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Packets in the Internet can experience large queueing delays during busy periods. Backbone routers are
generally engineered to have large buffers, in which packets may wait as long as half a second (assuming
FIFO service, longer otherwise). During congestion periods, these bufferfs may stay close to full,
subjecting packets to long delays, even when the intrinsic latency of the path is relatively small. This
paper studies the performance improvements that can be obtained by using more sophisticated packet
schedulers, than are typical of Internet routers. The results show that the large buffers found in WAN
routers ocntribute only marginally to improving router throughput, and the higher delays that come with
large buffers makes them a dubious investment. The results also show that better packet scheduling
algorithms can produce dramatic improvements in fairness. Using ns-2 simulations, we show that
algrithms using multiple queues can significantly outperform RED and Blue, especially at smaller buffer
sizes. Over a single-bottleneck link, the variance in TCP goodput using the proposed multiqueue packet
schedulers is one-tenth that obtained with RED and one-fifth that obtained wiht Blue. Given a traffic mix of
TCP flows with different round-trip times, longer round-trip time flows achieve 80% of their fair-share
using multiqueue schedulers, compared to 40% under RED and Blue. We observe a similar performance
improvement for multi-hop paths.
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Abstract

Packets in the Internet can experience large queueing delays during busy periods. Backbone
routers are generally engineered to have large buffers, in which packets may wait as long as
half a second (assuming FIFO service, longer otherwise). During congestion periods, these
buffers may stay close to full, subjecting packets to long delays, even when the intrinsic
latency of the path is relatively small. This paper studies the performance improvements
that can be obtained by using more sophisticated packet schedulers, than are typical of In-
ternet routers. The results show that the large buffers found in WAN routers contribute
only marginally to improving router throughput, and the higher delays that come with large
buffers makes them a dubious investment. The results also show that better packet schedul-
ing algorithms can produce dramatic improvements in fairness. Using ns-2 simulations, we
show that algorithms nsing multiple queues can significantly outperform RED and Blue, es-
pecially at smaller buffer sizes. Over a single-bottleneck link, the variance in TCP goodput
using the proposed multiqueue packet schedulers is one-fenth that obtained with RED and
one-fifth that obtained with Blue. Given a traffic mix of TCP flows with different round-
trip times, longer round-trip time flows achieve 80% of their fair-share using multiqueue
schedulers, compared to 40% under RED and Blue. We observe a similar performance
improvement for multi-hop paths.
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Abstract

Packets in the Internet can experience large queueing delays during busy periods. Backbone
routers are generally engineered to have large buffers, in which packets may wait as long as
half a second (assuming FIFO service, longer otherwise). During congestion periods, these
buffers may stay close to full, subjecting packets to long delays, even when the intrinsic
latency of the path is relatively small. This paper studies the performance improvements
that can be obtained by using more sophisticated packet schedulers, than are typical of In-
ternet routers. The results show that the large buffers found in WAN routers contribute
only marginally to improving router throughput, and the higher delays that come with large
buffers makes themn a dubious investment. The results also show that better packet schedul-
ing algorithms can produce dramatic improvements in fairness. Using ns-2 simulations, we
show that algorithms using multiple queues can significantly outperform RED and Blue, es-
pecially at smaller buffer sizes. Over a single-bottleneck link, the variance in TCP goodput
using the proposed multiqueue packet schedulers is one-tenth that obtained with RED and
one-fifth that obtained with Blue. Given a traffic mix of TCP flows with different round-
trip times, longer round-trip time flows achieve 80% of their fair-share using multiqueue
schedulers, compared to 40% under RED and Blue. We observe a similar performance
improvement for multi-hop paths.

1. Introduction

Backbone routers in the Internet are typically configured with buffers that are several times times
larger than the product of the link bandwidth and the typical round-trip delay on long network paths.
Such buffers can delay packets for as much as half a second during congestion periods. When such
large queues carry heavy TCP traffic Ioads, and are serviced using the Tail Drop policy, the large
queues remain close to full most of the time. Thus, even if each TCP flow is able to obtain its share
of the link bandwidth, the end-to-end delay remains very high. This is exacerbated for flows with



multiple hops, since packets may experience high queueing delays at each hop. This phenomenon
is well-known and has been discussed by Hashem [1] and Morris [2], among others.

