
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: wucse-2009-39

2009

Throughput-optimal systolic arrays from recurrence equations Throughput-optimal systolic arrays from recurrence equations

Arpith C. Jacob, Jeremy D. Buhler, and Roger D. Chamberlain

Many compute-bound software kernels have seen order-of-magnitude speedups on special-

purpose accelerators built on specialized architectures such as field-programmable gate arrays

(FPGAs). These architectures are particularly good at implementing dynamic programming

algorithms that can be expressed as systems of recurrence equations, which in turn can be

realized as systolic array designs. To efficiently find good realizations of an algorithm for a given

hardware platform, we pursue software tools that can search the space of possible parallel

array designs to optimize various design criteria. Most existing design tools in this area produce

a design that is latency-space optimal. However, we instead... Read complete abstract on page Read complete abstract on page

2. 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Jacob, Arpith C.; Buhler, Jeremy D.; and Chamberlain, Roger D., "Throughput-optimal systolic arrays from
recurrence equations" Report Number: wucse-2009-39 (2009). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/17

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/17?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/17

Throughput-optimal systolic arrays from recurrence equations Throughput-optimal systolic arrays from recurrence equations

Arpith C. Jacob, Jeremy D. Buhler, and Roger D. Chamberlain

Complete Abstract: Complete Abstract:

Many compute-bound software kernels have seen order-of-magnitude speedups on special-purpose
accelerators built on specialized architectures such as field-programmable gate arrays (FPGAs). These
architectures are particularly good at implementing dynamic programming algorithms that can be
expressed as systems of recurrence equations, which in turn can be realized as systolic array designs. To
efficiently find good realizations of an algorithm for a given hardware platform, we pursue software tools
that can search the space of possible parallel array designs to optimize various design criteria. Most
existing design tools in this area produce a design that is latency-space optimal. However, we instead
wish to target applications that operate on a large collection of small inputs, e.g. a database of biological
sequences. For such applications, overall throughput rather than latency per input is the most important
measure of performance. In this work, we introduce a new procedure to optimize throughput of a systolic
array subject to resource constraints, in this case the area and bandwidth constraints of an FPGA device.
We show that the throughput of an array is dependent on the maximum number of lattice points executed
by any processor in the array, which to a close approximation is determined solely by the array’s projection
vector. We describe a bounded search process to find throughput-optimal projection vectors and a tool to
perform automated design space exploration, discovering a range of array designs that are optimal for
inputs of different sizes. We apply our techniques to the Nussinov RNA folding algorithm to generate
multiple mappings of this algorithm into systolic arrays. By combining our library of designs with run-time
reconfiguration of an FPGA device to dynamically switch among them, we predict significant speedup
over a single, latency-space optimal array.

https://openscholarship.wustl.edu/cse_research/17?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/17?utm_source=openscholarship.wustl.edu%2Fcse_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2009-39

Throughput-optimal systolic arrays from recurrence equations

Authors: Arpith C. Jacob
Jeremy D. Buhler
Roger D. Chamberlain

Corresponding Author: jarpith@cse.wustl.edu

Web Page: http://hpcb.wustl.edu

Abstract: Many compute-bound software kernels have seen order-of-magnitude speedups on special-purpose
accelerators built on specialized architectures such as field-programmable gate arrays (FPGAs). These
architectures are particularly good at implementing dynamic programming algorithms that can be expressed as
systems of recurrence equations, which in turn can be realized as systolic array designs. To efficiently find good
realizations of an algorithm for a given hardware platform, we pursue software tools that can search the space of
possible parallel array designs to optimize various design criteria. Most existing design tools in this area produce
a design that is latency-space optimal. However, we instead wish to target applications that operate on a large
collection of small inputs, e.g. a database of biological sequences. For such applications, overall throughput
rather than latency per input is the most important measure of performance.

In this work, we introduce a new procedure to optimize throughput of a systolic array subject to resource
constraints, in this case the area and bandwidth constraints of an FPGA device. We show that the throughput of
an array is dependent on the maximum number of lattice points executed by any processor in the array, which to
a close approximation is determined solely by the array’s projection vector. We describe a bounded search

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Throughput-optimal systolic arrays from recurrence equations

Arpith C. Jacob, Jeremy D. Buhler, Roger D. Chamberlain
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri. 63130 USA

{jarpith,jbuhler,roger}cse.wustl.edu

Abstract
Many compute-bound software kernels have seen order-of-magnitude
speedups on special-purpose accelerators built on specialized archi-
tectures such as field-programmable gate arrays (FPGAs). These
architectures are particularly good at implementing dynamic pro-
gramming algorithms that can be expressed as systems of recur-
rence equations, which in turn can be realized as systolic array
designs. To efficiently find good realizations of an algorithm for a
given hardware platform, we pursue software tools that can search
the space of possible parallel array designs to optimize various
design criteria. Most existing design tools in this area produce a
design that is latency-space optimal. However, we instead wish to
target applications that operate on a large collection of small inputs,
e.g. a database of biological sequences. For such applications, over-
all throughput rather than latency per input is the most important
measure of performance.

In this work, we introduce a new procedure to optimize through-
put of a systolic array subject to resource constraints, in this case
the area and bandwidth constraints of an FPGA device. We show
that the throughput of an array is dependent on the maximum num-
ber of lattice points executed by any processor in the array, which to
a close approximation is determined solely by the array’s projection
vector. We describe a bounded search process to find throughput-
optimal projection vectors and a tool to perform automated design
space exploration, discovering a range of array designs that are op-
timal for inputs of different sizes.

We apply our techniques to the Nussinov RNA folding algo-
rithm to generate multiple mappings of this algorithm into systolic
arrays. By combining our library of designs with run-time recon-
figuration of an FPGA device to dynamically switch among them,
we predict significant speedup over a single, latency-space optimal
array.

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Other Architecture Styles—Adaptable architectures; D.3.4
[Programming Languages]: Processors—Optimization

General Terms Algorithms, Performance, Design

Keywords FPGA, Dynamic Programming, Throughput Opti-
mization, Runtime Reconfiguration, Systolic Array

1. Introduction
Massive and growing data sets are a challenge common to many
areas of computation today, including text processing, image and
signal processing, and computational biology. One response to this
challenge is to map analytical algorithms for these data sets into
nontraditional computing architectures, such as chip multiproces-
sors, graphics processors, or field-programmable gate arrays (FP-
GAs), that can exploit their structure to execute them orders of
magnitude faster than general-purpose microprocessors. This ap-
proach is especially fruitful when the algorithms can be expressed
as uniform recurrences, whose regular structure lends itself to the
fine-grained parallelization offered by these architectures.

