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lock free algorithms to avoid mutex locking and reduce memory
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I. INTRODUCTION

Modern computer architectures have evolved from uni-

processor platforms to multi-processor and multi-core plat-

forms, but traditional real-time distributed middleware such

as RT-CORBA has not kept pace with that evolution. For

example, traditional real-time middleware requires explicit

concurrency management and synchronization control which

may scale poorly as the number of cores in a host increases.

MCFlow is designed to accommodate multiple real-time

end-to-end tasks in a distributed system where some nodes

have multi-core processors. Each end-to-end task can be rep-

resented as a directed acyclic graph (DAG). Schedulability

analysis and subtask allocation is performed offline using

graph-based analysis [1]. We focus on how to design and

implement a middleware that can efficiently dispatch real-

time end-to-end tasks in a distributed system with multi-core

processors.

System Model: We consider a distributed real-time en-

vironment consisting of a collection of hosts. Each host

can be a uni-processor or multi-processor, and the hosts are

connected by a common network. A distributed real-time

application implemented on MCFlow consists of multiple

independent end-to-end tasks. Each end-to-end task is a

collection of subtasks which forms an acyclic dependency

graph. The subtasks can be freely distributed across hosts;

however the allocations of host/core priorities for subtasks

are statically bound at configuration time. Therefore, schedu-

lability analysis must to be performed off-line to ensure

feasible real-time performance of the system.

Task Model: We call a task that consists of a set of

subtasks an end-to-end task, in which (1) subtasks are

connected in a directed acyclic graph according to their

precedence constraints and (2) deadlines of all sink subtasks

are relative to the deadlines of their source subtasks. Given

a subtask Ti,j of an end-to-end task Ti, Pre(Ti,j) is the set

of subtasks that are the immediate predecessors of Ti,j . If

any of the subtasks in Pre(Ti,j) is located in a different

host than the host which Ti,j is located, Ti,j is referred to

as a network triggered subtask. On the other hand, if all of

the subtasks in Pre(Ti,j) are located in the same node with

where Ti is located, Ti is referred to as locally triggered
subtask. If any of the subtasks in Pre(Ti,j) of a locally

triggered subtask Ti,j are located in a different core than

the core in which Ti,j is located, Ti,j is also referred to as

a cross core subtask.

The rest of this paper is structured as follows. Section II

surveys related work on middleware and parallel computing.

Section III describes challenges that motivate the design and

implementation of MCFlow. Section IV presents a detailed

discussion of MCFlow, including how it manages tasks

across cores and hosts and how its configurable compo-

nent model supports application development and deploy-

ment. Section V describes experiments designed to evaluate

MCFlow and to validate its design and implementation.

Section VI offers conclusions, and describes related work.

II. RELATED WORK

The OMG Real-Time CORBA specification [2] supports

network transparency for software component development

and provides real-time policies and mechanisms including

standard interfaces to specify resource requirements and

configure object request broker (ORB) end-system resources

such as thread priorities, message buffers, connections, and



network signaling, to control ORB behavior. TAO [3] is

a full-featured Real-time CORBA [2] ORB. However, RT-

CORBA is developed for single processor systems, and does

not provide suitable mechanisms for QoS enforcement or

optimization on multi-core platforms.

TAO’s Real-time Event Channel [4] provides support for

decoupled communication between objects. Instead of using

point-to-point communication, interested event consumers

subscribe for the types of events they need from the event

service. The event service requires a centralized event dis-

patcher which may lead to high synchronization overhead

and thus become a bottleneck on multi-core platforms.

The MC-ORB [5] middleware was specifically developed

for multi-core platforms. However, it only tries to optimize

the dispatching of network triggered tasks onto different

cores, and does not consider how to optimize communication

between cores.

Parallel programming languages, extensions, and libraries,

such as Cilk [6], OpenMP [7] and Intel Thread Building

Blocks [8] assume that the programmer should be respon-

sible for exposing parallelism in source code but defer

decisions about how to actually divide the work between

processors to a run-time scheduler. However, these ap-

proaches do not provide suitable mechanisms for enforcing

real-time constraints. Therefore, they are not suitable for

real-time computing, nor do they provide direct support

for environments that are both distributed and parallel.

