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ABSTRACT 
The continuing ossification of the Internet is slowing the pace of 
network innovation.  Network diversification presents one 
solution to this problem, by virtualizing the network at multiple 
layers.  Diversified networks consist of a shared physical 
substrate, virtual routers (metarouters), and virtual links 
(metalinks).  Virtualizing routers enables smooth and incremental 
upgrades to new network services. Our current priority for a 
diversified router prototype is to enable reserved slices of the 
network for researchers to perform repeatable, high-speed 
network experiments. General-purpose processors have well-
established techniques for virtualization, but do not scale 
efficiently to multi-gigabit speeds. To achieve these speeds, we 
employ network processors (NPs), typically consisting of multi-
core, multi-threaded processors with asymmetric, heterogeneous 
memories.  The complexity and lack of hardware thread isolation 
in NP’s, combined with a lack of simple programming models, 
creates numerous challenges for effective sharing between 
metarouters.  In this paper, we detail strategies for enabling NP 
virtualization at the link, memory, and processor levels, to better 
enable a research infrastructure for network innovation.   

Categories and Subject Descriptors 
C.2.6 [Computer Systems Organization]: Internetworking – 
routers, D.3.4 [Programming Languages]: Processors - run-time 
environments C.1.3 [Processor Architectures]: Other 
Architecture Styles – heterogeneous (hybrid) systems 

General Terms 
Performance, Design, Experimentation. 

Keywords 
Multi-core processor, diversified network, metarouter, runtime 
system, programming model, network processor. 

1. INTRODUCTION 
An ideal testbed for network architecture research would be freely 
accessible, provide realistic user traffic, process packets at high 
speeds, and enable deployment of networks not based on the 
Internet Protocol (IP).  The leading testbed for network research is 
currently PlanetLab, a series of PC-based routers connected over 
the Internet [3].  Its use of general-purpose processors limits 

network speeds and its ability to provide hard resource guarantees 
for repeatable experiments, but its distributed-service model is 
flexible and useful for network research.  Moreover, PlanetLab is 
built on IP, making it difficult or impossible to investigate non-IP 
networks.  Diversified networking is our vision for a network 
research testbed, as shown in Figure 1, and described in more 
detail in [1] and [2].  Diversified networks define a new substrate 
layer between the datalink and transport layers to enable 
flexibility both above and below.  Metarouters (MRs) are 
software-based virtual routers which communicate through 
metalinks, or virtual links.  Metarouters and metalinks are hosted 
on a shared physical substrate, which includes physical routers 
and physical links; the combination of these elements forms a 
metanetwork. The diversified router represents one candidate 
backbone routing node for the upcoming GENI project, a planned 
large-scale National Science Foundation network research 
platform [1]. In this paper, we discuss the design of a diversified 
router, starting with relevant high-level design goals:  

• Isolation.  Virtualization should be provided, where each 
metarouter has an exclusive, protected view of hardware 
resources such as link, processing, and memory bandwidth.  
The system must provide real-time guarantees to provisioned 
metarouters and fairly share excess system capacity. 

• Speed. The router should handle 10 Gb/s links, over 
minimum- and average-size packets, with average delay of 
less than 1 ms.  

• Scalability.  The router should support around 100 
metarouters, through both additional processors and a runtime 
system that enables single-processor sharing. 

• Generality.  Metarouters with a range of processing, memory, 
and synchronization requirements should be supported.   

• Openness.  To be an effective research platform, all system 
details must be open to experimenters, and most functionality 
must be modifiable.  This requirement prevents the use of 
commercially available routers.  

