
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-62

2006-01-01

Virtualization for a Network Processor Runtime System Virtualization for a Network Processor Runtime System

Brandon Heller, Jonathan Turner, John DeHart, and Patrick Crowley

The continuing ossification of the Internet is slowing the pace of network innovation. Network

diversification presents one solution to this problem, by virtualizing the network at multiple

layers. Diversified networks consist of a shared physical substrate, virtual routers (metarouters),

and virtual links (metalinks). Virtualizing routers enables smooth and incremental upgrades to

new network services. Our current priority for a diversified router prototype is to enable reserved

slices of the network for researchers to perform repeatable, high-speed network experiments.

General-purpose processors have well established techniques for virtualization, but do not scale

efficiently to multi-gigabit speeds. To achieve these speeds, we... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Heller, Brandon; Turner, Jonathan; DeHart, John; and Crowley, Patrick, "Virtualization for a Network
Processor Runtime System" Report Number: WUCSE-2006-62 (2006). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/214

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/214?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/214

Virtualization for a Network Processor Runtime System Virtualization for a Network Processor Runtime System

Brandon Heller, Jonathan Turner, John DeHart, and Patrick Crowley

Complete Abstract: Complete Abstract:

The continuing ossification of the Internet is slowing the pace of network innovation. Network
diversification presents one solution to this problem, by virtualizing the network at multiple layers.
Diversified networks consist of a shared physical substrate, virtual routers (metarouters), and virtual links
(metalinks). Virtualizing routers enables smooth and incremental upgrades to new network services. Our
current priority for a diversified router prototype is to enable reserved slices of the network for
researchers to perform repeatable, high-speed network experiments. General-purpose processors have
well established techniques for virtualization, but do not scale efficiently to multi-gigabit speeds. To
achieve these speeds, we employ network processors (NPs), typically consisting of multicore, multi-
threaded processors with asymmetric, heterogeneous memories. The complexity and lack of hardware
thread isolation in NP’s, combined with a lack of simple programming models, creates numerous
challenges for effective sharing between metarouters. In this paper, we detail strategies for enabling NP
virtualization at the link, memory, and processor levels, to better enable a research infrastructure for
network innovation.

https://openscholarship.wustl.edu/cse_research/214?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/214?utm_source=openscholarship.wustl.edu%2Fcse_research%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-62

Virtualization for a Network Processor Runtime System

Authors: Brandon Heller, Jonathan Turner, John DeHart, Patrick Crowley

Corresponding Author: bdh4@arl.wustl.edu

Abstract: The continuing ossification of the Internet is slowing the pace of network innovation. Network
diversification presents one solution to this problem, by virtualizing the network at multiple layers. Diversified
networks consist of a shared physical substrate, virtual routers (metarouters), and virtual links (metalinks).
Virtualizing routers enables smooth and incremental upgrades to new network services. Our current priority for a
diversified router prototype is to enable reserved slices of the
network for researchers to perform repeatable, high-speed network experiments. General-purpose processors
have well established techniques for virtualization, but do not scale efficiently to multi-gigabit speeds. To
achieve these speeds, we employ network processors (NPs), typically consisting of multicore, multi-threaded
processors with asymmetric, heterogeneous memories. The complexity and lack of hardware thread isolation in
NP’s, combined with a lack of simple programming models, creates numerous challenges for effective sharing
between metarouters. In this paper, we detail strategies for enabling NP virtualization at the link, memory, and
processor levels, to better enable a research infrastructure for network innovation.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Virtualization for a Network Processor Runtime System
Brandon Heller, Jonathan Turner, John DeHart, Patrick Crowley

Washington University in St. Louis
Campus Box 1045

St. Louis, Missouri 63130-4899
bdh4@arl.wustl.edu, jon.turner@wustl.edu, jdd@arl.wustl.edu, pcrowley@wustl.edu

ABSTRACT
The continuing ossification of the Internet is slowing the pace of
network innovation. Network diversification presents one
solution to this problem, by virtualizing the network at multiple
layers. Diversified networks consist of a shared physical
substrate, virtual routers (metarouters), and virtual links
(metalinks). Virtualizing routers enables smooth and incremental
upgrades to new network services. Our current priority for a
diversified router prototype is to enable reserved slices of the
network for researchers to perform repeatable, high-speed
network experiments. General-purpose processors have well-
established techniques for virtualization, but do not scale
efficiently to multi-gigabit speeds. To achieve these speeds, we
employ network processors (NPs), typically consisting of multi-
core, multi-threaded processors with asymmetric, heterogeneous
memories. The complexity and lack of hardware thread isolation
in NP’s, combined with a lack of simple programming models,
creates numerous challenges for effective sharing between
metarouters. In this paper, we detail strategies for enabling NP
virtualization at the link, memory, and processor levels, to better
enable a research infrastructure for network innovation.

