View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-17

1988-05-01

Using a Partial Order and a Metric to Analyze a Recursive Trace
Set Equation

Jan Tijmen Udding and Tom Verhoeff

In Trace Theory the notion of a process is defined in terms of a set of finite-length traces over an
alphabet. These processes are used as the semantics for a program notation. The program text
for a recursive component naturally gives rise to an equation over trace sets. This paper takes
two approaches at the analysis of that equation. The first approach is based on a partial order
and it concentrates on the projection operator for processes. This yields a condition under
which the greatest solution of that equation can be approximated by iteration. The second
approach introduces a... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Udding, Jan Tijmen and Verhoeff, Tom, "Using a Partial Order and a Metric to Analyze a Recursive Trace
Set Equation" Report Number: WUCS-88-17 (1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/774

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233234732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/774?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/774

Using a Partial Order and a Metric to Analyze a Recursive Trace Set Equation

Jan Tijmen Udding and Tom Verhoeff

Complete Abstract:

In Trace Theory the notion of a process is defined in terms of a set of finite-length traces over an
alphabet. These processes are used as the semantics for a program notation. The program text for a
recursive component naturally gives rise to an equation over trace sets. This paper takes two approaches
at the analysis of that equation. The first approach is based on a partial order and it concentrates on the
projection operator for processes. This yields a condition under which the greatest solution of that
equation can be approximated by iteration. The second approach introduces a metric on the process
domain. Application of Banach's Contraction Theorem results in a condition under which there exists a
unique solution that can be approximated by iteration starting anywhere.

https://openscholarship.wustl.edu/cse_research/774?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/774?utm_source=openscholarship.wustl.edu%2Fcse_research%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages

USING A PARTIAL ORDER AND A METRIC TO
ANALYZE A RECURSIVE TRACE SET EQUATION

Jan Tijmen Udding and Tom Verhoeff

WUCS-88-17

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Using a Partial Order and a Metric to
Analyze a Recursive Trace Set Equation

Jan Tgmen Udding

Department of Computer Science
Washington University
Campus Box 1045
St. Louis, MO 63130, U.S.A.

Tom Verhoeff*

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands

May 1988

Abstract

In Trace Theory the notion of a process is defined in terms of a set
of finite-length traces over an alphabet. These processes are used as the
semantics for a program notation. The program text for a recursive
component naturally gives rise to an equation over trace sets. This
paper takes two approaches at the analysis of that equation.

The first approach is based on a partial order and it concentrates
on the projection operator for processes. This yields a condition un-
der which the greatest solution of that equation can be approximated
by iteration. The second approach introduces a metric on the pro-
cess domain. Application of Banach’s Contraction Theorem results in
a condition under which there exists a2 unique solution that can be
approximated by iteration starting anywhere.

*Currently on leave of absence at Department of Computer Science, Washington Uni-
versity, Campus Box 1045, St. Louis, MO 63130.

2 CONTENTS

Contents

0 The Problem and Its Context 3
0.0 General Notational Conventions. 3
0.1 TraceTheory @ . . i 4
0.2 TheEquation 5

1 Two Approaches to Recursive Equations 7
1.0 Complete Partial Orders (CPOs) 7
1.1 Complete Metric Spaces (CMSs) 10

2 Finiteness of Trace Sets 11

3 The CPO Approach 15
3.0 The Partial Order and Some Earlier Results 15
3.1 Projection and Descending Sequences of Processes 17
3.2 Application, 25

4 The CMS Approach 27
4.0 TheMetric e 28
4.1 Application e e 31

5 Conciuding Remarks 33

0 The Problem and Its Context

Throughout this paper the reader is assumed to be familiar with the basics
of Trace Theory [8,5]. To make the paper self-contained we give a brief
summary of the fundamental concepts and notations of Trace Theory in
Subsection 0.1. For more details the reader is referred to [5, §1.1-1.3]. Gen-
eral notational conventions are explained in Subsection 0.0. Subsection 0.2
states the recursive equation and the questions about it that inspired the
rest of the paper.

In Section 1 we present an overview of two general approaches to recur-
sive equations, viz. based on a partial order and on a metric. A number
of statements concerning finiteness of trace sets is collected in Section 2.
This section also contains some Trace Theoretic concepts and notations not
covered in [5]. It is only needed for the proofs in the succeeding section.
Section 3 begins with the definition of the partial order and a summary of
earlier results. The major part consists of a detailed investigation of the
projection operator. Subsequently the results are applied to the recursive
equation. In Section 4, which can be read independently of the preceding
two sections, the metric is introduced and analyzed. As an application we
strengthen an old theorem about the recursive equation and obtain a new
proof for it. Finally, we summarize the results and make suggestions for
further research in Section 5.

0.0 General Notational Conventions

We use a slightly unconventional notation for variable-binding constructs.
For example, universal quantification is denoted by

(Vi:D: E),

where V is the quantifier, { is a list of bound variables, D is a predicate,
and E is the quantified expression. Both D and E will, in general, contain
variables from [. Predicate D determines the domain over which the bound
variables range. Expression F need only be defined for values that satisfy D.
Existential quantification is denoted likewise using the quantifier 3. The
quantifier for set construction is implicit in the braces. For instance,

{i:4>0:4%}

is the set of cubes. Numbers are implicitly restricted to the set of natural
numbers unless stated otherwise.

4 0 THE PROBLEM AND ITS CONTEXT

A sequence in set D is a mapping from the natural numbers into D.
Function application is in this case often denoted by subscripting. If F is,
for example, the sequence of Fibonacci numbers then

Fopz = Fopn + F,

for n > 0.

For expressions E and G, an expression of the form E = G will often be
proved in a number of steps by the introduction of intermediate expressions.
For instance, we can prove E = G by proving E = F and F = G for some
expression F. In order not to be forced to write down expressions like F
twice, we record proofs like these as follows.

E

= {hintwhy E=F}
F

= { hint why FF = G }
G

0.1 Trace Theory

Let Q be a (possibly infinite) set; its elements are called symbols. An al-
phabet is a subset of 2. For alphabet A4 the set of finite-length sequences
over A is denoted by A*. Elements of Q* are called traces. A trace set is a
set of traces. The length of trace ¢ is denoted by £(¢). The empty trace is
denoted by ¢, and concatenation of traces is denoted by juxtaposition.

Tracet is prefix of trace u, denoted by ¢t < u, when (Jv : v € Q% : tv = u).
The prefix-closure of trace set V, denoted by pref(V), is the trace set defined
by

pref(V)={t,v:t<vAveV:t}

Trace set V is prefix-closed when pref(V') = V. Trace ¢ projected on alpha-
bet A is the trace denoted by ¢[A4 obtained from t by deleting all occurrences
of symbols not in A. That is, for trace ¢, symbol a, and alphabet A we have

e[A = e
ta[A = (t[A)a fac A
ta[A = t[A ifag 4

0.2 The Equation 5

A process is a pair (4,V) where A is some alphabet and V is a non-
empty prefix-closed trace set with V' C A*. For process T its alphabet is
also denoted by aT and its trace set by t7. As a slight abuse of notation
we shall sometimes write ¢t € T for t € t7. The collection of processes with
alphabet A is denoted by 7(A).