Our goal to deliver an operational system motivates the choice of 
Network Processors (NPs), the only commercially available 
option to support flexible processing at 10Gb/s rates.  General-

 

  
 

Figure 1.  Diversified Network 



purpose processors (GPs), while slower, enable virtually 
unlimited code complexity and can run a standard PlanetLab OS.  
We expect most metarouters to split their processing work in a 
way that plays to the strengths of each processor type, by 
performing fast-path, common-case tasks on an NP and exception 
and control processing on a GP.   The router will use the Intel 
IXP2850 NP, shown in Figure 2, which has features 
representative of most NPs, including 16 simplified data 
processors called microengines (MEs), a high-bandwidth memory 
system, and on-die coprocessors to accelerate common 
networking operations.  In the sections to follow, we explain the 
importance and difficulty of sharing an NP, summarize related 
work, and present runtime system designs for a diversified router.  

2. CHALLENGES IN SHARING AN NP 
A one-to-one assignment of metarouter to NP is the simplest 
design option, but has a number of disadvantages.  For example, 
such a system would limit the total number of metarouters.  Each 
NP would have far-from-optimal utilization, and the resulting 
system would be impractically expensive for large numbers of 
MRs.  We argue that consolidating multiple MRs onto one NP is 
essential for a flexible, cost-effective diversified router.   
Unfortunately, characteristics of NP hardware and high-speed 
networking present challenges to successful NP sharing.  The first 
issue is the lack of hardware mechanisms to provide isolation 
between MRs.    Features such as page protection and kernel/user 
separation would be required to support a typical OS, and the 
NP’s shared memory architecture cannot enforce fair bandwidth 
use.  Even with these features, a typical OS would be optimized 
for interactivity, rather than the hard resource guarantees and 
aggregate throughput we desire.  The limited code space 
available for each ME restricts scalability.  The presence of 
cooperative rather than preemptive multitasking complicates 
sharing a single ME between MRs, especially for metarouters 
with different processing and memory patterns.  High-speed 
networking creates demanding real-time constraints.  At full 
line rates, small packets leave few processing cycles available, yet 
next-generation network services carry higher processing 
requirements.  Finally, existing IXP programming models expose 
architectural details and assume a single application.  Using these 
models, unmodified, adds complexity to the runtime system.  
Fortunately, new work has confronted many of these challenges. 

3. RELATED WORK 
Recent IXP runtime systems have demonstrated a number of the 
properties desirable in a diversified router.   A group of runtime 
systems support multiple virtual routers on a single NP 
[10][11][12][13][14][15].  Another project showed that programs 
dynamically loaded on NPs could have low overhead [16].  The 
performance of scheduling techniques on NPs has been 

investigated [6][7].  Other projects have demonstrated the benefits 
of adapting the processing configuration to the current packet 
distribution [8][9].  Memory access isolation and bandwidth 
management schemes have been shown [5], and there has been 
research into NP-specific programming models as well [17][18].  

The good news is that techniques to achieve the design goals 
exist; the bad news is that no single runtime system fits our goals.  
Most significant is the lack of scalability with existing runtime 
systems.  Another issue is isolation; none of the systems can 
provide per-metarouter resource guarantees for metarouters with 
varying requirements.    Few of the systems have any provision 
for safely loading dynamic code onto a running system.  Finally, 
and most crucially, many of the systems are “simulation-only,” 
and have not been run on real systems with hardware constraints, 
yet system architecture can have unforeseen performance effects.  
Our design will combine existing NP sharing techniques, in a 
new way, for a different set of design goals.   

4. TECHNIQUES FOR SHARING AN NP 
Three main categories of resources that must be shared include (1) 
link resources, both incoming and outgoing, (2) memory 
resources, both space and bandwidth, and (3) processing 
resources.  The design space of a system to share these resources 
is imposingly large, so we only provide a brief discussion of 
important design options.  For more details, see [4].  The 
following virtualization techniques ensure that multiple threads of 
execution on multiple processing cores can safely and fairly 
access shared resources.   

• Memory Access.  The framework must ensure that memory 
access is safe.  Static analysis is the lowest-overhead option, 
but cannot be used to prove the safety of any address 
computed at run-time.  Dynamic checks with segments (legal 
memory ranges) or pages (reserved memory regions), 
implemented through macros, enable safe indirect access [5]. 

