Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-25

1993-01-01

The Study of Computer Science Concepts through Game Play

Benjamin M. Weber

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Weber, Benjamin M., "The Study of Computer Science Concepts through Game Play" Report Number:
WUCS-93-25 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/313

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/313?utm_source=openscholarship.wustl.edu%2Fcse_research%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

The Study of Computer Science Concepts through
Game Play

Benjamin M. Weber

WUCS-93-25

May 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

THE STUDY OF COMPUTER SCIENCE CONCEPTS

THROUGH GAME PLAY

by
Benjamin M. Weber

Prepared under the direction of Professor Ronald P. Loui

An Honors Thesis presented to the Sever Institute of
Washington University in partial fulfillment
of the requirements for the degree of

BACHELOR OF SCIENCE
WITH DISTINCTION

copyright
May 1993

Benjamin M. Weber

To
My parents and family whose support and love made
my education possible

and to Paulette for keeping me sane.

I. Introduction

That games and simulations can be a useful tool in the learning
process is a well-known fact. As early as the eighteenth century,
games and simulations were used in the field of military training.

In the 1950's, business management training programs recognized
its benefits as a means of developing decision-making skills. In the
early 1960's, use of these techniques spread into education, most
specifically within teacher training the social sciences. Finally,

from the 1970's on, gaming and simulation techniques spread to a
constantly increasing range of other subjects, including the teaching

of science and mathematics (Ellington et al,, 1981).

In each of these aforementioned fields of study, game play has
been recognized to be very useful. Not just for enjoyment purposes,
well-designed games can achieve positive transfer of learning - the
ability of participants to apply skills acquired during the exercise in
other situations (Twelker, 1981). A further bonus of the game
approach is that games are able to make normally tedious material
something that the student will enjoy studying - even during free
time. Learning takes on new meaning and more attention is centered
on the problems at hand. In addition, for games in which a
competitive element is included, the participants have even stronger
motivation to focus their attention on the problem at hand. This
increase in attentiveness obviously will have a positive effect on

the amount learned by the student.

Other benefits of games over ordinary study techniques may
not be as obvious, but remain important. First, The ease with which
game rules and situations can be constructed to meet specific
situations or sets of constraints enables the teacher or researcher
to focus attention on specific areas of study. Games also include a
much greater stimulus for participants to use and develop creative
thought. This is quite a positive trait for budding computer
scientists, as our field cultivates divergent thought processes.
Additionally, gaming involves participation and often cooperation
between people, skills which are vital to education as well as

positive qualities for people in general.

Finally, in designing games, there is the need to specify a set
of rules and to determine if these rules, and the game itself,
conform to the specifics of the concept on which it is based. This
forces both players and game designers to study the concept in
greater detail then would otherwise be necessary. An example of
this is discussed below within the analysis of the Argumentation
Game. For all of these reasons, and many more which may depend on
the specific topic and game, study through game play can be a

extraordinarily powerful learning tool.

So far, the term “game” has been used where “game or
simulation” would be more appropriate. A “game” is defined as an
activity which is carried out by cooperating or competing decision-

makers seeking to achieve their objectives within a framework of

rules (Gibbs 1974a). In contrast, a “simulation” is a dynamic
representation which uses substitute components and relationships
to replace their real or hypothetical counterparts (Gibbs 1974b).
Although many researchers stress this distinction, for the purposes
of this thesis it is irrelevant, as both games and simulations have
the potential for providing all of the benefits discussed and for the

same reasons. Thus, “games” will be the term of choice henceforth.
Il. Computer Science Concepts Casted as Games

“How do general concepts or topics of study become games?”
is an important consideration in using games to study Computer
Science. Almost anything can become a game, if thought is put into
its development. For a game to be successful, it must teach the
concept well while providing enjoyment for the player and initiating

the benefits discussed above. The possibilities for this are endless.

The process by which a game is developed and exploited has
been divided into three distinct phases (Ellington et al., 1981). The
first is the development of the basic idea. Here, designers discuss
the concepts to be taught by the game, the basic idea of the game,
and the choice of structure for the game. The next, and generally
longest, design phase is the process by which this general idea is
transformed into a viable educational package and tested for its
effectiveness. Here, the task of the designer is to convert
knowledge of the concept within the realm of Computer Science to

the rules and structure of the game. The success of the game design

is thus determined by the ease with which this knowledge is
transferred to future game participants. After a design is

completed, it should be tested to see how well it emphasizes the
important aspects of the concept, refining the rules as problems are
found. Note that, in the author’s experience, it is much easier to

work on the first two phases with another person (or group of
people). The interchange of ideas speeds up the development process
and gives rise to a better final project. Also, in multiple player

games, it is simpler to analyze critically the game when using the

approximate group size that the game requires.

The third and final phase of development is the exploitation of
the exercise. After the game is created and tested, it should be
presented to students for use in their studies. Care should be taken
to describe how the game relates to the target concepts and to the
field of Computer Science in general. If this facet is overlooked,
game players will have proficiency with the concept itself, but may
not realize this or understand how it fits in to the “big picture”.
Often, the success of the exercise depends on this. Also, if the game
is sufficiently successful, thought should be given to publishing the

discoveries in appropriate journals.
. Three Games

At this point, three games will be introduced. Each was
designed in accordance with the above procedure and can be powerful

for the study of a particular area of Computer Science. For each

game, the rules will be presented in the form which would be
distributed to potential players. After that, the benefits of the
game - what is taught in a novel or powerful way - will be

discussed.
lll.a The Grammar Game

lll.a.1T Rules

The Grammar Game Rules

Context-free and context-sensitive grammars (grammars,
hereafter) are an important part of Computer Science, especially
because of their use in describing the syntax of programming
languages. The Grammar Game is intended to make a student
comfortable with grammars. It teaches substitutions in grammars:
what substitutions are possible with a given grammar and what is
needed in a grammar to make further substitutions (a feature well

suited for Computer Science considerations).

Before the Grammar Game is defined, some discussion of
grammars and their terminology is in order.
e A grammar for a particular language consists of one or more
productions, each occurring on its own line.
* A production states some of the transitions that language
symbols (or sets thereof) can undergo and consists of three

parts:

1) A head, the syntactic category on the left hand side of the
arrow, which indicates the group of symbols that can be
changed,

2) An ‘->, separating the left hand side (LHS) from the right
hand side (RHS),

3) A body consisting of zero or more syntactic categories
and/or terminals on the right hand side of the arrow.

¢ A syntactic category is any string in the language.

e Given a string which contains (as a part or the entire string)
one of the heads in the grammar, it is possible to substitute
any of the syntactic categories in the body. The initial string
is thus changed by substituting that syntactic category for the
portion of the given string identical to the head.

¢ Productions which contain zero syntactic categories are said
to be g-productions, allowing the substitution of the null
string for the head.

Number of Players: Two or more players compete against each other.

The Pack: Three packs of cards with jokers removed are
recommended for two players plus an additional pack for each
additional 2 players. The cards are placed (shuffled) into a pot, the
initial production is dealt, and then players remove cards from the
pot as required (possibly in groups of indeterminate size). Jokers

are removed from the decks.

Additional tools: Pencil and paper is normally needed, both for

scoring and for scratch work on productions and substitutions.

The Cards: Color and suit are irrelevant to the game. Cards turned
upside-down indicate either separation of the head from the RHS or

a choice (an “or”) between syntactic categories within the body.

Object of Play: The object is to score points (thirty is advised) by
being the first player successfully to reveal a production “solving”

the task.

The Task: The task consists of a list of one or more syntactic
categories for both the initial string and the final string. Multiple
possibilities within the initial and/or final string are separated by
upside-down cards. The task is met by changing any of the initial
strings to any of the final strings using a list of the substitutions

contained within the current grammar’s production rules.

Production Rufes: The body is separated from the head by an upside-
down card. Each of the possibilities within the body, if more than
one, are to be separated by an upside-down card. For example, given
the production:

N]

L4
+
A

]
jreeee

Figure 1. Example Production Rule

11

it is possible to change K-A-J-4 to K-9-4, K-7-K-4, or K-4, as the
two upside-down cards next to each other indicate an Epsilon-
production (substitute the null string for the LHS). From now on,
suits will be disregarded and * will be used for an upside-down card.
Also note that, given a LHS of A and a RHS of A-J, it is possible to
produce an A followed by any number of J's through repeated
substitution (some or all of which could then be used in subsequent
substitutions).

A rule consisting of only a LHS is an e-production and
instances of that LHS may only have null substituted for them. Rules
with RHS’s may or may not, depending on the current status of the
game, have e-productions, indicated by two upside-down cards next
to each other. Such a production is shown in Figure 1. Some

examples of valid transitions are shown following the rules section.

The Deal: The players decide the form of the initial grammar and
task. Any number of cards may be placed as the head, as well as any
number of ‘or’s in the body, for each of the possibly multiple

productions. The task also may be of any desired length.

Scoring: A player gains 5 points for the successful substitution
from task LHS to RHS of each turn. Stopping the turn for a failed

production loses 3 points.

Rufes of Play: The game consists of a series of turns until a player
achieves a set score (20 is recommended). To end a turn , a player

indicates that they are ready (by saying loudly, “STOP!” or slapping

the table - slapping opponents is not allowed) and demonstrates a
successful transition from the initial string to the final string using
the rules. After stopping the turn, the player may add as many
upside-down cards as desired, but none may be placed face-up. This
allows the addition of e-productions, making it unnecessary to add
e-productions hurriedly when a player first sees a transition..

At a given point in a turn, if none of the players is able to
demonstrate such a transition (within a rational amount of time -
verbal agreements to go on are not normally required), the next
player (going clockwise) may add one face-up card to any production
at any position in the production. In a given rule, it is therefore
legal to add the card on the LHS, or on the RHS within a current
substitution possibility, or as a new substitution possibility on the
RHS. Any number of upside-down cards may also be added (if the
player wants to add Epsilon-productions, for example). Similarly, a
new production may be created (though it would begin as an e-
production) as only one card may be laid face-up during that
particular player’s turn..

After a turn, the player who received the points must change
one of the rules or the task so that they can find no current
successful productions. The player may achieve this by adding a
single card of his or her choice somewhere in the task or within one
of the rules, or by deleting as many of the productions from the
grammar as desired. For example, if the task was to convert Q-A to

K-Q-A, it would be a valid move to add a 9 to the Q-A making it Q-9-

13

A, 9-Q-A, or Q-A-9. The same sort of additions may be done to one
of the rules either to the head or to one of the syntactic categories.
If that player makes a change for which there is an existing
successful transition within the grammar (possibly by making an
irrelevant change), any other player may immediately signal stop and

gain 5 points.

Example Transitions: This section will show some transitions to
help reveal some of the possibilities. The notation, which is
suggested for the scratch pad as well, is
LHS -> RHS where RHS is a list of sequences of cards such as
J-K-413-2-61]|
Given the following grammar:
6 -> 1014-Q
3 > 3-31IK
Q-K -> A-2-A
it is possible to complete the task of changing 6-3 to 4-A-2-A-3 by
the following substitutions:
6-3 > 4-Q-3 > 4-Q-3-3 > 4-Q-K-3 > 4-A-2-A-3

in, «

This could be reported by reading the “>“ as “goes-to”.

Another vital consideration, given a task and a grammar, what
additions to the grammar could complete the task. As an example of
this, consider the task:

LHS: 515-K16-2 RHS: 313-615-3-5-2

and the grammar:

5 >
6 -> 516-5
7-Q >

K-> K-3-KI[K-2
A good possibility is to notice that 6-2 > 6-5-2 > 6-5-5-2 > 5-3-5-2
and try to flip a 3 on the RHS of the first production. An alternate
possibility would be to flip a 5 on the RHS of the last production and
to add an epsilon-production, making the rule K->K-3-K |K-2 | 5 | |
and giving:

5-K > 5-K-3-K > 5-K-3-K-2 > 5-K-3-5-2 > 5-3-5-2.

Game Variations. There are many ways to change or adapt the
Grammar Game. For example,

* Disallowing the scratch pad, forcing the players to keep the
transitions in their heads. This can get quite difficult for
large grammars, so care is necesary to avoid incorrect
stoppages of play (which costs players points).

e Add a rule which says that placing an upside-down card to the
left of the head (as the leftmost card in the production)
disallows the addition of cards to the head from then on. This
hinders opponents from playing “defensively” and protects
rules a player believes are going to be important.

* Add a rule stating that additions may only be made on the end
of productions during a turn. This reduces the possibilities
and makes it more difficult to find certain transitions, but it

also makes the game more predictable for the same reasons.

14

lll.a.2 Grammar Game Discussion

The Grammar Game can be an effective tool for the study of
grammars within Computer Science. It has a large competitive
component which keeps the players constantly on their toes. The
concentration on the current state of the grammar teaches the
players manipulation strategies at a level not normally reached in
conventional education. |n addition, there is a need to think ahead
for changes to the current grammar which may enable a successful
transition. This feature of the game is sorely lacking in most
conventional treatments of grammars, but is vital to the uses of

grammars within Computer Science.

To test the clarity of the rules and the success of the Grammar
Game at conveying an understanding of grammars, the author taught
the game to a 16 year-old high school student who had no previous
exposure to grammars. After becoming accustomed to the terms and
symbols of the game, the subject began to compete excitedly with
the author and even won a few turns. In approximately 30 minutes,
he progressed from no knowledge to a functikonal understanding of

how grammars and their productions are manipulated.
lI.Lb The Argumentation Game

fll.b.1 Rules

15

Argumentation Game Rules

This game is designed to investigate protocols and strategies
for resource-bounded disputation. The rules presented here
correspond closely to the Computer Science problem of controlling

search in an actual program (Loui and Chen, 1992).

This game is quite complex in both terminology and rules, so
every term which needs defining will be underlined at its definition.
It is recommended that when an unknown term is found, its
definition (which may be located later in the instructions) should be
read immediately. Much of the rules are presented in list form to

facilitate the learning of them.

The Deck: Four decks of cards, without jokers, are used. The cards
are placed (shuffled) into a pot, from which the board, as well as any

resource cards, are drawn and returned at the appropriate time.

The Cards: Cards are distinguished by color and value, not by suit. A
card’s opposite is a card of the same value and opposing color while

its equivalent is a card with the same value and color.

The Players: There are two players, designated in advance to be red
and black. After the bidding described below is complete, one player
will be assigned the task of arguing for a specific card and is called
the declarer. The opponent, or defender, must hinder the declarer by
questioning the declarer’s argument(s) and/or arguing for the

opposite card.

16

17

Object of Play. To successfully complete the declarer’s or

defender’s task.

The Deal:

one of the two players is designated the initial dealer.

deal alternates between the players.

cards are placed mixed with faces down in a pool.

first, three evidence cards, facts which are deemed
indisputable, are drawn from the pool. If a card is drawn
whose value (regardless of color) is already evidence, it is
returned to the pool.

the evidence cards are placed in the evidence area.

next draw 10 short cases and 10 long cases.

a case consists of a decision, face-up, upon either 2 (for short
cases) or 10 (for long cases) face-down cards called facts. A
case is said to be for its decision. When cards face-down are
later displayed, these are said to be displayved facts of the
case. A case with any displayed facts is opened and a case

with all cards displayed is exhausted.

Bidding. The dealer opens the bidding and then the players alternate

bids until one of the players, called the defender, challenges the

other, called the declarer, to complete the last bid. Each bid

consists of:

¢ 3 claim, the card to be shown by argument, which must have

the same color as the bidder and for which there exists at

least one red and one black decision for that card on the board.

¢ a number of resource cards, which are used up by the declarer
and given to declarer by the defender when searching through
cases at times in the game.

* a non-negative number of burden shift cards (whose use will be

described later).

» a difficulty level.

The degree of difficulty is ranked lexicographically from highest to

lowest as shown in Figure 2. Each bid must be stronger than all of
the previous ones, with bids ordered first by increasing level of
difficulty, proceeding downwards on the above chart, (sideways
moves are permitted but do not strengthen a bid) then by decreasing

burden shift cards and finally by decreasing resource cards.

18

19

Both Ordered Evidence
and Playable Resources

No Burden to
Playable reinstate
Resources with defeat.

Ordered
Evidence

No
Allowances

Both Ordered Evidence
and Playable Resources

Declarer has

Ordered Playable burden to
Evidence Resources reinstate with
defeat.

No
Allowances

Figure 2: Difficulty Ordering

Object of Game: The declarer attempts to fulfill the bid by
successfully supporting the claim within declarer’s resources and
burden cards, and with the constraints of the difficulty level. The
defender attempts to foil the declarer by disproving or calling

declarer’s argument into question.

