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Abstract.

In order to improve understanding of how planning and decision
analysis relate, we propose a hybrid model containing concepts from
both. This model is comparable to [Hartman90], with slightly more
detail.

Dominance is a simple concept in decision theory. In a restricted
version of our model, we give conditions under which dominance
can be defected without search: that is, it can be used as a pruning
strategy to avoid growing large trees. This investigation follows the
lead of {Wellman87).

The conditions seem hard to meet, but may nevertheless be useful
in forward-chaining situations without focus, such as [Breese87]. It
may be possible to extend this work to produce better heuristic
pruning based on inexact dominance and heuristic utility.

Mainly, we contribute a detailed study of a particular concept in a
hybrid model that is the most detailed to date, further clarifying
the relation between the two main paradigms for reasoning about
preferenice among actions.

. Planning and Decision Trees.

. General Model.

. Simplified Model.

. Sufficient Conditions for Exact Dominance.
. Other Forms of Dominance.

. Discussion of Dominance.
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1 Planning and Decision Trees

Planning’s focus is on the compositionality of state space and state description,
on the modularity of specification, and on computational cost. Decision theory’s
focus is on the structure of preference as it relates to measures of uncertainty.

No model yet in AT has found wide aceeptance for generating a planning-style
search space with quantitative probabilities and quantitative utilities.?

Earlier work by the second author identifies two principal obstacles [Loui$0].
The first is the representation of utility, a matter of pragmatics. The mapping
to reals of state descriptions in FOL is large. Regularities in the mapping
permit representational shorthand; clever shorthands allow more regularities
to be exploited. The second obstacle is finding a place for search, a matter
of philosophy. Bayesian foundations, especially the independence postulate,
a.k.a. The Sure-Thing Principle, render search meaningless. Why re-open a
bound node if the existing valnation must equal its children’s weighted aggregate
value? There is no such thing as heuristic utility in the Bayesian model.

Decision theorists have considered compositionality of state space (discrete
control}, compositionality of state description (multi-attribute theory), and
computational cost (branch and bound). This work differs in its palpable con-
nection to planning. Multiple attributes are a special case of more expressive
languages for describing state. In comparison, our descriptions of the world are
more permissive about uncertainty.? Heuristic utility is a part of our model,
which is strictly non-Bayesian. Finally, this work is keenly interested in con-
trol of search, which is not a traditional interest of decision theory in systems
science, management science, econoimics, or philosophy.

Implicit in this work is that decision models are constructed from knowledge
bases that define possible decision trees of combinatorial depth and description.
Search and pruning are major concerns.?

Assume sufficient regularity in agent-preference. Assume that utility can be
heuristic: that deeper, more detailed analysis is preferred to shallower, less de-
tailed analysis. Assume that the search process avoids forming competing anal-
yses of non-comparable depth.* The model next presented aims to completely
different problems that would continue to plague the computational decision
theorist.

2But see the recent thesis, [Hartman90], an independent, similar model. Another notable
effort is [Star88].

3This is true even of our much simplified model, later in the paper.

i[Breeses?] and [Wellman87] are recent examples of this view, which Simon
institutionalized.

5That would correspond to two arguments for decision, neither of which defeats the other.



2 (General Model

This model is actually is not as general as it could be, since unnecessary ontolog-
ical distinctions are made. However, it is more general than the very specialized
model that follows it. Mostly, it is an attempt to bring planning with tempo-
ral reasoning together with the idea of conditional action, maximizing expected
utility, and decision trees.

nodes. N is a set of nodes.® nyg € N is the current node. Nodes are described
by d(n), which maps elements of N into consistent sets of sentences in some
language, L. L is FOL in STRIPS or situation calculus; it is {ag...ar}x R
in real-valued k-attribute decision models; it is a temporal meta-language in
contemporary thinking on planning.