• Resource Ordering.  Packets in one flow on a router must 
leave in the same order they enter.   In a multi-core processor 
like the IXP, ordering can have a significant effect on 
efficiency, since the time required to access shared memory 
may be longer than the time allocated to process a packet.  
Multithreading can hide this latency, but only for a small 
number of shared memory accesses.  Memory-resident locks 
are one option, but can have hard-to-bound costs.  Atomic 
operations, e.g. add and increment, require hardware support, 
but offer a bounded cost.  Ordered threads use signals to force 
a round-robin ordering between the threads of a single MR, 
but require reserving an entire ME.  Another option is out-of-
order execution, where a reorder buffer ensures that packets 
exit in order. 

• Bandwidth Regulation.  Bandwidth regulation ensures 
metarouters receive resource guarantees and fair use of excess 
resources. One option, static analysis, looks at all possible 
code paths, and provisions metarouter speeds based on worst-
case resource costs.  Static assumptions can be overly 
pessimistic; techniques that track actual use can provide better 
performance over a range of packet distributions and taken 
code paths [6].  Dynamic techniques can be distributed, where 
each metarouter yields when it exceeds resource requirements, 
or centralized, where a single entity controls the dispatch of 
packet-processing work.   

 



The programming model is the interface through which software 
interacts with a system; it refers to language, libraries, 
architectural exposure, and supported hardware features.  We 
detail more design options here: 

• Parallelism.  The pipelined model connects the cores in an 
NP in a chain.  It can use fast direct connections to pass data 
between adjacent stages and use less code space, but 
scalability is reduced and adaptation is difficult.  The 
alternative model, where a pool of MEs is available for 
processing, permits more sophisticated scheduling and greater 
scalability.   

• Modularity.  The programming model can implicitly find 
parallelism in an application [17], or require the programmer 
to explicitly decompose the application into modules [18]. 

• Architectural Exposure.  The framework can hide 
architectural details for greater simplicity, or expose them for 
greater speed and flexibility.   

• Portability.  Portability can be desirable across NPs, between 
GPs and NPs, and between platform hardware revisions, but 
standardization can reduce opportunities for optimization.   

The ideal programming model enables an experienced MR 
developer to program sophisticated tasks, while a new MR 
developer can quickly and simply program useful tasks. 

5. FRAMEWORK DESIGNS 
To make the discussion concrete, we present four framework 
designs that represent distinct points in the design spectrum.  The 
best framework design will be fast, general, open, scalable, and 
provide isolation. 

5.1 Static Code 

In the Static Code design, shown in Figure 3, all NP functionality 
comes from a set of programs for handling common fast-path 
processing.  Diversified Router developers create these programs 
to serve expected user needs, and bear the responsibility for 
mapping, debugging, and speed-testing them. Metarouter 
developers choose a program to handle their traffic and add 
custom packet-handling code to the GPs.  Programs are organized 
as a pipeline of fixed driver stages and program-dependent stages.  
Within each processing stage, ordered thread execution ensures 
end-to-end ordering and safe critical section access.  The design 
scales well; each added MR requires only a small section of 
SRAM for storing unique packet counters.  Disadvantages include 
poor ME utilization, inability for researchers to load new NP 
code, and the need to remap and prove the performance for every 
added program.  Despite those issues, the model does present an 
immediately useful demonstration of the diversified router 
concept.  A PlanetLab developer only needs to choose the NP 
program closest to their experiment and make minor 
modifications to their GP code.  For little effort, they gain a 
drastically higher (estimated 10-50x) packet processing rate.  This 

design is based on the GENI Cooked Mode described in [1]; see 
the reference for other design options. We fully intend to deliver 
the Static Code design for an initial demonstration of the 
diversified router concept, as it is fast, provides isolation, and 
scales to large numbers of MRs.    