20

Start of Game: The initial declarer's resources are drawn from the
pool, the number of which was determined by the winning bid.

Jokers are given to the declarer as burden shift cards as necessary.

The Play. The declarer initiates play, after which play strictly
alternates. A player must end his or her turn by engaging in dialogue
that establishes sufficiency. In many instances this may be tacit -

as long as the dialogue is unambiguous and both players understand
it, the dialogue step may be omitted. Play terminates and defender
wins if it is the declarer's turn and declarer has exhausted his or her
resources. Play terminates and the opponent wins if either player is

unable to make a sufficient response.

The Dialogue: A dialogue move consists of one of the following:
e challenging a card included in the opponent’s last dialogue,
¢ refuting a card included in the opponent’s last dialogue,

* an argument list supporting the claim which has appropriate
strength and it is the declarer's turn, or
* an argument list against the claim which has appropriate

strength and it is the defender's turn.

The Challenge: A challenge is sufficient if the object of the

challenge is unsupported somewhere in the opponent's dialogue
(which must have been either a refutation or argument list) and is
not an evidence card. Such a challenge remains in effect and can not

be used in an argument until the card is supported.

The Refutation: A refutation is sufficient if the card being refuted
(1) is not an evidence card; (2) appeared in the opponent's dialogue
(which was an argument list); and (3) is an argument is cited with
appropriate strength. Such a refutation remains in effect, making

that card unusable in an argument until the card is supported.

The Argument: An argument for a card is a collection of cases that
can be organized into a tree by the following steps:
¢ taking the card to be the root;
e taking a unique case for the card to define the children of the
root by using any (including possibly all) of its admissible
facts as children of the roof;

¢ checking that the leaves of the tree are each admissible.

The Argument List: An argument list is a collection of arguments.
[t has appropriate strength if each of its component arguments also

have appropriate strength.

Appropriate Strength: An argument has appropriate strength if:

¢ it contains no currently challenged or refuted cards; and

» itis either for the declarer who has no burden to reinstate
with defeat or it is for the defender and the argument is not
less specific than any argument for the opposite card in the
opponent's dialogue; or

e it is for the declarer who has burden to reinstate with defeat
and the argument is more specific than every argument for the

opposite card in the opponent's dialogue.

21

22

¢ if the declarer uses one of declarer's burden shift cards on a
card in an argument, then the onus of being more specific falls

on defender at that point in the argument tree.

Specificity: Specificity adjudicates between arguments for

opposite cards. It chooses the argument which meets the broader
criterion of being more specific than another. An argument is
deemed more specific ifthere is a set of cards that can be cited that
activates the lesser argument, but does not activate the greater
argument. If there is ordered evidence, then the set of cards is first
augmented by any evidence cards less than the highest evidence card
in the set (if any), before checking for activation. An argument for a
card is activated by a set of cards if the set of cards contains a cut-
set (not including the root) of the argument. If neither argument
activates the other, the two arguments are said to be incomparable.
If both activate the other, the two arguments are said to be equi-

specific.

Argument Manipulation. A player may support a card in an argument
by flipping cards on unexhausted cases during his turn. If an
admissible card is flipped on a case and is not removed, it may be
then added as support of that decision. A flipped card is burned, or
removed from a case and placed back into the pool, if it is anti-
evidence, it has already appeared in the case, or its opposite has

already appeared in the case.

Admissible: A card is admissible (or live) if

23

¢ itis an evidence card; or

* itis a card for which there is no opened case for the opposite
card and for which there are no current challenges; or

¢ a tree of potential argument for the card (henceforth, an
argument) can be cited for the card which is undefeated for the

player.

Resources: Each flip for the declarer consumes one resource card.
Each flip for the defender contributes one card to the declarer's
resources. Any resources consumed while flipping from the first
sufficient response to a challenge are not transferred to the other
side if the challenge is met by producing an admissible card among

the facts of the first response.
[Il.b.2 Argument Game Discussion

The Argumentation Game, originally designed by R.P. Loui and
William Chen, is based on the LMNOP program (Loui, Norman,
Stiefvater, Merrill, Olson, Costello, 1992). LMNOP is based on the
idea of a non-demonstrative or defeasible rule: a rule that admits
exceptions. It adopts a representational convention that supposes
there is an implicit preference of more specific rules over less
specific rules. In fact, it automatically adjudicates between
competing arguments when one argument meets the broader

criterion of being more specific than another.

24

The argument game is an invaluable tool for the study of
argumentation strategies and specificity. Players are forced to
consider the question of where to spend limited resources. Logical
methods of argumentation are reinforced and can shortly become
second nature. Specificity, a difficult concept when applied to
argumentation, is necessary to the understanding of the game and

easily learned in the context of the game.
ll.b.3 Program for Argumentation Game

To further demonstrate the power of games in the study of
Computer Science, the game was coded using c. A listing of the
program as well as some sample output are included as an appendix.
During the process of coding, it was discovered just how little of
this area is specified. The rules of specificity and argumentation
protocol were largely designed anew. The very act of designing

therefore became a useful tool for learning the concept itself.

The program is currently near completion. In the next year, it
will be finished and a graphics driver will be placed on it as a front-
end. Plans are being made to distribute or sell it to community High
Schools and Jr. High Schools for use within debate clubs or similar

activities.
lIl.c The Layout Game

lll.c.T Rules

25

Layout Game Rules

For quite obvious reasons, the layout of interconnecting devices and
boards within architectures is a vital study within computer

science. Speed and efficiency of a computer are greatly affected by
the hardware placement. The Layout Game deals with solving a set

of constraints while maximizing the efficiency of the layout.
Number of Players: Two players.
The Cards: Suit and color are irrelevant.

The Pack: Two packs are required and one given to each player.
Cards are an abstraction for hardware devices and are laid out

according to the rules detailed below.

The Object of Play. To satisfy the current constraints with the
least amount of points, determined by the efficiency of the solution,
while simulataneously giving the opponent difficult tasks to

perform.

The Game Layout. There are two areas of play. In the constraint
area, tasks are built which detail what cards must be inter-
connected. Tasks consist of a leftmost card called the head.
followed by an upside-down card and then a list of up to 5

connection cards. Each task asserts that each occurrence of the

head must be connected to any occurrence of the connection cards.

Four examples of tasks are shown below in Figure 3

Figure 3: Task Area

The other area is the layout area. In this area are the cards
(representing hardware devices) which must be connected according
to the tasks. For example, with the tasks shown in Figure 3, any
occurrence of 2 must be connected in some way to any J, A, K, 8, or
9. This connection may be accomplished via placement of these
cards adjacent to the 2 in any of the 8 compass directions, or by
using a bus. A bus is a connection of wires and can be used to
connect any number of cards with connections to the bus to ali of
the others. In Figure 5 below, the layout satisfies the constraint

that the 3 is connected 1o all of the J’s, but none of the K’s.

Therefore, if a player has to create a valid layout for the

following cards: K, J, 8, A, 7, Q, 4, and 3, one valid solution is shown

26

27

in Figure 4. This solution layout satisfies all of the connection for
the head cards J and 3. Note, however, that this is not necessarily

the only optimal solution.

Figure 4: Example Layout

The Play. The two players alternate roles each turn. One player is
the constraint builder, whose objective is to create difficult tasks
for his opponent, the desianer, as well as checking the design for
constraint satisfaction. It is the job of the designer to meet these
constraints as effectively as possible. One design is generally more
“effective” than another if it has a smaller radius or uses fewer bus
cards, which are represented by upside-down cards. Precise rules on
judging the effectiveness of layouts and scoring is given below in

The Scoring.

First, the constraint builder places 4 cards at desired places
on the board. The location of the card is chosen before the card is

revealed. Each of the cards may go in either the task area or in the

layout area. Cards placed in the task area may be added to an
existing rule with fewer than 5 connection cards, thus creating more
constraints the designer must follow, or cards may be placed that
add tasks. If a new task is added whose head already exists, the new
task is removed and the constraints on it must be placed on the
other occurrence. Cards placed in the layout area give the designer

more cards that must be fit within the layout.

Next, it is the designer’s turn either to augment or to adapt the
last layout, or to create a wholly new layout such that all of the
constraints are met. When the designer is satisfied with the layout,
the constraint builder checks to make sure all of the constraints are
satisfied. If so, the score is computed, added to the score of the
current designer, and the roles are reversed. When both players have
had the same amount of turns as designer and one player has reached
100 points, the other player wins the game. If both players reach
100 within the same turn pair, the player with the lower score of
the two loses. In case of a tie, the game becomes sudden death, with
the first player to get a more effective solution than the other

during the turn pair wins.

The Scoring: Scoring is rather complex. It is computed by the sum
of the each connected component in the layout. The scores for each

are computed by the following formula:

Y [radius(component)] * Y obustensthtiuss

i=lengil,width i

28

29

For example, the consider the layout in Figure 5:

J Y[
\J \J
v
4

v Lol

e

Figure 5. A Layout Example

The score for that would be:
[(5+5)* (22 +2)]+[(4+3) %2 =10*10+7*2 =114

Game Variations: One possibility is to make the game more parallel
to real life hardware problems by penalizing for any lines that cross.
In this version, instead of buses, the players would use specific
wires to connect two cards. Also, the longer the lines, the less
effective the solution. Some equation would be needed to compute
the score of a layout, possibly computed by doing the sum of the
length of the wires (in inches) and adding the number of times

wires cross. The weighting of this would have to be worked out.

30

Another idea is that the cards in the task are prioritized
according to the amount that the device it represents is used. With
this alternative, the game could be extended to make a result less

effective because of, for example, bus-overfoad.
lll.c.2 Layout Game Discussion

The purpose of the layout game is to study the way in which
computer designers are forced to solve a given set of layout rules
while maximizing efficiency. The rules and constraint creation
system accomplish this end through a simple yet enjoyable game.
The game deals with both the expense and problems of bus use when
compared to direct connections, as well as fitting the layout in as
small a space as is possible. The addition of the prioritization by
usage is also well suited for the study of real-world layout
techniques. Further, the constraint satisfaction techniques
contained within the layout game can be helpful in many other areas
because constraint satisfaction is found everywhere and
maximization of efficiency is a prevalent task in all of computer

science.
IV. Conclusions - Using Games as Teachering Tools

When striving to create dynamic and exciting academic games,
it is imperative to remember that there is a necessary distinction
between simply enjoyable games and enjoyable academic games. The

primary task of academic games is to teach and/or study a certain

topic or concept, not to replace television as entertainment for

students.

With this in mind, it is crucial for the teacher and designer of
the game to keep in mind, at all times, the target concept which the
game is to teach. The game should be crafted so that the successful
use of the concept during play should reward the player. For
example, in the Layout Game, the scoring is devised so that just
those things that are important in the computer science topic of
layout design score points for the player. Such a focus on the topic

will maximize the effectiveness and educational value of the game.

Additionally, the introduction and follow-up interaction
between teacher and students is critical to a game’s success. As
stated above, the introduction gives background information to
provide the student with a frame of reference and focus. The
follow-up can serve as a reinforcement of the important concepts,
as an overview of the topic after the students are familiar with its
workings, and as a review of what was learned so that the teacher is
more able to gauge the lesson’s effectiveness. Without these steps,
a game can teach, for example, people to have great proficiency in
manipulating grammars without providing an understanding of

anything with respect to computer science in general.

Game-play as a tool for learning is now widely accepted.
However, there currently is too much emphasis on developing games

for younger children. Adults and teenagers also need to have

31

32

positive feelings towards their studies and enjoying themselves
while learning. While adults don’t necessarily have to play to sit
still, there are considerable benefits to gaming. Games such as the
ones above can be an excellent tool in all areas of learning -

including Computer Science.

33

Appendix - Argumentation Game Program

Here is a printed run of a game between two players using the
Argumentation Game Program. Some of the invalid moves and
checking of board and argument status have been removed for
compactness. Although players deal with argument construction and

specificity multiple times during this run, it is not an entire game.

Welcome to the Two-player version of An Argument Game.
R. P. Loui, W. Chen, patent pending.

During each turn, the valid responses are:
d[isplay]a[rguments] -> displays the current arguments.
d[siplay]b[oard] -> displays the current board status.
a[dd] -> adds a card to one of your arguments, parameters:
argument number, card to add, card to add under.
rlemove]a[rgument] -> removes an argument.
rlestate] -> restate arguments - allows you to add or remove
arguments to your current argument list.
fllip]r[esource] -> flips a resource card.
f[lip]c[ase] -> flips a card under a case, parameters are:
I/s (long or short case), case number,
e[nd] -> ends turn.
gfuit] -> ends game.
Pretty boring, eh?

Current status of the board is as follows:
EVIDENCE: 2Di 5Sp 7 Sp

SHORT CASES:

0: 10 Sp(2) 1: 9 Sp (2)

2: QCl(2) 3:45p(2)

4. 6 Sp (2) 5:KSp{2)

6: ACI(2) 7:6 Cl(2)

8: 9 He (2) 9:ASp(2)
LONG CASES:

10: 9 Di (10) 11: 8 He (10)
12: 6 He (10) 13: KSp (10)

14: 10 Di(10) 15: 8 Sp (10)

34

16: 10 Sp(10) 17: 9.CI(10)
18: JCI(10) 19: 9Sp (10)

For ease of input, setting player O trying to argue for 9 Sp
with 20 resource cards.

Player O, it is your turn.
Your current arguments:
Argument 0: 9 Cl

Your opponent's current arguments:

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19
The card revealed is 6 Cl leaving 9 facts left unturned in that case.
You flip the valid support card 6 Cl.
Attempting to add the card to the 1 occurance in your argument.
Player O's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > d
You can:
(0) challenge an argument in your opponent's current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 2
Please input the argument(s) you would like to use (negative will
end inputing). > 0
> -1
You are using the following arguments:
0: 9CI(6Cl)

Player 1, it is your turn.

Your current arguments:

Your opponent's current arguments:

Argument O0;: 9 Cl (6 CI)

Player 1's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > db

Current status of the hoard is as follows:
EVIDENCE: 2Di 5Sp 7 Sp

SHORT CASES:
0: 10 Sp(2) 1.9 Sp(2)
2: QCl(2) 3: 4 Sp (2)

4: 6 Sp (2} 5:K Sp (2)

6: A Cl (2) 7:6 Cl{2)

8: 9 He (2) 9: ASp (2)

LONG CASES:

10: 9Di(10) 11: 8He (10)
12: 6 He (10) 13: KSp (10)
14: 10 Di(10) 15: 8Sp (10)
16: 10 Sp(10) 17: 9 CI(10)
18: JCI(10) 19: 9Sp, 6 CI(9)

Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > a
What card is being added (form: J Cl}? 9 Di

Your argument is now:
Argument 0: 9 Di

Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc

What case would you like to flip on, using the short cases as cases
O through 9 and the long ones as 10 through 19.

> 10

The card revealed is K Cl leaving 9 facts left unturned in that case.

You flip the valid support card K Cl.

Attempting to add the card to the 1 occurance in your argument.

Player 1's turn (da/db/a/aa/ra/v/fc/fr/d/e/q/?) > da

Your current arguments are:
Argument O: 9 Di (K CI)

Your opponent's current arguments are:
Argument O: 9 Cl (6 CI)

Player 1's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?) > a
What argument would you like to add to? > 1
What card is being added (form: J CI)? & He

Your argument is now:
Argument 0: 9 Di (K Ch
Argument 1: G He

Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 12

The card revealed is A He leaving 9 facts left unturned in that case.

A He is not alive. Removing it from the case.
Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fe
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 12
The card revealed is 2 Cl leaving 8 facts left unturned in that case.

35

2 Clis Anti-Evidence. Removing it from the case.
Player 1's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 12
The card revealed is 9 Sp leaving 7 facts left unturned in that case.
You flip the valid support card 9 Sp.
Attempting to add the card to the 1 occurance in your arguments.
Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > d
You can:
(0) challenge an argument in your opponent's current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 1
What card in your opponent's argument are you trying to refute? > 6 Cl
And what argument of yours are you using to refute? > 1

Your response has been determined to be sufficient, as it refutes a card
in your opponent's dialogue arguments with a more specific argument.

