HS
algorithm is theoretically exponential, it can be guaranteed
to run faster in practice. A long execution time can happen
if the new condition is hardly satisfied or the necessary
condition cannot discard enough branches. Note that the new
condition is hardly satisfied when the flows have very tight
deadlines. However, in this case, the necessary condition will
discard many branches. Again, the necessary condition may
not discard enough branches if the deadlines are not tight. In
this case, the new condition is easily satisfied to discard all
other branches, thereby making the search faster.
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Fig. 4. Performance under varying rates
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VII. PERFORMANCEEVALUATION

We evaluate our priority assignment algorithms through
simulations based on both random topologies and the real
topology of a physical testbed. We compare the heuristic
search (HS) with the B&B algorithm (B&B) and the follow-
ing priority assignment policies commonly used in real-time
systems: (a)Deadline Monotonic (DM)assigns priorities to
flows according to their relative deadlines; (b)Proportional
Deadline monotonic (PD)assigns priorities to flows based on
relative subdeadlinedefined for a flow as its relative deadline
divided by the total number of transmissions along its route.

Metrics.We evaluate the algorithms in terms of the following
metrics. (a) Acceptance ratio: fraction of the test cases
deemed schedulable according to the schedulability test used.
(b) Execution time: average execution time (with the 95%
confidence interval) needed to generate a priority assignment.

Simulation Setup.A fraction (θ) of nodes is considered as
sources and destinations. The node with the highest number
of neighbors is designated as the gateway. Thereliability of a
link is represented by thepacket reception ratio (PRR)along it.
The most reliable route connecting a source to a destination
is selected as the first route. For additional routes between
the same pair of source and destination for redundancy, we
exclude the links used by existing routes between the pair
and select the next most reliable route. PeriodTb of every
flow b is generated randomly in a given range denoted by
T∼ = 2i∼j slots,i ≤ j. A parameter calledrate factor (β) is
used to tune the rate (i.e.1/Tb) of every flow b as follows:
new rate= β* rate. The relative deadlineDb of every flow
b is randomly generated in a range betweenCb and α ∗ Tb

slots, for0 < α ≤ 1. The algorithms have been implemented
in C and tested on a Macbook Pro laptop with 2.4 GHz Intel
Core 2 Duo processor. The notations used in this section are
summarized in Table I.

N : Number of nodes in the network
m : Number of channels
ρ : Edge-density of the network
θ : Fraction of total nodes that are source or destination
γ : Number of routes between every source and destination

T∼ : Period range
α : Deadline parameter (e.g.,Cb ≤ Db ≤ α ∗ Tb, for flow b)
β : Rate factor (i.e., new rate =β*old rate)

TABLE I
NOTATIONS

A. Simulations with Testbed Topologies

We evaluate our algorithms on the topology of a physical
indoor testbed in Bryan Hall of Washington University [1].
The testbed consists of 48 TelosB motes each equipped with
a Chipcon CC2420 radio compliant with the IEEE 802.15.4
standard (WirelessHART is also based on IEEE 802.15.4).
Every node is selected in a round-robin fashion to broadcast50
packets at transmission power of 0 dBm. The neighbors record
the sequence numbers of the packets they receive. This cycleis
repeated for 5 rounds. Then every link with a higher than 80%

PRR is consideredreliable and drawn in Figure 2 (embedded
on the floor plan of Bryan Hall). Figure 2, thus, represents a
topology of the testbed. Using 12 channels, we compare HS,
B&B, DM, and PD considering the Class-1 schedulability test
presented in Section IV on this topology.

Varying deadlines. We generate flows in the network by
randomly selecting the sources and destinations considering
θ = 80% (i.e., 40% of the total nodes are sources while
another 40% are destinations). The periods of the flows are
randomly generated in range26∼9 time slots. We generate
100 test cases and plot the acceptance ratios in Figure 3 by
varying the deadlines of the flows (by changingα). For γ = 1
(Figure 3(a)), whenα = 0.4, there are acceptable assignments
in 55% test cases but PD is able to find an acceptable
assignment only in 18% cases. Thus, the difference between
the acceptance ratios of B&B and PD is 0.37 whenα = 0.4.
For anyα ≥ 0.4, the difference remains at least 0.14. For DM,
this difference is 0.10 to 0.15. Whenγ = 2 (Figure 3(b)), the
differences are 0.23 to 0.45 for PD, and 0.17 to 0.31 for DM.
HS performs like an optimal algorithm in this setup since it
selects good branches and uses a strong necessary conditionto
discard branches in its search tree (as explained in SectionVI).
While theoretically it is not guaranteed to be optimal always,
the cases where it is not optimal may rarely happen in practice
specially when the network size is small.

Varying rates.Now we tune the rate of every flow by changing
β. For example, settingβ = 0.50 doubles the period of
every flow. Since PD performs worst, we omit any further
comparison with PD. The acceptance ratios are shown in
Figure 4. Since we use a sufficient schedulability test, there
are cases when a priority assignment is not acceptable by
the test but the flows may meet their deadlines if they are
scheduled using that priority assignment. Therefore, every
priority assignment generated by an algorithm is tested in
simulation by scheduling all flows within their hyper-period. In
the figure, each curve “sim” shows the fractions of test cases
that have no deadline misses in simulations. Whenγ = 1
(Figure 4(a)), the difference between the acceptance ratios
of B&B and DM is 0.10 to 0.48 when1.0 ≤ β ≤ 4.0.
Their difference in simulation remains between 0.07 and 0.16.
When γ = 2 (Figure 4(b)), their difference is 0.07 to 0.31
in acceptance ratio, and 0.03 to 0.13 in simulation when
0.5 ≤ β ≤ 2.0. In contrast, in both cases, HS performs like
B&B both in terms of acceptance ratio and in simulation.