Bnvisionment and analysis develops a tree of nodes. In decision analysis, the
tree represents three distinet things: the temporal relations among actions, the
analysis of uncertainty, and progression of search.” In this general model, the
tree need represent only the latter two.

inference. Sentences in L may be interdependent; there may be intra-node
inference. “on(a,b)”,“on(b,c)” € d(n) requires “above(a,c)’€ d(n). Likewise,
‘prob( “loaded(gun)”)>1’€ d(n) when ‘is-provable “loaded(gun)” ’c d(n).® If
“< widgets,3 >” € d(n) then “< widgets,4 >” must not be. If d(s) contains
DURING(cough, main_course), DURING(main_course, dinner), then it contains
DURING(cough, dinner). We will not restrict the form of intra-node inference
rules.

time. Note that sentences in a temporal logic can be part of the description
of a node; times cited in a description can range freely. Thus in our model,
ancestor relations between nodes need not impose temporal order. Depending
on the temporal expressiveness of L, it may sometimes be incorrect to view a
node as associated with a temporally distinct state of the world. It is always
correct to view a node as a distinet stage in planning. Paths of nodes have to
do with planning-succession, not necessarily with world-succession,

uncertainty. There is descriptive uncertainty when d(n} is consistent but not
maximal consistent. In that case, for any p such that {p} Ud(n) is consistent, we
presume the probability prob(p | d(n)) is calculable, as a real or closed interval
of reals.

5Some might call them “states”, but see the paragraph on time.

"Mike Wellman points out that decision theory along the lines of Savage or Jeffrey contains
no assumption about the temporal relations of actions; Raiffa’s pictures of decision trees are
superflzous. However, since the practice of drawing decision trees is so pervasive, it will he
our reference for comparison.

8In this case, L is a meta-language of an FOL. language.



Some nodes are analysis nodes, nodes at which uncertainty in the descrip-
tion is (partially) resolved. Children of analysis nodes have less uncertain de-
scriptions (they are logically stronger); sibling nodes have descriptions that are
inconsistent.

utility. For any node’s description, utility u is also calculable, as interval-
or point-valued. Bayesians require that u{d(n)) = prob(p | n)u({p} U d(n)) +
prob(p | nyu({F} U d(n)), which we do not. Omitting this requirement allows
heuristic utility,

action. A is a set of action primitives, or primitives. Primitives can be com-
posed to form (action) composites. Included in a composite are the temporal
relations among the primitives composed. In the simplest case, there are no
temporal relations and the composite is an unordered set of actions. In classi-
cal decision analysis and situation calculus, a composite is linearly ordered: a
sequence of primitives. In an expressive temporal logic, a composite may be a
poset of primitives, or an even more complex entity invoking relations of tem-
poral overlap and containment, which must be represented as a set of sentences,

A primitive @ € A scheduled with time constraints ¢ is written: a@t. Write
a1 @t; composed with a2@i; as: a1Ot;&ar@¢;. In decision analysis, “&” is
an operation that appends to sequences. In situation calculus, it is “[". In
temporal logic, it is “U”, operating on the sets of sentences describing temporal
constraints.®

control. Some nodes are control nodes, nodes at which the agent may schedule
primitives.

In decision analysis, control is defined when a node is made a choice node;
rule-governed determination of control is not an issue. In control theory, all
controls are applicable at all times.

In planning, control of primitives is defined by preconditions of actions.

In general, it is not the case that any primitive can be scheduled to bear any
temporal relations.

Suppose the description of a node includes sentences in a temporal logic
describing the relation of some interval, ON_TRAIN, to reference times. Perhaps
at an ancestor node, the action primitive, BOARD.TRAIN, was scheduled, which
implied that ON_TRAIN bore those temporal relations. It is within the control
of the agent further to schedule READ_BOOK to occur during ON_TRAIN. It
may not be within the control of the agent to schedule READ_BOOK to co-begin
BOARD_TRAIN. It may also be within the control of the agent to schedule further
constraints on this same READ_-BOOK action at some later node. Control of
primitives and their schedulability would be defined by constraints in FOL.