Player O, it is your turn.
Your current arguments:
Argument O: 9 CI (6 CI)

Your opponent's current arguments:
Argument O: 9 Di (K Cl)
Argument 1: 6 He (9 Sp)

Player O's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?) > d
You can:
(0) challenge an argument in your opponent's current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 1
What card in your opponent's argument are you trying to refute? > 6 He
And what argument of yours are you using to refute? > 0

You must refute your opponent's card, 6 He with an argument starting with

an opposite card,
You formed no valid refutation.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > db

Current status of the board is as follows:
EVIDENCE: 2Di 5Sp 7 Sp

SHORT CASES:
0: 10 Sp(2) 1:9S5p (2)
2: QCH{2) 3:45p(2)

36

4: 6 Sp (2) 5: K Sp(2)
6: A Cl (2) 7:6Cl(2)
8: 9 He (2) 9: ASp(2)
LONG CASES:

10: 9 Di, KCI{(9) 11: 8He (10)
12: 6 He,9Sp(7) 13: KSp{10)

14: 10 Di(10) 15: 8Sp(10)
16: 10 Sp(10) 17: 9CI(10)
18: JCI(10) 19: 9Sp, 6 CI(9)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > a
What argument would you like to add to? > 1
What card is being added (form: J C)? & Cl

Your argument is now:
Argument 0: 9 Cl (6 Cl)
Argument 1: 6 CI

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
>7
The card revealed is 8 Cl leaving 1 facts left unturned in that case.
You flip the valid support card 8 Cl.
Attempting to add the card to the 2 occurances in your arguments.

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > da

Your current arguments are:
Argument O0: 9 CI (6 CI[8CID
Argument 1: 6 CI (8 Cl)

Your opponent’s current arguments are:
Argument 0: 9 Di (K CI)
Argument 1: 6 He (9 Sp)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > d
You can:
(0) challenge an argument in your opponent's current dialogue,
{1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 1
What card in your opponent's argument are you trying to refute? > 6 He
And what argument of yours are you using to refute? > 1
Neither is More Specific.
Your refutation is not sufficient, as it was not more specific than
your opponent's.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc

37

What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19
The card revealed is 2 Cl leaving 8 facts left unturned in that case.
2 Cl is Anti-Evidence. Removing it from the case.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
>19

The card revealed is J He leaving 7 facts left unturned in that case.

J He is not alive. Removing it from the case.
Player O's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19
The card revealed is 9 Di leaving 6 facts left unturned in that case.
9 Di is contrary to case cards. Removing it from the case.
Player O's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
>19

The card revealed is 7 He leaving 5 facts left unturned in that case.

7 He is Anti-Evidence. Removing it from the case.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19
The card revealed is 7 Di leaving 4 facts left unturned in that case.
7 Diis Anti-Evidence. Removing it from the case.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19
The card revealed is 9 Cl leaving 3 facts left unturned in that case.
9 Clis already in the case. Removing it from the case.
Player O's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19
The card revealed is 5 Cl leaving 2 facts left unturned in that case.
5 Cl is not alive. Removing it from the case,
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19

The card revealed is J He leaving 1 facts left unturned in that case.

J He is not alive. Removing it from the case.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 19

38

The card revealed is 8 Sp leaving O facts left unturned in that case.
You flip the valid support card 8 Sp.

Attempting to add the card to the 2 occurances in your arguments,
That may sufficiently deal with the challenge on 9 CI.

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > db

Current status of the board is as follows:
EVIDENCE: 2Di 5Sp 7 Sp

SHORT CASES:

0: 10 Sp(2) 1: 9 Sp (2)
2:QCH{(2) 3:45p(2)

4: 6 Sp (2) 5:K Sp (2)

6: ACl(2) 7:6 CL8CI(1)
8: 9 He (2) 9: ASp (2)
LONG CASES:

10: 9Di, KCI(9) 11: 8He (10)
12: 6He,9Sp(7) 13 KSp (10}

14: 10 Di(10) 15: 8 Sp (10)
16: 10 Sp(10) 17: 9CI(10)
18: JCI(10) 19: 9 Sp, 6 Cl, 8 Sp (0)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > da

Your current arguments are:
Argument O: 9 Cl (6 CI {8 Cl], 8 Sp)
Argument 1: 6 Ci (8 Cl)

Your opponent's current arguments are:
Argument O: 9 Di (K CI)
Argument 1; 6 He (9 Sp [8 Sp])

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > d
You can:
(0) challenge an argument in your opponent's current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
>0

What card in your opponent's argument are you trying to challenge? > 8 Sp

8 Sp in argument number 1 is now under challenge.

Your response has been determined to be sufficient, as it challenges an

unsupported card in your opponent's dialogue arguments,

Player 1, it is your turn.

Your current arguments:
Argument : 9 Di (K Cl)
Argument 1: 6 He (9 Sp [8 Sp))

39

40

Your opponent’s current arguments:
Argument 0: 9 ClI (6 CI[8 CI], 8 Sp)
Argument 1: 6 Cl (8 CI)

Player 1's turn (da/db/a/aa/ra/v/fc/fr/d/e/q/?) >t

Your current arguments:
Argument 0: 9 Di (K CI)
Argument 1: 6 He (9 Sp [8 Spl)

First, lets delete the cards you dont' want to use.

Name cards to delete - if a card with spport is named,all of its
support will be deleted as well.

Inputing x x on a line will finish deleting.

What card is being deleted (form: J Cl)? > 8 Sp
8 Sp removed and replaced by the last support, 8 Sp.

Your current arguments:
Argument 0: 9 Di (K CI)
Argument 1: 6 He (9 Sp)

Player 1's turn (da/db/a/aa/ra/v/fc/fr/d/e/q/?) > d
You can:
(0) challenge an argument in your opponent’s current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 2
Please input the argument(s) you would like to use (negative will
end inputing). > 0
> -1

You are using the following arguments:
0: 9DI(KChH

Challenged card has been removed from argument.
Your dialogue arguments create a valid response by successfully
dealing with your opponent's last challenge.

Player O, it is your turn.

Your current arguments:

Argument 0: 9 CI (6 CI [8 ClI], 8 Sp)
Argument 1: 6 CI (8 CI)

Your opponent's current arguments:
Argument 0: 9 Di (K CI)
Argument 1: & He (9 Sp)

Player O's turn {da/db/a/aa/ra/r/fc/fr/d/e/q/7) > db

Current status of the board is as follows:
EVIDENCE: 2Di SSp 7 Sp

SHORT CASES:

0: 10 Sp(2) 1: 9 Sp (2)
2: QCH(2) 3:4 Sp (2)

4: 6 Sp (2) 5: K Sp (2)

6: ACl(2) 7:6 ClL8 Cl (1)
8: 9 He (2) 9: ASp(2)
LONG CASES:

10: 9D, KCE(9) 11: 8He (10)
12: 6He,9Sp(7) 13: KSp(10)

14: 10 Di(10) 15: 8Sp (10)
16: 10 Sp(10) 17: 9 CI(10)
18: JCI(10) 19: 9Sp, 6Cl, 8 Sp(0)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/g/?7) > d
You cam;
{0) challenge an argument in your opponent's current dialogue,
(1) refute a card in your oppenent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
>0
What card in your opponent's argument are you trying to challenge? > K Cl
K Clin argument number O is now under challenge.
Your response has been determined to be sufficient, as it challenges an
unsupported card in your opponent's dialogue arguments.

Player 1, it is your turn.
Your current arguments:
Argument O: 9 Di (K Cl)
Argument 1: 6 He (9 Sp)

Your opponent's current arguments:
Argument 0: 9 Cl (6 CI [8 Cl], 8 Sp)
Argument 1: 6 Cl (8 Cl)

Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > a
What argument would you like to add to? > 2
What card is being added (form: J Cl}? K Sp

Your argument is now:
Argument 0: 9 Di (K Cl)
Argument 1: 6 He {9 Sp)

41

Argument 2: K Sp

Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > fc

What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.

> 13

The card revealed is 8 Sp leaving 9 facts left unturned in that case.

You flip the valid support card 8 Sp.

Attempting to add the card to the 2 occurances in your arguments.

That may sufficiently deal with the challenge on K Cl.

Player 1's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > da

Your current arguments are:
Argument 0: 9 Di (K Cl [8 Spl)
Argument 1: 6 He (9 Sp)
Argument 2: K Sp (8 Sp)

Your opponent’s current arguments are:
Argument O0: 9 Cl (6 CI [8 Cl], 8 Sp)
Argument 1: 6 CI{(8ChH

Player 1's turn (da/db/a/aa/ra/v/fc/fr/d/e/q/7) > d
You can:
(0) challenge an argument in your opponent’s current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 2
Please input the argument(s) you would like to use (negative will
end inputing). > 0
> -1
You are using the following arguments:
0: 9 Di (KCI[8 Sp])

Challenged card supported.
Your dialogue arguments create a valid response by successfully
dealing with your opponent's last challenge.

Player 0O, it is your turn.

Your current arguments:

Argument O0: 9 Cl (6 ClI [8 Cl], 8 Sp)
Argument 1: 6 CI(8 Cl)

Your opponent's current arguments:
Argument 0: 9 Di (K CI [8 Sp])
Argument 1: 6 He (9 Sp)
Argument 2: K Sp (8 Sp)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?7) > db

42

Current status of the board is as follows:
EVIDENCE: 2Di 5Sp 7 Sp

SHORT CASES:

0: 10 Sp(2) 1: 9 5p (2)
2:QCl(2) 3:45p(2)

4: 6 Sp (2) 5:KSp(2)
6: A CI(2) 7: 6 CIL,8 CI (1)
8: 9 He (2) 9: A Sp(2)
LONG CASES:

10: 9D, KCI(9) 11: 8He(10)
12: 6He, 95p(7) 13: KSp, 8 Sp(9)

14: 10 Di(10) 15: 8 Sp(10)
16: 10 Sp(10) 17: 9Cl (10)
18: JCI(10) 19: 9 Sp, 6 Cl, 8 Sp (0)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > a
What card is being added (form: J Cl}? 9 Ci

Your argument is now:

Argument O: 9 CI (6 CI [8 Cl], 8 Sp)
Argument 1: & Cl (8 Ci)

Argument 2: 9 Cl

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you iike to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 17

The card revealed is K He leaving 9 facts left unturned in that case.

K He is not alive. Removing it from the case.
Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fc
What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.
> 17
The card revealed is K Cl leaving 8 facts left unturned in that case.
You flip the valid support card K CL.

Attempting to add the card to the 2 occurances in your arguments,

ILLEGAL: No case with the proper facts was found.

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/?) > fe

What case would you like to flip on, using the short cases as cases
0 through 9 and the long ones as 10 through 19.

> 17

The card revealed is 5 Di leaving 7 facts left unturned in that case.

5 Diis Anti-Evidence. Removing it from the case.

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/g/?) > db

Current status of the board is as follows:

43

44

EVIDENCE: 2Di 5Sp 7 Sp
SHORT CASES:

0: 10 Sp(2) 1:9Sp(2)

2: QCl(2) 3:45p (2)

4: 6 Sp (2) 5: K Sp (2)

6: A Cl(2) 7: 6 CL8 CI(1)
8: 9 He (2) 9: ASp (2)
LONG CASES:

10: 9Di, KCI(9) 11: 8 He (10)
12: 6He,9Sp(7) 13: KSp, 8Sp (9)

14: 10 Di(10) 15: 8 Sp (10)
16: 10 Sp(10) 17: 9Cl, K Cl (7)
18: JCI(10) 19: 9 Sp, 6 Cl, 8 Sp (0)

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > da

Your current arguments are:
Argument 0: 9 CI(6 CI[8 CI], 8 Sp)
Argument 1: 6 Cl (8 CI)

Argument 2: 9 ClI (K CD)

Your opponent's current arguments are:
Argument O: 9 Di (K CI [8 Sp])
Argument 1: 6 He (9 Sp)

Argument 2: K Sp (8 Sp)

Player Q's turn (da/db/a/aa/ra/v/fc/fr/d/e/q/?) > r

Your current arguments:

Argument O: 9 Cl (6 Cl [8 CI], 8 Sp)
Argument 1: 6 Cl (8 Cl}

Argument 2: 9 CI (K CI [8 Sp])

First, lets delete the cards you dont' want to use.

Name cards to delete - if a card with spport is named,all of its
support will be deleted as well.

Inputing x x on a line will finish deleting.

What card is being deleted (form: JCI)? > 8 Sp

More than one instance of 8 Sp occurrs in the argument.
Which of the following instances did you want?

Instance O:

Argument O: 9 CI(6 CI(8 CI), *8 Sp*)

Argument 1: 6 CI{(8 Cl}

Argument 2: 9 CI(K CI(8 Sp))

Instance 1:
Argument 0: 9 CI(6 CI{8 CI), 8 Sp)

45

Argument 1: 6 CI(8 CI)
Argument 2: 9 CI{KK CI(*8 Sp*))

>0
8 Sp removed and replaced by the last support, 8 Sp.

Player O's turn (da/db/a/aa/ra/r/fc/fr/d/e/q/7) > d
You can:
(0) challenge an argument in your opponent’s current dialogue,
(1) refute a card in your opponent's current dialogue,
(2) present a (new) dialogue, or
(3) go back to options?
> 2
Please input the argument(s) you would like to use (negative will
end inputing). > 2
> -1
You are using the following arguments:
0: SCI(KCI[8Sp])

Your dialogue arguments create a valid response by its being a
more effective argument than your opponent's.

End of example

As you can see, the players both demonstrated knowledge of
how the arguments are manipulated by revealing evidence and
adapting arguments. Also, and more importantly, they came into
contact with and eventually mastered specificity and its importance

in refutation and new dialogue presentation.

The c code for the Argumentation follows.

From bhmwl@cecl.wustl.edu Fri May 7 13:22:34 1993
Receivad: from cecl.wusatl.edu by ai.wugtl.edu with SHTP
{5-.65a/1.35}: id AAOL956; Fri, T Hay 93 13:22:26 -(0500
Return-Path: <bmwilcecl.wustl.edu>
Reaceived: by cecl.wuatl.edu
{5.65a/1.35); id AA14560; Fri, 7 Hay 93 13:22:323 -DSGO0
Hepsage~Id! <$305071822,.AA145600cuc]l, vustl, edu>
From: bmwl 8cwcl.wustl.edu {(Ben Heber)
Date: Fri, 7 Hay 1993 13:22:23 0500
X-Mailer: Mail User's Shell (7.2.4 2/2/92)
To: loulfai.wuatl.edu
Statun: R

,l MARAL LA ALAchduddn Rt Nbor e s AR AS R d AR AR ARtk h ey -

Banjamin M. Weber *
* An Argumantation Game -
. -
" based on game by Ronald P. Loui -
. »
* r2/10/92 *
- .
L Y T T T P P Y TP Ty

tinclude <utdio.h>
+includes <ctype.h>»
tinclude <string.h>
tipelude <ays/time.h>

fdefine MAXCARDS 208

4define MAXNQDES 10

#define MAXHEADS 30

/* more than 10 supporting cards should never happen realistically */

tdafine wordsize 10

typedef char word(wordaize]:

typedef int boolean;

#cdefine AUTOADD 1 /* automatically adds aupports when £1lip? */
4define DEDUG O

tdefine TEMPDERUG 1

/* temp debug tests will be removad when perfewcted */

J esetasassamnsRAREEaE CARD ADY definiticonm Sssessssssansnass =7

typedef anum { THO, THREE, FOUR, FIVE, 5IX, SEVEN, EIGHT, HWINE,
TEN, JACK, QUEEN, XING, ACE, JOKER } RANKTYPE;

char * RANKS [] =~ [™27, 737, 74", "84, #gm, mJn, ngn wge mig=,
a7, TN, VKT, TAT, “Foker™)

typedefl enum { CLUDS, HEARTS, DIAMONDS, SPADES } SULTTYPE:
vypedsf enum { KRED, BLACK }| COLORTYPE:
char * SUITS [} = { “Cl", "He", ™Di", "Sp"):
ehar * COLORS {] = { "Red","Biack" };
typedef struct {
RANKTYPE Rank:

SUITTYPE Suit;
COLCRTYFE Color:s

boolean challnode: /* doss thia node have an unmaet challenge +
* ox refutation? */
HTYUCT Nodestruct *rupport [MAXNODES]:
/* anch supporting card iz a nodestruct */
struct nodextinct *parent; /* the parent node */
int argnumbez; /% which argument sre you in? =/
int depth; /% how desp in the arg ars you, supt wise =/
} NODE;

typedaf mtruct
{

HODE * HeadCards [MANHEADS}; /* pointar to tha hwad carde */

int numheads; /* nizmber of head cards used */

booclean hurden: /% does that player have burden? %/

NODE * Challenged [HAXEADS]:

/* axe any of thim argument’s ¢ardn under challenge OR refutation?
} ARGUMENT;

U eRwwakdbzddnasany and ARGUMENT definitions amazmamARARRAE wf
ARGUMENRT Arg [1]:

boolean Ordered; /+* iz the evidence ordered?? */
JE AR R Ak AR AR R ADT DIALCGUE definitions dikbkdcdddrannn w)

typedaf struct currnodestruct

int type: f* 0 = challenge, 1 « refute, 2 = present dislogue */
HODE * ohject; /* node of card being challenged/refuted *7
HOOR * Arg[10]; /* tha currsnt axgument(s) of this playsr */
int numargsa;
} DIALOGUE;