To address this issue, researchers have developed alternative queueing algorithms which try to
keep average queue sizes low, while still providing high throughput and link utilization. The most
popular of these is Random Early Discard or RED [3]. RED maintains an exponentially-weighted
moving average of the queue length which is used to detect congestion. When the average crosses a
minimum threshold (mingy), packets are randomly dropped or marked with an explicit congestion
notification (ECN) bit. When the queue length exceeds the maximum threshold (mazs,), all packets
are dropped or marked. RED includes several parameters which must be carefully selected to get
good performance. To make it operate it robustly under widely varying conditions, one must either
dynamically adjust the parameters or operate using relatively large buffer sizes [4, 5].

Recently another queueing algorithm called Blue [6], was proposed to improve upon RED. Blue
adjusts its parameters automatically in response to queue overflow and underflow events. When the
buffer overflows, the packet dropping probability is increased by a fixed increment (d1) and when
the buifer empties (underflows), the dropping probability is decreased by a fixed increment (d2).
The update frequency is limited by a freeze_time parameter. Incoming packets are then randomly
dropped or marked with an ECN bit. Although Blue does improve over RED in certain scenarios,
its parameters are also sensitive to different congestion conditions and network topologies.

In this paper, we investigate how packet schedulers using multiple queues can improve perfor-
mance over existing methods. Our goal is to find schedulers that satisfy the following objectives:

» High throughput when buffers are small. This allows queueing delays to be kept low.

* Insensitivity to operating conditions and traffic. This reduces the need to tune parameters, or
compromise on performance.

* Fair treatment of different flows. This should hold regardless of differences in round-trip
delay or number of hops traversed.

The results presented here show that both RED and Blue are deficient in these respects. Both
perform fairly poorly when buffer space is limited to a small fraction of the round-trip delay. Al-
though Blue is less sensitive to parameter choices than RED, it still exhibits significant parameter
sensitivity. Both RED and Blue exhibit a fairly high variance among individual TCP flow goodputs
even over a single-bottleneck link.

We investigate queueing algorithms that use multiple queues, to isolate flows from one another.
Most of the results reported use per-flow queues, but we also show that comparable performance
can be obtained when queues are shared by multiple flows. While algorithms using multiple queues
have historically been considered too complex, continuing advances in technology have made the
incremental cost negligible, and well worth the investment if these methods can reduce the required
buffer sizes and resulting packet delays. We show, using ns-2 simulations, that the proposed queue-
ing algorithms represent major improvements over existing methods, with respect to all three of the
objectives listed above.

The rest of the paper is organized as follows. Section 2 describes the new multi-quene meth-
ods investigated here. Section 3 documents the configurations used for the simulations and the



parameters used for RED and Blue. Section 4 compares the performance results of the proposed
multi-queue methods against RED, Blue and Tail Drop. Section 5 presents a brief summary of
related work and Section 6 concludes the paper.

2. Algorithms

As stated in the previous section, when we evaluated current queueing disciplines such as RED and
Blue, we found that they did not work well with small buffer sizes. Another big disadvantage with
both these algorithms (more so in the case of RED), is the problem of finding the right parameters
for a given queue. Given our experiments and prior work in this area, it has been shown that no
single set of RED parameters work for different bottleneck bandwidths, different flow combinations
and different queue lengths. Thus, to be able to effectively use RED, the parameters must be fine
tuned given link bandwidth, buffer size and traffic mix. In practice, this is very difficult since the
input traffic mix is continuously varying.

Given these problems with existing congestion buffer management algorithms, we decided to
evaluate a fair queueing discipline for managing TCP flows. We started with using Deficit Round
Robin (DRR) [7]. DRR is an approximate fair-queueing algorithm that requires only O(1) work to
process a packet and thus it is simple enough to be implemented in hardware. Also, since there are
no parameters to set or fine tune, it makes it usable across varying traffic patterns. We evaluated
three different packet-discard policies.