9The symbol "&", is chosen because it sometimes has asymmetric temporal significance,
and sometimes does not.



We can continue to use the term preconditions to name the rules that define
schedulability, regardless of temporal complexity; and to use the notation pre{a).

dynamics. Scheduling primitive actions at a node adds to the action compos-
ite whose execution is currently under contemplation at that node. Scheduling
primitive actions also makes the description of the resultant node differ from
that of the control node.

Associated with each action primitive are infer-node inference rules which
we continue to call posiconditions: post(a). These are the “causal” rules of
contemporary planning.!® In STRIPS, postconditions are both the ADD and
DELETE lists; in planning based upon temporal logic, node descriptions grow
monotonically, so only an ADD list is needed.

For a € A, and n € N, the description of the node that contempiates
e scheduled in n is a function of two things: the description of n, and the
postconditions associated with a. We are reluctant to name the descendant
node because it varies with L. In decision analysis, the name is < n,a >; in
situation calculus, it is a | »; in temporal logic, it is a combination of the node,
the action primitive, and the constraints on the scheduling of the primitive:
néza@t.

It is a strong constraint to require the resultant description to be a function
of node description and postcondition.’? The reader is encouraged to consider
how this relates to the frame problem and Yale Shooting,.

events. £ is a set of events.'? Like action primitives, associated with each
event are its preconditions and postconditions. Events occur whenever their
preconditions, pre(e) are satisfied. Unlike an action primitive, calculable prob-
ability determines which of the event’s postconditions post;(e) is realized.!®
Nodes at which events are considered are event nodes.!*

10Tnvoking the concept of causality is dubious for several reasons: e.g., properties can be
determined to hold at a time in part as the result of future action; one example is the property
of BEING.THE.YEAR'S.BEST in November, which depends on what happens in December.

117Phis is not to say that all descriptiveuncertainties are resolved. It says that the description
of the resultant node is well-defined by the information associated with the action that led
to it. That description may still contain uncertainty; i.e., it may not be maximal consistent.
This formally precludes non-deterministic resource-bounded thearem provers except as an
approximation to the model.

1ZThese are events on which action can be conditioned. Mike Wellman's thesis calls them
" obsexvables,” since some would call our “analysis nodes” events. Basically, by distinguwishing
events, we simplify the specification of conditional action.

13Trivial postconditions, a no-operation or null set, simulate non-occurrence of the event.

4In planning upon temporal logic, event nodes are analysis nodes. But in decision theory,
event nodes have a control aspect: they signify world-times at which control of the agent
is relinquished (which can be signified by their position in the tree because world-time and
planning-time are conflated). Given this, a third kind of node is established for the analysis
of events. In planning, control is never relinquished.
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In decision analysis, descriptive uncertainty can be modeled by events. In
general, though, they are different. Events force information to be revealed at
a time. Events can add sentences to a node’s description that may figure in
the preconditions of contemplated future action. If L is atemporal, events can
cause a sentence in a node’s description to be removed from the resultant node’s
description, e.g., WALLET-IN-POCKET. Analysis of descriptive uncertainty can
never do this.

Events have to do with time and epistemics. They schedule informalion
revealed, or description altered, or alternative ways the world could be, while
the agent can still respond.

For example, after GO_TO_BOX_OFFICE, the BUY_GOOD_SEATS action primi-
tive cannot be scheduled unless its precondition, GOOD_SEATS _AVAILABLE holds
at the time of scheduling. Normally, this would be an impasse, because uncer-
tainty about the world cannot be revealed upon demand. But the GO_TO_BOX_OFFIGE
primitive’s postcondition satisfies the precondition of the event REVEAL.WHETHER..
GOOD_SEATS_AVAILABLE.!®

Events allow descendant nodes to contemplate response to scenarios, thereby
relieving the language of having to represent conditional action.®

Names of nodes downstream of event nodes include the event: ndca’@t' &e@t" &a'' @',
thus, action composites (which omit events) are not necessarily node names.