/h ARAERS SRR R R RRAN snd DIALOGUE definitions rhbkk AN,)

DIALOGOE Dial (1)

/U shessddvassnsntidi PANDOH Hunbey Ganerator tesesadsiainnnisss &)
unai¢ned long int next; /* for random numbexr +/

void arand (}
{ /* sets seed Zor rand() +/
struct timeval tp; /* for the time */
unaigned long int i;
gettimeofday (& tp.0}; /" getm a pointer to the time */
next = tp.tv_sear /* usen the time in awconds to do get next +/
for {i = (next ¥ 500): 1 > 1; i-~)
Random{i) ;

int randm (}
{ /* returns peroudo-random integer on 0..32767 =/
naxt = next * 1103515245 + 123245;
return {{unaigned int) {(next / 65536) ¥ I2768): /* 0..32767 »/

1 CARD:;
}
/% AN RREMdskidadEmARn and CARD definitions s+s=sessssssnannans s/
int Random (c)
int o}
f* mevsascssannacannnn ADT CASEY definitionm tasvacsbcirananasa oy { /* Returna a randemly owlected number botwesn 1 and ¢ */

typedaf atzuct

CARD FactEvid (11}:; /* each cate hae & number of cards *
* the 0th card beiny the decisfon */
int FactasShown; /* the number of facte shown already =/
int Cexdsleft; /* and keeps traock of the number of +
* facts left */
} CASES:

typedaf atruct
{
CARD Evidence {3]; /* the 3 evidence cardan */
CASES Caswa [20); /* the 20 short cases *
4 0~9 are short, 10«19 are long *
} BOARD:

/% RAAtssddssbtdessns and CASES definitionn **+esiesesnnsaness &/
BOARD GameBoard: /* the board with evidence, i0 shorxz, and 10 long */
A Awrsassasasssnrannn ADT POOL definiticns #tsesasssacarnsate @/
typedaf atruct

! int Cardsleft; /* and Xeeps track of the number in paol »/

CARD PoolCards {MAXCARDE): /* the pool haz a number of cavds =/
I PODLTYPE;

J4 Mheessmsccacannarin ond POOL definitionn *sesesssas

FPOOLTYPE Pool: /% the pool of carda +«/

Jt tamAnERaARNEaas AR ADYT RESOURCE definitiona ki nkarmenatn W/

typedef struct
i
int ResNum; /* Cha number of resource carda */
CARD Renources [30];
} RESTYPE:
P T T T T and RESOURCE definitions cukhhbaemnr A A

RESTYPE Reg;

/# AAsssusisssmavias ADT ANGUMENT dafinitions I T T P

typadef scruct nodestruct

CARD £ /* the capd at that node */
int numsnupporta; /* how many supporting carde the node has */

raturn (randm()%c);

4

/¥ sesswawsssecerns ond RANDOH Humber Gonorator wetesssestanssms =/
f AdmmAdddtansaranins MISCELLANEOUS Functionm fessssuswassenss ay
F* messkrusisenannts gnd MISCELLANECUS Functions ®#=aansasttess ay

/% Awsssesnamrarniatiss CARD ADT functionm Savsdkansmssassiwn a2/

RARKTYPE GetRank {C)

CaRp C;

{ /* returna the rank of a given cazd »/
rwturn {C.Rank);:

SUITTYPE Getsuit (C}

CARD ;

{ /* raturns the asuit of a given card */
caturn (C.Suit):

H

CCLORTYPE Getloler (C)

CARD C;

{ /* returna the golor of a given card */
return (C.Color):

}

CARD CatCard (i,Carray)

int i;

CARD Carray {1:

[/* returns the cavd et position i in Card Array Carray */
retucn {Carzay {i}}:

}

void StoreCard (i,C,Carzay;

int i;

TARD C;

CARD Carray{]:

{ /* destructively stores card C in poaition 1 in Card Array Cavray */
Carrayfi} = C:

void PrintCard {C}

CARD C;

{ /* writes out a dascription of one card */
printf {RANKS[{{int)GetRank(g)}]1)s
Printf {™ "):
printf ({SUITS(((int)GetSuic(C))}):

vaid PrintCardCol (C}

CARD €3

{ /* writes ocut a description of one card +/
printf {COLORS[{{int}Geclolor{C))]);
printf (" ™j;
printf (RANKSE({int)GetRank{<})]}:

H

void HititPrintCard (C)

CARD Cr

{ /* writea out & card with * * areund it... */
printf ("=7});
printf (RANKS[{{int)GetRank{C}}1};
printf {™ ")
printf (SUITS{((int)CetSuit{C)}}};
printE(¥*");

boolean SameCard (Ci,C2)
CARD C1;

CARD C2:
[/* raturng whether the given carda have the same rank and auit +/

regurn {{Cl.Rank == C2.Rank} && (Cl.Suit -= C2.5udtd);

boolwan EgquivCard ([Ci,C2)

CARD C

CARD C2:

{ /* returns whether the given carda have the same rank and color */
Teturn {{Cl.Rank =« C2.Rank) && {Cl.Color == €Z.Color}}:

H

boolean CppCard (Cl,C2)
CARD C1;
CARD C2;

{ /* returns whacher the given cards have the pame rank and opp. color &/

rsturn {{Cl.Rank == C€2.RankX) && {Cl.Color 1= C2.Colur));
}

CARD MakeCard (r,s)
RANKTYPE xs
SUITTYPE a:
{ /* constructs a card with rank r and suit a and color depeneding *
* on the it *
CARD <
C.Rank =~ r:
C.8ujt = &;
if {({s == DIAMONDS} || {8 -~ HEARTS)} C.Coler = RED:
wlow C.Color = BLACK;
return {(C);

/

CARD MakeTheCard {r,a)
chax =
¢haz *
[/* constructs a card with rank r and suit s, r and @ aAre strings *
* color is determined here and made - depends on auit obvicusly */

[/* sets up the initia) configuration of the Pool +*/
int 1,dks;
RANKTYPE T
SUITTYRPE =i
i = 0;
for (dke = C; dka <= 3; dka++)
for (a«5PADES; {intis >= (int}CLUBS: {(int)a)--)
for {r=ACE; (int)r »= {int)THO; ({int}z)--)
{
Pool.PoolCards{i] = HMakeCard({r,s};
i44:

1
Pool.Cardsleft =~ —-i;
Ten.Rank = TER; /* to test to sex if 10 for printing */

}

vaid Swap {(ex,¢)
int <r,c;
{ /* owaps two cardes in the pool of carda - used to shuffle it &7
CARD tmp;
tmp = Pacl.PoolCards [cr]:
Poocl.PealCardesfcr] - Powl.PuclCards(c];
Pool.PoolCardafc)] = tmp;
}

vold shuffle ()

{ /* shuffles the pocl of carda +/
/* This shuffle alyozithm swithces the last caxd in the deck with
" the random card. ‘then it doss the sama with the next teo last,
* and mo on. */

int curser, xrnd, tmp;
wup = Poosl.CardaLeft;
for ([cursor =« tmp; cursor »= 1; curser--}

md = Random{cursor);
Swap {Randomicurmor}, cursor):

}

CARD GatPool ()
{ /* qets laat from pool, decrements carda laft */
Taturn Pool.PoolCards [Pool.CardsLeftm=];

}

void ReturnPool (C)

CARD C;

{ /* returna a card to the pool - puts it somewhers random *7
Pool.PoclCards {++Pool.CardoLeft] = &;
Swap {Pool.CardsLeft,Random{Pool.lardnLeft)}

1

vaid PrintPool ()
{ /* prints out the current poo) */
int count;
printf{"The %d cards in the pool are:\n", (Pool.Cardoleft+1}) ;
for {count = 0; count <~ Pool.CardoLeft; count ++)
{
PrincCard (Pocl.PoclCarde{count]}
if ([GetRank{Ten) ~= GetRank {Pool.PooliCarda [eount])}
printf (" ");
wlow

RANXTYPE Rk;
SUITTYPE Su;
COLORTYPE Ca;
CARD C;
boolean error;
error = 0;
awitch {x{0]}
{

THO; break:

THREE; break;
FOUR: break;
FIVE:; brwak:

cane ‘27
cage ‘3’
cagse ‘4': Rk
cage *'5§': Rk

bl
t

case '6': Rk
cage "7°: Bk
casa "8': Rk
cana "9';: Rk
enge "1°:

if (rfl] == *0*) Rk = TEN:
«lae wrror += 1; bresk;
case *'J*: Rk = JACK: braak;
care "Q'; Rk = QUEEN; break:
cass ‘K‘: Rk = KING; break;
cape 'A’: Rk = ACE; break:
cage ‘'x’: Rk = JOKER; break: /* for dummy card */
default : errar += 1;

}
awitch (s[0])
{

cansa "C* Su = CLURS; Co = BLACK; break:
cane ‘H Su = HEARTS; Co =~ RED; break;
cage 'D* &u = DIAMONDS: Co =« RED; bresak;

cane '3’ $u = SPADES; Co = BLAUK:; break;

cage ‘x’ : Su = SPADES; Co = BLACK: braak; /+* for dummy cazd */

defoult : erroxy += 2;
i
C.Color ~ Cas
C.5uit = Su;
C.Rank = #k;
if {wxror}

printf{"Error making card, invalid"):
if (error 1= 2) princf (* rank"}:
if {wrror == 3} princf (" and"};

if (error »>= 2} printf {~ suit~});
printE{".\n");

C.S5uit = SPADES;

C.Rapk =« JOKER:

]
if (DEBUG)
1
printf ("Hada: ");
PrincCard (C}:
printf {"\a"};

}
return (C}:

/% verrsamnzasvaaranann and CARD funectians Easa AR RS RS SR AR k)

CARD Ten:

/% Ateasesxsacasnwasssre PODL ADT functions

void NewPool ()

prinef (" R
if {(count % 11)}==1Q0})
printf{“\n"};

]
printf ("\p\n");

/% wawesdanesnaniwssses wnd POOL functions L Y Y]
/% 4eswsemsanannsesss RESOURCE ADT FUncLiOns *e*swdesssrrnne af

void InitResources {numres)
int humrea;
{ /* sets up the resources with numres +/
int count;
far (count = 0; count < nNUMCes; Gountt+}
Ren .Rezources [count] = GetPoal{):
Res.Reslum -~ numres;

void AddRescurce {)

{ /* adda a resaurce */
Rea.Regources[Res.Reslum] = GetPool{):
Rea . ResNum++;

CARD GetReacurce ()

{ /* removes and returns a card from the rsscurces */
Ren . Realume.;
return Res.Resources [Roa.Reslum]:

% tawesdbrreesarntit und RESOURCE functiops *assswkesssdsan n/

4 Axwacwtunsecmananks ADT CASE functions R L Y S Ty

CARD RevealCasa {casenum)
int casenum;
{ /* gots a card from the case and reveals it... =/
int tempint;
tempint =~ t++GameBoard.Cages]casenum).factasShown;
return {GameBoard.Casesicamenum].FactBvid {tompint]):

t

int Factalefrt (casenum}
int cagenum;
{ /* returns tha number of cards left in the cane
* if none left, can test for Factaleft cauaw wWill be a G */
recurn (GameBoard.Cases[casentm].CardaLeft -
GamcBoard.Casas {casenum) .FactaShawn) ¢

int Removelase (casebim}

ine casenum;

{ /% removes the last revesled card from the case, returns number
* of carde left in that case {(removes by raplacing it with last

* card unrevealed {if any)) .y
if {(GameBoard.Caaws[casenum] .CardsLeft -
Ganeloard.Casesfcassnun] .FactaShown}
GamaBoard.Canen[casenun] . FactEvid [GameBoard .Cagas [casenum] «FoctaShown] =
GameBoard.Canes [capenum) .FactEvid[G. Board.Canen].Cardaleft};
GameBoard.Cagses [Cagenum] .FactaShown—-;
Gamefloard.Canes {casenum) .Cardales fr—-;

PrintCase (Coe)
CASES Caw:
[/* prints out the case pasued to it »/
/* shows only thone caxds ravealsd ¢/
CARD TwmpCard:
inc i:
for (i=0; i < Cow.FactaShoawn; i++)

PrintCard {CetCard{i,Cae)};
if (i !{= {Cme.FactzShown-1)) printf (", *};
1f {iwwT) printf {“\n\t\t\t\t"):

}
printf(" (Ad)",Cowm.CardsLaft—Cae . FactaShown);

buolean AFact (Cd, num)
CARD Cd;
int numi
{ /* returng whether Cd in a fact of case number num */
int count;
for {count = 1; count<=GameBoard.Cages[num].FacteShown; count++}
if {EquivCaxd{Cd,GameBoard.Cases[num).FactEvid[count]})
return 1;
if (LEBUG)
{

PrintCard(¢d);
printf(" was not found in case number &d.\n",num):

Teturn 0;

boolewan InDwcisions (Cd,warn}
CARD ¢d;
int warn;
{ /* returns wheathere thers ia a caose with decision Cd */
£* If warn iz set, then the function will only output a warning *
* and return 1, letting the playar do it manually (testing?} oy
int cagenum;
boolean found:
found = 0:
for (casenum-0; casanum < 20; casenum++}
if (EquivCard{Cd, GameBoard.Cages [casenum] .FectEvid{0]}}
found = 1;
if ({wazn} && (lfound})

Printf ("WARNING: Ho caswe with ");
PrintCard{cd) ;
printf{" am the decisien was found.\n");
return 1.
H
if {1found)
{

princf{~ILLEGAL: Wo cage with the proper factas wap found.\n%):
return 0;

return &;

baclean Contralase {casenum, Cd)

int casanum;

CARD Cd;

{ /* Checks to gee if Cd is a contradiction of a card revealwd in *
* case casenum -

int count;
for (count=0; count<GameBoard.Cases[casenur].FactsShown; count++)

if (OppCardi(Cd, rd,Cases [] :FactEvid{count])}

7

PrintCard {cd);
printf (" is contraxy to case carda. Removing it from the case.\n"};

raturn 1;
]
if (DEBUG)
{

PrintCard{Cd};
Printf(" is not contrary to a card in case %d.\n",canenum);

return 0;

boolean HotAlive (Cd)
CARD Cd;
{ /* Checkn r¢ gee if Cd is not alive {not occurs in cases} */
int count;
far {count = O; count € 20; counti+)
1f ({(EquivCard(Cd, GamaBoard.Cases [¢ount] .FactEvid[0]})
return 0;
PrintCardi{cd);
printf({” is not alive. Removing it from thae wanm.\n") s
return i;

hoolean CopyCaseCard (casenum, Cd)
int casenum;

CARD Cd;
{ /* Chetks to oee if 0d iz a copy of ancther card revealad in @
* cose casenum (equivalent cards would be copy) Lra

int count:
for (ceunt~D; count<tameBoard.Caamsa {casenum] . Pactasdhiown; count++)
if (EquivCard{Cd,ComeBoard.Caooes [(casenum} .FactEvidfcount}}}

PrintCard (Cd):
printf(" is alraady in the case. Removing it from the caos.\n*):

return 17
t
if (DEDUG)
1
PrincCard (Cd) ;
Printf{” im not a copy of a card in cage ¥d.\n",casenum};

4

rwturn 0;

boolewan ChedkFlipped (cagenum, Cd)
int casenum;
CARD Cd;

return 1;

booiean InCases {Dec,Pact,warn)
HCDE * Dec;
CARD Fact:
boolean warn;
{ /* reurns whether thers it a case where all of the aupport of «
* dec i in acme case and Faet is in that casze as well 7/
£* If warn is sat, then the function will only output a warning *
* and return 1, latting the player do it monually {(testing?} *r
int casenum, supnue;
boelean notfound;
for (casenuwm=0; casenun < 20; casenumé+)

if (EquivCard{Dec=>C, GameRoard.Cases [casanum] . FactEvid{Q]})}

notfound = 0;

mupnum = 0z

while {({supnum < Dwc-»*numsupporte) && f{!notfound})
{

if (lAFact{Dec->supportfaupnum], cagenum})
notfound = 1;
SUpRUmt+;

if {IAFact (Fact,casenum)) notfound = 1;
if (inotfound) casmenum =~ 20;
}

1
if ({warn) && (notfound))

Printf {"WARNING: No came with "),
PrintCard(Fact}):

printf{” and all the other support of "};
PrinctCard(Desc->C) ;

printf (" wam found.\n™);