To map a recurrence onto a fine-grained parallel architecture,
we can realize it as a systolic array [1], a collection of simple
parallel processing elements with regular interconnections. Sys-
tolic arrays are particularly well-suited to FPGAs, both because
these devices can implement arbitrary circuits to realize process-
ing elements and because their structure rewards simple, regu-
lar, locally-connected arrays of such elements. Recent advances
in FPGA technology, including increased logic and memory re-
sources and high-bandwidth, low-latency communication infras-
tructure [2, 3, 4, 5], have enabled the implementation of many
resource- and data-intensive algorithms as systolic arrays [6, 7].

Fine-grained parallel architectures are difficult to program at a
low level, often requiring a specialized implementation language
and careful attention to resource usage and communication timing.
To remove these burdens from the programmer, we turn to the
well-studied area of automatic derivation of systolic arrays from
recurrences [8, 9]. Previous work in this area provides powerful
tools to compute mappings from high-level algorithms to low-level
implementations, but our attempts to apply these tools to our target
application domains have exposed two key limitations, which we
seek to remedy in this work.

First, most techniques to realize systolic arrays from a recur-
rence seek an array that is latency-space optimal [12, 21, 27]. Such
an array computes a single instance of the recurrence in the short-
est time possible (minimum latency); among all arrays that achieve
this shortest time, a latency-space optimal array requires the fewest
processing elements. However, in our application domains, we seek
to accelerate computations over large collections of small, discrete
inputs. For example, computational biology algorithms often work
on large databases of short DNA or protein sequences, while video
processing may require analysis of a stream of individual image
frames. For such applications, the latency of computation on an
individual input is less important than the throughput, or equiva-
lently the total execution time on the entire data set. The literature
of automated systolic array design places little emphasis on opti-
mizing arrays for throughput. We therefore address the problem of
throughput-optimal array design here.

Second, we seek not just a single optimal array design but a li-
brary of designs optimized for different-sized inputs. A large data
set may contain inputs of many different sizes, but a given systolic
array has one characteristic input size, requiring different-sized in-
puts to be split or padded. A single array made sense when the
target platform was a fixed-function integrated circuit, but mod-
ern devices can be rapidly reconfigured with designs optimized for
different input sizes. For example, FPGAs from Xilinx and Altera
support the loading of a new hardware circuit in tens to hundreds
of milliseconds [13]. It is therefore feasible for one computation to
use a range of array designs, each optimized to maximize through-
put on inputs of a different size using all available computational
resources.

The authors of a recent study [14] used a collection of throughput-
optimal arrays on FPGAs to speedup the acceleration of RNA
folding of a large database of sequences. When the input size
distribution is known a priori, they assign small inputs to high-
throughput, highly resource-intensive arrays and large inputs to
lower-throughput, lower-resource arrays. This results in a net
speedup over using a single latency-space optimal array. That work,
however, does not show how to generate a collection of throughput-
optimal arrays for a given recurrence. The procedures introduced
here can automatically design a range of such arrays.

In this work, we first give a mathematical definition for the
throughput of a systolic array. We show that a useful bound on
throughput can be computed solely from the array’s projection
vector, i.e. its mapping of steps in the recurrence onto compute
elements, independent of the schedule of times at which these steps
are executed. This observation leads to a straightforward search
strategy for finding throughput-optimal arrays. We then describe
a software tool we have written to accept recurrence descriptions
of programs and perform the aforementioned search. The schedule
and allocation functions generated by our tool can be fed into array
synthesis software such as MMAlpha [15], PARO [16], or PICO-
NPA [17] to synthesize low-level HDL descriptions of systolic
arrays. Finally, we apply our methods to find novel high-throughput
systolic array designs for the Nussinov RNA folding algorithm.

2. Background: Parallelization of Recurrences
We seek to accelerate regular loop programs expressed as a set
of parametrized uniform recurrences [8, 9]. A parametrized recur-
rence defines the computation of an n-dimensional data variable
X(z) over a domain D, representing the individual steps or sub-
problems of the recurrence. The domain may have one or more size
parameters, e.g. the length of an input sequence. The data depen-
dencies between points inD are assumed to be uniform for efficient
systolic array implementation; however, our design techniques also
work for recurrences with more general affine dependencies.

A system of recurrences can be realized as a systolic array by
finding two functions on the domain D:

1. A scheduling function, which gives the time at which X(z) is
computed for each point z ∈ D.

2. An allocation function, which gives the physical processing
element of the array that computes each X(z).

These two functions are sufficient to specify the shape and connec-
tions of the array, which can then be fully realized in the language
of the target platform, e.g. Verilog or VHDL for FPGAs.

2.1 Scheduling
The scheduling function τ : Zn → Z maps each point z ∈ D to a
computation time τ(z) such that:

1. τ(z) ≥ 0, ∀ z (positivity condition);

2. X(z)← X(y)⇒ τ(z) > τ(y) (causality condition).

We are interested in schedules given by an affine function

τ(z) = λz + α,

where λ is a n-vector and α is a constant.

2.2 Allocation
Once a schedule has been determined, we need to assign the com-
putation of every instanceX(z) to a processing element. We define
a linear allocation function π(z) : Zn → Zn−1 such that:

τ(z) = τ(z′)⇒ π(z) 6= π(z′) (injectivity condition).

The allocation function can be fully specified by a direction vector
u along which the computation domain is to be projected. Given
a schedule, the injectivity constraint can be specified as λu 6= 0.
Once a suitable projection vector has been selected, the allocation
function can be constructed as an n × n − 1 matrix π such that
πu = 0.

2.3 Array Utilization
A systolic array constructed as described above has a utilization, or
efficiency, given by the reciprocal of γ = |λu|. If this product is
not equal to one, then each processing element in the array is active
in only one of every γ clock cycles. Idle processors are not a good
use of compute resources, so we wish to utilize each processing
element as much as possible.

There are two approaches to increasing the efficiency of under-
utilized arrays. If throughput is most important, γ instances of the
input problem can be interleaved to execute simultaneously on the
array. We call this strategy processor pipelining. Alternatively, if
resource usage is a constraint, γ abstract processing elements may
be “clustered” to run on a single processor with multiplexed inputs
that is active every cycle.

2.4 Examples
Throughout this work we will reference a number of example re-
currences to better illustrate the concepts introduced. Here we show
only the domain of lattice points for each computation; the inter-
ested reader will find the entire algorithm including dependencies
and the recurrence body in the referenced works.

Sorting. We use a recurrence similar to the one introduced by
Rao [18] to sort a set of N integers. The output is the set sorted
in descending order; an array implementing sorting must transfer
the sorted numbers back to the host. The domain of computation is
D = { i, j | 1 ≤ i ≤ N + 1; 1 ≤ j ≤ i+ 1 }.

Banded Smith-Waterman. This is a version of the banded Smith-
Waterman algorithm described by Chao [19] for DNA and protein
sequence alignment. The dynamic programming recurrence aligns
two sequences of lengths M and N along a band of width w
centered on its middle diagonal. The output is a scalar representing
the score of an alignment, or correspondence, between the two
sequences that minimizes the (weighted) edit distance between
them. The domain of computation is D = { i, j | 1 ≤ i ≤
M ; max(1, i− w

2
+ 1) ≤ j ≤ min(N, i+ w

2
) }.