Dataflow programming languages and frameworks such as

SystemC [9], StreamIt [10], and fastflow [11] also have

been developed, but none of them is specifically designed to

support real-time distributed applications where (1) compu-

tations can be flexibly configured for execution on a single

core, between cores of a common host or between multiple

hosts, while ensuring that (2) timing constraints such as end-

to-end deadlines are strictly enforced.

III. MOTIVATION

We consider an example in distributed real-time hybrid

structural testing in which (1) one or more physical spec-

imens are tested (especially with specimens in different

sites due to experiment equipment constraints); (2) sensors

measure the physical conditions of test specimens; (3) com-

putation elements simulate numerical structure models; (4) a

test coordinator and controller manage the experiment; and

(5) hydraulic actuators generate movement of the specimens.

Such an experiment may also include video streaming for

safety monitoring. In this scenario, real-time guarantees are

necessary when rate dependent physical elements are present

in the test, or when coordination and synchronization of

cyber elements is necessary for validation. It is natural to

model the system as a set of end-to-end tasks with different

rates and priorities. The computational elements in the

example usually involve complex numerical computations

that benefit from parallelization in order to meet timing

constraints.

There are several important challenges that must be ad-

dressed in this example. First, the application is usually

developed by civil engineers rather than computer scientists,

so the software system should be easy to use. In current

practice, this kind of application is usually developed with

Matlab [12] and Simulink because their ease of use. How-

ever, Simulink models are not designed for distributed multi-

core platforms and assume a purely time-triggered system. In

our experience, purely time triggered systems cannot tolerate

even small amounts of jitter from network communication.

Our previous work [13] [14] developed a specialized mid-

dleware that targets real-time hybrid testing. Like MCFlow,

it is based on the data flow model; however, it lacks the

ability to optimize for multi-core platforms. Achieving those

optimizations across multi-core platforms is an important

motivation for developing MCFlow.

IV. MIDDLEWARE DESIGN AND IMPLEMENTATION
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Figure 1. MCFlow Host Architecture

MCFlow enforces a crucial separation of concerns be-

tween its task management and dispatching subsystems,

as shown in Figure 1. The task management subsystem

creates, initializes and terminates teams of subtasks being

allocated on the same host. In addition, it also manages

any unrecoverable run-time exceptions of any subtasks by

releasing all resources acquired by the subtasks.

Consistent with the real-time hybrid structural testing

application domain [14] that first motivated the need for

MCFlow, we assume here that real-time constraints only

apply once a task graph has begun to execute, but not before

them. For example, while a structural testing experiment is

in progress timing guarantees must be enforced, but they are



not required while an experiment is being set up or taken

down. Since the task management subsystem thus deals

with non-urgent behavior of the system, only one thread

(which runs at the lowest priority to avoid interference with

real-time subtasks) is allocated for it. Although no core is

explicitly designated for the thread so it can be migrated

according to the operating system’s scheduling policy, this

thread could instead be pinned to a dedicated core and run

at highest priority (e.g. to provide timing guarantees for task

deployment as well as execution).

In contrast to the task management subsystem, the dis-

patching subsystem handles all real-time processing of

subtasks. To enforce timing guarantees, all threads in the

dispatching subsystem have higher priority than the task

management subsystem thread. In addition, all thread re-

sources including memory are strictly partitioned both for

each individual priority and for each processor core. There

are two reason for this partition. First, on multi-processor

and multi-core platforms, the execution cost of thread mi-

gration can be unpredictable and can introduce significant

delays [5]. By restricting each thread to a core, we can

avoid the run-time overhead associated with thread migra-

tion. Second, memory sharing among threads may require

extensive synchronization and locking control. If memory

is shared among cores, timeliness also may be influenced

by the cache coherence protocol for which the delay also

can be hard to predict. Duplicating the memory used by

the middleware in each thread thus can effectively avoid the

costs of thread migration and cache synchronization, at an

additional storage cost that scales linearly with the number

of cores.