Taturn 17

¥
if {(notfound}

printf{"ILLEGAL: No case with the proper facts was found.\n“);
raturss 0;
H
Teturn 1l;

boolean AntiEvid {Cd)
CARD Cd;
{ /* Checks to sse if Cd ie anti-Bvid </
int counc:
for {(ecount = 0; count <= 2; count++)
if (OppCard(Cd,CameBoard.Evidence[count}})
{

PrinptCaxd (Cd);
printf{” is Anti-Evidence. Removing it from the case.\n"};

return 1;

}
if (DERUG)
(
PrintCaxd(Cd);
printf{” is not Anti-Fvidence.\n"):

{ /= Checks to see if & flipped card should be thrown away (in * &
* anti-evidence, contradiction of another card in that case, *

* or 4 ¢opy of another card in that case) L7
if {CopyCaseCard{cassnum,Cd) || ContraCase (casanum,Cd)
1] AntiBvidi{Cd) [I HetAlive{Cd})

1
HemoveCase (canenum) ;
raturn 0;

1
if (TEMPREBUG)
{

printf("You flip the valid support card “);
PrintCardi{cd);
princf(™.\n"};

return 1;

vald Inviaflip {num)
{ /* Flipa and returna a card on case num */
CARD revealed:
if {FactaLefr{num)}
ravenlead - RevealCano (num) ;
e=lse printf{{"There are no cards left unturned in case %d.\n",num);
ChackFlippad{num, revealad);
H

dkkkudhend gnd CASE functions AR EERANARRRAR AR LA af

FAR LT

/¥ Stkamnanidranrenannn ADT GAME functions AR R AR AR RS)

buolean ChackEvid (C}
CARD
{ /* checka te see if card € is svidence or anti-evidence - returns *
* i if avidence, 2 if anti-evidence */
/¢ the evidfenti-evid part will only work if Red/Black, not auits */
int count;
for {count = D;count <=2; count++} {
if {(C.Rank == GameBoard.Evidence [count).Rank) {
if (€.Suit == GameBoard.Bvidence[count].Suit} {
if (DEBUG) printf ("Evidence card drawn - returning to poel.\n*):
return 1; /% evidence */
}
eloe |
if {DEBUG) printf (“Anti-Evidence card drawn - returning to pool.\n"
ceturn 2; /* anti-evid */
1
1

ceturn 0

void PrintBoazd{}
{ /% printes out the game board ag it currently is... */
int count,numfacts. numehown:
int tan:
int linerevealed;
printf (Y\n\nCurrent status of the board is as followa:\n"};
printf ("EVIDEWCE: ™}:
for {count « D; count <~ 2; count ++} {
PrintCaxd(GameBoard.Evidence [(count]});:
printfi{™ e

]
if {(CEBUG)
for {count =~ 0; count <= 18%; count++)
i
printf(“Case number id has Ad revealed”, count,
Gamelloard.Cages [count] .FactaShown) ;
printf (" and id unrevealed facta.\n-,
GaneBioard.Canesjcount) .Cardsleft—
GameBoard.Cages fcount) .FactaShown) ;
PrintCase (GaneBRoard.Cases[count]}

H
printf{"\n\nRSHORT CASES:\n"};
fer {sount = 0; count <=~ %;}
prinef(“td: “,caunt);
for { h = 0:numsh xd .Caaea[count] ,Factashown;)
{

if {(GamsBoard.Capea{count) FactEvid{numshown] .Rank == TEHN)
ten = L

wloe ten = 0;

PrintCard(CameBoard.Casen [count) .FactEvid [numshown)} ;

if {{pumshown++)<GameBoard.Canes[count].Factashawn)
printf{~,™);:

}
if (leen) primefi~ ~};
printf{" {%d} ",Factaleft (count)});
CORMAL 4+
if {count ¥ 2) printf (*\t\t");
slow princf {“\n"}:
}
printf({"\nLONG CASES:\n"};
linerevealed = GameBoard.Cages {10] .FactaShown +
GomeBoard.Caoesfll] .FactsShown;
for {count = 10; count <= 19;)

pPrincf{“%d: ",countj;
for | T = 0;r h rd.Cases{count] ,FactsShown:)

{

printf (= ");

if (CameBoard.Coses{count].FactBvid{numshown].Rank we TEN)
Ten = 1

wlaw ten = 0;

PrintCard (GameBoard.Cases [count) . FactEvid [numahown]} 5

if {{numshown++)}<GameBoard.Canes[count].FactaShown)
prince({™, >} ;

1
if {iten} princf{~ %),
printf (" (&d) ", Factaleft {count}});
GOURT ++:
if {count % 2)
{
if (lineravealed > 6} printf ("\n");
¢lte printf {"\t"};

elae
if {count < 19}
lineravealed = GamaBoard.Coses| {count}].-FactaShown +
GamwBoard.Canes| {(count + 1)].FactaShown;
princf{™\n"};

H
printf{"\n\n"):

void RemoveArgSupt{loc})
NODE * loc;
{ /* clears the aupport of an argument =/

int n:
for (n = 0; n < loc->numsupporks; n++)

if (TEMPDEBUG)

printf("Removing the aupport of ");
PrintCard{loc->aupportin]->C};
printf{™.\n");

Removerbrgdupt {(Loc=>support (n]}
printf{"hars.\n"};
loc-»numaupports = 0;

}
lec->nunsupports = 0;

void RemoveArgCard (loc)
NODE * loc;
{ /* removen the card from the arg, updatas the arg +/
NODE * pappy;
int n:
for {n = 0; n < Arg{GoAhead].numhwzds; bt}

if {loc == Arg[GoAhead].HeadCards([n])
{

Arg{GoAhead] .leadCards [n] ~>numsupporta = 0z
Arg{GoAhwad} .HeadCards{n] ~ NULL;
printf ("Argument humber %d ramoved*,n);
if {n != {(Arg[GoAhwad].numheadn-1}}
{
Arg [Gaihead] . HandCards (n] =
Arg[GoAhead}) .HeadCarxda ([(Arg[GoAhead] . numheads-1))
printf (" and replaced by the last argument™);
1
printf (*.\n");
Arg|Gashead] .nunheadsew;
return;
}

)
if (loc->numaupports) RemoveArgSupt (loc) .
printf {("BACK.\n");
PAPPY = loc->parant;
for (n = 0; n <= pappy->numaupports; n++}
if {pappy->mupport(n] == lpc)
{

if (TEMPDERUG)
t

PrintCaxd (pappy->support fn]—>C);
printf(” removed and replaced by the last support, 7);
PrintCaxd (pappy->suppnrt [pappy-~»numsapporta-11}}
print£{™.\n"):
1
PappY-»supportin] = pappy-rsupport[pappy->numsupporta~i);
PAPPY->HUMBUPPOYLO-——;

void ClearArgs (num)

void HNewGame ()
{ /* sets up the initial game board - all go inte pool firat *
* {dene in HewPool} and then remove the cazes and wvid. =/
int count,numfacta;
CARD newcard;
asrand(};
NewPool{}:
if {(DEBUG) PrintPool():
Shuffle();
GameBoard.Evidence {0} .Rank = JOKER:
GameBoard.Evidence{l] .Rank = JOKER;
GameBoard.Evidance[2).Rank = JOKER;
if (DEBUG) PrintPool(}:
if {DEBUG) printf("Laying Cut Boardii!\n\n"};
for (count = 0; count <= 2; count ++) {
nevwcard = GetPool{);
if (CheckEvid{hewcard)) {
ReturnPool {newcaxrd) ;
countmw;
1
elos
GaneBoard.Evidence {count] =~ newcard;

for {count = 0; count < 10; count +4)
for (numfacth = 0; numfacts <= 2; numfactam++)
{
Gameboard.Cases [countj . FactEvid [numfacta) = GatPool [$ 3]
if (Inumfacts)
if {ChockEvid{GameBoard.Cnaesf{count),FactEvid[numfacte])} {

ReturnPool (GamsBoard.Cases[count] ,FactEvid [numfactal);
numfacta-—;

GameBoard.Cnpges [Count) . Cardoleft = pumfacta:
GameBoard.Cagwas [count}.FactaShown = 0;

1
for {count = 10: e¢eunt < 2Z0; count ++)
for (numfacts = 0; numfacts <= 10; numfacta++)
{

GameSoard.Cpaes [count].FactEvidnumfacta; = GetPool (3]

if (inumfactas)
if {Checkivid(GamaBoard.Cases|[count] .FactEvid [numfactsa))

{
ReturnPool {(GameBoard.Cases [¢ount) .FactEvid|[numfaers]) ;
numfacta—-—;

¥
GaneBonrd.Caneafcount) .Cardaleft = numfacto;
CameBoard.Casen[count] .FactaShown = 0;

if (DEBUG) PrintPooi():

int GoAhead; /* the player whoze turn it is */
CARD goai; /* the card to be proven */
FA semisadivaddnwknmnnn ond GAME functions mEarEEARNKARAESARE

Fr edmskmaseesvrnmann ADT ARCUMENY functionsn EE P T

void Inithrgs {}

{ /* initializea the arguments {simple enuf, huh??} */
Ordered = O;
Arg[0).nuniiends = O; Arg(l] .numheads = 0;
Arg[0].burden = 1; Argli].burden =~ 0;

int num;
{ /% glaars a player’s argumant... v/
int count;
for (count = O:count < Arg[GoAhwead)] .numheads; count4+)
RemoveArgCard (Arg{SoAhead] .AeadCards [num}};
Arg[GoAihead] .numhesds = O

NODE * AddHead {(plyx,Grd)
int plyr; /* the player whose argqument iz being added to */
CARD Crdrs /* the card being added =/
{ /* adda an argument structure to the head {ie: a *new’ argument) */
if (lInDeciajons{Crd,0)}} return WULL;
Arglplyr] .HeadCardsiArg[plyr].numhoads] =~
{NODE *} malloc {sizeof (NODE}):
Arg(plyr}.HeadCarda([Arg[plyr].numheada] ->C = Crd:
Arglplyr] .HeadCarde[Arg{plyr] ~aumheads] «>depth = 0;
Arglplyr].tieadCarda (Arg(plyr} -mumheads)] ~>numsupports = 0;
Arg(plyr) .HeadCards [Arg[pilyr] .numheads} ~rargnumber = Argiplyr] .numhesds;
Arg [plyr}.numheadewArg[plyr] .numheads + 1;
if (DERUG) |
printf{*Added "};
PrintCard{Arg{piyr] .HeadCaxds{ (Arg[plyr] .nucheadns — 1)]->¢);
print£(” as card % in the head of player %d.",
Arg[plyr].numheads — 1,plyz):
printf{"” It haz %td aupports.\n-,
Arg{plyr] .HeadCards[Arg[plyr}.nuchesds — 1) ->numsupportal;

}
return (Argipiyr] HeadCards [Arg[plyr] .numhoado-%]};

HODE * AddSuppoert {loc, cd)
HODE * loc; /% the location of the ¢arxd being aupported */
CARD Cds /* the card being added */
{ 7* Rdde n support card to lac; returns ptr to that gupport */
int count;
if {{inCaser {1loc,Cd,0}} return NOULL;:
for (gount = ¢; count < locwdnumaupports; counts+)
ir (EquivCarxd (Cd, loc-sauppsrt[count))) return NULL:
loc->chalinode = 0;
loc~>suppert [loc—>numsupporta] = (HODE *} malloc (sizeof (NCDE));
loc->nupport [loe—>numsupports]~»C ~ Cd;
le¢~raupport [Log->nl I Bl ->r ppoxta = 0;
locm>aupport: {loc->numsupportal ->parent = loc;
loc—>aupparr_Eln::—>num:upporf.n]-—>d-pth = loc—bdepth + 1;
loc->msupport [1oc— ipporta)->ary = loc->argnumber;
if {Arg{GoAhead) «Challenged(loc->argnumber])
{

printf("That may sufficiently deal with the challenge on "}
PrintCard(cd),;
printf(".\n"}:
Arg [Godhead] .Challenged [loc~->argnumber] = NULL;
)

loc-rnumaupports++;

if (CEBUG) {
printf("Added "):
PrintCard (Cd):
printf(" as support nunber %d of card *, lec«>numsuppoxtal ;
PrintCard (loe-><);
print£(".\n"};

raturn (lae- pport{l ta-1]};

void PrintSupport {supt)
NODE * gupt; /* pointer to the supporting node */
{ /" prints out the supporting cards (recursively} of a node */
int countsupports;

SOUNCAUPPOXYLE = Supt—>numsupports:

PrintCard {mupt—>»L):

if {councaupports I= 0)

awitch (supt=>depth)
t

0: printf(™
princf (-
: prinef(”
printf ("
printf{v
printf({™ [*"); break:
printf{" [*"); brwak:
casm T: printf{™ <*"); break:
default: princf{* (=);

1
for (¢ountsupporta=g; countsupportad= {supt->numaupports — 1};
countsupporta++)
{
PrintSupport (Fupt->aupport {countaupporcal) ;
if ((supt->numsupports-countsupportsal -1} printf (%, “};
}
if {(countaupportas (= 0)
awitch (supt->depth}
(
caps 0: printf{~}"): break;
case 1l: printf(~]~):
canw 2: printf{~)"i;:
cane }: printf{~>"};
casw 4: printf{"2;™)
case 5: printf({"+]")
cane 61 printf{~=j=)
case 7: printf{"*>")
defaultc: printf({={"}

vald PrintArg (player)
int player;
{ /* prints out the hesd carda and uses PrintSupport te print out the *
* rest of the argument for m player +/
int countheadn;
for {counthwada = O;
countheads <= (Arg[player].numheads - 1); countheada ++)
{
printf ("Argument %d: “,countheads);
PrintSupport (Arg{player].HeadCards{countheads]};
printf{"\n");

1
print£{™\n"};
if {(DEBUG) princf {"Done Printing Argument for player %d\n",player]);
)

veoid HiLitPrintSupport (supt,loc)
NODE * aupt: /* pointer to the supporting node */

[dkmiedismidsAvihninn GAME functiong R T Y

Jo weess gpecificity functions *ea=n &/

typadef atruct {
CARD Activetors ([11);
int numacta;
} ACTS; /* the activators for an argument's ppecificity check =/

ACTS Activa: /% the activators variable */

boolean Inketivators{Crd)

CARD Crd;
{ /* this function chacks to scw Lf the possed parametar is ons *

* of the activators */

int count;
for (count = 0; count < Activa.numacts; count++)

if (DEBUG) printf ("Comparing "};

if (DEBUG) PrintCarpd(Crd):

if (DEBTG} printf{~ with ");

if (DEBUG) PrintCard{Active.Activatoras [count]):

if (DEBUG) printf{™.\n"}:

if {{Aetivs.Activators[count].Rank == Crd.Rank} &&

{Activs.Activatora[count].Color == Cxd.{oler))

return 1;

return 0;

]

void GetActivators (loc)
WODE * loc:
{ /* gatn all of the poasible activators */
CARD tempcard;:
int supportecs;
int svidadd;
int evidnuml, evidnumz;
int count;
1f (bEBUG)
{
printf("Cetting Activatora for support of ");
PrintCard{loc~>C);
printf(” which has %d supporta.\n",loc->numsupports);

Activs.numacts = 0;

avidadd = 0;

for (mupporters = O:mupportaers < loc->*numsupports; aupportars++)
4

tempcard = loc->aupport isupportera]—->C;
MActive.Activatora [Active.numacta] = tampoard;
Activa.numactat+;
if {((Drdered) &c {CheckEvid (tempcard) == 1)}
for {ovidnuml = D;evidnuml = l;evidnumi++)
if {{tempcard.Rank = GameoBoard.Evidencefavidnuml] .Rank) &t
{*empcard. SUirc = GaneRoard.Evidence [avidnuml). Suit})
for (evidnum2 = (evidnuml+l):;evidnum2 <= 2;
avidnum?++}
Active.Activators [Active . numacta++] =
CameBoard.Evidence [evidnunm?];

KODE * loc; /* pointer to the card to bw hilit =/
{ /* prints out the supporting cards {recursively) of a node & } /* this for statement gets all of the possible activators +*/
* and hilights the onw pointed to by loc */ if {DEBUG)

int countsupportas
countaupports - AuUpt->numsupports;
if (oupt == loc) HiLitPrintCard{aupt->C);
alse PrintCarxd (supt->C):
if {countsupports i= 0) princf (“{");
for (countsupporta=D; countsupporta<— {supt~>numaupparts - 1)
eguntaupportat++)
{
HiLitPrintSupport (Aupt->support [{countaupporeal, loc);
if {{supt->numsupporta-countoupporta}-l} pringf (", “):
H

if {countsupporta t= 0) printf {~}"};:

void HiLitPrintAxg {player, loc)
int player;
HORE * loc:
{ /* BilLitPrintSupport te print out the rest of the arg for a player,
* hilighting loc *
int countheasdsa;
for {countheadn = 0;
countheads <= (Arg{playex].nweheads - 1); counthesds ++}
{
princf(* Azgument ke: T,counthenda);
HiLitPrintSupport (Arg{player].HeadCardsa|countheads},lec);
princf{"\n%});

printf{~\n"};
if (DEBUG} printf ("Done Printing Argument for player Ad\n",plaver);