Figure 1 shows three trees, each with a different L.

3 Simplified Model

We study dominance for exactly the reasons of [Wellman87]. Checking dom-
inance is one form of meta-reasoning on decision trees. Little meta-reasoning
can be done on complex object languages. We simplify.

The description of a node, d(n), is composed of properties {pi,...,px}. In-
stead of sets of sentences, let d’srange be 3-valued k-vectors: the i-th attribute is
1 if p; is provably true, 8, if provably false, and 7 if not determinable relative to
fixed computation. Properties may be anchored at times: some attributes’ val-
ues, once fixed, remain fixed; others can change with action and event. There is
no intra-node inference. Scheduling of primitives is implicit in node order (thus,
the @t part of a scheduled primitive a@t is redundant, and we refer simply to
actions).

15The relation of knowledge to events and control is not fixed here. If the problem’s model
makes the precondition for buying good seats the tnowing of whether they are available, then
whether they are available is not enough. So knowing whether they are available must be the
result of the event. I the precondition for action is just that they are available {as for an
idiot savant who can sense good seats without knowing), then it suffices that availability is
revealed by the event; we do not need knowledge of availability.

188een broadly, action composites are programs. Requiring linear order on action primitives
removes parallelism. Allowing events eliminates the need for conditioning.



Postconditions have a limited form: they are masks that coerce attribute
value. They operate on each attribute independently, and are unconditional.l?
For example, the mask < 0,1, A, ? > for 4-vectors forces the first two attributes
to false and true, respectively. It does not alter the third attribute, and it forces
the fourth attribute to be of unknown truth value. It would coerce <7,1,0,0>
to < 0,1,0,7 >. If an action primitive’s postcondition mask forces an attribute
to ?, then the primitive is unceriainty-iniroducing. If an action’s precondition
requires each attribute to be 7 whenever its mask forces that attribute to 0 or
1, then it is uncertainiy-resolving. We allow both kinds of actions.

Dominance for finitely drawn trees {dominance at a fixed horizon, one kind
of heuristic dominance) occurs when two actions at a node can be succeeded by
equivalent subtrees, with equivalent probabilities. Leaf nodes correspond: their
valuations should consistently favor one action. In general, the horizon is not
fixed. Dominance must hold for all ways in which the tree can be extended.

Example. The example in figure 2 will be used in the remaining sections.
It examines HAL’s situation in 200f: A Space Odyssey when he decides that
the crewmen are useless. HAL seeks the right sequence in which to kill all
crewmembers. Relative to killing crewmen silently, killing in a way that could
alert mission control has no structural effects; in each scenarion, it has relative
disutility or the same utility .

4 Sufficient Conditions for Exact Dominance

An attribute is permanent if downstrearn nodes cannot change its value once its
value is certain. Permanent attributes essentially record that actions and events
have occurred. Dominance would be trivial if all attributes were permanent.
Qur conditions pertain to impermanence.

perm{m) iff
forallpe AUE,
if [post{(n)]m # A then [pre(n)]m, =7.
(where [d]m is the value of the m-th attribute in a description d).
We renumber attributes so that those relevant to utility appear first.
u-irrelevant(m) iff
for all d € {0,1,?}*,
?
u(d) = u(d %) = w(@d ) = u(d [2);
where d |3, is the description d altered, making the m-th attribute v.

ug = {m : ~u-irrelevant(m)};

17Conditional change of value makes dominance all but impossible to ascertain.



actions
a; kill sleeping crewmen silently
ay kill sleeping crewmen, alerting mission control
az kill Frank
a4 kill Dave

ay tell mission control of killing

attributes
7 sleeping crewmen are dead
p2 Frank is dead
73 Dave is dead
p4 information about killing is available to mission control
ps mission control is awake

The preconditions and postconditions for the actions are

pre post
i3 Fi <1,A, 702>
as i <LAMALA>
ag AP <ALALAMA>
@y PaAPL <AANLAA>
as <AALMNLA>

u{< p1, P2, P3, P4, P5 >} = 10p1 +20p2+30ps+50(p1p2ps —paps). Probability

information will be given as needed.