We now describe the architecture of the MCFlow real-

time middleware in further detail in the subsequent sub-

sections. Section IV-A describes the task management sub-

system, which prepares end-to-end tasks for execution.

Section IV-B describes the dispatching subsystem, which

enforces real-time execution of subtasks. Section IV-C de-

scribes MCFlow’s component model. Section IV-D describes

how MCFlow’s component interfaces can avoid unnecessary

data copying while preserving type safety. Section IV-E

describes MCFlow’s communication optimizations for net-

work, inter-core, and intra-core data transmissions between

tasks. Finally, Section IV-F describes how component con-

figurations can be specified and realized in MCFlow.

A. Task Management Subsystem

As was mentioned in the previous subsection, the creation

and destruction of subtasks in a host is managed by the

task management subsystem. The host where an end-to-end

task originates creates the subtasks assigned to it and issues

initialization requests to other hosts in the systems. Upon

acknowledgement from the downstream hosts, it activates

the task dispatching subsystem to start real-time execution

of the end-to-end task.
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Figure 2. An example MCFlow initialization flow

If a host can create teams whose inputs originate from

other hosts, it listens on a TCP socket and waits for incoming

initialization requests. The host controller decides whether

the request is legitimate and if so then creates concrete

instances of the corresponding team manager and its asso-

ciated subtasks. Subsequently, the request is passed along

the dependency graph until all the downstream subtasks

have been fully initialized before it sends acknowledgements

back to the upstream subtasks. Figure 2 shows an example

initialization process for an end-to-end task with 5 subtasks

spanning 3 hosts.

Unlike the initialization phase for an end-to-end task

which is entirely executed at the lowest priority, termination

of each end-to-end task is partly executed at its real-time

priority. This is to ensure that all the subtasks have stopped

executing and can be safely deallocated. Whether a team is

terminating can be controlled either by the data source or by

run-time exceptions generated by the downstream subtasks.

During the team termination phase, the team manager first

sends a termination request to all the downstream subtasks,

to be executed at their real-time priorities. Upon receiving

the termination request, a subtask will stop accepting any

new inputs and will pass the request along the task graph.

In addition, it sends an asynchronous notification1 to the

team manager to indicate that subtask has stopped. Once the

team manager receives all notifications from all subtasks in

the team, it can safely deallocate all resources reserved for

the team, at the lowest priority.

B. Dispatching Subsystem

The dispatching subsystem enforces the real-time exe-

cution of all subtasks in a host. Previous work [5] on

dispatching real-time tasks used a half-sysnc/half-async con-

currency architecture [15] for receiving network requests, in

which a thread for each priority receives network messages

and pushes requests into separate queues. A task allocation

1We use the eventfd in the newer Linux kernel for lightweight event
notification; it is also possible to implement it using pipe in an older kernel
but with a higher cost.



thread retrieves the requests from the queues, interprets the

requests, decides in which core and at which priority each

request should be handled, and then pushes each request to

a queue that is read by the designated thread pool for that

priority in the designated core.

However, this approach suffers two context switches for

each subtask that is remotely released from other nodes,

which may impact timing guarantees especially with large

numbers of subtasks. In this work, we assume that task

allocation is done at configuration time. That is, given a

subtask Ti,j , every subtask in Pre(Ti,j) knows in which

node and core Ti,j should be run, which is represented

by a distinct network address and identifier. The network

request is delivered directly to the appropriate core, rather

than relying an extra subtask allocation thread to dispatch the

request. This assumption allows us to do early dispatching

at the network level without suffering the extra context

switching seen in our previous work.

We have considered two approaches to realize this task

dispatching scheme. In the first approach, each core uses

one reactor to wait for all of its network requests. A thread

pool uses the leader/followers pattern [15] to wait on the

reactor with the highest priority. When a socket is ready for

reading it is picked up by a thread, and the thread is then

demoted to the corresponding priority for the socket before

processing the request.