Nussinov. The Nussinov algorithm is used to compute the score
of the optimal folded substructure of an RNA sequence of length
N . This recurrence is the most complex of all the examples we
consider; the reader is referred to existing work [26] for details.
The domain of computation isD = { i, j, k | 1 ≤ i ≤ N ; i ≤ j ≤
N ; 1 ≤ k ≤ j−i

2
}.

1
2

3
4

5

1
2

3
4

5

1
2

3
4

5

a

b c
time

ins
tan

ce
#

Figure 1. (a) The latency-optimal array executes five input in-
stances in sequence and has an execution time of 5Lopt clock cy-
cles. (b) The array optimized for throughput pipelines a new input
every 1

3
Lopt clock cycles. (c) When the array is not fully efficient

(here 50%), we simultaneously pipeline two input instances every
2
3
Lopt clock cycles. Both throughput-optimized arrays are 2.3×

faster than the latency-optimal array.

3. Characterizing Throughput-Optimal Arrays
We say that a systolic array executes an instance I when the array
evaluates the system of recurrence equations for a particular input.
This input defines integer values for any size parameters of the
parametrized recurrences. The computation time of I, i.e. the time
to evaluate all points in the domainD(I), is given by the latency L
of the array’s schedule. L is defined as the difference in execution
times of its first and last scheduled points:

L = max { τ(z) | z ∈ D(I) } −min { τ(z) | z ∈ D(I) }.

Existing work in array design has focused on finding a latency-
optimal schedule Lopt [21, 22, 23, 24] to build high-performance
parallel arrays. The total execution time for m equal-sized inputs
on a latency-optimal array is mLopt.

We are more interested in the throughput, rather than the la-
tency, of a systolic array. Throughput is the deciding factor when
minimizing the total execution time of a large number of input in-
stances. Define β, the block pipelining period of an array, as the
earliest time after starting to compute on an input, at which com-
putation on a second input on an array can be started safely, i.e.
without the same processing element trying to compute on both in-
puts at the same time. The reciprocal of β is the throughput of the
array measured in input instances processed per clock.

Consider the recurrence with computation domain D(I) on
input instances I of some fixed size in all dimensions. Let τ(z) =
λz + α, z ∈ D(I) be some schedule for computing the recurrence
for I. Given a series of instances I2, I3, . . . of the same size as I,
we would like a pipelined schedule to compute them all efficiently.
Since we know that successive instances of the recurrence can start
at intervals of β without processor contention, we define a pipelined
schedule of the kth instance as f(k, z) = τ(z) + (k − 1)β. A
throughput-optimal array executes m instances of the input in time
(m − 1)β + L, which is faster than the latency-optimal array if
β < Lopt and L is not much larger than Lopt. In optimizing
for throughput, we may have to sacrifice latency, but this sacrifice
can be amortized over a large number of inputs. The advantage of
throughput-optimized arrays is illustrated in Figure 1.

Before we proceed further, we must clarify our definition
of throughput for FPGAs. There are two ways to optimize the
throughput of a systolic array on an FPGA. As described above,
we may minimize the period, measured in clock cycles, between
the pipelining of two instances of the problem on an array; alterna-
tively, we may minimize the clock period itself. The frequency at
which an array can be clocked depends on the length of the critical
path in the design, which is almost always in the processing ele-
ment. The critical path depends on the computations in the body of
the recurrence and may be improved by judicious ordering of these
operations and their optimal scheduling on any shared resources.
Methods to minimize critical path length are well-known in the
field of high-level hardware synthesis. For example, past work by
Rosseel [25] builds “throughput-optimal” arrays from recurrences
primarily by optimizing the scheduling of operations in each pro-
cessing element, while minimizing the total resources consumed.
The block pipelining period is treated as only a secondary consid-
eration.

In our work, we assume that the design and clock period of
a processing element are fixed and seek to minimize the block
pipelining period between instances on the array. Maximizing
throughput may increase the number of processing elements used,
but this is acceptable provided the target device can accommodate
them. Both our approach and critical-path optimization could be
used together, with some compromise between the area of each
processing element (more for faster processors) and the total num-
ber of elements on the array (more for lower values of β).

3.1 A Design Criterion for Throughput Optimality
Assume a system of parametrized (uniform) recurrence equations
and an associated schedule and allocation for a systolic array.
We are given two instances I and I′ of the same size, i.e., their
computation domains contain the same number of points such that
any point z ∈ D(I) ⇔ z ∈ D(I′). We would like to derive a
schedule to execute both instances one after the other in a pipelined
fashion. The first instance I executes on the schedule τ(z) derived
as in Section 2. We use a pipelined linear schedule f for I′ given
by f(z′) = τ(z′) + β. To be feasible, β must be large enough to
satisfy the constraint f(z′) > τ(z) ∀ z ∈ D(I), z′ ∈ D(I′).

We clarify this concept using the example in Figure 2. Figure 2a
shows a triangular lattice with its integer points represented by cir-
cles. The index vector of the two-dimensional points at the bound-
ary is shown for clarity. Figure 2b shows two instances I and I′
being pipelined through the array. The time dimension is along the
x-axis.

Because the two instances are of the same size, they have iden-
tical lattices, and so we can express the feasibility constraint for a
pipelined schedule as

∀ z1, z2 ∈ D(I) with π(z1) = π(z2), f(z1) > τ(z2). (1)

Intuitively, f is a feasible schedule only if no two points from the
two instances are assigned for execution on the same processing
element at the same time.

The key question is, how small can we make β while satisfy-
ing the above constraint, i.e. how quickly can we start the next
computation after the previous one has started? The answer clearly
depends on the array design, and one would therefore expect the
minimal β to be a function of both its projection vector u, which
determines π, and its schedule λ. However, we now prove that the
throughput of the array can be usefully lower-bounded indepen-
dent of the schedule λ. This important observation allows us to ef-
fectively optimize for throughput in the next section by searching
only the space of projection vector candidates, rather than having
to jointly consider projections and schedules.

1

2

23

4

3

3

4

4

4

5

5

5

5

5

i

h

g

f

e

d

c

b

a
1,1

1,2

1,3

1,4

1,5

2,2

3,3

4,4

5,5

2,5

3,5

4,5

(a) The triangular lattice is projected horizon-
tally along the dashed lines onto a linear ar-
ray of processors. The execution time of ev-
ery lattice point is shown in the circle. Proces-
sor e executes the maximum number of points:
kmax = 3.

i

h

g

f

e

d

c

b

a I 1,1

I 1,2

I 2,2 I 1,3

I 2,3

I 3,3

I 1,4

I 2,4

I 3,4

I 4,4

I 1,5

I 2,5

I 3,5

I 4,5

I 5,5

I'1,1

I'1,2

I'2,2 I'1,3

I'2,3

I'3,3

I'1,4

I'2,4

I'3,4

I'4,4

I'1,5

I'2,5

I'3,5

I'4,5

I' 5,5

time
(b) We can pipeline two instances of the same
size I and I′ with a pipelining period β =
3. We are guaranteed that there will be no
processor contention.