5.2 Periodic Remapping  

This design, shown in Figure 4, is a summary of the runtime 
component of the Shangri-La project from UT Austin [11][12].   
The distinctive feature is a scheduler component that periodically 
changes the processor mapping based on traffic conditions.  The 
system is programmed in Baker, a language that represents 
packet-processing functions as a dequeue, process, and enqueue 
block.  Dynamic adaptation enables higher aggregate throughput, 
better power consumption, and automatically adjusts to changing 
packet distributions.  Unfortunately, the fixed mapping limits 
scalability to the number of processing cores, the adaptation time 
limits  support for highly variable packet distributions, and it is 
unclear if and how the framework could provide guarantees to 
metarouters.  These issues prevent the design from being a viable 
long-term Diversified Router framework, but we do expect its 
programming model and dynamic code loading work to be useful.   

5.3 Time-slicing 

Figure 5 shows the third framework design, which treats the MEs 
as a symmetric multi-processor system with an ME-resident real-
time scheduler.  The job of the scheduler is to decide which MRs 
should be provided resources and handle the dispatch of work to 
MEs.  The primary resource to be scheduled is processor cycles, 
which can be as simple as deficit round-robin scheduling with a 
worst-case cycle cost assumption, or a more sophisticated 
algorithm specific to NPs that leverages the predictability of 
packet processing times [6].  Each MR has its own input queue; 
the scheduler can reserve MEs for a fixed time period, or for a 
time based on the number of packets in its input queue.  Buffering 
helps the design cope with short-term variation in packet 
distribution and processing requirements, and ordered thread 
execution again provides simple resource ordering. The 
disadvantage is that each MR can no longer claim permanent 
access to ME resources, and its entire persistent context and code 
space must be saved and restored every time the MR is scheduled.  
This fact creates a trade-off between the number of MRs to be 
supported and sustainable performance levels.  However, the 
central scheduler enables proper guarantees, and the lack of a 

Figure 3. Static Code 

Figure 4.  Periodic Remapping 



fixed mapping of processing to resources provides exceptional 
scalability.   

5.4 Fine-grained Scheduling 

The last framework design, shown in Figure 6, enables concurrent 
processing of packets associated with different MRs.  The MEs 
reserved for processing are treated as a set of independent threads, 
to which the scheduler can assign work.  For simplicity, we 
assume that the code for every MR is on every ME.  When the 
scheduler has selected an MR packet, it pulls a thread off a 
freelist, or queue of idle threads, to process that packet.   When 
the thread has finished, it sends the packet to a reorder buffer and 
enqueues itself back onto the freelist.  The reorder buffer is 
necessary to ensure end-to-end-ordering, as the load on each 
microengine varies.  Shared data between threads of one MR must 
be safely accessed with locks or atomic operations, since sharing 
individual MEs eliminates the possibility of using ordered thread 
execution.  The design more gracefully handles a mix of MR 
processing requirements, by providing much greater latency 
tolerance, minimal runtime overhead, and supporting packet 
reordering.  The design does, however, add potential bottlenecks, 
such as the reorder buffer, additional accesses to shared memory, 
and lock acquisition times.  Care must be taken to keep MR code 
sizes reasonably small, or the scheduler must take into account 
where the code for an MR is located.  The primary advantage of 
this design is maximum utilization. 

6. SUMMARY 
This paper has demonstrated the importance of an NP runtime 
system to a flexible, cost-effective diversified router.  We desire 
improved scalability, isolation, and performance over current NP 
runtime systems, and will deliver an open system to meet these 
goals.  We have presented a variety of representative runtime 
frameworks for a diversified router, focusing on their differences 
from existing systems, and have shown that a combination of 
static verification, dynamic checks, scheduling and programming 
model techniques will likely meet all of our design goals.  
Designing with PlanetLab compatibility in mind leads to a system 
with immediate usefulness for a large research community.  Our 
framework, designed for the multicore NP architectures of today, 
may be applicable to future multicore general-purpose processors.  
Finally, we assert that sharing an NP is an interesting research 
topic, one that fuses runtime systems, language research, and 
hardware design, and forms a useful component for a future 
network research infrastructure. 
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