1. DRR with Longest Queue Drop

Our first policy combined DRR with packet-discard from the longest active queue. For the
rest of the paper, we refer to this policy as plain DRR or DRR, since this packet-discard
policy is part of the original DRR algorithm [7] and was first proposed by McKenney in [8].
Through our simulation study, we found that plain DRR was not very effective in utilizing
link bandwidth or providing fair sharing among competing TCP flows over a single-bottleneck
link. DRR did perform significantly better than RED and Blue when there were TCP flows
with different RTTs or the flows were sent through multi-bottleneck link topology. However
its performance was roughly comparable to RED over a single-bottleneck link using large
buffers, and worse for small buffer sizes. Thus, we investigated two different enhancements
to the packet-discard policy which are outlined below.

2. Throughput DRR (TDRR)

In this algorithm, we store a throughput value associated with each DRR queue. The through-
put parameter is maintained as an exponentially weighted average and is used in choosing
the drop queue. The discard policy for a new packet arrival when the link buffer is full, is to
choose the queue with the highest throughput (amongst the curzently active DRR quenes) to
drop a packet. Intuitively, this algorithm should penalize higher throughput TCP flows more
and thus achieve better fairness and our simulation results do confirm this. The drawback for
this policy is that we need to store and update an extra parameter for each DRR queue and
time averaging parameter requires tuning.



3. Queune State DRR (QSDRR)

Since TDRR has an overhead associated with computing and storing a weighted throughput
value for each DRR queue, we investigate another packet-discard policy which adds some
hysteresis to plain DRR’s longest queue drop policy. The main idea is that once we drop a
packet from one queue, we keep dropping from the same queue when faced with congestion
until that queue is the smallest amongst all active queues. Intuitively, this policy will try to
penalize the least number of flows necessary to keep the link from congestion. Also, when
there is short term congestion, a very few flows will be affected, thus ensuring that the link
will not be under-utilized. A detailed description of this algorithm is presented in Figure 1.

Let ) be a state variable which is
undefined initially.

When a packet arrives and there is no
memory space left:

if @ is not defined
Let { be the longest queue in the
system;
Discard one or more packets from
the front of ¢ to make room
for the new packet;
else // ¢ is defined
if ¢ is shorter then all

other non-empty queues

Let @@ be the longest gqueue in the
system now;

Discard one or more packets
from the front of @ to make
room for the new packet;

else

Discard one or more packets
from the front of ¢ to make
room for the new packek;

Figure 1: Algorithm for QSDRR

3. Simulation Environment

In order to evaluate the performance of DRR, TDRR and QSDRR, we ran a number of experiments
using ns-2. We compared the performance over a varied set of network configurations and traffic
mixes which are described below. In all our experiments, we used TCP sources with 1500 byte
packets and the data collected is over a 100 second simulation interval. We ran experiments using



RED
mawy | Max. drop probability 0.01
g Queue weight 0.001
TN, Min. threshold 20% of buffer size
TRATh Max. threshold Buffer size

Table 1: RED parameters

Blue
dl Increment | 0.0025
d2 Decrement | 0.00025
freeze_time | Hold-time 0.1s

Table 2: Blue parameters

TCP Reno and TCP Tahoe and obtained similar resuits for both; hence, we only show the results
using TCP Reno sources.

For each of the configurations, we varied the bottleneck queue size from a 100 packets to 20,000
packets. The 20,000 packets represent a half-second bandwidth-delay product buffer which is a
common buffer size deployed in current commercial routers. We ran several simulations to evaluate
mazy and w, for RED that worked best for our simulation environment to ensure a fair comparison
against our multi-queue based algorithms. The RED parameters we used in our simulations are in
Table 1. For Blue, we ran simulations over our different configurations to compare the four sets of
parameters used by the authors in their paper while evaluating Blue [6]. The Blue parameters we
used are in Table 2 and are the ones that gave the best performance.

3.1. Single Bottleneck Link

The network configuration for this set of experiments is shown in Figure 2. {8, Sz, ..S100} are
the TCP sources, each connected by 10Mb/s links to the bottleneck link. Since the bottleneck link
capacity is 500 Mb/s, if all TCP sources send at the maximum rate, the overload ratio is 2:1. The
destinations, named { D, D, ... D1gp }, are directly connected to the router Ro. All 100 TCP sources
are started simultaneously to simulate a worst-case scenario whereby TCP sources are synchronized
in the network.