Categories and Subject Descriptors
C.2.6 [Computer Systems Organization]: Internetworking –
routers, D.3.4 [Programming Languages]: Processors - run-time
environments C.1.3 [Processor Architectures]: Other
Architecture Styles – heterogeneous (hybrid) systems

General Terms
Performance, Design, Experimentation.

Keywords
Multi-core processor, diversified network, metarouter, runtime
system, programming model, network processor.

1. INTRODUCTION
An ideal testbed for network architecture research would be freely
accessible, provide realistic user traffic, process packets at high
speeds, and enable deployment of networks not based on the
Internet Protocol (IP). The leading testbed for network research is
currently PlanetLab, a series of PC-based routers connected over
the Internet [3]. Its use of general-purpose processors limits

network speeds and its ability to provide hard resource guarantees
for repeatable experiments, but its distributed-service model is
flexible and useful for network research. Moreover, PlanetLab is
built on IP, making it difficult or impossible to investigate non-IP
networks. Diversified networking is our vision for a network
research testbed, as shown in Figure 1, and described in more
detail in [1] and [2]. Diversified networks define a new substrate
layer between the datalink and transport layers to enable
flexibility both above and below. Metarouters (MRs) are
software-based virtual routers which communicate through
metalinks, or virtual links. Metarouters and metalinks are hosted
on a shared physical substrate, which includes physical routers
and physical links; the combination of these elements forms a
metanetwork. The diversified router represents one candidate
backbone routing node for the upcoming GENI project, a planned
large-scale National Science Foundation network research
platform [1]. In this paper, we discuss the design of a diversified
router, starting with relevant high-level design goals:

• Isolation. Virtualization should be provided, where each
metarouter has an exclusive, protected view of hardware
resources such as link, processing, and memory bandwidth.
The system must provide real-time guarantees to provisioned
metarouters and fairly share excess system capacity.

• Speed. The router should handle 10 Gb/s links, over
minimum- and average-size packets, with average delay of
less than 1 ms.

• Scalability. The router should support around 100
metarouters, through both additional processors and a runtime
system that enables single-processor sharing.

• Generality. Metarouters with a range of processing, memory,
and synchronization requirements should be supported.

• Openness. To be an effective research platform, all system
details must be open to experimenters, and most functionality
must be modifiable. This requirement prevents the use of
commercially available routers.

Our goal to deliver an operational system motivates the choice of
Network Processors (NPs), the only commercially available
option to support flexible processing at 10Gb/s rates. General-

Figure 1. Diversified Network

purpose processors (GPs), while slower, enable virtually
unlimited code complexity and can run a standard PlanetLab OS.
We expect most metarouters to split their processing work in a
way that plays to the strengths of each processor type, by
performing fast-path, common-case tasks on an NP and exception
and control processing on a GP. The router will use the Intel
IXP2850 NP, shown in Figure 2, which has features
representative of most NPs, including 16 simplified data
processors called microengines (MEs), a high-bandwidth memory
system, and on-die coprocessors to accelerate common
networking operations. In the sections to follow, we explain the
importance and difficulty of sharing an NP, summarize related
work, and present runtime system designs for a diversified router.

2. CHALLENGES IN SHARING AN NP
A one-to-one assignment of metarouter to NP is the simplest
design option, but has a number of disadvantages. For example,
such a system would limit the total number of metarouters. Each
NP would have far-from-optimal utilization, and the resulting
system would be impractically expensive for large numbers of
MRs. We argue that consolidating multiple MRs onto one NP is
essential for a flexible, cost-effective diversified router.
Unfortunately, characteristics of NP hardware and high-speed
networking present challenges to successful NP sharing. The first
issue is the lack of hardware mechanisms to provide isolation
between MRs. Features such as page protection and kernel/user
separation would be required to support a typical OS, and the
NP’s shared memory architecture cannot enforce fair bandwidth
use. Even with these features, a typical OS would be optimized
for interactivity, rather than the hard resource guarantees and
aggregate throughput we desire. The limited code space
available for each ME restricts scalability. The presence of
cooperative rather than preemptive multitasking complicates
sharing a single ME between MRs, especially for metarouters
with different processing and memory patterns. High-speed
networking creates demanding real-time constraints. At full
line rates, small packets leave few processing cycles available, yet
next-generation network services carry higher processing
requirements. Finally, existing IXP programming models expose
architectural details and assume a single application. Using these
models, unmodified, adds complexity to the runtime system.
Fortunately, new work has confronted many of these challenges.