}

void ArgumentOzriverz ()
{ /% This lets you make a sapecific argument structure - For uae =
when testing spscific argument forms (ie for specificity) =/
WODE * locl:
KODE * loc2;
if {DEBUG) printf{"In Arg Drivexr II.\n"};
lecl = MAddHead {0,MakeThaCard("Q"™, *Sp"});
AddSupport {locl,MskeTheCard{"J~, "Sp"}}:
loc2 = Addsupport {locl,HakeTheCard{"K","Sp"}}):
AddSupport (loc2, HakeTheCard (™4™, "Sp")) ;
Addiupport {loc2, MakaTheCard (5%, “spTiis
loc2 = AddSupporei{locl, MakeTheCard(*9*, “SpTh):
AddsSupport {1oc2, MakeTheCard {"K™”, "C1™)) ;
AddHead {0, MakeTheCard ("J", "Di") };
locl = AddHead (0,MakeTheCard{™Q™, *Sp”)});
AddSupport (locl,MakeTheCard(“X","Sp"}};
AddSupport (locl, HokeTheCard (™4™, "C1"}};
locl = AddHead {O,MakeTheCard{“K", “Sp~}};
AddSupport {locl,MakeTheCard{"3","Di"}]:
loc2 =~ AddSupport (locl,MakeTheCard{"S5™ LTDLiv})
AddSupport {(loc2,MakeThueCard{“4",*cl")};
AddSupport {loc2,MakeTheCard("4",*Di%}
AddSupport {(locl,HnkeTheCard(™7", “Ha"}
loc) - AddHead (I, HokeTheCard("Q", "He")
AddSupport (locl,MakeThelard{"K", "Sp")};
loc2 = Addsupport (lecl,MakeThaCard{“J","Sp=)};
AddSupport {loc2, MakeTheCard {"4~, “5p™) } ;
AddSupporxt (loc2, MakeTheCaxd ("5, "Sp~)) :
AddHend (1, HakeTheCard (A", "0i7) } 7

T rRaRasapancanhnkn end ARGUMENT functions L e R T

printf ("The td Activators are:",Active.numacts);
for {caunt = 0; countgeActiva . numacta-1 ;count++)
{
PrintCard{ctivs.Activatora [count]);
if {{Activo.numacts-countji-1)
printf (", "):

}
Printf{”\n");

baolean RecActivatas {currnode)
WODE * currnode;
{ /* regureively checks to gea if a given node ia activated hy *
* the Activatora in Activa */
int count:
boeolean desper;
deaper = };
if {InActivatora(currnede->G}) raturn 1;
if {leurrnode->numsupports} return 0;
for {(count = 0; + Irnodms: PpOrta; count++}

if (DEBUG) printf(“Going deeper on “}:
if (PEBUG} PrintCard(currnode~>C}s
if (DEBUG) printf{“‘s supports.\n"):
deapary = {{dewpar} &i
(RecActivates {currnode«>support [count]}});
¥
return deepar;

boolean Activates(locl, lac2)
KODE * locl;
HODE " leoc2:
{ /* An argument activates another argument Lf ita aupporting
¢ards (aleng with the loss important svidence, if orderad *
* wvidence ic used) fully cover the aupporting cards of the «
* other argument (with & card being coversd possibly at any "
iavel of the argument} ./
boclean yesactiva:
int countsupp:
yennctive = 1;
countaupp = 0;
CetActivatora{iocl);
while ({yssactivs) £& (countmupp < locZ->numaupporta}}
yasactiva = R.c;\ctivatnn(10:2—)0\)5!90!:1:[coun\;nupp++]),‘
return yesactiva:

int MoreSpecific (locl,loc2)
HODE * lacl;
HODE * loel;
{ /% uses function Activate to tell whether the argument headed
* by loel {returns 1}, lac2 (returns 2} or hoither argument
* are more specific /
/* An arqument iz more npecific than another it fully Activate[s] *
* the othar argument without the reverse being true /!
int regult;
rasult = 0;
if {Aectivates {loci,loc2}})
reaulttds

*
-

Aif {Activatea {leoc?,locl})
reapult = result + 2:
Lf {(TEMPDEBUG) && {reapult == 3)})
printf {"Both Are Equally Specifie.\n"):
wlae 1f ((TEMPDEBUG) £& (!rasult})
printf ("Heither ia More Specific.\n"):
wlow if {TEMPDEBUG) printf(“Argument %d ip Mora Spacific.\n", result}:
return Iesult:

void SpecTest ()}
{ /% my apecificity driver tagt »/
int mopec;
mapac « HoreSpecific{Arg([Q).HeadCarda(®},Arg[l].HendCarda[0])
if {!{nepec)
printf ("Heither srgument ia more apscific.\n");
eloe if (mapec == 3)
princf("Neither argumant is more specific.\n"):
wloe princf{"Arqument %d is more epecific.\n", mapac);
1

/% mavve gnd Specificity functions =+==ze a/
/% sxeas Pind functions "ares s/

typadef struct |
HODE * locations {7]1:
HODE * parent [7};
int numfound;
1 REPS; /* the activatora for an argument’s gpecificity check */

REPS Repetitions; /* the number of repetitions and pointera te the c¢ardo */

vold Addhept {loc, pac}

HOIDE * loci

HOCE * par;

{ /* aimply adde & repstition </
Repetitions.parent{Repetitiona.nunfound] = par;
Repatiticns.lccations(Repetitiona.numfound] = locs
Repatitions.numfoundé+;

int RecFindRepts {loc,Cd, par)
HODE * loc;

CARD Cd;

KODE * par;

{ /*= traverses the argument under (end including) loe to find =
* out the number of timen carxd Cd occura b

int count;
if {(SameCard (loc->C,Cd))
AddRept (loc, par};
for (count = 0;count<={lec-*numaupporcs~l};count++)
RacFindRepts (loc->support[count],Cd, los);
raturn Repetitions.numfound:

int RecFindEquiv (loe, Cd, pac}
KCDE * loc;

3f {IRepetitions.numfound) return 0:
if {(Repetitionms.numfound == 1}
Teturn (Repetitions.locatiana(0]):
#low
]
numwanted = 99;
vhile {{nunwanted > Repetitions.numfound) &4 {nDumvanted >= 01)
{
princf {“Hore than ons inastance of ");
PrintCardiC);
printf (™ occurrs in the argument.\nWhich of the following) ;
printf("argquments did you want?\n"};
for (count =~ 0; count < Repetitions.numfound; count++)

pointf{~ %d: ",count):
HiLitPrintSuppert (Arg[GoAhwad},HeadCardn [argnum],

Repetiticns. locationa[count]);
prinef("\n");

princf{™ > "});
scanf ("%d”, shunwanted) ;
gutaitemp);: J/* jusr for the stupidity of c input +/

}
return {Repetitions.locationa{numwanted]);

NODE * FindAll{plyz,rank, aunit}
int plyr:

chax * suie;

char * rank:

{ /7* Thim function finda returns an (if unique) occurrance of a ¢
card with suit suit and rank rank in player plyr‘s axrgu-

* mant. If no such eard occurrs, it returns 0. If there -
* are > 1 such occurxances, each sre listed, and the Prlayesr *
* decides which to une,. *

CARD C;

word temp;

int sount;

int ethwads;
int wanted:
Repstitions.numfound = 0;
¢ = MakeTheCard {rank,sait};
for (ctheads = O;ctheads < Arg[plyr].numheadns; ctheadot+}

if (SameCard(Argi{plyr].ieadCarda{cthesds]«>C,C))
AddRept (Arg[plyr) .HeadCarda [ccheads) , NULL) ;
for {count = 0;count<Arg[plyr] -HeadCards {ctheads] ->numsupports;
count++}
RecFindRepta (Acg [plyr] .HeadCards{ctheads] ->aupport [count], ¢,
Arg[plyr].HeadCaxdn [cthwada]} ;
1
if (lRepetitiona.numfound} wraturn 0;
if (Repsticions.numfound = 1)
return {Repetitions.locatians(G]}:
wanted = 93;
whila (wanted >= Rapetitionsa.numfound}

printf ("More than on« instsnce of "});

PrintCaxd(C);

Printf£{"” ocourrs in the argument.\nWhich of the following "}
printf{"instances did you want?\n"}):

CARD Cd;
HODE * par: for {count = 0; count < Repstitions.numfound; count++)
{ /* traverses thea argumant under (and including) las to find *

* out the numbar of timea cards with color of Cd oocur -/ prinvf(“Inatance &d: \n~,count):

int count;
if (EquivCard (lac->C,Cd})
AddRept {loc,par):
for {count = 0;count<m (locw>numsupporte—1) :count4+)
RecFindRepts {loc->gupport (count),Cd, lec);
retyrn Repetitions.numfound;

int Getall (<)
CARD C;
{ /= This function finds ALL of the oocurrahces of & card € in
* BOTH players argquments. It stores them in the REPS atructure *
* and returns rumber found. LFa
int count:
int plyr:
int ctheads;
plyr = GoAhaagsl;
Rapatitiona.numfound =« 0;
for (ctheads = O0;ctheads < Argiplyr] .numheads; ctheads++)
{

*

if {(EquivCard{Argiplyr).HeadCardn [ethenda] ->C,))
AddAept (Arg!{plyr) .HeadCazrds [ctheads], ¥ULL) 7
for (count = O;count<Arg|plyr].HwadCarde(ctheadn]->numsupportas;
count++)
RacFindEquiv (Arg{plyr) .keadCards [cthasds] —>aupport[count], C,
Arg(plyr}.HeadCards{ctheads]);

}
if (GoAhead) plyr = 0;
wlow plys = i;
for {¢thonds = O0;ctheads < Axg(plyr] .numhesds; ctheads++)
1
if (EquivCard{Arg[plyr).HeadCards [ctheads}=>C, C))
AddRept (Arg [plyr} .HwadCards [ctheads], HULL) ;
for {(count = Q;count<Argfiplyr) -HendCarda(ctheads]«>numauppores ;
count++}
RacFindRepcs {Arg(plyr] .HeadCarda [cthoads} —-»aupport [count),C,
Arg(plyr)].HaadCards(ctheada)):

}
recurn {(Repeotitionn.numfound}:

HGDE * FindCard {plyr, argnum, rank,auit)

int plyz:

int argnum;

char * guit;

char * rank;

{ /* This function finda returns an (if unique} occurrance of a *
* card with suit suit and rank rank in player plyr’'s argumencs

* argnum. If no avch card occurys, it returns §. If there

* are > 1 such accurrances, sach are listed, and the player *

* decides which to use. .7
CARD C;

word temp;
int count;
int numwanted;
int o7
Repatitiona.numnfound = 0}
€ = HakeTheTard (rank,suit);
if (SameCard(Arq[plyr].HeadCards(argnum)->C, &)}
AddRept (Arg[plyr] . HeadCards [argnum) , NULL)
for {count = §;count<Arg[plyr}.HeadCards[argnum}->numsupporcs;
count++}
Ract'indRepts {Axrg[plyr].HeadCarda[argnum]~->supportfcount), C,
Arg(plyrl.HeadCaxda [argnum]) s

HiritPrinthrg{plyc, Repstitions.locations [count)};

princfi{® > "j;

scant {“%d™, &wantud) ;

geta{temp}: /* nuat for the stupidity of c input */

if ({wanted >« 0) && (wanted < Repatitions.numfound}}
return (Repetitions.locations{wanted]};

#* #ares ond Find functions #reas ay

/% wetud Argument Menipulation functions *esex *7

void RechddArgSupport {loc, addloc)
HODE * logz; /* the location adding to */
HODE * addlec; /* the card to add... */
{ /" Recuraively adds support to loc */
int esunt;
HODE * addedsupt;
addmdeupt = AddSupport {(loc, addloc—>C) ;
if (addedsupt =« HULL)
{
printf("As ");:
PrintCardCol (addloc->C} ;
Printf (™ is already in the support 1list, it is not added.\n"}:
Teburn;

}
if {addloc->numouppoxts)
for (count = 0; ¢ount < addl. pparcta; n)
RecAddhrgsuppert (addednupt, addlec->support {count}) ;

NODE * AddArgSupport ()
i /% Adds a support argument to loc; returna ptr to that pupport */
RODE * loc;
HODE * addloc;
int count;
int num;
word cinput;
CARD addcard;
CARD tocard;
int argnum;
word temprank:
word tempauit;

if {lArg[GoAhead].numheada)

{

printf{“You have no current argumenta tao add.\n"}
raturn NULL;:

printf{“\nYour current argumenta:\n"};

PrintAxyg {GaAhead) ;

printf{"Whnat argument is being added to {negative iz none}? “):
acanf{"%d", &argnum};

gets{cinput); /f* Just for the ntupidity of ¢ inpur */

if {argnum < 0} returzn WULL;

if (argnum > ArglGoAhead).numheadn)

printf(“Invalid argument. Hust be between 0 and Ad.\n",
Arg[GoAhead] .numheada) ;
return HULL;

printf({"Hhat card is being added to (form: J CiL)? ~);
gets{cinput);

ascanf{cinput, %8 ¥&", temprank, Leampsuit) ;

tocard = MakeaTheCard(temprank, tempacitc});

if {(SameCard{tocard, (HakeTheCard {"x™,"x"}})}

printf("Invalid card to add ta.\n"}:
return;
]
loe = FindCard{GoAhead, argnum, temprank, Cempouit]);
if {1log)
{
printf{"That card was not found in your current™};
princfi{" argqument numbar %d.\n",argnum};
return;

H
princf("What argument would you like to add? ~);
ecanf (“%4", tnum) ;
gets (cinput); /* just for the stupidity of ¢ input =/
if ((num<d) (| {num > Arg[GoAhead] .numheads}))

princf("Invalid argument. Must be bwtwean 0 and %d.\n",
Mrg[Godhead] . numhands};
reburn;

H
if (1 (Arg[Gohhead) . HeadCards {num)—>numsupporcs))
{

printf("Arqumant %d has anly a head card.\n".num):
return;

1
if (! {EquivCard{loc->C,Arq[GcAhead].HeadCards (num)->C)}}
i

printf{"Invalid support actempt.\nThe head card of argument”);:
printf£({" %d is not the oame as ", num)}:

PrintCard{loc-5C);

prinef{~.\n"y;

Eeturn;:

)
if (loe-rnumsupports}
{

Print{ ("HOTE: That is quite poanibly an invalid move. Since "};
printf({~thia is\na testing phase and I trust you, I will allow™);
printf(™ it.\n"};

/rraturn; e/

1
addloe = Arg[GoAhead] . HeadCards|rum];
for {count = O; count < addloc~>numaupperts: count ++}
RecAddArgSupport {loc, addloc->support [count]) :
printf{"\nYour argumsnt iz now:\n"};
PrintArg (GoAhead)
return {lec—»support[ioc->numeupporta-1]j;

4% was2a ond Argument Manjpulacion functionan =asar xys

Fo AAREudeisiienmneaaes ADT DIALOGUE fUNCEIORD FAAssissssuiaans oy

void Initdials()

{ /* initjalites the dialogues */
Dial{0].type = -1; DiaX(l).typm = -1;
Dial(0) .numargs ~ C; 0ial{l}.numnrgs - O:

|

void MakeDialoguwe (num,ArgList)

int num;
int ArgList [10];:
{ /* constructs the dislogue atate for the player using ArgList */
int count;
for {count = 0; count < num; count++)
Dial{GoAhmad] .Arg{count)] - ArgiGohihend] . HeadCaxds [Arghist [count] s
Dial[GoAhead} .numargs = num;
Dia} [CoAhead) .cbject = WULL;

boolean RecCheckAirgForChal{loc)
HODE * loc;
{ /* uned by below to recursively check for challenged cards */
int count:
hoolean challenged;
if {(leg=>challnoda)

1f (TEMPOEBUG)
{

printf£{"The card *);

PrintCard{icc-»C);:

printf{” in argumant % is still challenged or refutad.\n",
loc->argnumbar) ;