3.2. Multiple Roundtrip-time Configuration

The network configuration for this set of experiments is shown in Figure 3. This configuration is
used to evaluate the performance of the different queue management policies given two sets of TCP
flows with widely varying roundtrip-times over the same bottleneck link. The source connection
setup is similar to the single-bottleneck configuration, except for the access link delays for each



50ms
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Figure 2: Single Bottleneck Link Network Configuration

500 Mb/s

0.5ms

Figure 3: Multiple Roundtrip-time Network Configuration

source. For 50 sources, the link delay is set to 20ms, while it is set to 100ms for the other 50
sources.

3.3. Multi-Hop Path Configuration

The network configuration for this set of experiments is shown in Figure 4. In this configuration,
we have 50 TCP sources traversing three bottleneck links and terminating at Rz. In addition, on
each link, there are 50 TCP sources acting as cross-traffic. We use this configuration to evaluate the
performance of the different queue management policies for multi-hop TCP flows competing with
shorter one-hop cross-traffic flows.
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Figure 4: Multi-Hop Path Network Configuration

4. Results

‘We now present the evaluation of our multi-queue policies in comparison with Blue, RED and Tail-
Drop. We compare the queue management policies using the average goodput of all TCP flows
as a percentage of its fair-share as the metric. We also show the goodput distribution of all TCP
sources over & single-bottleneck link and the variance in goodput. The variance in goodputs is a
metric of the fairness of the algorithm; lower variance implies better fairness. For all our graphs,
we concentrate on the goodputs obtained while varying the buffer size from 100 packets to 5000
packets. Note, for the multi-queue algorithms, the stated buffer size is shared over all the queues,
while with the single queue algorithms, the stated buffer size is for that single queue. Since our
bottleneck link speed is 500 Mb/s, this translates to a variation of buffer time from 2.4ms to 120ms.
In all our simulations, we noticed that all the policies behaved in a similar fashion past the 5000
packet buffer size.

4.1. Single-Bottleneck Link

The first set of graphs, shown in Figure 5, compare the distribution of goodputs for all 100 TCP Reno
flows over the simulation run. For this experiment, the single-bottleneck link configuration is used
and the buffer size is set to 200 packets. The closer the goodputs are to each other, the lower the vari-
ance, which implies better fairness. We notice that under TDRR and QSDRR (Figures 5(b), 5(c)),
all TCP flows had goodputs very close to the mean and the mean goodput is very near the fair-share
threshoid. We notice that the average goodput under DRR 5(a) is not as good as TDRR and QSDRR
and it is even slightly lower than RED, so simple DRR is not sufficient to prevent under-utilization
of the link. In the case of Blue (Figure 5(d)), although the goodputs of different TCP flows are
close to each other, the mean goodput achieved is far below the fair-share threshold which leads to
under-utilization of the link. The mean goodput achieved using RED (Figure 5(e)) is close to the
fair-share threshold, but the variance is high. Also, a significant number of sources are able to get
more than their fair-share of the bandwidth. As expected, Tail Drop (Figure 5(f)), performs most
poorly, with the highest variance in goodputs and a very low average goodput.
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Figure 5: TCP Reno Goodput distribution over single-bottleneck link with 200 pkt buffer

Figure 6 shows the ratio of the goodput standard deviation of the TCP Reno flows to the fair
share bandwidth for all algorithms while varying the buffer size. Even at higher buffer sizes, the
goodput standard deviation under DRR and QSDRR is very small and the ratio to the fair share
bandwidth is less than 0.025. TDRR exhibits a higher goodput standard deviation, but it is still
significantly below Blue, RED and Tail Drop. RED exhibits about 10 times the variance compared
to QSDRR and DRR, while Blue exhibits about 5 times the variance. Overall, we observe that the
goodput standard deviation is between 2% — 4% of the fair share bandwidth for the multi-queue
policies compared to 6% for Blue, 10% for RED and 12% for TailDrop. Thus, even for a single-
bottleneck link, we observe that the multi-queue policies offer much better fairness to a set of TCP
flows.