3. RELATED WORK
Recent IXP runtime systems have demonstrated a number of the
properties desirable in a diversified router. A group of runtime
systems support multiple virtual routers on a single NP
[10][11][12][13][14][15]. Another project showed that programs
dynamically loaded on NPs could have low overhead [16]. The
performance of scheduling techniques on NPs has been

investigated [6][7]. Other projects have demonstrated the benefits
of adapting the processing configuration to the current packet
distribution [8][9]. Memory access isolation and bandwidth
management schemes have been shown [5], and there has been
research into NP-specific programming models as well [17][18].

The good news is that techniques to achieve the design goals
exist; the bad news is that no single runtime system fits our goals.
Most significant is the lack of scalability with existing runtime
systems. Another issue is isolation; none of the systems can
provide per-metarouter resource guarantees for metarouters with
varying requirements. Few of the systems have any provision
for safely loading dynamic code onto a running system. Finally,
and most crucially, many of the systems are “simulation-only,”
and have not been run on real systems with hardware constraints,
yet system architecture can have unforeseen performance effects.
Our design will combine existing NP sharing techniques, in a
new way, for a different set of design goals.

4. TECHNIQUES FOR SHARING AN NP
Three main categories of resources that must be shared include (1)
link resources, both incoming and outgoing, (2) memory
resources, both space and bandwidth, and (3) processing
resources. The design space of a system to share these resources
is imposingly large, so we only provide a brief discussion of
important design options. For more details, see [4]. The
following virtualization techniques ensure that multiple threads of
execution on multiple processing cores can safely and fairly
access shared resources.

• Memory Access. The framework must ensure that memory
access is safe. Static analysis is the lowest-overhead option,
but cannot be used to prove the safety of any address
computed at run-time. Dynamic checks with segments (legal
memory ranges) or pages (reserved memory regions),
implemented through macros, enable safe indirect access [5].

• Resource Ordering. Packets in one flow on a router must
leave in the same order they enter. In a multi-core processor
like the IXP, ordering can have a significant effect on
efficiency, since the time required to access shared memory
may be longer than the time allocated to process a packet.
Multithreading can hide this latency, but only for a small
number of shared memory accesses. Memory-resident locks
are one option, but can have hard-to-bound costs. Atomic
operations, e.g. add and increment, require hardware support,
but offer a bounded cost. Ordered threads use signals to force
a round-robin ordering between the threads of a single MR,
but require reserving an entire ME. Another option is out-of-
order execution, where a reorder buffer ensures that packets
exit in order.

• Bandwidth Regulation. Bandwidth regulation ensures
metarouters receive resource guarantees and fair use of excess
resources. One option, static analysis, looks at all possible
code paths, and provisions metarouter speeds based on worst-
case resource costs. Static assumptions can be overly
pessimistic; techniques that track actual use can provide better
performance over a range of packet distributions and taken
code paths [6]. Dynamic techniques can be distributed, where
each metarouter yields when it exceeds resource requirements,
or centralized, where a single entity controls the dispatch of
packet-processing work.

The programming model is the interface through which software
interacts with a system; it refers to language, libraries,
architectural exposure, and supported hardware features. We
detail more design options here:

• Parallelism. The pipelined model connects the cores in an
NP in a chain. It can use fast direct connections to pass data
between adjacent stages and use less code space, but
scalability is reduced and adaptation is difficult. The
alternative model, where a pool of MEs is available for
processing, permits more sophisticated scheduling and greater
scalability.

• Modularity. The programming model can implicitly find
parallelism in an application [17], or require the programmer
to explicitly decompose the application into modules [18].

• Architectural Exposure. The framework can hide
architectural details for greater simplicity, or expose them for
greater speed and flexibility.

• Portability. Portability can be desirable across NPs, between
GPs and NPs, and between platform hardware revisions, but
standardization can reduce opportunities for optimization.

The ideal programming model enables an experienced MR
developer to program sophisticated tasks, while a new MR
developer can quickly and simply program useful tasks.