Taturn L1;
}
challenged =~ 0;
count = 0;
wnile {{Ichallenged} &% {count < loc~>numaupporte))
if {loe->challnode)
i
if (TEMPDEDUG)
{
printf ("The card "“};
PrintCard (loc—>C);
printf{™ in arqument 4d is still challenged or rafuted.\n",
log->argnumbar) ;
1
challenged = 1;
1
challenged = RecCheckArgForchal {loc-»aupporticount]);
cobnt+4;

]
return challenged;

hoolean CheckAzrgForChal (argnum)

int argnum;
{ /* Checks to see if a argument can be used in a dinlogue or if it =
* has unmet challenges or refutations against it... b

if {(Arg[GoAhwead}.HeadCards [argnum I->chalinode)
{

if (TEMPLEBUG)
printf {“The head carxd ip still under chzllenge or refutation.\n");

ceturn 1;

veoid PrincDialogue (plyrj
int plyr;
{ /% displaya the dialogue, ailily... */
int count;
if (Dial{plyrj.type == =1}
{

if (GoAhwad == plyx)
printf{"You have *);

elae printf{“Your opponent has ");

printf{"no current dialeogue,\n"};

return;

}
if (Dial(plyr).type == 0)
{

if {plyr == GoAhead)
printf("Challenging "}:

«lse printf{"Your opponent challenged "};

PrintCaxd{Uial [plyr).ohject—>C}

printf(”.\n"):

raturn;

}
if (Disl(plyr).type ==~ 1)
{

if {plyr == GoAhead)
printf{"Refuring "}:
wlee printf(~Your opponent refuted “);:
PrintCard(Dial [piyr] .cbject-5¢C};
printf(" with: "):
PrintSupport (Dial [plyr] .Arg(0}]);
printf(™.\n"});
Laturn;:
¥
if (plyr »= GoAhead)
printf("You are using the following argumenta:in™}:
*low
printf ("Your oppencnt used the following argumenta:\n);
for (count = 0; count < Dial{plyr] SNURATGR; COURT++)

4

printf("sd: ", count);
PrintSupporc {Dial fplyr] .Acq[counck) ;
Printf("\n"};

H
printf{*\n=});

void ArgumentBuilder ()
{ /* This letn you make an argument structure - makes sure it =~
* is a valid argumant being built, too... 2/
NODE * lecl;
HODRE * loecZ:
CARD Cd;
Cd = GameBoard.Capes([l7].FactBvid(0];
locl = Adcdliead{0,cCd);
Cd = GameBoard.Casegfl8].FactEvid(0)],;
locl = AddHead{0,cCd}:
Cd = GameBoard.Cases[19) .FactEvid([9]:
lecl = Addfiead (0, Cd):
Cd = CameBoard.Cases[i0].FactEvid{0)};
loct = AddHead{l,Cd}:
Cd = GameHBoard.Caonses{ll}.FactEvid[0]:
lecl = AddHead{l,Cd});
Cd = GameBoard.Cases[12].FactEvid(0];
locl = AddHead{l,Cd):

¥
return RecCheckArgForChal {Arg [GoAhead] -HaadCarda[arghum] };

4

boolean PresentDialogue(}
{ /* Returns 1 if new dialogue given, updates Dialogue */
int ArgList [10):; /* array of argument numbers +«/
int pumargo; /= b of arg b -t
int nextarg; /* the next arg in the arqg liat +*/
boolwan done; /* done parming? */
word cinput:
int caunt;
boolean nopw;

Dial [GaAhosd] . type = 2;

done = Q7

numarga =~ 9;

if {lAxg[GoAhwad].numheadsa}

{

princf{~You have no current arguments to uge.\n");
return 07

|
Printf("Pleass input the arxgument (s} you would like to use")
printf (" (negative will\nend inputing).=):
princE(* > "3;
while {ldone}
{
roanf (“%d™,&inextarg);
getg{cinput):
if (nextayyg < 0) done = 1;
«lne if {nextarg »>= Arg[GoAhead].numhezda)
printf{"Sorry, bur you only have arguments O to %d.\n > ™
Axrg {GoAhead] .nunheada-1) ;
«low
{
nope = Q;
if (CheckArgForChal (nextarg))

H
printf{"That argument still containa challenged/refuted "};

printf({"cards and can't be used.\n");
nope = 1;

I
for (count = 0; sount < numargs; count++}
if (nextayqg == ArgListfcount})
{

printf{"You are already using that argument.\n");
nope = 1;
1
if (tnopw)
{
Arglist [mumargs] = nextarg;

numarga ++4;

1
princf{” > "};

}
HakeDizlogua (numargs, ArgLiot);
PrintDialogue (GoAhead)
return 1;

boolean PresentDialogueTry()
{ /% Returns 1 if new dialogue given, updatea Dislogue +/
int ArgLimt [10}; /" array of argument numbers +/

/* number of argument numbers */
char *ailnput; /* the {being parsed?) string */
int nextarqg; /* the pnaxt arg in the arg lint »/
int a,b,c d, e, £, 0,4, 3;
boolean dohe; /* done parsing? */
boolean arrer: /+* cinput not proper list =/
dene = O;
srror = 0O;
@ =r~l; b= -l; o= -l;jd=-1; @a=-1; £=~-1; gwwl; h=~1;
i e =17 3 » -1
printf("Pleasw input the argument(s} you would like to ase, *);:
printf(*neparatedinby carmman {negative will return to options)."}:
Princf(™ > v);
getaf{cinput); /* just for the stupidirty of c input */
numargs = ascanf (cinput,~%d, %d, Ad, &d, %d, ¥d, &d, %d, Ad, %d-,
a,b,e,d, o, £,q,h, 4,9} ;
printf ("Gotten.\n");
printf("numargs = Kd, numa are &d, %d, %c, %d, Ad, %d, %d, %d, %d, sd~,
numargs, a,b,c. d, e, £, g, 0,1, 3);
Printf {"\nPrinted.\n"};
while (!done)
{

int numargs;

if {swaeanf (cinput,™%d; Aa",nextarg,cinput} |= 2) wrrer = 1;
wlow wrroy = 0
peintf ("hexe.\n");
printf {("Axgument gotten: Ad, rest im: %3, wrror: %d.\n", haxtarg, cinput, arror)
if {(mrror)
srror = {lascanf (cinput, "4d“,nextarq});
if {error}
{

princf({"Inproeper argument list format.\n"};
return PressntDialogue():

}
if (nextarg < 0) return 0;

¥
MakeDialogue {numargs, ArgLiat);
return 1;

void HiLitPrintDial {(player,loc)
int player:
HODE * log;
{ /* HilitPrintSupport to print out the rest of the arg for a playsr, *
* hilighting lec aj
int countheada;
for {countheads = 0:;countheads « Plaliplayer]).numarga;countheads ++})

printf({® Dialogue %d: ", countheads) ;
HilitPrintSupport {Dial[playsr] +Arg [countheads], loc)
princf ("\n");
1
princf({~\n"):
if (DEBUG) printf ("Dons Printing Diaiogue for playsr Sd\n",player):
}

WODE * FinéDial{plyr,rank,ouit)
int plyr;

char * guit:

char * rank;

HODE * Rwfute()
{ /* Rewtuns the loc of the card being refuted, updates the Cialogue */
KODE * Jloec;
CARD refuted;
int iinput:
int plyr:
word Gcinput;
word temprank:
word tempauit;
if (GoAhsad} plyr = 0;
wlnw pilyr = 1;
Dial{Gohhwad].type = 1;
if {{pial[plyr}.type ==~ @} || {Dialiplyr]}.type == —1}}
{

it’s last ponT}) ;

printf£{"Invalid. You must respond e your opp
printf{"ae:\n");

PrintDialoguae(plyr};

ceturn WOULL:

¥
if (lArg(GoAheed].numheads)
{

printf("You cannor munt make an argument againsat s card ta Twluta®}:
peintf{™ it.\n");
Taturn NULL;

]
printf ("What card in your opponent’s argqument ars yeu trying to ref"):
printf ("uta? > ");
gets (Ginput}) ;
ascant {cinput, %5 ka", temprank, tampauic);
refuted = MakeThwCard (temprank, tampsuit};
if (SameCard (refuted, (MakeThaCard (™x™,"x"}}})

pPrintf({"Invalid card.\n"):
retyurn NULL;:

¥
loe = FindDial (plyr, temprank, tempsuit):
if {lloc}

printf("That card was not found in your opponsnt’sa dimlogue.\n"};
raturn NULL:
1
iinput = i
while ({iinput < 0) || (iinput >~ Arg[Gchhead).numheads))
{

printf{"And what argqument of yours arw Yo using to refute? > ~}:
acanf ("kd”, fiinput) ;
gets{cinput); /* just for the stupidity of ¢ input */
if {iinput < 0) return ¥ULL;
if (iinput > Arg[GoAhwad).nurmheadn-1})
printf{"Sorry, but you only have %d arguments.\n > ",
Arg[GoAhenad] . numhesdn) 7
wine if (!10ppCard{Arg{GoAhead] .HeadCards [iinput]->C, loa—>C}h)
{
pPrintf {"You muar refute your opponent’s card, ");
PrintCard{loc->C):
printf{” with an argument atarting within
Teturn NULL:

an opposite card,\n"}:

Arg (GoAhwad] .Challenged {lac—rargnumber] = loc:

{ /* Thir function finda retuxns an (if unique} cccurrance of a * loc~>challnode = 1;
* card with suit suit and rank rank in playsr plyr’s dial— - Dial{GoAhead] .ATg{C] =
* ogue. If no such card occurrs, it returns 0. If there * Arg(GoAhead] .HeadCards [iinput);
" are > 1 such vecurrances, each are listed, and the playar = Cial [CoAhmnd] .numargs = 1;
* decides which to use. 7 Dial [Cohhead).typa = 1;

CMRD C;
word temp;
int eount;
int ctheads:
int wanted;
Repetitions.numfound ~ 0;
C = MakeTheCaxrd{rank,suit);
for (ctheads = 0O;ctheads < Dial[plyr).numnrgn; ctheadz+s)
{

if {SameCard(Dial [plyr] .Arg[ctheads)->C,C}}
AddRept (Dial [piyr].Arg[echeada] , NULL) ;
for (ecunt = O;count<Dial{plyr).Arg [ctheada} ->numsupports; count++}
RecFindRepts(Dial[plyr}.Arg[ctheads) ->supportcoent), C,
Dial[plyr] .Arglctheads]) s

}
if (|fepetitiona.pumfound) return NULL:
if {Repetitions.nunfound == 1}

return (Repstitions.locationa[0}):
wanted =~ 9%;
while ([wanted >- Repstitiona.mumfound)

printf ("More than one inatance of ")
PrintCard(C};

printf (" oeccerra in the argument.\nWhich sf the follewing "j:
printf["instances did you want?\n"};

for (count = 0; count < Repstitions.numfound; count++)

printf (*Instance %d: \n",count);
HiLitPrintDial (plyr, Repetitions.locations{count)};

1
printf{~ > “);
scanf ("%d", {wantad) ;
gets{temp}; /* nust for the stupidity of c input »/
if {({wantwd >= 0} &i& (wanted < Repetitions.numfound)}
return (Repetitions.locations[wantedf};

boolean FindAliDial (plyr,C)
int plyr;
CARD
t /* This funcetion fipde returns all of the secourrance{a) of a *
* card C in player plyr's dialogue. -
* If no guch card accurra, it yeturns 0. IF there are *
* > } guch eccurrances, sach are returhsd through the *
* rapstiviona structure. »/
word temp:
int count;
int ctheads;
int wanted;
Repetitionsa.numfound = 0}
for {(etheads = 0;ctheads < Dig) (plyr) .numargs; ctheadat++}
{

if {EquivCard{Dizl{piyr].Argi{echeads)->C,C}}
AddRept{0ial (plyr}.Arg{ctheads] , NULL) ;
for {count = 0;eount<Dial [plyr).Arg{ctheads] =rnumaupporkte; count++})
RecFindRepte{Dial [plyr].Azg{ctheadn]->ouppore [count], C,
Dialiplyr].Argictheads]};

}
if (IRepetitions.numfound) return NULL:
if (Repetitions.numfound == 1) return I;
«lge return 2; /* more than 1, #a why not uae the fact that bool ia int */

H

rwturn lecy

NODE * Challanga{)
[/* Returns ptr to card challenged, updates Dialogue */
NODE * loc;
TARD challenged;
word cinput:
word temprank:
word tempnnit;
int plyre;
if (GoAnead) plyr = @
wlfe plyr = 1;
Dinl[GoAhead] .type = 0;
if ({Diml(plyr].type == O} [F (Dlal{plyr).type == -1}}
{

Printf("Invalid. You mupt respond to your oppenent’s last reaspen™):
peintf("ge:\n"};

PrintDizlegque (plyr);

return NULL:

printf{"What card in your opponent’'s srgument axe you trying to chal”);
Printf{"longe? > "):
geta{cinput};
sscanf {cinput, "&s is™, temprank, tampeuit);
challanged = HakeTheCard (temprank, tempsuit};
if (SameCard{challenged, {MokeThaCard("x","x")}}}
i

printf{"Invalid card.\n"};
return NULL;
]
loc = FindDial (ply:, temprank, tempauit) ;
if {lloc)
{
prinef{"That card was not found in your opponant’s dialegue.\n"):
return NULL:

)
if {loe->numaupports)

princf{*The ~);
PrintCard (Loc—>C};

printf(” iz not challengable, ao it has valid supports already.\nv};
printf{({"You may only challenge unsupported cardn.\n"};

returh NULL;

H
Dial{GoAhead)] ,numargs = 0;
Arg[GoAhead) .Challenged|{loc—->argnurber] = loc;
ice->challnode = 1;
if (TEMPDEBUG)
{

PrintCard(Arg(GoAihead] . Challenged[loc->argnumber];
printf(" in argument number %d is now under challenge.\n™,
loc~>argnumber) ;
}
return los;

boolean SuccRefutwe()
{ /" Raturne whether a refutation attempt is (if burdenad) more npacific
* or (if not burdened) at lazst not lmsa mspecific Lrs

int specres;

spucran « Morefpacific (Dinl{Gohhead).Axqg(0}, Dial[Gohhead] .abject) ;
if (Arg[GoAhwad).burdan}
if {mpscreg == 1)
raturn 1;
if (lArg¢[GoAhead)] .burden)
if (apwcras < 2}
raturn 1;
return 0;

}

boolwan ChackDialHeads ()
{ /» Returng vhethar ons of the heads in ths dialogue ie the goal */
int 4y
for {i = Q; i < DialiGohhwad].numargsa: i++
if (Mrgli)->C == goal) return 1:
return 0

boolean Chatkf'orSpeciloc)
HODE * loc;
{ /* Used by RecChackDialSpsc — returns if thae opponent has any *
* arguments nore specific than lec in their dialogue -7
int i
int plyr:
if (GoAhead) plyr = 9;
wltie plyxr = 1;
for (i = 0; i < Diallplyx).numhargs; i++)
if

boolean RecCheckDialSpec {loc)

HODE * locs

{ /* Recursive function that checks node loc to see if the opponent has
* any arguments more apecific than lec in their dialogue uzing
* CheckforSpec

boolean CheckDialSpwe {burdn)
int burdn;
{ /* BReturns whether thers are ANY a in the opp t’'s dialogue *
¢ which are not less spetific {if hurdn’ed) or wore specific (if not *
* burdn‘ed) than one of the cards in your argument, using
* RecChackDisl%pec */
int 4;
int apacfound;
specfound = §;
if {GoAhead) plyr = O;
wlaw plyr = 1;
for (i = 0; 4 < Disl[GoAhwad).,numarge;: i++)
spscfound = ppacfound + RecCheckDialSpec{Dial [CoAhead] .Arg[i}):
if {TEMPDEBUG)
4

Printf{"There were 3d inatances of more/not less npucific card "):
printf("usages found.\n", specfound):

return specfound;

{ /* Returns whathar the current response is a sufficient response */
int i;
int plyre:

if (Dial{GoAhead].type == 0}

if {Dial[GoAhwad].cbjmct == NULL)

/* the number of args clted */
word cinput; /* tha input of the player - a atring */
int iinput; /* the input of the player - an inc */
word typedial; /* 0 = challenge, 1 ~ refute, 2 = pregent dialogue */
boolean auff:

iinput = -i;

while {((iinpunt < @) (] (diinput > 3})

{

int numarge;

princf{"You can: An\t{0) challenge an argument in your opponent!s”);
printf{” currant dialoguw,in\t({l} zefute & card in your OppOnent’ o"y;
printf{” currant dialoguw,\n\t (2} pregsent & (hew} dialogus, ™);
printf{"or \n\t{3} go back to optiona?\n >)2

ascanf ("%d", elinput});

geta(cinput); /* just for the stupidity of ¢ inputc */

¥
awitch (iinput})
{

case 0: Dial[Gohhend],obiwct = Challenge(); break;
cape 1: Dial[CoAhmad] .object = Refute(); break;
case 2: PregsntDialoguel):; break:
1f {(&input < 0} || (dinput > 2}) return 0;
Teaturn Sufficient(};