The weave of processes T and U is the process denoted by Tw U and
defined by

TwU=(aTual,{t:te(aTual) At[aT € T At[alU € U : t}).

Weaving models parallel composition where interaction by means of the
common symbols is symmetric and synchronous. The projection of process T
on alphabet A is the process denoted by T[4 and defined by

T{A={(aT'nA,{t:teT: t[A)}).

Projection models abstraction of {internal) communications.
A renaming p of alphabet 4 is a one-to-one mapping from A into £ such
that

(Va:a€Ad:pad A

A renaming is extended (where its domain permits) to operate on alphabets,
traces, trace sets, and processes in the obvious way. Function application
for renamings is written with a dot, i.e. p-a for p(a). For example, for
renaming p of alphabet 4 we have

pA={a:acA:pa}

and, hence, A and p-A are disjoint alphabets.

0.2 The Equation

The processes of Trace Theory serve as the semantics of a program nota-
tion [5, Ch. 2]. The semantic function that maps a program text onto its
associated process will be denoted by PR ([5] uses TR). Instead of giving
a complete definition of the program notation’s syntax and the semantic
function PR we present just enough to describe the problem studied in this
paper.

The simplest form of program text is a regular expression over { (ex-
cluding @), which is also called a command. The meaning of command E is
defined by

6 0 THE PROBLEM AND ITS CONTEXT

PR(E) = (A, pref(L(E))),

where A is the set of symbols that occur in F and £(E) is the language (trace
set) generated by E. We use the following operators in regular expressions
(in order of increasing binding power): bar (|) for union, semicolon (;) for
concatenation, and asterisk (*) for Kleene closure. For example, we have

PR(a|b;c*) = ({a,b,c},{e,a} U {i:9 > 0:0(c)}).

Process R is regular when there exists a command F such that R = PR(E).

A more complex program text, also called component, combines: a pro-
cess defined previously by some other program text, a renaming, and a
command. The exact syntax of components does not concern us here. We
are interested in the way that the meaning of such a component is defined
in terms of its three parts. Comnsider component ¢ consisting of: previ-
ously defined component d, renaming p of aPR(d), and command F with
p-aPR(d) C aPR(E). The meaning of ¢ is defined by

PR(c) = (PR(E)w p-PR(d))[4,

where alphabet A equals aPR(E) \ p-aPR(d). The idea is that in compo-
nent ¢ processes PR(E) and PR(d) operate in parallel, being connected ac-
cording to p. Alphabet A gives the external communications of ¢ (aPR(c) =
A) and all communications with PR(d) are internal. The latter means that
PR(d) is a local process of ¢; d is, therefore, called the subcomponent of c.
The way the meaning of ¢ is obtained from its constituents resembles the
master/slave operator of 7).

Now imagine that we attempt to define a recursive component ¢ that
has itself as subcomponent, by requiring for subcomponent d that it has
the same meaning as ¢, that is, PR(d) = PR(c). The equation defining the
meaning of ¢ then becomes

PR(c) = (PR(E) w p-PR(c))[A. (0)

There are a number of questions to be asked abouf this equation if it is
to serve as a definition for the meaning of recursive components. Does
the equation have a solution for PR(c)? Is there, possibly, more than one
solution? If the solution is not unique, can we easily single out a specific
(canomnical) solution? Can we prove things about the canonical solution?
Can the canonical solution be “implemented”? Can the canonical solution,
for instance, be captured explicitly in a closed formula, maybe as some limit
of “manageable” (finite, regular) approximations?

These are the questions that inspired this paper. We shall deal with
a generalization of recursive equation (0). We do not restrict ourselves
to regular processes in the role of PR(E). Hence, we get the following
problem formulation. Given alphabet A, renaming p of 4, and process R in
T(AUp-A) analyze the recursive equation

§ = (Rwp-5)[4, (1)

for processes S in T(A). Since (1) is trivially satisfied as far as the alphabets
of the processes are concerned, the problem can also be cast in a trace
set form: Given alphabet A, renaming p of A, and trace set R with R C
(AU p-A)* analyze the recursive trace set equation

S={t:te RAt{pAdepS:t[A}

for trace sets S with S C A*.

1 Two Approaches to Recursive Equations

Let us generalize equation (1) even further. Define the function f from 7(A)
into 7(A4) by

f(8) = (Rwp-S)[A. (2)
Equation (1) can now be rephrased as
f(s) =35,

that is, we are interested in fixed points of this function f.

Even more abstractly, suppose we have some set D and a function f
from D into D. We are interested in the equation z: f(z) = z over D, i.e.
in fixed points of f. We give an overview of two ways in which further
knowledge about D and f can be helpful to analyze this equation.

1.0 Complete Partial Orders (CPOs)

For the first approach it is necessary to find a partial order T on D, that
is, a reflexive, antisymmetric, and transitive relation C on D. The struc-
ture (D, L) is then called a poset.

Let us assume we have found such a relation C on D. This gives rise to
the following notions for a subset X of D:

8 1 TWO APPROACHES TO RECURSIVE EQUATIONS

o Jeast element of X,

e upper bound of X,

s least upper bound of X, and
o X is a chain.

We assume that the reader is familiar with the first three notions (cf. [1]).
If X, X C D, has a least upper bound in D then this least upper bound
is denoted by | |X. A chain is a subset of D on which T induces a linear
order. We call a poset complete, or a CPQ, when every chain has a least
upper bound in D. Notice that 0 is a chain and that | |# is the least element
of the CPO; it is called bottom and denoted by L.

The above notions for subsets are extended to sequences by applying
them to the subset {n:n > 0: 5.} for sequence S in D. Sequence § in D
is called ascending when S, [S,41 for all n > 0. Notice that in this case
the set {n:n >0:5,} is a chain in D.

Function f:D — D is monotonic on the poset when z T y implies
flz) € f(y) for every z and y in D. Moreover, we call function f upward
continuous when for every ascending sequence § in D that has a least upper
bound, the least upper bound of {n:n > 0: f(S,)} exists and

f(l_j{n:nz 0: 5) =] [{n:n>0:F(5.)}

Abian~Brown’s Fixed Point Theorem [0, Thm. 2] implies that a monotonic
function on a CPO has a (unique) least fixed point. Furthermore, if f is
upward continuous, then its least fixed point is

| fn:n 20 2L},

where f™ denotes the function f iterated n times,

Thus, if we can find a relation C on D such that {D,C) is a CPO and
f is monotonic on this CPO, then the equation z: f(z) = z has a (unique)
least solution in D. If f is also upward continuous, then this least solution
can be approximated by iteration of f starting in L.