In the second approach, every core has several priority

lanes, and each lane has a separate reactor with a dedicated

thread (or thread pool). The first approach allows thread

sharing among requests at different priorities, but incurs

a small amount of priority inversion if a higher priority

request becomes available while a lower priority request is

still being processed. The second approach eliminates the

possible inversion but may require that more threads be

allocated in advance and also may consume more memory.

However, our preliminary empirical study shows that the first

approach suffers from higher cost and unpredictability when

changing priorities by making Linux system calls. Therefore

we chose to use only the second approach.

Besides network triggered subtasks, we also consider how

to dispatch locally triggered subtasks. Dispatching locally

triggered subtasks as though they were network triggered

subtasks would incur unnecessary CPU overhead. An object

collocation strategy is often used (e.g. in TAO [3]) to

replace remote CORBA calls with direct local function calls

whenever the caller and callee are in the same process.

However, without explicitly creating a new thread, using

direct function calls would require callers and callees to

be in same core. Therefore, another approach is needed

when callers and callees may be in the same host but

in different cores. We therefore integrate locally triggered

subtask dispatching mechanisms directly into a reactor. Each

reactor contains a local task queue, and the event loop in the

reactor dispatches locally triggered tasks in the queue before

it can be blocked in the event demultiplexing (select() or

epoll_wait()) system call. When a subtask is complete

and decides to release a successor task in another core, it

enqueues the successor subtask into the corresponding task

queue and then sends a signal to unblock the potentially

blocking ( inside select() or epoll_wait() ) reactor

thread.

To avoid race conditions in the event loop, we use the

leader/followers pattern where only one thread at a time can

pop a request from the task queue or be blocked in an event

demultiplexing system call. Because our design ensures that

all the threads having access to the same reactor must be

executed in the same core, the serialization of the loop does

not affect cache behavior or threads in other cores.

As shown in Figure 1, each priority in each core will

have its own reactor, dispatcher and associated subtasks.

MCFlow allows configuration of either one thread per reac-

tor where subtasks can executed in FIFO order, or using the

leader/followers pattern [15] by allocating multiple threads

to wait on one reactor. The leader/followers configuration

can be useful especially when subtasks from different end-

to-end tasks are assigned to the same core and priority or

when the subtasks can be blocked (e.g. by making certain

system calls).

Each dispatcher manages a FIFO subtask queue and a

timer queue to control when a subtask can be executed.

When a subtask finishes its execution, it copies its outputs to

the input queues of its immediate downstream subtasks and

then inserts those subtasks into the subtask queues of their

corresponding dispatchers. After that, it sends asynchronous

notifications to their designated reactors. Once the associated

thread of a reactor picks up the notification, it processes the

notification in the following steps: (1) It pops a subtask from

subtask queue. (2) It checks whether the popped subtask

is still being processed (by reading an atomic flag); this

step is required when the leader/followers pattern is applied

because multiple threads may exist for the same core/priority

and one thread may be still processing a subtask when

another notification is sent by its upstream subtask and is

picked up by another thread. (3) If the subtask is not being

processed, it then checks whether the subtask is periodic

and whether the release time for the subtask has expired.

(4) If the release time has expired or the task is aperiodic,

the in-processing flag is set and the subtask is executed in

the thread; otherwise the subtask is inserted into the timer

queue, to be executed when the timer expires. (5) After the

subtask finishes executing, it checks whether there are more

inputs to be consumed and keeps executing until no inputs

are available. (6) The in-processing flag is cleared before the

the thread waits on the reactor again.

Step 3 is required to enforce the release-guard semantics

[1] across distributed or multi-processor systems so that

intervals between release times of jobs in any subtask are
never less than the period of the subtask [16]. Besides



waiting for the periodic boundary before a subtask can be

executed, the release-guard protocol also allows a subtask

to be executed earlier than the periodic boundary if the

CPU becomes idle. To implement this feature, another idle
thread with the lowest real-time priority (but higher than

the priority used for task management) for each CPU waits

for a prioritized reactor. Whenever the timer queue size

changes, the dispatcher sends a notification to the idle thread

with the new size of the queue. The idle thread can only

receive those notifications when there are no other real-

time jobs in the CPU. Once the idle thread receives the

notification, it will then send an idle notification to the

highest priority dispatcher that has a nonzero timer queue

size. That dispatcher will then dispatch the subtask with the

earliest expiration in its timer queue, whenever it receives

an idle notification.