Figure 2. Pipelining the execution of two input instances on an array to improve throughput.

Preliminaries. Any two lattice points z1 and z2 in D(I) are
executed by the same processing element if and only if

z1 − z2 = ku , k ∈ Z,

where u is the projection vector of the array. We denote the max-
imum number of points executed by any processing element as
kmax = 1 + kilp where

kilp = max { k | z1 − z2 = ku, z1, z2 ∈ D(I) }

Since the domain of the system of recurrence equations can be
defined as a convex polyhedron Cz ≤ d, we can find kilp by
solving the following integer linear program:

Maximize k (2)
z1 − z2 = ku

Cz1 ≤ d

Cz2 ≤ d.

The following theorem shows that f(z) is a feasible pipelined
schedule if and only if β > kilp|λu|.

Theorem 1. f(z) > τ(z′) ∀ z, z′ ∈ D(I) with π(z) = π(z′) if
and only if β > kilp|λu|.

Proof. For the only-if part, we know that there exist z1, z2 ∈
D(I) such that z1 − z2 = kilpu. For conflict-free pipelining the
point z1 of the first instance must execute before z2 of the second.
Similarly, the point z2 of the first instance must execute before z1
of the second.

We therefore have

f(z = z2) > τ(z′ = z1)

f(z2) > τ(z2 + kilpu)

λz2 + α+ β > λ(z2 + kilpu) + α

β > kilpλu.

Similarly, we have f(z2 + kilpu) > τ(z2) which simplifies to
β > kilp(−λu), and so the proof follows.

For the if part, assume otherwise that f(z) ≤ τ(z′) for some
z, z′ ∈ D(I). Since π(z) = π(z′), we have z′ − z = ku. WLOG,

we assume that k is a positive integer. Then we have

f(z) ≤ τ(z + ku)

λz + α+ β ≤ λ(z + ku) + α

λz + β ≤ λz + kλu

β ≤ kλu

We know that k ≤ kilp and since by definition β > kilp|λu| we
have a contradiction.

Corollary. Given multiple instances of the recurrence, all of
the same size, a valid schedule for the mth instance is given by
f(m, z) = τ(z) + (m− 1)β. Indeed, we can show that the sched-
ules for themth andm−1th instances do not overlap using a proof
similar to that of Theorem 1. By the transitive nature of a pipelined
schedule, it follows that none of the schedules overlap.

For the example in Figure 2, processor e computes the largest
number of lattice points, kmax = 3. The array being fully efficient,
we can pipeline a new input instance every three clock cycles.

3.2 Example: the Nussinov Algorithm
Existing work on the Nussinov algorithm [26] shows two arrays de-
rived from a three-dimensional uniform recurrence for it: the GKT
and GJQ arrays with projection directions [0, 0,−1] and [−1, 0, 0]
respectively. Both have a latency-optimal schedule τ(i, j, k) =
−2i+2j−k−1 and an execution time of 2N −6 clock cycles for
a problem of size N . We can use our theorem above to show that
these arrays permit pipelining to realize throughput greater than the
trivial bound implied by their latency.

We retain the latency-optimal schedule and determine the
throughput of the two arrays using Theorem 1. The throughput of
the GKT array with projection direction [0, 0,−1] is the reciprocal
of kmax = N−1

2
and the array efficiency is 100%. By pipelining

a new instance of the input every N−1
2

clock cycles, we obtain an
implementation that is 4× faster than the latency-optimal one.

Similarly, we derive the throughput of the GJQ array to be the
reciprocal of kmax = N − 2, which is 2× faster than the latency-
optimal array. In this case, however, |λu| = 2 and so we must
simultaneously compute two instances of the input on the array.

3.3 Implications for design-space exploration
We have shown in Theorem 1 that the block pipelining period
must be greater than kilp|λu|. The product |λu| is the reciprocal
of array utilization (see Section 2.3); confronted with an array that
is not fully efficient, we can increase the throughput by simply
computing |λu| input instances simultaneously (assuming the I/O
bandwidth is not a limitation). The throughput achievable on such
an array is therefore |λu|

kilp|λu|+1
, which is upper bounded by 1

kmax

input instances per clock cycle. We conclude that for any schedule,
regardless of the utilization, the throughput is always at least as
good as 1

kmax
.

Knowing that throughput of a systolic array is effectively in-
dependent of its schedule greatly simplifies our exploration of ar-
ray design space. We can search over possible projection vectors
to find one with near-optimal throughput and only then derive its
schedule, rather than having to consider both allocation and sched-
ule simultaneously. More concretely, suppose we choose some pro-
jection vector uwith throughput 1

kmax
that satisfies the input band-

width constraint. The system can transfer data words for one input
into the array every kmax clock cycles. Select any schedule such
that the utilization of the array is the reciprocal of γ = |λu|. The
system must now transfer data words for γ input instances in time
(kmax−1)γ+1, which leaves the throughput and input bandwidth
requirement nearly unchanged. Hence, we can be confident that the
estimate 1

kmax
is a good guide to the actual throughput of our cho-

sen array, and that the bandwidth requirement remains feasible no
matter the actual array utilization.

4. Finding Throughput-Optimal Projection
Vectors

We now describe a procedure for searching the space of projection
vectors u for a given set of recurrences to discover high-throughput
array designs. We do not limit ourselves to a single array design;
rather, we seek a collection of throughput-optimal arrays with a
variety of different area requirements. Because the number of pro-
cessing elements, and hence the area, in an array scales with its
input size, a very high-throughput but area-intensive array may be
feasible for small input sizes, while only lower-throughput arrays
may be feasible for larger sizes. We can switch among these arrays
by reconfiguration to process a collection of different-sized inputs
as efficiently as possible, achieving better overall throughput than
any single array. We refer the reader to recent work [14] for a de-
scription of one practical reconfiguration strategy.

It is instructive to study how variation in the projection vector
affects the characteristics of the array. In general, increasing the
magnitude of u increases throughput but may also increase the
input bandwidth consumed, resource requirements, or the lengths
of the interconnection network.

Increasing the magnitude of the projection vector decreases the
number of points executed by each processing element in the array.
This frees up processors sooner for the next input but comes at
the cost of increased resource usage — more processing elements
are required to execute all points in the domain for any one input.
In the extreme case, we can increase the magnitude of u so much
that only one point is executed on each processing element. The
resulting array has the best possible block pipelining period of 1.
In practice, however, we are limited by the on-chip resources and
cannot use this extreme solution, so we assume in what follows that
each processing element executes at least two lattice points in the
domain. A more precise bound on throughput as a result of FPGA
resource constraints is given later in this section.