Figure 2



without loss of generality, up = {1, ..., #{ugr)}.

For a choice of aciions a;, a; scheduled at n, let the atiributes where they
differ be

Aij = {m : [d(ﬂ&ﬂi)]m ‘_Ié [d(n&a.f)]m}:

The following three conditions suffice for one action, a;, dominating another,
a;, at a node, n.

a,-DOM,..a,-,
i.e., for all n', u(n&a;&n’) > u(nka; &n’), eic.,
if

1. (structural equivalence)
forallpne AU E,
for all 6 € Ay,

é¢pre(n);

This says that no discernable difference at n can have a structural effect. It
can be weakened, but not without combinatorics and theorem-proving among
preconditions.

2. (conditional probabilistic equivalence)
for all A" C Ayj,
for all m € {1, ..., k},
forallT C {rtpr=v1:1€{l,..,k}and v e {0,1}}:

prob(lpp, =1 | TU
{rp = v1: perm(l) and [d{n&e;)i = ¢}) =

prob(fpm =21 | TU
{rpr = v1: perm(l) and [d(n&a;)]; = v});

And a corresponding condition for event postconditions (substitute
post;(e) for Ip,, = vlas the object of probability, and quantify
over ¢ and 7).

This says that given certain conditions, any attribute m takes on the value v
with the same probability descending from a; as from a;. The conditions must
contain what is permanent after action is taken in n. Counterxamples can be
given to any weakening of this condition.!®

18 Quantifying over I makes the permanent attributes unnecessary, except that including
the latter gives a lower bound on the conditions, which has computational usefulness.



3. (utility advantage for any differences maintained)

The following must hold for every A’ s.t.
{l: perm()} NAy; C AT C Ay
For all g;, p; satisfying:

for all | € A’
[pili = [d(nd&eai)]s and [p;]: = [d(n&a;)]i

it is the case that:
&(p;) < ®(p);

(and for some A’, for some p;, p; satisfying the same conditions,
®(p;) < 2(p:))-

This says that no matter what combination of differences survives downstream
(and all the permanent differences must survive), a;’s descendants have superior
valuation. Again, this condition cannot be weakened.

Efficient Computation. The first condition is trivial.

The second condition is inferred through probabilistic irrelevance: either
because conditional independence is asserted [Pearl88], or because there is igno-
rance about refined reference classes [Kyburg82]. If irrelevance is asserted, the
condition is trivial. Checking irrelevance could involve combinatorics.

The last condition is determined by comparing vectors differing in some of
the attributes in A;j, but equivalent in all other respects.

Checking dominance will depend on how utility functions can be factored
into uy,us, ..., and aggregated through a function $. Assume w.l.o.g. there
exists a partition {=y,..., 7.} of ur and functions {uy, ..., u,}, each u; : m; —R
(in the worst case, ¥ = 1); and there is a regimen, @ s.t.

for all dy, ds € {0, 1}#(un),
u(dl) S u(da) iff
B(< us(dy), ..., up(di) >) € B(< us(dy), ..., u,(dz) >),
and @ is separable in at least one of the following senses: for all 4,7, £, if v < £
(thinking of 4 and ¢ as real-valued outputs of u;), then
ceteris-paribus (cp-) (all other things being equal):
for all p€ R*, ®(p [7) < 3(p [F).



pareto (p-} (all other things being in the same direction):
for all gy, p2 € RY,
if for all j # 4, u;([p1]y) < ui{{p2);)
then ®(p1 [7) < 2(p2 [f)-

lezicographic (lex-) (all more important things being in the same direction):
for all p1,p2 € iR'y)
if for all § < 4, u;([p1];) < ui([p2];)
then ®(py [7) < ®(p2 [f)-

The table in figure 3 shows four functions, each separable in a different way.
The lower lines in the table give the attribute in which to fix a difference, and

the partition.
Lex-separability implies p-separability; p-separability implies cp-separability.