Finally, figure 7 illustrates the average fair-share bandwidth percentage received by the TCP
Reno flows using different buffer sizes. For small buffer sizes, i.e. under 500 packets, TDRR and
QSDRR outperform RED significantly and DRR is comparable to RED. It is interesting to note that
even at a large buffer size of 5000 packets, all policies significantly outperform Blue, including Tail
Drop.
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4.2. Multiple Round-Trip Time Configuration

For this configuration, we use 100 TCP Reno flows over a single bottleneck link. 50 flows have a
40ms RTT and 50 flows have a 200ms RTT. Figure 8 shows the average fair-share goodput received
by each set. As shown in Figure 8(a), both RED and Blue allow the 40ms RTT flows to use almost
50% more bandwidth than their fair share. Tail Drop also allows the 40ms RTT flows to use more
than their fair share of the bandwidth for buffer sizes smaller than a 1000 packets. All the DRR-
based policies exhibit much better performance allowing only 10% extra bandwidth to be used by
the 40ms RTT flows. Both RED and Blue discriminate against longer RTT flows, as we observe in
Figure 8(b), the 200ms RTT flows achieve only about 40% of their fair-share bandwidth whereas
using the DRR-based policies, 200ms RTT flows are able to achieve almost 90% of their fair-share.

At a very small buffer size of 100 packets, 200ms RTT flows using DRR and QSDRR get about
40% of their fair-share. However, at this buffer size, when all the flows are active, there is only one
packet per flow that can be buffered. This causes the poor performance of DRR and QSDRR, since it
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Figure 8: Fair share performance of different RTT flows over a single bottleneck link

becomes very difficult to single out flows that are using more bandwidth. Even with this limitation,
when we move to 200 packets, both DRR and QSDRR significantly improve their performance and
200ms RTT flows achieve about 80% of their fair-share bandwidth on the average. Since TDRR
maintains an exponentially weighted throughput average for each flow, even at the smallest buffer
size of 100 packets, it is able to deliver almost 90% of the fair-share bandwidth to the 200ms RTT
flows.

4.3. Multi-Hop Path Configuration

In this configuration, 50 end-to-end TCP Reno flows go over three hops and have an overall round-
trip time of 150ms. The cross-traffic on each hop consists of 50 TCP Reno flows with a round-trip
time of 50ms (one hop). Figure 9 illustrates the average fair-share goodput received by each set of
flows. For this configuration, TDRR and QSDRR provide almost fwice the goodput as RED and Tail
Drop and four times the goodput provided by Blue for end-to-end flows. As shown in Figure 9(a),
end-to-end flows achieve nearly 80% of their fair-share under TDRR and QSDRR and 60% under
DRR. Under RED and Tail Drop, they can achieve only 40% of their fair share. For even the smallest
buffer size of a 100 packets, end-to-end TCP flows under TDRR are able to achieve 80% of their
fair-share. Using QSDRR and DRR, for the smallest buffer size, their fair-share is the same as RED,
but once the buffer size increases to 200 packets, their performance improves significantly and they
allow the end-to-end flows to achieve close to 80% and 60% respectively.

For this multi-hop configuration, the end-to-end flows face a probability of packet loss at each
hop under RED and Blue. Due to congestion caused by the cross-traffic, RED and Blue will ran-
domly drop packets at each hop. Although the cross-traffic flows will have a greater probability of
being picked for a drop, the end-to-end flows also experience random dropping and thus achieve
very poor goodput. For Blue, this is further exacerbated, since due to the high load from the cross-
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traffic flows, the discard probability remains high at each hop. This increases the probability of an
end-to-end flow facing packet drops at each hop and thus further reducing the goodput.

Figure 9(b) shows the average goodput for the cross-traffic flows attached to router R;. For
DRR, TDRR and QSDRR, the cross-traffic takes up the slack in the link and consumes about 115 —
120% of its fair-share bandwidth. For both RED and Tail Drop, the link utilization is lower and
although the end-to-end flows consume only about 40% of their fair-share, the cross-traffic flows
consume 150% of their fair-share and thus leave about 5% unutilized. Cross-traffic flows under
Blue consume about 120 — 140% of their fair-share, leaving 20 — 30% unutilized.