The processing scenario is similar for network triggered

subtasks. In this case, the subtask is notified directly from

readability of the socket instead of asynchronous notifica-

tion.

Although it is possible to use parallel programming tech-

nologies (such as Intel Threading Blocks [8] or OpenMP

[7]) for locally triggered subtasks, those technologies do not

provide a suitable common abstraction for network triggered

subtasks, so that locally and network triggered subtasks

must be programmed differently, making it more difficult

to configure the allocation of tasks based on the results of

scheduling analysis. Furthermore, those technologies use a

central work stealing queue [6] for task dispatching, which

is not suitable for real-time systems because a subtask in

a queue can only be dispatched whenever a thread/core is

idle. Even if a priority queue is used, if all threads are

running lower priority subtasks, the higher priority subtasks

in the queue won’t be dispatched which results in a priority

inversion.

Insertion into the FIFO task queue in each dispatcher

needs to be properly synchronized because subtasks may be

inserted from different cores based on the graph topology.

Since there will only be one thread to consume tasks from

the queue at a time, our implementation can be configured

to use a mutex locked queue or a multiple producer single

consumer lock free queue.

The input and output queue of each subtask is imple-

mented as a lock free circular buffer. MCFlow ensures that

no two elements in the circular buffer share the same cache

line and thus avoids the false sharing problem [17] for the

access to the buffer. The size of the buffer is configurable

based on the period deadline ratio and the pipeline depth of

the team, which can be calculated by the configurator.

C. Components

The behaviors of subtasks are defined in components
which are written by application developers. A component

in MCFlow is a C++ class that specifies its inputs, out-

puts, configuration parameters and runtime execution code.

Conceptually, it is a function object with special hooks

that determine how its input and output type should be

initialized. Unlike traditional object oriented frameworks,

MCFlow does not enforce any inheritance hierarchy on

components but rather uses interface polymorphism based

on template wrapper classes to encapsulate the components

within subtasks that can be called directly by the dispatcher.

<<component>>

Source

typename config_type
typename output_type

Source(conf : config_type*
init_output(out : output_type&)
do_work(output_type&)

<<component>>

Intermediate

typename config_type
typename input_type
typename output_type

Intermediate(conf : config_type*)
init_input(out : output_type&)
init_output(in : output_type&)
do_work(in : input_type&, out : output_type&)

<<component>>

Sink

typename config_type
typename input_type

Sink(conf : config_type*)
init_input(out : output_type&)
do_work(in : input_type&)

Figure 3. MCFlow Component Model

Components in MCFlow are classified into three cate-

gories (Source, Intermediate and Sink) depending

on whether they generate output and/or consume input data

as shown in Figure 3. Every component must provide an

associated inner type called config_type and a con-

structor that accepts a pointer to its config_type. This

allows users to control the initial states of components such

as the maximum size of a matrix or certain parameters

of a differential equation. The values of the configuration

parameters will be provided by a configuration script as is



described in subsection IV-F.

D. Component Interfaces

MCFlow is designed to support both real-time perfor-

mance guarantees and flexible component-based design.

Unfortunately, dynamic memory allocation may introduce

high cost and jitter, and yet to forbid the use of dynamic

memory would seriously impact the flexibility of component

design. One standard way to address this issue is to estimate

an upper bound on the size of memory required overall, and

to preallocate enough memory at initialization time.

This rationale gives rise to the design of MCFlow’s

component interface: the separation of input and output

initialization from the constructor. An application can usu-

ally utilize the config_type to set the size estimate

at configuration time and get the value of the component

constructor. However, as described in subsection IV-B, in-

put/output buffers are implemented as cached aligned ring

buffer to avoid synchronization and false sharing. If we put

the input initialization code in constructors, those would

need additional information about how many buffers need

to be initialized and also would need to be sure to maintain

memory alignment, both of which could complicate the

interface. Instead, the separation of input/output initialization

provides more room for the framework to optimize the

input/output buffers without complicating the interface.