Another constraint on our search is that keeping the array fully
fed with input must not require more than the available input

bandwidth into the FPGA. To enforce this constraint, we now show
an bandwidth-derived upper bound on the magnitude of u, using a
technique similar to that of Wong and Delosme [27] for finding a
space-optimal allocation.

4.1 A search procedure for projection vectors
Our search for feasible projection vectors will be an enumerative
approach using upper bounds on the magnitude of the vector. We
will base these bounds on two important constraints: the input
system bandwidth, and the available FPGA resources. The basic
mathematical tools were first used by Wong and Delosme [27] to
develop bounds for space-optimal projection vectors.

4.1.1 Basic Definitions
We describe fundamental definitions for convex bodies in this sec-
tion. A detailed introduction is available in standard texts [28]. For
a closed convex body D, such as that described by a system of re-
currence equations, the support function h is defined as

h(s) = max { zs | z ∈ D },

where s is a unit vector of dimension n. Intuitively, the support
function gives the distance along direction s from the origin to the
support plane ofD that has exterior normal vector s (see Figure 3).
We define the width of D in the direction s as the distance between

h(s) = 20

h(-s) = 9 w(s) = 11

-s

s

Figure 3. Width of a convex body in the direction s. The number
of lattice points along direction s is 1 + w(s).

the two support planes of D orthogonal to s and −s:

w(s) = h(s) + h(−s).

We now present three facts we will use in deriving our bounds.
We refer the reader to Wong and Delosme [27] for their proofs.

Fact 1. Given a projection direction u (not necessarily a unit
vector) the maximum number of lattice points executed on any
processing element, kmax, is at most

1 +

—
w(u)

|u|2

�
.

Fact 2. An upper bound on w(u) can be shown to be

w(u) ≤ |u|
p
w(e1)2 + w(e2)2 + . . .+ w(en)2,

where ei is the ith canonical row vector whose ith element is one
and all others are zero; w(ei) is the width of the lattice along the
ith dimension.

Fact 3. If the projection of D by a vector u is Du, the number of
lattice points in Du is bounded from below by

|Du| ≥
|D|

1 +

—
w(u)

|u|2

� .
4.1.2 Input bandwidth bound
We will now develop a bound on the magnitude of the projection
vector using the input bandwidth constraint. The bandwidth re-
quirement of the array is determined by the data requirement per
input instance and the throughput of the array. We will relate the
throughput, given by kmax, to the width function and use it to de-
rive a bound on |u|.

We assume that the final clock period of the array is known.
For a systolic array this will likely be determined by the logic in a
processing element. Routing delays on long wires and controller
logic may also affect the clock period but there are techniques
to estimate this period for systolic arrays [25]. We can use one
of many heuristic techniques [30] or simply synthesize a single
processing element to estimate its period. We then compute the
system input bandwidth: m data bits per clock period of the array.
We are given the data requirements of the array, say b data bits
per input instance. In general this is a function of the input size
(recurrence size parameters). In what follows, we assume the size
parameters have been fixed.

For the input bandwidth constraint to hold, the array must sat-
isfy the following equation

b

kmax
≤ m.

Rearranging terms, we have

kmax ≥ b

m
.

We assume that b > m, since otherwise the recurrence is not
bandwidth limited and we can select any u such that only one lattice
point is executed on every processing element; there is no need of
a search.

We can use Fact 1 to inject the projection vector into the band-
width constraint:

1 +

—
w(u)

|u|2

�
≥ b

m
.

Since we assume (though it is not essential to our derivation) that
each processor executes at least two lattice points, kmax ≥ 2, and
so —

w(u)

|u|2

�
≥ 1.

Simplifying, we have

2w(u)

|u|2 ≥ b

m
.

Using Fact 2 we substitute for w(u) to get

2|u|
|u|2

p
w(e1)2 + w(e2)2 + . . .+ w(en)2 ≥ b

m
,

which simplifies to

|u| ≤ 2m

b

p
w(e1)2 + w(e2)2 + . . .+ w(en)2. (3)

We now compute the bandwidth bound for the sorting, Smith-
Waterman and Nussinov recurrences. Our FPGA system supports
an input bandwidth of 64 bits per clock at 133 MHz; we assume the
generated hardware arrays will clock at least as fast. These numbers
are representative of modern FPGA systems.

For the sorting application, we assume it operates on N 32-bit
integers. We have w(e1) = N and w(e2) = N + 1, and the bound
on the magnitude of the projection vector forN = 10, 100, or 1000
is 6.

Take an instance of the banded Smith-Waterman algorithm that
aligns a query to a target protein sequence, each of length N . The
characters of a protein sequence may be represented using 5 bits.
We assume the query is fixed and each input instance is a new target
sequence. The width of the lattice along the canonical row vectors
is N − 1; for N = 300 and 500, the bound is 37. If instead the
array was used to align 16-bit unicode text documents we get a
more reasonable bound of 12 for documents of length 300.

The Nussinov algorithm folds an RNA of length N , where each
character of the sequence can be represented in 3 bits. The width of
the lattice along the three canonical row vectors are N − 3, N − 3,
and N−3

2
. Bounds forN = 25 and 50 are 57 and 61, too large to be

useful. This is due to the fact that with just three bits per character,
the algorithm is far from being bandwidth-constrained.

We conclude that the bandwidth bound is useful in restricting
the search space, but only if the recurrence has high data require-
ments, or the bandwidth into the FPGA system is limited.

4.1.3 FPGA resource bound
In the case of an FPGA target we are uniquely able to exploit the
resource constraint, i.e., the number of processing elements that can
be instantiated on the device. Unlike an ASIC, an FPGA has a fixed
number of logic gates that may be used to instantiate processing
elements—there is no penalty in using as many of them as required.

The regular nature of systolic arrays with recurring processing
elements enables us to predict the resource usage with relative con-
fidence. The primary contribution to area is the logic within the
processing element which can be estimated from the body of a re-
currence. Handling logic predicated by conditional statements in a
recurrence is challenging since depending on the projection direc-
tion some processing elements may not need to instantiate the logic
and will use fewer resources. We may overcome this problem by ei-
ther taking a conservative approach and overestimating the number
of processing elements that can be instantiated, or by computing an
average processing element based on the size of conditional subdo-
mains.

Existing work [30] estimates the number of logic gates used on
a specific FPGA device for any hardware circuit in a high level
description. The authors are able to estimate resource usage for
large designs to within 5% of the true value in less than a second.
Unfortunately, we did not have access to similar tools so we predict
the maximum number of processing elements that can be placed
on an FPGA device using actual synthesis results. This is done by
building a single processing element using the Synplify synthesis
tool (execution time is in the order of minutes).

Let the predicted maximum number of processing elements that
can be instantiated on the FPGA device be p. Projection of the
domain D by the vector u induces the processor space Du. To
satisfy the area constraint, we must have

|Du| ≤ p.

Substituting the lower bound in Fact 3 we get

|D|

1 +

—
w(u)

|u|2

� ≤ p.