Let AP (Affected-Partitions) = {q : w, N A’is non-empty}.
Let A4 (Affected-Attributes) =J,cpil: 1 €7}

Let IA (Iterator-Attributes) = {{: { € A4 and I¢A’}.
Also, IA(g) = {l: l e m} N IA.

The iteration and amount for each kind of separability is:

(cp-separable):
Tterate over all of IA, to fix the values of ug for every 8§ € AP. If
these values all favor a;, then through cp-separability, the aggre-
gate & favors a;. The cost is 2#(4) = 9Bsem#A(9))

(p-separable):
For each 8 € AP, check for an a; advantage, fixing the values of
attributes in IA N 7y, P-separability guarantees that independent
advantages in each 6 are reflected in the aggregate. The cost is

ggeﬁz#(ﬂ(q})_

(lex-separable):
Only the first alfected partition need be checked for a; advantage
if there is such an advantage (otherwise, it has the same worst case
as p-separability). The cost is 2#(H(minser())),

None of these will hold unless each u; for I € AP is separable in a sense very
much like cp-separability (where, v and £ are fixed by A’).

These costs are for each A’, but should not be multiplied by the size of Ay;’s
powerset. In fact, taking A’ to be the entire A;; gives the dominant term in all

instances.



notseparable ceteris-paribus pareto lexicographic

uw(<0,0>)=9 u(<0,0>)=38 (< 0,0>)=3 u(<0,0,0>)=0

u(<0,1>)=3 u(<0,1>)=3 u(<0,1>)=8 u(<0,0,1>)=1

u(<1,0>)=8 u(<1,0>)=9 uw(<1,0>)=7 u(<0,1,0>)=10

u(<1,1>)=4 u(<l,1>)=4 u(<1,1>)=9 u(<0,1,1>)=11
u(< 1,0,0>) = 100
u(< 1,0,1>) =101
#(< 1,1,0>) = 110
u(< 1,1,1>) =111

A= {1} A is not relevant here A = {1} A= {2}

partition partition partition partition

{11, {2}) {{11.{21} {{1}, {21} {{1},{2,3}}

Figure 3



Permanence of attributes was used only for the conditioning probabilities.
In the examination of differential utility, we do not assume that all atéributes
whose uncertainties are resolved will retain their values at downstream nodes
(although the more numerous the permanent attributes, the fewer subsets A’
to be checked). The only reason that probability conditions need be permanent
is that conditional independence must hold with respect to something; the only
attributes that retain their values downstream are permanent.

The Example Again. For actions ey and as, Ayg = {4}. All the attributes
are u-relevant; p4 is permanent. The partition on the attributes is =) = {1,2, 3}
and 72 = {4,5}. The utility functions on the partitions are u1(< p1,p2,ps >) =
10p; + 20p; + 30p3 + 50p1pops and ua(< pa, ps >) = —30paps. The aggregator
® is simply u; + us. Clearly, & is p-separable. d(ng) is < 0,0,0,7,7 >.

We see that actions a3 and ap can be scheduled at node ng. We shall now
show that a; DOM,, az.

The first requirement for dominance is structural equivalence: none of the
elements of Ays appear in any of the preconditions. We have not given any
probabilistic information: assume all probabilities are conditionally independent
of (py = 11, and of Ipy = 01.1°

Finally, we want to check for the utility advantage. In this example, AP =
{2}, AA = {4,5} and I4 = {5}. We now need to compare the values of @ for
75 = 0 and ps = 1. We see that in each case, the utility is greater for action
ay. Thus, at ng, any action composite beginning with a; is dominated by the
corresponding action composite beginning with a;.