5. FRAMEWORK DESIGNS
To make the discussion concrete, we present four framework
designs that represent distinct points in the design spectrum. The
best framework design will be fast, general, open, scalable, and
provide isolation.

5.1 Static Code

In the Static Code design, shown in Figure 3, all NP functionality
comes from a set of programs for handling common fast-path
processing. Diversified Router developers create these programs
to serve expected user needs, and bear the responsibility for
mapping, debugging, and speed-testing them. Metarouter
developers choose a program to handle their traffic and add
custom packet-handling code to the GPs. Programs are organized
as a pipeline of fixed driver stages and program-dependent stages.
Within each processing stage, ordered thread execution ensures
end-to-end ordering and safe critical section access. The design
scales well; each added MR requires only a small section of
SRAM for storing unique packet counters. Disadvantages include
poor ME utilization, inability for researchers to load new NP
code, and the need to remap and prove the performance for every
added program. Despite those issues, the model does present an
immediately useful demonstration of the diversified router
concept. A PlanetLab developer only needs to choose the NP
program closest to their experiment and make minor
modifications to their GP code. For little effort, they gain a
drastically higher (estimated 10-50x) packet processing rate. This

design is based on the GENI Cooked Mode described in [1]; see
the reference for other design options. We fully intend to deliver
the Static Code design for an initial demonstration of the
diversified router concept, as it is fast, provides isolation, and
scales to large numbers of MRs.

5.2 Periodic Remapping

This design, shown in Figure 4, is a summary of the runtime
component of the Shangri-La project from UT Austin [11][12].
The distinctive feature is a scheduler component that periodically
changes the processor mapping based on traffic conditions. The
system is programmed in Baker, a language that represents
packet-processing functions as a dequeue, process, and enqueue
block. Dynamic adaptation enables higher aggregate throughput,
better power consumption, and automatically adjusts to changing
packet distributions. Unfortunately, the fixed mapping limits
scalability to the number of processing cores, the adaptation time
limits support for highly variable packet distributions, and it is
unclear if and how the framework could provide guarantees to
metarouters. These issues prevent the design from being a viable
long-term Diversified Router framework, but we do expect its
programming model and dynamic code loading work to be useful.

5.3 Time-slicing

Figure 5 shows the third framework design, which treats the MEs
as a symmetric multi-processor system with an ME-resident real-
time scheduler. The job of the scheduler is to decide which MRs
should be provided resources and handle the dispatch of work to
MEs. The primary resource to be scheduled is processor cycles,
which can be as simple as deficit round-robin scheduling with a
worst-case cycle cost assumption, or a more sophisticated
algorithm specific to NPs that leverages the predictability of
packet processing times [6]. Each MR has its own input queue;
the scheduler can reserve MEs for a fixed time period, or for a
time based on the number of packets in its input queue. Buffering
helps the design cope with short-term variation in packet
distribution and processing requirements, and ordered thread
execution again provides simple resource ordering. The
disadvantage is that each MR can no longer claim permanent
access to ME resources, and its entire persistent context and code
space must be saved and restored every time the MR is scheduled.
This fact creates a trade-off between the number of MRs to be
supported and sustainable performance levels. However, the
central scheduler enables proper guarantees, and the lack of a

Figure 3. Static Code

Figure 4. Periodic Remapping

fixed mapping of processing to resources provides exceptional
scalability.

5.4 Fine-grained Scheduling

The last framework design, shown in Figure 6, enables concurrent
processing of packets associated with different MRs. The MEs
reserved for processing are treated as a set of independent threads,
to which the scheduler can assign work. For simplicity, we
assume that the code for every MR is on every ME. When the
scheduler has selected an MR packet, it pulls a thread off a
freelist, or queue of idle threads, to process that packet. When
the thread has finished, it sends the packet to a reorder buffer and
enqueues itself back onto the freelist. The reorder buffer is
necessary to ensure end-to-end-ordering, as the load on each
microengine varies. Shared data between threads of one MR must
be safely accessed with locks or atomic operations, since sharing
individual MEs eliminates the possibility of using ordered thread
execution. The design more gracefully handles a mix of MR
processing requirements, by providing much greater latency
tolerance, minimal runtime overhead, and supporting packet
reordering. The design does, however, add potential bottlenecks,
such as the reorder buffer, additional accesses to shared memory,
and lock acquisition times. Care must be taken to keep MR code
sizes reasonably small, or the scheduler must take into account
where the code for an MR is located. The primary advantage of
this design is maximum utilization.