Program 1 shows an example of an intermediate com-

ponent that computes a Fast Fourier Transform (FFT). Note

that without optimization, a component designed in this way

could lead to extensive memory movement among input

and output buffers. There are two sources of such memory

copying. First, an upstream subtask must copy its output

result to the input buffer of its downstream subtask. Second,

the downstream component must write to its own output

buffer even if it can reuse its own input memory buffer.

One solution to this problem is to define the input and/or

output types as pointers instead of value types. However, that

would requires both upstream component and downstream

components to change their declarations to use pointers.

Declaring the input_type or output_type to be a

reference is not an option, because a reference type in C++

is not default constructible or reassignable; for example it

could cause compiler errors if the framework tried to create

an array of references.

To addres this issue, MCFlow provides a sim-

ple template wrapper class ref_t that encapsulates

a pointer so that it is reassignable and can be im-

plicitly converted to a reference type. In Program 1,

if we changed the line typedef vector<double>
input_type to typedef ref_t<vector<double>
> input_type, memory copying from the upstream sub-

task to the downstream subtask could be avoided. If we also

changed the output_type typedef and the second param-

eter of do_work to the ref_t type and write output =

input; as the last statement of the do_work function, we

can achieve the effect of in-place memory modification.

Program 1 Example Intermediate Component

struct FFT_Component
{

struct config_type {
int max_size;

};

using std::vector;
typedef vector<double> input_type;
typedef vector<double> output_type;

FFT_Component(config_type* conf)
: max_size_(conf->max_size){}

void init_input(vector<double>& i)
{ i.reserve(max_size_); }

void init_input(vector<double>& o)
{ o.reserve(max_size_); }

void do_work(vector<double>& input,
vector<double>& output)

{ ... }

int max_size_;
};

Since we allow components to share memory via their

input and output interfaces, the lifetime of the validity of

the shared memory becomes a potential issue. In MCFlow,

each job execution is implicitly associated with a sequence

number. The major purpose for the sequence number is to

index the corresponding ring buffer for input and output

queues. As long as the queue size is greater than the

maximum pipeline level of any end-to-end task, the output

data of the first subtask won’t be overwritten until the

last subtask of the end-to-end task has finished its work.

Therefore the memory passed from an upstream subtask will

always be valid until it finishes its current job execution.

However, it is not safe to save the pointer of the memory

and use it for the next occurrence of the job. In that case, the

component should always copy the memory contents into its

local state variables.

E. Component Communication

One of the most important features of MCFlow is

that it allows communication between components to be

automatically optimized regardless whether it involves intra-

core, inter-core or network communication. Communication

is implemented by a set of template wrapper classes for the

components. These wrapper templates are highly modular



and are specialized for different categories of components

and their supported communication schemes. Table I

shows the list of MCFlow wrappers for components.

The source_worker, intermediate_worker
and sink_worker are designed specifically for

source, intermediate and sink components respectively.

The servant_worker and proxy_worker
templates are used for receiving and sending

network messages. The interthread_preparer,

intrathread_preaperer and servant_preparer
listed on the first row of Table I are used to

customize and potentially optimize how a component

gets its input. For example, the C++ expression

intermediate_worker<FFT_Component,
interthread_perparer> represents a subtask

which accepts input and produces output when none of

the communication with its upstream subtasks is through

the network. If the inputs were from the network instead

of intra-host communication, we would change the second

template parameter to be servant_preparer. Based

on (1) the type of each component a wrapper template is

designed for and (2) the allowed type of inputs for the

component, Table I shows the valid combinations to wrap

a component class as a dispatchable subtask.

F. Configuration Language and Code Generation

In order to make the type of communication between

subtasks transparent to the application developers, MCFlow

provides a tool which reads a configuration specification and

generates C++ source files and makefiles. The content of a

configuration specification includes:

• the hosts in the execution environment and their net-

work addresses;

• all the end-to-end tasks for the system and their sub-

tasks;

• in each subtask: the type of component used, the values

for each field in the config_type, which host should

the subtask be executed, and the priority of the subtask;

and

• the connections between subtasks.