In the literature there is little agreement on the terminology regarding
posets. Especially, completeness and continuity have been defined in many
ways, often yielding subtly different concepts. When choosing between al-
ternative definitions one faces three conflicting interests: the complexity of
the concepts, their range of application, and the complexity of proofs about
fixed points. Our choice yields fairly simple definitions for completeness and

1.0 Complete Partial Orders (CPOs) 9

continuity with wide applicability, but the proof for the existence of a least
fixed point is complicated (it needs to be done only once, of course). The
reader may wish to consult [6] for some pointers into the literature.

The dual of relation C on D is the relation J defined by

rdy =yCe

for all z and y in D. Notice that the dual of 3 is again C. The dual of a
notion defined in the context of the structure (D,C) is that same notion but
now placed in the context of the dual structure (D, 3). Table 0 lists pairs of
notions that are dual. Notice that poset, chain, and monotonic are self-dual,
but CPO is not. We may thus go back and forth between dual structures or
we may stick with one and consider dual notions instead. We have preferred
the latter, which explains why Subsection 3.1 is about descending sequences
even though they have not been mentioned so far.

poset -~ poset
least — pgreatest
upper bound - lower bound
bottom - top

chain — chain

ascending - descending

monotonic - monotonic

upward continuous — downward continuous

CPO - every chain has

greatest lower bound

Table 0: Dual notions

Even if one is only interested in functions from a poset into itself, then
it may still be useful to generalize the notions of monotonicity and continu-
ity to functions from one poset into another. The reason is that function
composition maintains monotonicity and continuity. Thus monotonicity of
a function from a poset into itself can be proven by decomposing it into a
number of simpler functions mapping into (possibly) different intermediate
posets and proving their monotonicity separately.

For example, if (Dg,Lo) and {D;,E;) are posets, then f: Dy — Dy is
called monotonic when

10 1 TWO APPROACHES TO RECURSIVE EQUATIONS

zCoy = f(z)C1 f(v)
for all ¢ and y in Dy, If g: Dy — Dy is also a monotonic function, then
g o f maps Dy monotonically into itself. The definitions of upward (and
downward) continuity are extended in a similar way.

1.1 Complete Metric Spaces (CMSs)

In the second approach one needs to find a metric d on D, that is, a function
d:D x D — R, where R is the set of real numbers, such that for all z, v,
and zin D

0. d{=z,y) > 0,
Ldz,y)=0=z=uy,
2. d(w’y) = d(y’m)’ and

3. d(z,y) < d(z,z) + d(z,y).

The structure (D, d) is then called a metric space.
Let us assume that d is a metric on D. This gives rise to the following
notions for a sequence S in D:

e limit of S, and

¢ S is a Cauchy sequence.

We assume that the reader is familiar with the first notion (cf. [4]). Se-
quence S is a Cauchy sequence when

(Ve:e>0:(AN 2 (VYmm:m> NAn> N :d(Sn,5) <€),

where ¢ ranges over the real numbers. A metric space is called complete, or
a CMS, when every Cauchy sequence has a limit in D.

Function f: D — D is a contraction on the metric space when there exists
a real number ¢, 0 < ¢ < 1, such that

d(f(2), f(¥)) < e* d(z,y)

for all z and y in D. Banach’s Contraction Theorem states that a contraction
on a CMS has a unique fixed point and that for every = in D this fixed point
equals the limit of the sequence S defined by S, = f™(z).

Thus, if we can find a metric d on D such that {D,d) is a CMS and f
is a contraction on this CMS, then the equation @: f(2) = z has a unique
solution in D and it can be approximated by iteration of f starting anywhere
in D.

11

2 Finiteness of Trace Sets

In this section we have collected a number of statements concerning the
finiteness of trace sets.

We write #V for the number of elements in set V. “Set V is finite” will
also be expressed by the formula #V < oco. The length of trace set V is
denoted by £(V') and is defined by

{9) = 0,
V) = (MAXt:teV:Lt)+1), for V #£0.

Trace set V is called bounded when £(V) < co. Because traces have finite
length, we obviously have

Property 0 For trace set V
#V <0 = V) < 0,
that is, a finite trace set is bounded.

Furthermore, £(t) < (V') for every trace ¢ € V. Since s < ¢ implies £(s) <
£(t), we also see that £(pref(V)) = £(V).

Property 1 For trace set V'
#V <o = #pref(V) < oo,
that is, a trace set is finite if and only if its prefix-closure is finite.

Proof Observe that V' ¢ pref(V) and that the number of prefixes of
trace ¢ equals £(¢) + 1. Therefore, we have

#V < fpref (V) < £V = 4V).

Finally, recall Property 0.
(End of Proof)

For trace set V and integer k, k& > 0, the k-th level of V is the trace set
denoted by VI* and defined by

VH = et e VALR) =k: 1}
Trace set V is called level-finite when all its levels are finite.

Property 2 If trace set V is bounded, then

12 2 FINITENESS OF TRACE SETS

#V <o = (Vh:k>0:#VIH < o0),
that is, a bounded trace set is finite if and only if it is level-finite.
Proof Observe that

V=(Uk:0<k<yv): vH),
(End of Proof)

Property 3 Prefix-closed trace set V is bounded if and only if
(Ak:k>0:VH =),

Proof Let V be a prefix-closed trace set. If V is bounded, then taking
k = £(V) will do. Now assume that VI* is empty for some k > 0. Since V'
is prefix-closed, V™ is empty for all n > & as well. Hence, V is bounded.

(End of Proof)

Trace set V' has finite fanout, denoted by finfan(V'), when
(Vi:teV:#{a:a€eQAtaeV 1ta} < o).
Obviously, a finite trace set has finite fanout.

Property 4 Prefix-closed trace set V' has finite fanout if and only if it is
level-finite,

Proof For the if-part observe that for trace t € V'
#{a:a€ QAta eV :ta} < VIO,

The only-if-part follows by mathematical induction on k: #VI9 < 1, and
for k>0

VR = (Jt:te VI {aia e QAta e V 1 ta}),

because of the prefix-closedness of V',
(End of Proof)

Lemma 0 For prefix-closed trace set V'
V)< oo A finfan(V) = #V < oo,

that is, a bounded prefix-closed trace set with finite fanout is finite.

i3

Proof TUse Properties 2 and 4.
(End of Proof)

Property 5 For trace set V and alphabets A and B such that V C 4*
and A\ B is finite

finfan(V[B) = finfan(V).
Proof Observe that on account of V' C A* we have for trace t € V
{a:acQArtaeV:a}C{a:aec QA(t[B)ac(V[B):a}u(4\B).
(End of Proof)

It may be interesting to observe that, in general, the reverse implication
does not hold in the above property.

Lemma 1 For trace set V' and alphabets 4 and B such that V' C A* and
A\ B is finite

LV)<oo A #(V[B)< oo = #V < co.