Using the two-points-per-processor constraint as in the previous
section, we obtain

|D|
2w(u)

|u|2
≤ p.

Substituting Fact 2 for w(u) and simplifying, we get the bound

|u| ≤ 2p

|D|
p
w(e1)2 + w(e2)2 + . . .+ w(en)2. (4)

Note the similarity between the bandwidth and area bounds.
Returning to the Nussinov algorithm, we generated a processing

element with a 16-bit datapath using all logic resources on a Xilinx
Virtex-4 LX100-12 FPGA. From this we predict (optimistically)
that at most 700 processing elements can be synthesized. For N =
25 and 50 the area bound is 38 and 10 respectively. The latter is
a workable bound for an enumerative search process. With a 32-
bit datapath we get a prediction of 327 processing elements and a
bound of 18 and 5 for the two lengths.

For the banded Smith-Waterman algorithm, we are able to sup-
port up to 480 9-bit processing elements on the FPGA device; here
the limiting factor is the number of available block ram memories.
We used a band length of 66 and sequences of 300 and 500 char-
acters, which are reasonable for typical protein sequences. In each
case the bound derived is 22, slightly lower than the one previously
derived. In a practical implementation banded Smith-Waterman is
likely to be one of many hardware stages on the same FPGA and
will have fewer available resources leading to a better bound.

5. Finding Compatible Schedules
Given a projection vector, we use standard techniques [21, 22,
23, 24] to derive a linear schedule satisfying the constraints in
Section 2.1. The schedule must also not conflict with the selected
projection vector.

We formulate an integer linear program using the Vertex method
to find the lowest latency schedule. As noted in Section 3, however,
the effect of latency on the total execution time of a large number
of inputs is negligible. We have another criterion that may be
optimized: the reciprocal of array utilization γ. An array that is not
fully efficient requires pipelining of multiple inputs simultaneously.
As a practical matter, the hardware implementation requires γ
independent buffers at the input and output side (to interleave and
deinterleave the input/output). We may choose to minimize γ when
selecting the schedule or limit it to a user-defined cut-off. In this
work we use a weighted objective function that minimizes both γ
and the latency, with the utilization being given a higher priority.

6. Software Tool
We have written a design space exploration tool in C++ implement-
ing the ideas described in this paper. This tool is intended to be
a plugin to an automatic parallelization package such as MMAl-
pha, so that we can reuse such a package’s front-end and code-
generation phases. We assume the input recurrence has been parsed
and directly read its dependencies, vertices and the polyhedral do-
main of computation from text files. We used the Polyhedral li-
brary [31] for polyhedral manipulations, the PIP library [32] for
solving integer linear programs, and the Barvinok library [33] for
counting the number of integral points in a polyhedron.

The main loop shown in Algorithm 1 iterates over the space of
candidate projection vectors analyzing their throughput and find-
ing compatible schedules. The output is a collection of arrays, one
for every distinct value of throughput. The selected schedule and
allocation functions may be passed on to MMAlpha for array gen-
eration. Finally, the program detailed in [14] selects a sequence of
one or more of these arrays depending on the input distribution for
use on FPGA devices that support run-time reconfiguration.

7. Results
Tables 1-3 show some of the projection vectors suggested by
our software on the three example recurrences. In each case, the

Algorithm 1 Explore allocation/schedule space
1: procedure EXPLORE(Recurrence, Parameter Instantiations)
2: bound← min(BandwidthBound,ResourceBound)
3:
4: for each projection vector u within bounds do
5: T ← Throughput(u)
6: π ← Allocation(u) . π is nullspace basis of u
7: τ ← Schedule(u)
8: ll← AverageLinkLength(π)
9: . Links in the induced interconnection network

10: #PE ← NoPEs(π, τ)
11: . Count the number of PEs in the processor space
12: end for
13:
14: Sort the solutions by T , #PE, γ and ll
15: Select one array for every distinct T
16: end procedure

Table 1. Some arrays showing the throughput-area tradeoff for the
sorting recurrence. The example assumes 100 32-bit integers and a
bound of 6.

u kmax #PEs γ Latency Avg. ll
0 1 N + 2 101 1 201 0.5
1 0 N + 1 102 1 201 0.5
1 1 N + 1 102 2 201 1.0

1 -1 N+3
2

202 1 301 1.0

2 -1 N+4
3

302 1 201 1.5

3 -1 N+5
4

401 1 302 2.0

3 -2 N+6
5

499 1 201 2.5

5 -1 N+7
6

596 1 504 3.0

4 -3 N+8
7

692 1 201 3.5

Table 2. Throughput-area tradeoff for banded Smith-Waterman for
sequences of length 300 and a band width of 66. A bound of 22 was
used.

u kmax #PEs γ Latency Avg. ll
1 1 N 66 2 598 0.7
1 0 66 300 1 598 0.7
0 1 66 300 1 598 0.7
1 -1 33 599 1 897 1.3
2 -1 22 898 1 598 2.0
3 -1 17 1197 1 897 2.7
3 -2 14 1494 1 598 3.3
4 -3 10 2088 1 598 4.7
3 -5 9 2385 1 897 5.3

latency-space optimal array is shown within the first three rows.
For every projection vector, we are able to find a schedule that
maximizes utilization with only a minor increase in latency that can
easily be amortized over hundreds of inputs. The average length of
the links in the array’s interconnection network increases for high
throughput arrays. Banded Smith-Waterman shows a number of
attractive arrays with throughputs equal to multiple fractions of the
width of the band. Protein sequences have an average length of 300
but may be several times longer, allowing us to use a combination
of these arrays on a reconfigurable target.

The results for Nussinov show the two standard arrays: -1 0 0
and 0 0 -1. As mentioned in Section 3.2, in the case of the for-
mer, the array utilization is 50%, and we have to simultaneously
pipeline two RNA sequences through the array. Our tool suggests
an alternate projection 1 1 0 with the same throughput and area re-
quirement that is fully efficient. Latency increases 1.5× but is eas-

Table 3. Throughput-area tradeoff for the Nussinov recurrence
with N = 51 and a bound of 10.

u kmax #PEs γ Latency Avg. ll
1 1 0 N − 2 625 1 144 1.6
-1 0 0 N − 2 625 2 96 0.9
0 1 0 N − 2 625 2 96 1.1

0 0 -1 N−1
2

1225 1 96 1.1

1 1 -1 N
3

1801 1 96 2.0

0 1 2 N+1
4

2353 1 144 1.7

2 1 -2 N+2
5

2882 1 144 2.9

0 1 3 N+3
6

3388 1 192 2.1

3 3 2 N+4
7

3872 1 144 2.7

ily amortized. Many other projections with lower block pipelining
periods are presented.