Varying sources and destinations.Now we varyθ resulting
in different numbers of flows in the network. For everyθ,
we generate 100 test cases and show the performances in
Figure 5. Whenγ = 1 (Figure 5(a)), the difference between
the acceptance ratios of B&B and DM is always 0.02 to 0.11.
Their difference in simulation is 0.02 to 0.05 whenθ ≥ 60%.
When γ = 2 (Figure 5(b)), their difference is 0.11 to 0.23
in acceptance ratio, and 0.02 to 0.16 in simulation. Here, HS
performs like B&B whenγ = 1. Whenγ = 2, its acceptance
ratio is 0.01 to 0.02 less than that of B&B, ifθ ≥ 80%.
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(a) Acceptance ratio whenγ = 1
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(b) Acceptance ratio whenγ = 2

50 100 150 200
0

10

20

30

40

50

Number of nodes (N)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

d)

 

 

B&B−Test 1(γ=2)
B&B−Test 1(γ=1)
HS−Test 1(γ=2)
HS−Test 1(γ=1)
B&B−Test 2(γ=2)
B&B−Test 2(γ=1)

Setup:
α=1.0   ρ=40% 
m=12  θ=80%

T~=26~11

(c) Execution time
Fig. 6. Performance under varying network sizes

B. Simulations with Random Topologies

We test the scalability of our algorithms on random topolo-
gies of different number of nodes (N ). For every N , we
generate 100 random networks, each with an edge-density (ρ)
of 40%, i.e., withN(N−1)ρ/200 edges. PRR of each edge is
randomly assigned between0.80 and1.0. In this setup, periods
are in range26∼11 slots to accommodate large networks. Here,
we consider both the Class-1 schedulability test (Test 1) and
the Class-2 schedulability test (Test 2) presented in Section IV.
Starting withN = 30, we increaseN as long as HS can find
acceptable assignments and plot the performances in Figure6.

For γ = 1 (Figure 6(a)), HS is able to find an acceptable
assignment in every case whenN ≤ 110. When N > 110,
there is a difference from 0.01 to 0.02 between B&B and HS in
both acceptance ratio and simulation. Forγ = 2 (Figure 6(b)),
the difference in both acceptance ratio and simulation is 0.01 to
.02 whenN > 50. The figures also indicate that the acceptance
ratio with Test 2 is much lower than that with Test 1. For Test
2 in this set up, there exists an acceptable assignment when
N ≤ 150 and γ = 1 (Figure 6(a)), and whenN ≤ 90 and
γ = 2 (Figure 6(b)). This is because Test 2 is a less effective
schedulability test compared to Test 1. However, both B&B
and HS are optimal for Test 2 (and we plot it only for B&B).

We abort B&B if it cannot complete any test case in
10 minutes. Using Test 1, we have been able to record its
performance whenN ≤ 150 for γ = 1, and N ≤ 90 for
γ = 2. With γ = 1, its average execution time remains
within 5s whenN ≤ 100, and increases sharply to 36s for
N = 150 (Figure 6(c)). In contrast, HS takes 14s on average
when N = 230 and γ = 1. When γ = 2, its average
execution time is 15s whenN = 150. If N > 150, HS
cannot find an acceptable priority assignment for any test case.
Using Test 2, the execution time of B&B remains less than
5s (as long as there exists an assignment acceptable by Test
2). These results indicate that our algorithms can handle most
current WirelessHART networks of recommended sizes [2]. In
particular, HS is an effective priority assignment algorithm as
it is near-optimal and scales better than B&B.

VIII. R ELATED WORKS

For transmission scheduling in wireless sensor networks,
schedulability analysis has been addressed in previous
works [3], [8] considering the fixed priorities as given. For
WirelessHART networks, scheduling for convergecast in lin-
ear [18] and tree [15], [17] topologies, and scheduling for real-

time flows in arbitrary topologies [14] have been addressed
in recent works. None of these works addresses the priority
assignment for real-time flows. The schedulability analysis
proposed in [13] assumes that the priority assignment policy is
given. In contrast, we propose an optimal algorithm and a near-
optimal heuristic for priority assignment for real-time flows for
feedback control applications. Alur et al. [4] have proposed
a mathematical framework to model and analyze schedules
using automata for WirelessHART networks. But their formal
method approach can be computationally expensive making it
suitable foroffline design. In contrast, our heuristic search is
fast enough foronlineadmission control and adaptation, which
is needed to handle both dynamic workloads and topology
changes common in wireless networks.

IX. CONCLUSION

This paper is the first to address the priority assignment for
real-time flows in WirelessHART networks for process control.
We have proposed an optimal algorithm based on branch
and bound and an efficient heuristic for priority assignment.
Simulations on random networks and a sensor network testbed
topology showed that the heuristic achieved near-optimal
performance in terms of schedulability, while significantly out-
performing traditional real-time priority assignment policies.
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