Proof Let A and B be alphabets with A\ B finite, and let V' be a trace
set with V C 4*. We derive

V)< oo A #(V[B) <

= { V) =£(pref(V)) and Property 1 }
L pref(V)) < co A #pref(V[B) < oo

= {pref(V[B) = pref(V)[B }
Upref(V)) < o0 A #(pref (V)[B) < oo

= { a finite trace set has finite fanout }
Lpref(V)) < oo A finfan{pref(V)[B)

= { Property 5, using finiteness of A\ B }
Upref (V) < 00 A firfan(pref(V))

= { Lemma 0 applied to pref(V) }
#pref(V) < oo

= { Property 1}
F#F#V < o0

14 2 FINITENESS OF TRACE SETS

(End of Proof)

The following two lemmas deal with descending sequences of trace sets.
Sequence V' is descending when V,41 C V, for all » > 0. Since the poset
{P(X),C}) is well-founded—that is, every non-empty chain in it has a least
element—if (and only if} X is a finite set, we have
Lemma 2 If V is a descending sequence of finite trace sets, then

(Fi:i20:(Nn:n>20: V) =V),
and, thus
(Nn:n>20:V)=0= (An:n>0:V, =0).
Lemma 3 If V is a descending sequence of prefix-closed trace sets such
that all V,, are level-finite, then
#F(Nn:n2>20:M)<o0 = (In:n>0:#V, < o).
Proof Define V, as ((\n:n > 0:V,). Observe that V,, is prefix-closed
and that
VIH = (Nn:n>0: VM),
Hence, all V,,Ek] are finite. We now derive
#V, < o0
= { Properties 0 and 2, using the finiteness of 14 }
LV,) < oo
= { Property 3, using the prefix-closedness of V,, }
@k:k>0:VH = g)
= { above observation }
(Bk:kZO:(ﬂn:nZO:V#‘]):G)
= { Lemma 2, using the finiteness of V¥ }
(EIk:kZO:(E]n:nZO:V,W = 0))
= { predicate calculus }
(EIn:nZO:(EIk:kZO:Vp[,k]:@))
= { Property 3, using the prefix-closedness of V,, }
(3n:n>0:4V,) < o)
= { Properties 0 and 2, using the finiteness of Vik] }
(An:n20:#V, <)

(End of Proof)

15

3 The CPO Approach

In Subsection 3.0 a partial order on processes is defined, viz. based on the
subset ordering of their trace sets. We briefly summarize earlier results for
this partial order; for example, it is complete. Subsection 3.1 analyzes the
projection operator with regard to descending sequences of processes. We
characterize a subset of the process domain on which projection is downward
continuous. Finally, Subsection 3.2 derives an approximation theorem for
the greatest solution of equation (1).

3.0 The Partial Order and Some Earlier Results

For more details on the material of this subsection the reader is referred
to [5, §1.6].
We define the relation C on the process domain by

TCU = al'=alU A tT =+tU

for all processes T' and U. The relation C is a partial order.

Let A be an alphabet. We denote the relation that C induces in 7(A)
by the same name. The structure (7(4),C) is a poset. It has bottom and
top, viz. the processes STOP(A) and RUN(A) respectively, defined by

STOP(A) = (A,{e}),
RUN(A) = {4,A").

Least upper bound and greatest lower bound exist for every subset X
of T(A), viz.

_ . _) STOP(A) X =0
(UT.TEX.T)M{ (A, (UT:TeX:tT)) ifX#£0

and

_ o _ | RUN(A) if X =0
(ﬂT-TEX-T)—{ (A(NT:TeX:tT)) fX#0

respectively. This makes (7(A4),C) and its dual CPOs. (In fact, they are
even complete lattices.)

Weaving with a fixed process and renaming are upward and downward
continuous, and hence monotonic. Projection is upward continuous, and

16 3 THE CPO APPROACH

hence also monotonic. Since the function f defined by (2) is the composi-
tion of upward continuous functions it is itself upward continuous, and thus
monotonic. Application of the Fixed Point Theorem then tells us that f has
aleast and a greatest fixed points, Furthermore, from the upward continuity
of f we infer that the least fixed point of f is, in fact,

(Un:n>0: f{(STOP(A))). (3)

The following “standard” counterexample shows that, in general, pro-
Jjection is not downward continuous.

Example 0 Define sequence T by
Tn = {{a,b},pref{i:i > n: d'b})
and take B = {b}. Then we have:
T, = {{a,b},{i:i>0:4a'})

T.[B ({8}:{e})
Th[B ({b},{e,8}) forn>0

(Nn:n>0:Ty[B) ({6}, {e,8})
Hence, T,[B # (Nn:n > 0: T,[B).
(End of Example)

I

Because projection is not downward continuous, we cannot infer an ap-
proximation result for the greatest fixed point of f. That, in general, the
greatest fixed point of function f is not

(Nn:n20: A(RUN(A))), (4)
is shown by the next example (cf. the example following Thm. 3.0 in [9]).
Example 1 Define alphabet A as {a,b} and define process U by
U={AUpA,pref{i:i>0:(pa)(pb)a*tip}).
For n > 1 we now have
FH(RUN(A)) = (A, pref{i:i>n: a'b})
and, thus,

(Nn:n>0: f(RUN(A)) = (A,{i:42> 0:a'}).

3.1 Projection and Descending Sequences of Processes 17

This is not a fixed point since applying f once more yields STOP(A), which
turns out fo be the unique fixed point of f.

Notice that the sequence of approximations f*(RUN{A)) is the same as
the sequence T' from Example 0.

(End of Example)

In the preceding example U is not a regular process. The following
example is based on a regular process U,

Example 2 Consider alphabet 4 = {a,b,c} and process U defined by
U = PR((a;p-a)a;p-0;b|(p-a)pb;c).

For n > 1 we have
M (RUN(A)) = PR(a*;a™b]c).

Thus
(Nn:n20: fARUN(A))) = (4, {i:i>0:a'}u{c}),

which is not a fixed point. Applying f once more yields the (unique) fixed
point (4,{i:4>0:a'}).

The process can be slightly modified to reduce the size of the alphabet
by taking alphabet 4 = {a,b} and

U= PR({a;p-a);a;pb;b|(pa)pa;pb;b).

(End of Example)

3.1 Projection and Descending Sequences of Processes

In this subsection we investigate distribution of projection over the intersec-
tion (greatest lower bound) of descending sequences, because that will give
a clearer picture of why projection is not downward continuous.

In this subsection A is an alphabet, T is a descending sequence in 7(4),
and B, B C A, is an alphabet such that A\ B is finite. The process T}, is
defined as (n:n > 0:T,). From

true
= { T, is a lower bound of the sequence T }
(Vn:n>0:T, CT,)

18 3 THE CPO APPROACH

= { projection is monotonic }
(Vrn:n>0:T,[B CT,[B)
= { property of greatest lower bound }
TL[BC(Nn:n>0:Ty[B)
we infer
(Nn:n>0:T,)[B C (Nn:n>0:T,[B). (5)

We are interested in conditions under which equality holds in (5). We shall
formulate one necessary and sufficient condition and three sufficient condi-
tions for equality in (5). This will also enable us to find a condition under
which (4) does yield the greatest fixed point.