As expected, an increase in throughput causes a proportional in-
crease in the number of processing elements. One might be tempted
to simply use multiple instantiations of the latency-space optimal
array on the FPGA device. This approach, however, is not scalable
with the number of parallel instantiations. Having y parallel units
increases the number of processing elements performing I/O by a
factor of y. For example, in the Nussinov example each array has
N processing elements that read the input sequence. Furthermore,
each unit requires independent I/O buffers or a bus with potentially
long delays. In the Smith-Waterman example, we need five parallel
units of array 1 1 to achieve the same throughput as array 1 0. Us-
ing a single high throughput array does not cause a similar increase
in I/O to processing elements and each new problem instance can
be loaded sequentially in time.

The bandwidth and area bounds we have developed are quite
loose, as can be seen from the results; however, the execution
time of the design space exploration tool is not a concern. The
sorting and Smith-Waterman recurrences run in under 5 seconds
and Nussinov in 35 seconds on an Intel Core 2 Duo workstation.
In these three cases, 36, 464 and 1729 candidate projection vectors
were explored. These running times compare quite favorably to the
hardware synthesis time, which amounts to several hours per array
design.

Next we used our software to predict the performance of a
Nussinov accelerator on a Xilinx Virtex-5 LX330-2 FPGA. We do
not have physical access to the device but would like to estimate
the speedup possible by moving to the newer generation of FPGA
devices.

We synthesized a processor with a datawidth of 5 and estimated
that at most 2590 of them may be placed on the target. We gener-
ated the list of arrays for N = 50 (runtime 5.5 minutes) using our
tool and fed the algorithm outlined in [14] to estimate the speedup
on the reconfigurable target. In the referenced work the authors syn-
thesize each array to determine the largest array size that can be
placed on the FPGA. Here we approximate it using the resource
requirements of a processor from array 0 0 -1 (and is optimistic).
The task is to fold a dataset of 22.6 million pyrosequencing reads
that is sorted by sequence length.

The reconfiguration strategy predicted is shown in Figure 4.
Without reconfiguration the single latency-space optimal array 1 1
0 is used (pipelining a new sequence everyN−2 clock cycles). Al-
lowing for reconfiguration, the algorithm predicts a 37% speedup
(2.7× speedup if the single array optimizes for latency of an indi-
vidual sequence instead of overall execution time). This is despite
most of the input being biased toward the lowest throughput array.

 0 20 40 60 80 100
Sequence size

Multiple Arrays

8 3 4 2 1 -2 0 0 -1 1 1 0

Multiple Arrays

Single ArraySingle Array

Figure 4. Optimal selection of Nussinov arrays to fold pyrose-
quencing reads. Top: histogram and cumulative frequency of se-
quence lengths. Middle: design with reconfigurations. Bottom: best
single array supporting all input lengths (up to 102 bases). Size of
each array instantiation is given by length of longest sequence it
processes.

8. Related Work
Decades of research have gone into the automatic synthesis of
systolic arrays from systems of recurrence equations using the
polyhedral model [9]. As we have mentioned, the practice has been
to find a single array that has a latency-optimal schedule and a
corresponding allocation that minimizes the number of processors
generated [12]. All these methods generate an n − 1 dimensional
processor space with unidimensional time from a recurrence of n
dimensions.

The latency-optimal schedule is found using integer linear pro-
gramming methods by inspecting the execution times at the vertices
of the domain [21, 23, 24] or by application of Farkas’ Lemma on
the polyhedron’s faces [22]. We use the Vertex method to find suit-
able schedules, though minimizing its latency is not as important
as increasing the array’s utilization.

Wong [27] details an enumerative search technique to mini-
mize the number of processors in an allocation which is used by
PARO [16]. They derive bounds using tools from the geometry of
numbers. We have reused these ideas to derive input bandwidth and
area bounds applied to maximizing throughput.

Another option is to limit the search to allocation functions that
instantiate arrays that have a local interconnection network [29].
This approach does an exhaustive search over all allocation func-
tions that are guaranteed to generate interconnections that are
nearest-neighbor. It works well if we are certain of the intercon-
nection network desired, e.g. the four nearest neighbors. In many
cases, however, we wish to allow a small number of long-range
links on our FPGA device. Making such a compromise greatly
increases the search space.

Tools implementing these techniques to synthesize hardware
arrays include MMAlpha [15], PARO [16] and PICO-NPA [17].
Our design space exploration tool may be integrated into these
packages.

There are two major differences between our work and related
work: we optimize for throughput, and we identify multiple arrays
that tradeoff throughput for FPGA resources.

The only work that we are aware of to optimize the through-
put using space-time methods is by Rosseel [25]. The authors tar-
get real-time signal processing applications in video, speech and
image processing that require high throughput rather than low la-
tency. The goal is to find a single array that matches the requested
throughput (for some fixed recurrence parameters) and minimizes

the area requirement. They also use an enumerated search proce-
dure. The authors recognize that throughput is dependent on the
block pipelining period but do not directly minimize kilp; rather
they attempt to estimate the product kilp|λu| through a multi-phase
interleaved search through the allocation and schedule spaces. In
our procedure, we estimate the block pipelining period using only
the projection vector, so we can search the two spaces indepen-
dently. Priority is given to optimizing the processing element by
minimizing the area-operation interval product. This step can be
integrated into our method to optimize the processing element de-
sign. Low utilization processing elements are not preferred because
they must be clustered and increase area requirements; we simply
pipeline multiple input instances. Of the allocation candidates that
match the requested throughput, they select ones that increase av-
erage usage of the processors. Finally, the allocation matrices they
consider have elements typically restricted to 0,±1 to reduce exe-
cution time, so they may not find many interesting space mappings.

Recent work [14] exploits run-time reconfiguration on FPGAs
using multiple arrays that tradeoff throughput for area rather than
using the single latency-space optimal array. The authors give a
dynamic programming algorithm to select a sequence of one or
more of these arrays that executes small inputs on high throughput
and large inputs on low throughput arrays. Our work can be used
in a prior step to produce the candidate arrays from which the set is
selected based on the input distribution.

We do not deal with the important problem of partitioning
to process inputs that are too large to fit on an FPGA device
or recurrences of more than three dimensions. Recent work by
Bondhugula et al. [34] generates a partitioned array on an FPGA
(this reference also details related work). This is complementary to
our work; a partitioned array for large inputs may be used as one of
the reconfiguration candidates.

9. Conclusion
In this work we have introduced a procedure to systematically
find throughput-optimal systolic arrays from uniform recurrence
equations. We are motivated by throughput rather than latency as
a performance metric and the use of a reconfigurable target that
can select from multiple arrays which tradeoff throughput for area.
We describe how to optimize for throughput by only inspecting the
projection vector space and derive bounds based on bandwidth and
area constraints for an enumerative search. We have shown results
for a number of algorithms including the Nussinov RNA folding
recurrence.

In the future we plan to research extensions of this approach
to locally parallel globally sequential partitioned arrays. We may
be able to use similar ideas to pipeline multiple iterations on the
partitioned array to improve throughput.

Acknowledgments
This work was supported by NIH award R42 HG003225 and NSF
awards DBI-0237902 and ITR-427794. R.D. Chamberlain is a prin-
cipal in BECS Technology, Inc.