MCFlow enforces type safety for connections between

subtasks. For example, given two components A and B, the

connection from A to B is only valid if A.output type is

assignable to B.input type. However, this potentially could

limit reusability of components. In order to overcome this

limitation, MCFlow also allows adapters for component

connections to be specified. An adapter is a C or C++

function that takes the output of an upstream component

and coverts it into the input of a downstream component.

Another useful feature of MCFlow connection is its ports
which are essentially data members of the input_type
or output_type. Instead of copying the entire output

from an upstream component to a downstream component, a

port allows the application developer to selectively connect

Tβ

Tα

Tm

Ts

T0 T1 Tn−1

CPU0 CPU0 CPU1 CPUn−1

· · ·

Client Server

Figure 4. Overhead Experiment Setup

part of an upstream component’s output to all or part of a

downstream component’s input as long as the connection is

type safe.

V. PERFORMANCE EVALUATION

The experiments described in this section were performed

on a testbed consisting of two 6-core Intel core7 980 3.3GHZ

CPU with hypertheading enabled. Both machines ran Ubuntu

Linux 10.04 with 2.6.32 Kernel. In this section, we use

CPUs to refer to the number of logical processors recognized

by the operating system, rather than the number of physical

cores.

A. Latency Comparison

We measure the latency of a traditional client and server

scenario involving an end-to-end task with two hosts as

shown in Figure 4. The server receives data from a client

and splits the computations onto a number of CPUs, merges

the result, and sends it back to the client. In order to evaluate

how computation splitting affects performance, we vary the

number of CPUs used. We use Tα and Tβ to represent

the data source and sink subtasks; Ts and Tm for the data

splitting and merging subtasks; and Ti where i = 0 to

n − 1 for the split subtasks. The data transmitted between

Ts to Ti, Ti to Tm is 64 bytes long. The data transmitted

between Tα to Ts and Tm to Tβ are 64n bytes long. No

extra computation is done in Tα and Tβ . The computation

time for each subtask Ti is 5 μs and those of Ts and Tm

are both 5n μs.

We compare the latency of these applications using

MCFlow and TAO. The TAO version consists of two dif-

ferent configurations. The first configuration uses one ORB

per CPU, with each ORB allocated only one thread. The

thread is pinned on each CPU to avoid migration. All

subtasks are assigned to their corresponding ORBs. The

collocation strategy [18] used for this configuration is ”per-

ORB” which means the requests are optimized to use direct

function calls when the caller and callee are registered



interthread_preparer intrathread_preaperer servant_preparer

source_worker
intermediate_worker

√ √ √
sink_worker

√ √ √
servant_worker

√
proxy_worker

√

Table I
VALID PAIRS OF CONFIGURATIONS FOR MCFLOW COMPONENTS
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Figure 5. Latency Comparison Client Result

with the same ORB. The second configuration uses the

leader/followers pattern with only one ORB per application

and n threads. In this configuration, a subtask can’t be run

on a fixed CPU. No collocation optimization is used for

this configuration; otherwise, all the CORBA invocations

become normal function calls and thus the entire server

would only run in one thread.

Figure 5 shows the time measured in the client from

when Tα sent a request until when Tβ receives a reply.

Figure 6 shows the time measured on the server. The

MCFlow server and TAO server curves measure the time

from when Ts received a request to when Tm sends a reply.

The Split/Merge curve measures the time from when Ts

finishes it own computation, to when Tm receives the last

request from any Ti, ∀i = 0, · · · , n. For Figure 6, we only

collect results for the per CPU ORB configuration, since in

the single ORB version Ts and Tm may be in different CPUs

which unless clock synchronization is used may involve

potential measurement inaccuracy due to timing drift.