We now introduce some auxiliary concepts. For trace u, process T, and
alphabet C, the trace set orig(u,T, C) is defined by

orig(u,T,C)={t:t € T AL[C = u: ¢}
Obvious properties of orig are:
orig(u, T, C)[C C {u},
orig(w, T,C)# 0 = v e T[C, (6)
TCT = orig(u,T,C) ¢ orig(u,T",C). (7)
In the sequel we shall write orig(u,T’) as short for orig(w, T, B).
Lemma 4 For all traces u we have
orig{u,Tu) = (Nn:n > 0: orig(u, Th)).
Proof We derive

orig{w,T,,)

= { definition of 7, }
orig{u,(Nn:n>0:Ty))

= { definition of orig }
{t:tet(Nn:n>20: T)AL[B=u:t}

= { definition of N }
{t:(Vrn:n>0:teTy)At[B=u:t}

3.1 Projection and Descending Sequences of Processes 19

= { predicate calculus, using (In ::n > 0) }
{t:(V¥n:n20:teT, At[B =u):t}

= { definition of () }
(Nn:n2>0:{t:te T, At{B =u:1t})

= { definition of orig }
(Nn:n2>0:orig(e,Ty))

{End of Proof)

For trace u, process T', and alphabet C, the number minorig{u,T, C) is
defined by

minorig(w,T,C) = (MINt : ¢t € orig(u,T,C) : £(2)).

Notice that minorig(u, T, C) = co if and ouly if orig(u, T, C) = @, that is, iff
1 ¢ T[C. Again, we write minorig(u,T) for minorig(u, T, B). For instance,
in Example 0 we have minorig(h,T,) = £{a™b) = n + 1.

For convenience, we define the sequence U and process U, by U, = T,[B
and U, = (Nn:n > 0:U,). Thus, (5) expresses that 7,,[B C U,. We also
adopt the following convention for naming traces. Traces ¢ and #; belong to
trace structures with alphabet A (like T, and 73,), and traces u, u;, and v
belong to trace structures with alphabet B (like U, ard U,).

Theorem 0 Equality holds in (5) if and only if
(VuiueUy: (3K = (Vn:n>0: minorig(u, T} < K))). (8)

Proof We show the two implications separately.

Only if) Assume equality holds in (5), that is, 7,[B = U,. Let u € U,
Hence, v € T,{B. On account of (6), take some ¢ € orig(u,7.). From
Lemma 4 we then infer (Vn : n > 0: ¢ € orig(u,T},)). Therefore, taking
K = {(t) suffices as upper bound. This proves (8).

If) Assume condition (8) holds. Let u € U,. On account of assumption (8)
let K be an upper bound of {n : n > 0 : minorig(u,T,,)}. Consider the
sequence of trace sets .S defined by

Sp = {t:t € orig(u,Tp) A1) < K : t}.

Since A\ B is finite, £(S,) < K +1, and S.[B = {u} is finite, Lemnma 1 tells
us that each 5, is finite. Furthermore, this sequence is descending by (7).
We now derive

20

true

= {choiceof X }
(Vo:in>0:8,#0)

= { Lemma 2 using the finiteness of all S, and that S is descending }
(Nn:n>0:5,)#0

= {8, Corig(u,Th) foralln }
(Nn:n>0:o0rg(u,T,))#0

= {Lemma4}
orig(u,T,) # @

= {(6)}
v € Tu[B

This proves equality in (5).
(End of Proof)

3 THE CPO APPROACH

The following example shows that (8) is not a sufficient condition for
equality in (5) if A\ B is allowed to be infinite.

Example 3 Take A= {i:%>0:qa;} U {b}, define the sequence T by

To={A,pref{i:i>n:ab})

and take B = {b}. Then we have:

T
T, [B
T.[B

Uw

i

It

(4,{e})
(B, {e})
(B, {e,6})
(B, {e,b})

forn>0

Thus, T4 B # U., but (8) is satisfied, because we also have:

minorig(e,T,) = 0,

minorig(b,Tn) = £(axd) = 2.

Notice that orig(h,T,) is infinite for every n > 0.
(End of Example)

Theorem 1

Equality holds in (5) if

3.1 Projection and Descending Sequences of Processes 21

(Vu(3n:n>0:forig(y,T,) < c0)). (9)

Proof We show that (9) implies (8), and apply Theorem 8. Assume (9).
Let » be a trace in U,. On account of (9) let 4, ¢ > 0, be such that
#orig(u,T;) < co. Now define K as (MAXt : t € orig(u,T3) : £(1)).
Because the sequence 5 defined by S, = orig(u,T,) is descending, this K
suffices as upper bound in (8).

(End of Proof)

Example 4 That (9) is not a necessary condition for equality in (5),
follows from the constant sequence T defined by

T = {{a,b}, {1 :1>0:a'})

with B = {b}. This sequence does not satisfy (9), but, of course, we do have
equality in (5).

(End of Example)

Before we strengthen (9) we introduce another auxiliary concept. We say
“process T’ diverges when projected on alphabet C”, denoted by div(T,C),
when

(Fu : #orig(n, T, C) = o0).

If aT' \ C is finite, then div(T,C) is equivalent to Lvelockfree(aT \ C,T) as

defined in [5, Ch. 5]. In case aT \ C is infinite, this equivalence does not

hold as is shown by projection of process Ty on alphabet B from Example 3.
From (7) we infer

T CT' A din(T,C) = din(T,C). (10)
We write div(T") as short for div(T’, B).
Theorem 2 Egquality holds in (5) if

(An:n > 0: =div(T,)). (11)
Proof We show that (11) implies (9), and apply Theorem 9:

(3n:n>0:div(Th))
= { definition of div }
(3n:n>0:(Vu: Forig(u,Th) < o))

22 3 THE CPO APPROACH

= { predicate calculus }
(Vu:(dn:n>0: H#orig(u,Ty) < co))

(End of Proof)

That (11} is strictly stronger than (9) follows from
Example 5 Define sequence T by
Tn = {{a,b},pref{3,7: 1> nAj 2 0:8a})

and take B = {b}. This sequence satisfies (9), because for n = £(u) + 1 we
have #orig(u,T,) < 1. But it does not satisfy (11), since every T3, diverges
when projected on B. Notice however that

T = {{a,b},{i 1 i > 0: 5},

hence, Ty, does not diverge when projected on B. This inspired Theorem 3
below,

(End of Example)

Property 6 For trace u, process 7', and alphabet C, the trace set
(Uv:v <u:orig(e,T,0))

equals the trace set
{t:teTA(Bv:v<urt[C =v):t}

and it is prefix-closed.