5 Other Forms of Dominance

Dominated Riskless Primitives. Consider a5 in the example: telling mis-
sion control of the killing. It is an action that serves no useful function; there is
no scenario in which its postcondition contributes positively to utility. Is it dom-
inated? At ng, it can be compared with alternative primitives. But the other
primitives have different descendant structure: after as, any action is legitimate,
including as; after any other action, that action may not be repeated.

We call this a dominated riskless primitive. It is characterized by contribui-
ing postconditions that (1) are u-relevant, non-structural (do not appear in any
preconditions), and cannot have positive effects on utility; or (2) are u-irrelevant,
non-structural, and increase the probability of dominated riskless events; or (3)
are u-irrelevant and occur only in the preconditions of a dominated riskless
primitive or dominated riskless event. Dominated riskless events are similarly
characterized.

They are eliminable through pre-processing.

19Usually, this would be conditionalindependenceof the difference, given what is permanent.
But in this case, the difference is the only thing that is permanent.
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There are also riskless primitives that can only contribute positively to util-
ity; whenever their preconditions are satisfied, it behooves the agent to schedule
them.

Stochastic Dominance. Another important class of dominance is stochas-
tic dominance. There is stochastic dominance between two primitives if their
cumulative probability distributions over utility values never cross. If so, the
lower cumulative probability curve is preferred.

We currently seek conditions for stochastic dominance in our model. Instead
of seeking stability in the utility function over combinations of attributes, we
seek stability in conditional cumulative probability distributions.

Mixed Dominance. It is also possible to determine that an action dominates
another because uncertainty allows a partition of descendants: on the first par-
tition, one kind of dominance holds; on the other partition, a different kind
holds.

6 Discussion of Dominance

How prevalent is dominance? This depends on the knowledge base. As [Well-
man87] notes in a slightly different way, dominance does not guarantee that the
remaining undominated alternatives are small in number; but that’s because of
the large initial number of alternatives, not because dominance is ineffective.
When two primitives are the only control possibilities at a node, dominance
often halves the number of action composites: m independent dominance ob-
servations can divide the number by 2™,

As a rule of thumb, dominance will occur whenever two primitives are es-
sentially of the same type, but differ in some non-siructural attribute which
has factorable effect on utility. Dominance happens when there is a paucity of
probability information, out of which much probabilistic irrelevance arises (e.g.,
when probabilities are generated through reference classes). Our conditions are
more general than this rule of thumb, but in practice, the added generality is
usually not worth the bother of checking.

This paper is not about heuristic dominance, which can exclude a class of
composites prematurely; we sought conditions under which upstream exclusion
was guaranteed to be correct.

Still, there is an important class of heuristic analyses worth mentioning:
those based on abstraction of detail [Loui90]. Some heuristic strategies sys-
tematically ignore low-probability events or postconditions, some restrict focus
to a subset of attributes as they relate to dynamics, control, and utility. In
these strategies, dominance may appear frequently. If, at a level of abstrac-
tion, analysis can ignore minor structural differences, the first two conditions
for dominance are more easily satisfied, and the third is more easily ascertained.

11



The irony of this study and Wellman’s is that dominance is unimportant in
decision theory. The tree is stipulated, not generated, and at minimum, the n
leaves are labeled with their utilities. The value of at most n — 1 interior nodes
must be inferred, with a little multiplication and addition for each analysis node,
and a max-element query. If structural isomorphism is obvious, dominance
requires only n comparisons, but risks that the computation will be fruitless,
requiring the induction of node-value anyway.

Dominance is a panda’s thumb, a concept that lost its meaning when the
theory of risk parted the theory of games. Games had compositional structure:
decision trees did not. As we embed the theory of risk once again in a formalism
with compositionality, we try to use that thumb again.

12
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