Figures 5 and 6 show little difference in performance

when there is only one CPU. However, the latency for

each TAO curve grows far faster than its MCFlow curve

1 2 4 6 8 10 12
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200

300

400

500

600

700

800

CPUs
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MCFlow Server

MCFlow Split/Merge

TAO Server

TAO Split/Merge

Figure 6. Latency Comparison Server Result

counterpart as the number of cores onto which tasks are

split increases. This is largely due to the optimizations

in MCFlow that can avoid data marshalling/demarshalling

and/or socket communication between subtasks. Notice that

the single ORB version of TAO always performs worse

than the per CPU ORB version: because an ORB maintains

resources that need to be synchronized among threads, using

only a single ORB causes a lot synchronization overhead

which leads to its poor performance. In contrast, the per

CPU ORB version duplicates resources to each CPU and

thus avoids such resource contention.

B. Real-time Performance

To evaluate the real-time performance of MCFlow on

multi-core platforms, we designed the following experiment

to examine whether MCFlow can preserve the priority

constraints of an application.

In this experiment, we created three different end-to-end

tasks: High, Med and Low. All the subtasks in High have

higher priority than those of the other two end-to-end tasks;

similarly, all subtasks in Low have lower priority than those

of High and Med. Similar to the previous experiment, each



Ts Tm T0 T1 T2 T3

High (0,900) (0,900) (0,1800) (1,1800) (2,1800) (3,1800)
Med (1,900) (1,1800) (0,0) (1,1800) (2,1800) (3,1800)
Low (2,900) (2,900) (0,1800) (1,900) (2,4500) (2,3600)

Table II
THE CPU AND WORKLOAD IN μS FOR EACH END-TO-END TASKS IN

REALTIME PERFORMANCE EXPERIMENT

High Med Low
50 Hz 0 0 0
60 Hz 0 0 0
70 Hz 0 0 0.059
80 Hz 0 0 0.168
90 Hz 0 0 0.329

Table III
DEADLINE MISS RATIO OF EACH END-TO-END TASKS WITH RESPECTS

TO THE RATE OF LOW PRIORITY TASK.

end-to-end task spans two hosts and one host is used for

the client which only sends periodic requests to server. The

server again splits the workload onto multiple CPUs, merges

the result and sends it back to the client. In our experiment,

all the client subtasks are on the same machine and all

server subtasks are on the other. The topology of each end-

to-end task is similar to Figure 4; however, different CPU

assignments and workloads are used.

Table II shows the CPU assignment and workload of

each subtask. The frequencies of High and Med are fixed

at 200Hz and 100Hz respectively. We vary the frequency of

the Low task and observe the effect of the Low task on the

rest of system.

We assume the deadline of each task is equal to its period.

The results of this experiment are shown in Tables III and IV.

When the rate of Low is below 70, there are no deadline

misses in the system. With an increase in the Low task’s

rate, deadline misses for Low increase. However, Low does

not affect High or Med.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described MCFlow, a middleware

that can address the requirements for data dependent dis-

tributed real-time applications on multi-core platforms. It

provides a simple model for component development in

which an application developer does not need to worry

about networking or data synchronization but rather uses

a configuration tool to specify how components are con-

nected and give their real-time constraints. Communication

between components is optimized based on their location

and topology and whether the communication is intra-core,

inter-core or networking.

The data obtained from our experiments presented in

Section V shows that the application of MCFlow performs

similarly to TAO when only one CPU is used; however,

High Med Low
50 Hz 4151 7375 9579
60 Hz 4170 7616 10884
70 Hz 4152 7478 10225
80 Hz 4151 7418 10167
90 Hz 4140 7519 10336

Table IV
AVERAGE RESPONSE TIME IN μS OF EACH END-TO-END TASKS WITH

RESPECTS TO THE RATE OF LOW PRIORITY TASK.

MCFlow overhead is far less when multiple CPUs are in-

volved. In real-time performance testing, MCFlow enforces

the real-time constraint that higher priority end-to-end tasks

are not affected by lower priority tasks.

As future work, we plan to conduct a more extensive

study of how various constructs in MCFlow affect real-

time performance of applications. We also plan to extend

the support for various networking protocol and quality of

service configuration parameters.
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