Proof We derive

te(Uv:v<u:org(w,T,C))
= { definition of |J and orig }

(Fv:v<uit e TALC =)
= { predicate calculus }

teT A (dviv<u:t[C =)

and

ste€T A (Bv:v < u:st[C =)
= { property of projection }

3.1 Projection and Descending Sequences of Processes 23

st€T A (Fvg,v1 tvovy S u:s[C =vgALt[C = vy)
= { tT is prefix-closed, traasitivity of <, and pred. calc. }
s€ET A (Juo:vp L u:s[C =)

(End of Proof)
Theorem 3 Equality holds in (5) if ~div(T,).

Proof We show that —div(T.,) implies (9) in order to apply Theorem 1.
Given a trace u, define the sequence of trace sets S and process S, by

Sn = (Uv:iv<u:orig(v,Ty))
So = (Uv:v<Lu:orig(v,T,))

From Property 6 we know that these trace sets are prefix-closed. Analogous
to Lemma 4, using Property 6, one can prove

So=(Nn:in>0:5,). (12)

Furthermore, ¥ is bounded and 5 [B = pref{u} is finite. Hence, by
Lemma 1 all S,[f“ ! are finite. We now derive

~div(T,)
= { definition of div }
(Vv #orig(v, T,) < o0)
= { a trace has a finite number of prefixes, and set theory }
(VuzF#(Uv:v L u:orig(v,T,)) < o0)
= { definition of S, }
(Vu s #S8, < 00)
= {02}
Vuu#Nn:n20:5,) < o)
= { Lemma 3, using that S is a descending sequence of level-finite
prefix-closed trace sets }

(Vuu(dn:n>0:4#5, <o0))
= { definition of S, }
(Ve @n:in>0:#Uv:v<u:orig(v,T)) < o))
= { set theory, (6), and T is descending }
(Vu:(dn:n > 0:forig(u,T,) < o0))

24 3 THE CPO APPROACH

(End of Proof)

By the way, notice that we proved equivalence of (9) and ~div(7,,) in-
stead of just the desired implication. Let us summarize the relationships
between the various conditions for equality in (5) as expressed by the the-
orems of this section. Keep in mind that finiteness of 4\ B is a global
assumption.

(Bn:n>0:div(T,))
= {(10), using 7y C Ty forall n }
~div(T.)
= { proof of Theorem 3 }
(Vu:uwelU,:(3n:n>0:#orig(y,Tn) < o))
= { proof of Theorem 1 }
(Vu:iu €U, :#{n:n>0:minorig(u,Tp)} < o)
= { Theorem 0 }
Tw[B=1U,
Theorem 3 can also be interpreted as expressing that projection on al-
phabet B is downward continuous “in” processes that do not diverge when
projected on B. An alternative proof of this can be based on a slightly dif-

ferent version of projection as used in the mathematical model for CSP [2,
Section 2.8]. For process T" and alphabet B the process T|B is defined by

a(T|B) = aT'nB
t(T|B) = {t:teT:t[B}uU
{u,v : #orig(u,T) = 0 Av € B* : uv}

Obviously, T{B C T'| B and if ~div(T') then T[B = T|B. Furthermore, it
is known that |-projection is downward continuous. Hence, we can derive

(Nn:n>0:T,[B)
C {T.[BCT.B}
Nn:n>0:T,|B)
= { |-projection is downward continuous }
(Nn:n>0:T,)|B
= { definition of T, }
T.|B

3.2 Application 25

= {-div(T.) }
T,[B

proving Theorem 3.

Finally, we note that some of the conditions can be weakened. TFor
instance, finiteness of 4 \ B can be replaced by “finite fanout on 4 \ B”.
The condition of Theorem 3, i.e, ~div(T,), can be weakened to

(Vu#(orig(v, Tu)N{t,a:a € RAta € T, : ta}) < co0).

3.2 Application

In this subsection we give a condition under which the greatest fixed point
of equation (1) is obtained as the limit of the approximations starting from
the top element.

Property 7 Let T and U be processes such that aZ C al/, and let € be
an alphabet such that —div(U,C). Then we have ~div(UwT, C).

Proof Observe that ' wT C U, and apply (10).
(End of Proof)

Let A be a finite alphabet, p a renaming of A, and R a process in
T(AUp-A). The function f:7T(A4) — T(A)is defined by

f(8) = (Rwp-S)[A.

Property 8 If § € 7(A) is a fixed point of the function f, then S is at
most

(Nn:n>0: ff{RUN(4))). ‘ (13)

Proof Since RUN(A) is the top of 7(A4) we have for any fixed point §
of f that § C RUN(A). From the monotonicity of f then follows that for
all n > 0 we have

$ = f*(S) C F(RUN(4)).
Thus, § C (Nn:n > 0: A RUN(A))).
(End of Proof)

Theorem 4 If —div(R, A) holds, then the greatest fixed point of the
function f is given by (13).

26 3 THE CPO APPROACH

Proof On account of Property 8 it is sufficient to show that (13) is a fixed
point of f. We derive

flNn:n>0: f(RUN(4)))

= { definition of f }
(Uwp(Nn:n>0: fM(RUN(A)))[A

= { weaving and renaming are downward continuous }
(Nn:n>0:Twp f*{RUN(A)))[A

= { Theorem 2 using Property 7 and —div(R, A) }
(0> 0: (T wp fFA(BUN(A))[A)

= { definition of f }
(NMn:n>0:f1(RUN(4)))

= { f is monotonic }
(Nn:n>0: f(RUN(A)))

(End of Proof)

Example 6 The condition —div(R, A) is not a necessary condition in
Theorem 4. That is, (13) can be the greatest fixed point even if the condition
is not satisfied, Take, for instance, A = {a} and

R = PR((pa)’; a").
In this case we have

F(STOP(A)) = RUN(A) = f(RUN(4)).
Thus, (13) equals RUN(A), which is the unique fixed point of f.
(End of Example)

The preceding theorem can be generalized to

Theorem 5 If ~div(R, A) holds, then for any process T in 7(A4)

Nn:n20:(Um:m>a: f7(T)) (14)
is a fixed point of the function f.
Proof Define the sequence U by

U.=Rwp(Um:m>n: f™(T).

27

This sequence is descending and from Property 7 using —div(R, A) we infer
~div(U,, A). We now derive

fNn:n20:(Um:m>n: (7))
= { definition of f }
(Rwp(Nn:n>0:(Um:m>n: f™(T))[4
= { renaming and weaving are downward continuous }
(NMa:n>0:Rwp(Um:m>n: f™(T)))[4
= { definition of U }
(Nn:n>0:T,)[4
= { Theorem 2 using that U is descending and —~div(Uy,, A) }
(Nn:n>0:U,[4)
= { definition of U }
(Nn:n20:(Rwp-(Um :m > n: f™(T)))[4)
= { renaming, weaving, and projection are upward continuous }
(Nn:n20:(Um:m2n:(Rwp f™(T))[4)
= { definition of f }
(Ne:n20:(Um:m>n: f~Y(T)))
= { renaming dummies }
(Ne:n>1:Um:m>n: f(T)))
= { monotonicity }
Nu:n>0:(Um:m2n: ™))

(End of Proof)

4 The CMS Approach

In Subsection 4.0 we define a distance function for processes and show that

it is a metric. The resulting metric space is proven to be complete and

compact. The relationship with the partial order of the preceding section

is briefly discussed. Subsection 4.1 applies this to equation (1). We give a

condition under which the associated function is a contraction on the metric

space. This yields an approximation theorem for sclutions of equation (1).
In this section A is an alphabet.