References
[1] H.T. Kung. Why systolic architectures? Computer, 15(1):37–46, Jan

1982.

[2] SRC Computers, Inc. Series H and I MAP processors, http://www.
srccomp.com/.

[3] XtremeData, Inc. XD2000F development system, http://www.
xtremedatainc.com/.

[4] DRC Computer Corporation. DS2000 development system, http:
//www.drccomputer.com/.

[5] Nallatech. Intel Xeon FSB FPGA Accelerator Module, http://www.
nallatech.com/.

[6] Tarek El-Ghazawi, Esam El-Araby, Miaoqing Huang, Kris Gaj,
Volodymyr Kindratenko, and Duncan Buell. The promise of high-
performance reconfigurable computing. Computer, 41(2):69–76, 2008.

[7] S. Derrien and P. Quinton. Parallelizing HMMER for hardware ac-
celeration on FPGAs. International Conference on Application-specific
Systems, Architectures and Processors, pages 10–17, July 2007.

[8] Dominique Lavenier, Patrice Quinton, and Sanjay Rajopadhye. Ad-
vanced Systolic Design, in Digital Signal Processing for Multimedia Sys-
tems, Chapter 23, Parhi and Nishitani eds, March 1999.

[9] Patrice Quinton. Automatic synthesis of systolic arrays from uniform
recurrent equations. In Proceedings of the 11th annual International
Symposium on Computer Architecture, pages 208–214, 1984.

[10] Yoshiki Yamaguchi, Tsutomu Maruyama, and Akihiko Konagaya.
High speed homology search with FPGAs. In Proceedings of Pacific
Symposium on Biocomputing, pages 271–282, 2002.

[11] R. P. Jacobi, M. Ayala-Rincon, L. G. A. Carvalho, C. Llanos, and R.
Hartenstein. Reconfigurable Systems for Sequence Alignment and for
General Dynamic Programming. Genetics and Mol. Research, 4(3):543–
552, 2005.

[12] Frank Hannig and Jürgen Teich. Design space exploration for mas-
sively parallel processor arrays. In PaCT ’01: Proceedings of the 6th In-
ternational Conference on Parallel Computing Technologies, pages 51–
65, 2001.

[13] B. C. Brodie, R. D. Chamberlain, B. Shands, and J. White. Dynamic
reconfigurable computing. In Military and Aerospace Programmable
Logic Devices, 2003.

[14] Reference withheld, September 2009.

[15] A.C. Guillou, P Quinton, T. Risset, C. Wagner, and D Massicotte. High
level design of digital filters in mobile communications. In DATE Design
Contest, March 2001.

[16] Frank Hannig, Holger Ruckdeschel, Hritam Dutta, and Jürgen Te-
ich. PARO: Synthesis of Hardware Accelerators for Multi-Dimensional
Dataflow-Intensive Applications. In Proceedings of the Fourth Interna-
tional Workshop on Applied Reconfigurable Computing (ARC), Lecture
Notes in Computer Science (LNCS), London, United Kingdom, March
2008. Springer.

[17] Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B. Ra-
makrishna Rau, Darren Cronquist, and Mukund Sivaraman. PICO-NPA:
High-level synthesis of nonprogrammable hardware accelerators. Jour-
nal of VLSI Signal Processing Systems, 31(2):127–142, 2002.

[18] S.K. Rao and T. Kailath. Regular iterative algorithms and their imple-
mentation on processor arrays. Proceedings of the IEEE, 76(3):259–269,
Mar 1988.

[19] Kun-Mao Chao, William R. Pearson, and Webb Miller. Aligning
two sequences within a specified diagonal band. Comput. Appl. Biosci.,
8(5):481–487, 1992.

[20] S. Y. Kung. VLSI array processors. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1987.

[21] S. Balev, P. Quinton, S. Rajopadhye, and T. Risset. Linear program-
ming models for scheduling systems of affine recurrence equations—a
comparative study. In SPAA ’98: Proceedings of the tenth annual ACM
symposium on Parallel algorithms and architectures, pages 250–258,
New York, NY, USA, 1998. ACM.

[22] P. Feautrier. Some efficient solutions to the affine scheduling problem:
I. one-dimensional time. International Journal of Parallel Programming,
21(5):313–348, 1992.

[23] B. Lisper. Linear programming methods for minimizing execution
time of indexed computations. In In P. Feautrier and F. Irigoin, editors,
International Workshop on Compilers for Parallel Computers, pages
131–142, 1990.

[24] C. Mauras, P. Quinton, S. Rajopadhye, and Y. Saouter. Scheduling
affine parameterized recurrences by means of variable dependent timing
functions. Proceedings of the International Conference on Application
Specific Array Processors, pages 100–110, Sep 1990.

[25] J. Rosseel, F. Catthoor, and H. De Man. An optimisation methodology
for array mapping of affine recurrence equations in video and image pro-
cessing. In Proceedings of the International Conference on Application-
specific Systems, Architectures and Processors, pages 415–426, August
1994.

[26] A. Jacob, J. Buhler, and R. Chamberlain. Accelerating Nussinov
RNA secondary structure prediction with systolic arrays on FPGAs.
In Proceedings of the International Conference on Application Specific
Array Processors, pages 191–196. IEEE Computer Society, 2008.

[27] Y. Wong and J.-M. Delosme. Space-optimal linear processor alloca-
tion for systolic arrays synthesis. In Proceedings of the 6th International
Parallel Processing Symposium, pages 275–282, 1992.

[28] R. Schneider. Convex bodies : the Brunn-Minkowski theory. Cam-
bridge University Press, Cambridge, 1993.

[29] X. Zhong, S. Rajopadhye, and I. Wong. Systematic generation of
linear allocation functions in systolic array design. J. VLSI Signal
Process. Syst., 4(4):279–293, 1992.

[30] Dhananjay Kulkarni, Walid A. Najjar, Robert Rinker, and Fadi J.
Kurdahi. Compile-time area estimation for LUT-based FPGAs. ACM
Transactions on Design Automation of Electronic Systems, 11(1):104–
122, 2006.

[31] PolyLib - A library of polyhedral functions, 2007. http://icps.
u-strasbg.fr/polylib/.

[32] Feautrier, P. PIP/Piplib, a parametric integer linear programming
solver, 2006. http://www.piplib.org/.

[33] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner,
and Maurice Bruynooghe. Counting integer points in parametric poly-
topes using Barvinok’s rational functions. Algorithmica, 48(1):37–66,
June 2007. http://www.kotnet.org/~skimo/barvinok/.

[34] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. Automatic
mapping of nested loops to FPGAS. In PPoPP ’07: Proceedings of the
12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 101–111, New York, NY, USA, 2007. ACM.

	Throughput-optimal systolic arrays from recurrence equations
	Recommended Citation
	Throughput-optimal systolic arrays from recurrence equations

	tmp.1415131658.pdf.fBrOU