R T R T Y

fr o mAmArcassttaan «nd DIALOGUE definitions

/m meeae Tyg Player functions swees &y

vold ResetStr(resetme)

word Tematha;

{ /* juat aets a string to dummy nil... for worda... */

int count;
resetma(0] = "n*
Tesstmnu{l)
Teswtra[2}
repwtme(3]
for {count

feEee

;
4;count < 20; count++} resstmefcount] = NULL;

void Posaibilities()

{ /* printa out the popsibilitiwa +/
printf{“During wach tuxn, the valid responsss ars:\n");
printf("\tdfioplayla{rgurents] -> displays the current argumants.\n");
printf{"\td[siplay)bf{oard}] «> dimplays the current board status.\n");
Printf{*\ra[dd] -> adds &« card to one of your arguments, parameters:\n"};
printf("\t\targurent number, card to add, card to add under.in™);
princf("\tr{wmove] a{rgument} -> removes an argument.\n");
printf ("\tr(estatw] -> restate arguwnents - allows you to add or remove“);
printf{"\n\t\targuments to your current argumsnt 1iat.\n*):
printf{“\tf[liplr[esaurce] -> flips a remourcs card.\n™);
printf{"\tfi{liplcfane} —> flips a card under a case, parametars are:\n");
printf{"\t\ctl/s (long or short casa), case number.\n");
printf{"\tx[nd} ~> ends turn.\n"):
printf{"\tq[uit] -> ends game.\n"):
printf{“Preotty boring, sh?\n\n\n"};

void Intrao(}

i
printf{"¥You formed ne valid challenge.\n"}:

Teturn 0:

]
printf({“Your response has been determined to ke sufficient, as"j);

printf{™ it challengeo an\nunsupported card in your cpponent’a“):
printf{™ dialogue arguments.\n");
raturn 1;

!
if (pial {Gohhead].typa == 1)
{
if {Dial(GoAhead),objwor me NULL}

printf ("You formed no valid refutatien.\n"};
Taturn 0;

H
if {SuccRefute(})
{

printf("Your response has heen detarmined to be sufficient, aa");
printf({" it refutes a cardi\nin your opponent’sm dialogue argum”}) ;
printf("ents with ");
if (lArgiGaahead] .burden)

printf(”an argument that is not less specific.\n"};
wlse printf{"a mors specific argument.\n"):

rsturn 1;
}
wloe
1
printi ("Your refutation is not sufficient, as it was "),
if (Arg[GoAhwad].burden}
printf("not mors specific than\n"):
*loe
printf{"less apewcific than "};
printf("your opponent’s.\n");
return 0
}
}
¢loe

if (l1Dial(GoAhead].numargn}

printf{"You inputed no arguments to use ag a dialeogue.\n"};
return ¢

}
if (GoAhead) plyr = 0;
wloa plyr = 1;
if {!GoAhead)
1

if (iCheckDialHwads{})
{

Printf("Am you are trying te prove “};

PrintCard(goal):

printf(*, that card ahould be the head\nof one of your©);
printf{™ arguments.\n"}:

return 0

}
}
CheckDialSpec (Arg {GoAhead] . burden)

booiean Dialogue ()

{ /* Gets a dialoguw response from the player, creates the Dialf] */
/* Returna whother the dislogue was o sufficient repponae */

int Args [10}: /* the array of arqumente ecited */

(/* gives the introduction, sets up the glehal{iah) varisbles +/
princf(“Helcome to the Two-player version of An Argument Came.\n");
printf {*\C\tR. P. Leui, W. Chen, patent pending.\nin\n");
Posaibilitieai)s

boclean Addi{laztadd)
boolean lastadd; /* for if there is to be multiple adds =/
{ /* adds & card to the player’'s argument */
HCDE * log;
CTARD addcard;
CARD tocard;
int iinput;
word cinput;
int argnum:
bovlean head:
booloan tempraad;
word temprank;
word tempsuic;

tempread = 0;

Repatitr {tempauit)};

ReastStr{cemprank) ;

if (lArxg(Gohhead}.mucheads)

{

argnum = 0;
hedsd = 1;
tempraad = 1;
}
else whila (ltempread)
1
printf{“Hhat argument would you like to add to? > “);
acanf ("%d", &iinput);
gets(cinput); /* Just for thw atupidity of ¢ input »/
if {(!lastadd) && {iinput < 0}) return 1:
if (DEBUG)
printf{ ("Adding to player ¥d’'gs argument %d out of %d\n-,
Goahead , dinput, ArgfCoAhead] .numhaads} s
if ({Arg[CoAhesd] .numheada > ¢} && (Lisput >= O) &4
(iinput <~ (Arg[SoAhead).numheada-1}}}
{
if {DEBUG) printf("Adding a support card.\n"};
head = 0;
argnum = iinput;
tampread =~ 1;

wlse if { ((Iiinput) && {lArg[GoAhead] .numheada}} ||
({iinput == {Arg[CoAhead] -numheadn)) &6
(finpur)) }

if {DEBUG) printf(“Adding a head card.\n“};
head = 1;
arghum = iinpug;
tempread = i;
}
wlae if {iinput < €)
printf("Invalid argument number, Player Ad.\n",GoAhaeacd);
elae printf(“Player 3d, you only have td headcardslin®,
GoAhead, Arg{Gohhesd] .nurheads) ;
]
tempread = Q;
while (ltempread)
{

printE{"What card ig being added (form: J clj? ")
gates{cinput);
ascanf {cinput,™%s ¥a",temprank, tempauit);

nddeard = MakeTheCard {temprank, tempauit});
ResutStr {Cempsuic);

RepetStr {temprank)

if {DEBUG)

printf{"Adding made caxd ");
PrintCard{addcaxd};
princf(*.\n");

}
if {i{SameCard{addcard, (MakeTheCard{"x","%x"}]1)} tempread = 1;
}
tempread = 0
if {(lhead} while (!tempread)
{

printf("Hhat card im being added to (form: J €1}? "j;
geta{cinput);

ascenf {einput, "%a %", temprank, tempsuit);

tocerd = MakaTheCard(temprank, tempauit);

if (DEBUG)

{
print£{"Add To made card "};

PrintCard{tocard):
printf(".\n");

}
if (lSameCard{tocard, (MakeThaCazd("x","X"))}}) tempread = 1;

¥
if (head} AddHead{GoAhead, addcard);
wlne

{
loc « FindCard{GoAhead, argnum, temprank, tempeuit) ;

if {loc) Addsupport{loc,addecard):

wlow
{
printf{"That ¢ard was not found in your qgurrsnc™);
printf{” argument number %d.\n",arqgnum};
1
RapetStr{tempauit);

Reast3tr{temprank);

if {lastadd} printf{"\nY¥our argument is now:\n“):
if {lasatadd) PrintArg{GoAhead);

reaturn 0;

void DisplayaArg ()

{ /% Allows a player to diaplay the arguments */
printf({"\nYour current argumente axe:\n“};
PrintArg{GoAhead} ;
printf{"Yeour opponant’s current arguments SC<:i\n"};
if (GoAhead) PrintArg(D};
wlne PrintArg(i}:

wvoid RemoveArg{)
{ /* Allows a player to remove an argumant from hia/her arg list */
int removems;
word einput: Y
printf{"what argument would you like to remove (negative removes=);
printf (" none) ?\n\t> ");
scanf ("¥d", irenoveme) ;
geta(cinput); /* jusc for the stupidity of o input =~/
if (removerme < 0) return;
elee if (remaveme < Arg[GoAhead].numheads)
1

done = Add (0}
printf {("\nYour current argumentai\nT):
PrintArg {GoAhead};

void FlipRes ()

{ /* Allows a player to flip a resource card */
princf({*The card flipped is “};
PrintCard (GatResource());
princf(*, lamving you with %d resources.\n",Res.ReaNum) ;

void FlipCasw ()
{ /* Allowa a playsr to flip on a case */
CARD Cd;
int fliptace;
int numlefc:
word temp:
boolean geotcard;
int 4i:
int reps;
CARD FlippedOn;
printf{"What casw would you like to £Lip on., using the short cames™);
printf{" aa cases\n\tl through % and the long onea ar 10 through 19.\n"}:
princf(* > "y
acanE{"4d", cflipcane) ;
gets (templ: /* Just for the mtupldity of c input *f
if ({flipcane £ Q) || {flipcasze > 19})
{

printf{*Invalid case number. Cases are C0-19.\n"}:
T@tUurn;

if (FactsLeft (flipcase)}
{

FlippedOn = GameBoard.Cases (flipcase] .FactEvid(0];
printf({"The card revecled iz "j;
Cd = RevealCage(flipcase);
PrineCard{cd}:
Printf{" leaving %d facta left unturned in that case.\n",
Factsloft {flipcanwe)};
gotcard = CheckFlipped (flipcase,Cd};
]
«lge printf(“there are no cayrda left unturnsd in that case.\n"};
if {(AUTOADD} && {gortcard})
{

ropas = GatAll{FlippedOn);
if {repa)
{

printf{"Attempting to add the card to the %d occurance™,repsa);
if (repa>l) printf£{"a");

printf{" in your srgument™});

if (Arg(GoAhead].numheads>l) printf("s"};

princf{".\n"};

}
for {i«D; i < rYeps: i++)
AddSupport (Repetitions.locationa[i], cd};

Arg(GoAhead] .HeadCards [removeme) ~>numpupporcs = 0;
Arg[GoAhead} . HeadCards [removeme] = NULL;
1
printf {"Argument number %d Yehmoved™,removema};
if (removenc != {(Arg[GoAhead).numheada-1)}
i
Arg{GoAhead] .HeadCarda [ramovene} =
Arg[GaAhead] .HeadCards [(Arg[GoAhead} . numheadr-1]);
princf{* and replaced by the last argument=);
!
printf{".\a");
Arg [GoAhead] . numheads—-—;

void Restate {}

{ /= Allowz a player to resntate his/her argumant */

HODE * tempptr;

CARD delated;

CARD tompeard;

int temp;

boolean done;

word cinput;

word cemprank;

word tempouit;
printf{"\nYour curr«nt arguments:\n"};
PrintArg{GoAhesd];
printf("First, leta delets the cards you dont’ want to use.\n"};
princf (“Neme CAYds To delete — if a card with apport is named, ™) ;
printf("all of ita\n support will bs deleted as weall.\n"};
printf ("Inputing x X on a line will finiah deleting.\n\n"):
done = O;
RegotStr {tempouit) ;
Reantstr {tomprank) ;
while {ldone)

{
printf("What card ig being deletad {(form: & Cl1)7? > "y;
gets {einput) ;
saeant (cinput, "ds %8”,tamprank, tempauit);
if ({temprank{0) == ‘x'} L& (tempauit ([0} == ‘x"}}

done = 1;
if (ldone) deleted =« MakeTheCard(temprank, tempauit):
if {(idone) &é{iSameCard{deleted, MakeThaCarxd {"x","x")1}))

Tampptr = FindAl) {(GoAhead, temprank, tempouit} ;
if {ltampptr) printf("Card not found.\n");
elne

if (DEBUG)H
{

printf("Have found "}:
PrintCard {tenppty);
princf({* to delete.\n"};

RemoveArgCard (tempptr) ;
printf {"\nYour current argquments:\n“};
PrintArg (CoAhead) :

]
Reset3tr (temprank};
ReaetStr (tempauit) ;

done = O
printf{"Wow it is time to add cards,\nTo stop adding, simply ™);
printf{"input & negstive number for the argument number.\n"}:

while {ldone}

int End

{ /% Allaws & player to ond his turp +/

int next;
if (!GoAhead) next = 1;
«lae naxt = 0;
printf {"\nPlayer %d, it is your turn.\n",nexc);
printf ("Your current arguments:\n"):
PrintArg(next);
printf (“Your opponent’s current arguments:\n©}):
PrintArg {GoAhead) :
printf{"\n");
return nexts

void TwaPlayers {}
{ /* This procedurs runs the game for twe Pilayers */
word ainput;
int dimpac;
koolwan teimpread;
boolean done;
word temprapk;
word tampagit;
Intxal};
InitDiale{):
tompread = 0;
Resatdtr (tempeuit);
ResatSey (conprank} ;
PrintBoard({};
if (TEMPDEBUG)
{

GoAhesd = (;

quel = GamewBoard.Cases[19) .FactEvid{0];

printf{“For ease of input, setting player 0 trying to argue for ");
PrintCard{goal) ;

printf("\p\twith 20 resource cards.\n\n"};

InitRencurces (20} ;

}
if (!TEMPDERUG) while (itempread)
{

printf{"What card ic being proven(form: J Cl)? > *);
gata{cinput}:
socanf{cinput, %5 ¥8",temprank, tempsuit};
goal = MakeTheCard{temprank, tempauit);
if (!{%ameCard(gonl, (HakeTheCard (=", "x"})}} tempread = I;
Ropet3tr{tempouit);
RenetStr ({Lemprank):
}

dene = 0;

printf (“The current list of argquments for player 0 im:\n"};

PrintAxg{0);

printf ("The current list of arguments for player 1 is:\n"};

PrintArg(l};

printf{“\n\n*-};

whiie (ldane)

{
Princf(“Player %d’s turn ",GoAhead):
princf{"(da/db/afaa/ra/c/fcl/fridlerql/?) > "):
getg{cinput);
if {{cinput[0] == “‘a’) £& (cinput(i] == *a*j))
AddArgSupport () ;
oine 1f (cinput[0)] == *fa*) Add{l):
elae if ({cinput(D] -= “x*) && {cinput(l] == “a")}
Removehrg{}:

aiow
alae
aloe
elae
elae
eloe
aloe

elow

wlae

if
iz
if
if

if
if

{(cinputi{0)] == “r'}) Rentatei};
{cinput{0] == ‘e‘}) GoAhead = End{);
{einput[G) ~= "q’')} return:
{{cipput (0] == "d’)} k& (cinpuc{l] r=
DisplayArg{}:

{({cinput [0} == 'd’') && {cinput(l} ==
PrintBoard({);

{(Ginput[0] == rd’}

{ if (Dialogue{)) GoAhwad = End(}:; }
{{cinput[Q]) == *£') &£& {cinputil] =
FlipRea(}:

{{cinput{Q] == £} £& (cinput[l] ==
FlipCase{};

Pogmibilitiesa(}:

al}

“hryy

28]

LTI

AR L Y T T T T P T

T AARRAAMKAREANRAARANAL MATH PROGRAM TIME #4thasasiassewddddes =
L P LY

mein ()
{

printf{"\n"};
HawGare {}

InitArgs {}:
ArgumentBuilderc{);

TwoPlayers{);

printf{*\n\nHope you had fun - at leasnt =5 much as I had coding thia“):
printf (™ Bad-Boy...\n\n"):

References

Allen, L. (1966) “WFF ‘N PROOF: The game of modern logic,” Autotelic
Instructional Materials Publishers, New Haven.

Carlson, E. (1969), Learning Through Games: A New Approach to
Problem Solving, Public Affairs Press, Washington, D.C.

Ellington, H I, Addinall, E, and Percival, F (1981), Games and
Simulations in Science Education, Kogan Page, London.

Gibbs, G. I. (1974a), APLET Yearbook of Educational and Instructional
Technology 1975/75, Kogan Page, London.

Gibbs, G. 1. (1974b), Handbook of Games and Simulation Exercises, E
& F N Spon Ltd, London.

Gibbs, G. I, Howe, A. (1974), Academic Gaming and Simulation in
Education and Training, Kogan Page, London.

Loui, R. (1987) “Defeat among arguments.” Computational
Intelligence 4.

Loui, R., Chen, W. (1992), An Argument Game, W.U.C.S. TR 92-47,
1992.

Loui, R., Norman, J., Stiefvater, K., QOlson, J., and Costello, A. (1 992),
“Computing specificity,” W.U.C.S. TR 92-47.

Mulac, M. E. (1971), Educational Games for Fun, Harper and Row
Publishers, New York.

Poole, D. (1985) “Preferring the most specific theory,” Proceedings
of the International Conference on Artifical Intelligence (1JCA).

Pollack, J. (1987) “Defeasible reasoning,” Cognitive Science.

Twelker, P A (1981), “Simulation and media,” in Tansey, P J (ed)
Educational Aspects of Simulation, McGraw-Hill, London.

	The Study of Computer Science Concepts through Game Play
	Recommended Citation

	tmp.1439928365.pdf.3fOfR