28 4 THE CMS APPROACH

4.0 The Metric

For T € T(A) and U € T(A) we define the distance (7T, U) between T and
Uby

d(T,U) = o~ (MINztetT+tU:4(s))

where X + Y denotes the symmetrie difference of sets X and Y, that is,
X\YUY \ X. This notion of distance is similar to the Golson distance
defined in [3] for synchronization trees.

Before we show that d is a metric on 7(A), it is useful to have another
characterization of the distance between two processes. For process T and
natural number k, the k-th approximation of T is the process denoted by T'(¥)
and defined by

TH = (aT, {t:t € T A L(t) < k : £}).

The process T®) is also called a finite approximation of T'. For example, we
have T(%) = STOP(aT). Furthermore, process T is the least upper bound
(in the sense of the preceding section) of its finite approximations, that is,

T=(Uk:k>0:TH),
Property 9 For processes T and U in 7(A) we have
(MINt:t€tT +tU : £(t)) = (MINE: T¢) £ g .),

From the prefix-closedness of k-th approximations then follows that for any
natural number &

dT,U) < 2% = 7*) = gy,
Theorem 6 (7T(A),d) is a metric space.

Proof Axioms 0, 1, and 2 for a metric (cf. Section 1.1) are trivially
satisfied. We now prove Axiom 3 (triangle inequality). Let T, U, and V be
processes in 7(A). We have to show d(7,U) < d(T,V) + d(V,U). Without
loss of generality we assume 7 3 U. On account of this let & be the smallest
natural number such that 7 # U(*); hence, we have d(T,U) = 2%, We
now derive

irue
= { caleulus }

4.0 The Metric 29

k) = (k) (k) # V)
= {7®x£yky
vE) £ k) v plR) # V(&)
= { Property 9 }
dV,U)>27% v d(T,V) > 27*
= {d(T,U)=2"% and Axiom 0 for a metric }
d(T,U) < d(T, V) + d(V,)

(End of Proof)

Theorem 7 (7(4),d) is a CMS.

Proof We show that every Cauchy sequence has a limit in T7(A). Let T
be a Cauchy sequence in 7(A4). Define the sequence U and process I by

Uy = (Uj:724:Ty) fori2>0,and

L = (Ni:i20:05).
Obviously, the processes U; are in 7(4), and hence so is L. We show that I
is the limit of sequence T' by showing that for any natural number % there
exists a natural number N such that for all natural n, n > N, we have
d(L,T,) < 27k,

Let & be a natural number and let natural number N be such that

(T, T) < 2% for all m and n at least N. Such an NV exists, since 7" is a

Cauchy sequence. We show for n > N that L(*) = T,Ek), which then implies
d(L,T,) < 27% on account of Property 9. From the choice of N together
with Property 9 we infer

VYm,n:m> NAnZN:T,gf’)ﬂT,(Lk)). (15)
Now we derive forany n > N
JAL) _
= { definition of I and property of k-th approximation }
(Ni:i>0: UM
= { U is a descending sequence of processes }
(Ni:i> N : 0™
= { definition of U; and property of k-th approximation }

30 4 THE CMS APPROACH

(Néi2 N :(Ugeg2i: 7M7)

= {(18)}
(Ni:i>N:(Uj:524: 7))

= { intersection and union are idempotent }
7H)

(End of Proof)

Although not strictly necessary for our current analysis, we also know
something about the compactness of our metric space. A metric space
is compact when every sequence in it has a converging subsequence. Se-
quence S is a subsequence of sequence 7" when there exists a monotonic one-
to-one mapping g of the set of natural numbers into itself such that Tog = S.

Theorem 8 If alphabet A is finite then (7(A4),d) is compact.

Proof Assume A is finite and let T be a sequence in 7(A). We first define
a sequence U of subsequences of T'. Sequence U(0)is just 7', and for k > 1 we
obtain U(k) as a subsequence of U(k — 1) for which the k-th approximations
of the processes are all equal. This is possible because there exist only a
finite number of sets of traces over A of length at most 2 (A4 being finite).
Now define the sequence V' by V,, = U{n),. Then V is a subsequence of T'
and it is a Cauchy sequence; hence, it converges by Theorem 7.

(End of Proof)

Example 7 When A is infinite, (7(A4),d) is not compact. Consider the
infinite alphabet A = {i:4 > 0: a;} and the sequence T in 7(4) defined by

To={A,{i:i<n:a;}).
This sequence has no converging subsequence since
m#En = d(Tn,Ta) =1,

for all natural numbers m and n.

(End of Example)

For finite alphabet A we can also express the following relationship be-
tween the partial order as defined in Section 3 and the metric. If T is an

4.1 Application 3

ascending or descending sequence in (7(A4), C) then it is a converging se-
quence in (7(A),d) and its least upper bound in {7(4),C) equals its limit
in (7(A),d). The ascending sequence defined in Example 7 shows that this
is not necessarily the case when A is infinite. By the way, notice the simi-
larity of (14) and the definition of process L in terms of the sequence 7T in
the proof of Theorem 7.

4.1 Application

In [9, Prop. 3.3 combined with Thm. 3.8] a condition is given under which
equation (1) has a unique solution. We now strengthen this result in Theo-
rem 10, yielding an alternative proof for the earlier result.

Let A be an alphabet, p a renaming of 4, and R a process in 7{4AUp-4).
The function f:7(4) — T(A) is defined by

f(S) = (Rwp-S)[A.
Theorem 9 The function f is a contraction on (7(4),d) if
(Vr:r e R:{(r[p-A) < {(r[4)). (18)

Proof Let T and U be processes in 7(A4). We show that f is a contraction
by proving d{f(T), f/(U)) < %d(T, U). Without loss of generality we may
assume I' # U. On account of this, let k& be such that d(T,U) = 27%.

For any S € T(A) we have

f(S)={r:r€RAP[pA€pS§:r[A}.

Hence, for any trace s of length ! in f(S) there exists a trace » € R with
r[A = s, £(r[A) =, and, due to (18), {(r[p-4) < I. If » is of the form #'p-a,
for some a € A, then ' € R since R is prefix-closed, »'[p-4 € p-S since §
is prefix-closed, and »'[A = s. Moreover, £(r'[p-A) < — 1. If on the other
hand 7 ends in a symbol of A then £(r[p-A) <1 -1 on account of (16) and
the fact that R is prefix-closed. In any case, we conclude for any trace s

sef(8) = s=ev(Ar:ir € RAr[A=s:7[p-AcpSEE-1Y (17)
Now we show that f(T)*) = f(U)®), which then implies
dF(T), f(U)) £ 27777 = 3d(T, V).