6. SUMMARY
This paper has demonstrated the importance of an NP runtime
system to a flexible, cost-effective diversified router. We desire
improved scalability, isolation, and performance over current NP
runtime systems, and will deliver an open system to meet these
goals. We have presented a variety of representative runtime
frameworks for a diversified router, focusing on their differences
from existing systems, and have shown that a combination of
static verification, dynamic checks, scheduling and programming
model techniques will likely meet all of our design goals.
Designing with PlanetLab compatibility in mind leads to a system
with immediate usefulness for a large research community. Our
framework, designed for the multicore NP architectures of today,
may be applicable to future multicore general-purpose processors.
Finally, we assert that sharing an NP is an interesting research
topic, one that fuses runtime systems, language research, and
hardware design, and forms a useful component for a future
network research infrastructure.

7. ACKNOWLEDGMENTS
Our thanks to Ben Wun for editing assistance.

8. REFERENCES
[1] Turner, J. A Proposed Architecture for the GENI Backbone

Platform. GENI Design Document 06-09,
http://www.geni.net/documents.php, March 2006.

[2] Kuhns, F., Wilson, M., and Turner, J. Diversifying the
network edge. In Proc. of INFOCOM 2005.

[3] Bavier, A. et al. Operating System Support for Planetary-
Scale Network Services. In Proc. of Networked Systems
Design and Implementation, March 2004.

[4] Wolf, T., Weng, N., Tai, C. Design Considerations for
Network Processor Operating Systems. In Proc. of ANCS
05. Oct., 2005.

[5] Wun, B., Turner, J., and Crowley, P., Virtualizing Network
Processors. Technical Report WUCSE2006-12, Washington
University, St. Louis, MO, 2006.

[6] Wolf, T., Pappu, P., and Franklin, M., Predictive Scheduling
of Network Processors. In Proc. of Comp. Networks, 2003.

[7] Srinivasan, A., et al. Multiprocessor Scheduling in
Processor-based Router Platforms: Issues and Ideas, In Proc.
of the 2nd Workshop on Network Processors, 2002.

[8] Kencl, L. and Le Boudec, J.-Y., Adaptive load sharing for
network processors, In Proc. of INFOCOM 2002.

[9] Kokku, R., et al. 2004. A Case for Run-time Adaptation in
Packet Processing Systems. SIGCOMM Computer
Commuications Review. 34, 1 (Jan. 2004), 107-112.

[10] Ruf, L., Keller, R., and Plattner, B., A. Scalable High-
performance Router Platform Supporting Dynamic Service
Extensibility On Network and Host Processors, In Proc. of
IEEE/ACS Intl. Conference on Pervasive Services (ICPS
2004). July 2004.

[11] Kokku, R. ShaRE: Run-time System for High-performance
Virtualized Routers. Ph.D. Thesis, University of Texas,
Austin, Texas, 2005.

[12] Chen, M. K., et al. Shangri-La. In Proc. of the 2005 ACM
Conference on Programming Language Design and
Implementation (SIGPLAN 05). Chicago, IL, USA, Jun 2005.

[13] Degioanni, L, et al. Network Virtual Machine (NetVM). In
Proc. of the 8th In..l Conf. on Telecommunciations
(ConTEL). Zagreb, Croatia, June 2005.

[14] Kumar, S., et al., S. C-CORE: Using Communication Cores
for High Performance Network Services. In Proc. of the
Fourth IEEE Intl. Symposium on Network Computing and
Applications. Washington, DC, July 2005.

[15] Memek, G., and Mangione-Smith, W.H. NEPAL: a
Framework for Efficiently Structuring Applications for
Network Processors. In Proc. of the 2nd Workshop on
Network Processors, 2002.

[16] Campbell, A.T., et al. NetBind: a Binding Tool for
Constructing Data Paths in Network Processor-based
Routers. In Proc. of IEEE OPENARCH' 02, New York City,
NY, June 2002.

[17] Li, L., Huang, B., Dai, J., and Harrison, L. Automatic
Multithreading and Multiprocessing of C Programs for IXP.
In Proc. of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP
’05). Chicago, IL, USA, June 2005.

[18] Shah, N., et al. NP-Click: A Productive Software
Development Approach for Network Processors, IEEE
Micro, 24, 5, (Sept.-Oct 2004), 45-54.

	Virtualization for a Network Processor Runtime System
	Recommended Citation
	Virtualization for a Network Processor Runtime System

	tmp.1418149444.pdf.mqCG7