For s € A* such that £(s) < k we derive

32 4 THE CMS APPROACH

s € f(T)
{(17) }
s=eV (dr:reRAr[A=s:7[pA ep.T(f(S)"l))
{4(s) < k and T+~ = U1 because d(T,U) = 2~F }
s=eV (Ar:r€RAr[A=s:r[pAc p-U(l{s)‘l))
= {17}
s € f(U)

f

(End of Proof)

Example 8 Condition (16)is not necessary for f to be a contraction. Con-
sider the case 4 = {a} and R = PR{a|p-a). Then R does not satisfy (16),
since p-a € R. Nevertheless, for any ' € T(A) we have f(T) = PR(a), and
therefore f is a contraction.

(End of Example)

Theorem 10 If the function f is a contraction then it has a unique fixed
point and this fixed point U is for every T' € 7 (A4) the limit of the sequence §
defined by

S = (T).
Fuarthermore, we have for alln > 0
s = g,
that is, the rate of convergence of S is at least “linear”.

Proof The first two claims follow from Banach’s Contraction Theorem,
using the completeness of our metric space. Furthermore, we observe that

d(Syn, U)

= { definition of §, and U is fixed point of f }
LT, F0))

< { f contracts by at least a factor % }
2="d(T, U)

< {d(T,U)<1}
o—n

33

and, hence, S&n) = U™ follows from Property 9.
(End of Proof)

By the way, it is possible that f has a unique fixed point but that f is not
a contraction for our metric on 7(4). One need only look back to Examples 1
and 2. The functions exhibited there have a unique fixed point, but that
fixed point is not the limit of the approximations obtained by iterating the
function on RUN(A) (recall the relationship between the metric and the
partial order mentioned at the end of the preceding subsection). Hence,
these functions cannot be contractions. This does not necessarily mean that
they cannot be contractions for some other metric on 7(4).

A slightly different approach to proving Theorem 9 can be taken by
extending the nofion of a contraction to functions from one metric space
into another. Let (Dy,dp) and (Dy,d;) be metric spaces and let X be a
subset of Dy. The function f: Dy — Dy is called a c-contraction on X ,
where ¢ is a real number, when

di(f(z), f(y)) < ex do(z,y)

for all z and y in X. For instance, renaming is a l-contraction on the
whole space, and so is weaving with a fixed process. If fo:Dg — Dy is a
cp-contraction on X, X C Dy, and fi: Dy — D, is a cy-contraction on fo(X),
then f1o fois a co# ¢;-contraction on X, The problem in Theorem 9 now is
to show that the involved projection is a %——contraction on the image space
created by the composition of renaming and weaving. So, again, projection
is the problematic operator.

& Concluding Remarks

The introduction of recursive components in the program notation of Trace
Theory gives rise to a recursive equation involving non-empty prefix-closed
trace sets. It becomes, therefore, interesting to know more about the solu-
tions of this equation. For instance, when does the equation have a solution,
and if there is more than one solution how can a canonical solution be se-
lected? From the use of a partial order on the process domain (based on
trace set inclusion) it is known that the equation has a least and a greatest
solution (with respect to this order). Furthermore, the least solution can be
approximated by iteration.

34 REFERENCES

In the context of this partial order we have carefully analyzed the pro-
jection operator and we have giver a number of conditions under which pro-
Jjection distributes over the greatest lower bound of descending sequences of
processes (Theorems 0 through 3). Application of this has provided a condi-
tion under which the greatest solution of our equation can be approximated
by iteration (Theorem 4). It has also been shown that iteration starting
anywhere converges to a solution under this condition (Theorem 5).

We have introduced a metric on the process domain and we have shown
that it yields a compact complete metric space {Theorems 6 through 8). Un-
der a condition formulated previously the function derived from our equation
turned out to be a contraction (Theorem 9). By applying Banach’s Contrac-
tion Theorem we then showed that under this condition our equation has a
unique solution that can be approximated by iteration starting anywhere,
and that the rate of convergence is at least linear (Theorem 10).

The conditions that we have formulated are sufficient for their respective
purposes but not necessary, as we have shown by appropriate examples. We
are still interested in conditions that are sufficient and necessary. That is,
exactly when can the greatest solution be approximated, exactly when is
the function a contraction, and exactly when has the equation a unique
solution?

We have used only one particular partial order and metric in our analysis
of the equation. There is no reason to restrict oneself to these choices. It is
very well possible that other partial orders and metrics bring new insights.
For example, one could think of a metric that not only indicates in which
smallest finite approximation two processes differ, but also by how much
they differ. A careful analysis of the contracting properties of projection
seems a promising area for further investigation.

Acknowledgment This work was supported by the Department of Com-
puter Science, Washington University, St. Louis, Missouri.

References

[0] S. Abian and A.B. Brown, “A theorem on partially ordered sets, with
application to fixed point theorems”, Canadian Journal of Mathematics,
Vol. 13, No. 1, pp. 78-82 (1961).

[1] G. Birkhoff, Lattice Theory, Colloquium Publications, Vol. 25, Provi-
dence RI: American Mathematical Society, 1967 (Third edition).

REFERENCES 35

[2]

(3]

[8]

[€]

5.D. Brookes, A Model for Communicating Sequential Processes, Report
CMU-C5-83-149, Carnegie-Mellon University, 1983.

W.G. Golson and W.C. Rounds, “Connections between two theories of
concurrency: metric spaces and synchronization trees”, Information and
Control, Vol. 57, pp. 102-124 (1983).

G.J.0. Jameson, Topology and Normed Spaces, New York: Wiley and
Sons, 1974.

A. Kaldewaij, A Formalism for Concurrent Processes, Dissertation, Eind-
hoven University of Technology, 1986.

J.-L. Lasses, V.L. Nguyen, and E.A. Sonenberg, “Fixed point theorems
and semantics: a folk tale”, Information Processing Letters, Vol. 14,
No. 3, pp. 112-116 (May 1982).

A W. Roscoe, A Mathematical Theory of Communicating Processes,
Ph.D. thesis, University of Oxford, 1982.

J.L.A. van de Snepscheut, Trace Theory and VLSI Design, Lecture Notes
in Computer Science, Vol. 200, New York: Springer-Verlag, 1985.

J.T. Udding, On Recursively Defined Sets of Traces, Memorandum
JTUOa, Eindhoven University of Technology, 1983.

	Using a Partial Order and a Metric to Analyze a Recursive Trace Set Equation
	Recommended Citation
	Using a Partial Order and a Metric to Analyze a Recursive Trace Set Equation

	tmp.1460750766.pdf.NxtsM