4.4, Scalability Issues

One drawback with a fair-queueing policy such as DRR is that we need to maintain a separate
queue for each active flow. Since each queue requires a certain amount of memory for the linked
list header, used to implement the queue, there is a limit on the number of queues that a router can
support. In the worst-case, there might be as many as one queue for every packet stored. Since list
headers are generally much smaller than the packets themselves, the severity of the memory impact
of multiple queues is intrinsically limited. On the other hand, since list headers are typically stored
in more expensive SRAM, while the packets are stored in DRAM, there is some legitimate concern
about the cost associated with using large numbers of queues. One way to reduce the impact of
this issue is to allow multiple flows to share a single queue. While this can reduce the performance
benefits observed in the previous sections, it may be appropriate to trade off performance against
cost, at least to some extent. To address this issue, we ran several simulations evaluating the effects
of merging multiple flows into a single quene. Figure 10 illustrates the effects of varying the number
of queues. The sources are TCP Reno and the total buffer space is fixed at 1000 packets.
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Figure 10: Performance of TDRR and QSDRR for a buffer size of 1000 packets, with varying
number of buckets

Figure 10(a) illustrates the effect on the goodput received by each flow under different numbers
of queues. For the multiple round-trip time configuration and the multi-hop path configuration,
we show the goodput for the 200ms RTT (longer RTT) flows and the end-to-end (multi-hop) flows
respectively. In both these configurations, the above mentioned flows are the ones which receive a
much lower goodput compared to their fair share under existing policies such as RED, Blue and Tail
Drop. We observe that the effect of increasing the number of buckets produces diminishing returns
once we go past 10 buckets. In fact, there is only a marginal increase in the goodput received when
we go from 10 buckets to 100 buckets. Since at each bottleneck link there are a 100 TCP flows, this
implies that our algorithms are scalable and can perform very well even with one-tenth the number
of quenes as flows.

We also present the standard deviation in goodput received by each flow for different numbers
of queues in Figure 10(b). The results are presented as a ratio of the standard deviation to the fair
share bandwidth to better illustrate the measure of the standard deviation. We notice that changing
the number of queues does not have a significant impact on the standard deviation of the goodputs,
and thus we do not lose any fairness by using much fewer queues, relative to the number of flows,
Also, the overall standard deviation is below 15% of the fair share goodput for all our multi-queue
policies, regardless of the number of queues.

5. Related Work

Our DRR-based policies, TDRR and QSDRR, which combine fair queueing and packet discard
policies, provide one particular solution for managing very small buffers while maintaining very
high link utilization and goodput. In this section, we compare our approach with other related
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approaches. One thing to note about all the related work is that none of the approaches have been
tested on multiple network configurations or with heterogeneous traffic.

3.1, Fair Queueing Algorithms

Several scheduling algorithms are known in the literature for bandwidth allocation and transmission
scheduling. These include the packet-by-packet version of Generalized Processor Sharing [9] (also
known as Weighted Fair Queueing [10]), VirtualClock [11], Stochastic Fairness Queueing [8], Self-
Clocked Fair Quencing [12], Weighted Round Robin [13], Deficit Round Robin (DRR) [7], Frame-
based Fair Queueing [14]. We chose DRR due to its simplicity and ease of implementation in
hardware.

5.2. FRED

One proposal for using RED mechanisms to provide fairness is Flow-RED (FRED) [15]. The idea
behind FRED is to keep state based on the instantaneous queue occupancy of a given flow. It defines
a threshold, ming, which is the minimum number of packets each source is allowed to queue. When
a new packet arrives and the queue size is greater than ming,, FRED will apply RED to sources
whose buffer occupancy exceeds ming. Although this algorithm provides rough fairness in many
situations, since it maintains a min, threshold for all sources, it needs a large buffer space to work
well. We have shown that TDRR and QSDRR are able to provide fair-sharing for very small buffers
even with a large number of flows. Also, since FRED does not maintain long-term statistics on a
flow’s queue occupancy, it cannot protect against misbehaving flows. On the other hand, TDRR
maintains an exponentially-weighted throughput average for each flow, allowing it to “remember”
events much longer in the past than the queue time constant; this allows it to enforce fairness, even
for small buffer sizes.

5.3. Self-Configuring RED

Self-configuring RED [16] is a proposal for an adaptive RED policy that can self-parameterize given
different congestion types. This policy is similar to Blue, where the RED’s dropping probability,
mazy is decreased when the average queue size falls below miny, and increased when the average
queue size exceeds rnaxth. This improves over RED in reducing the queue size variations, but does
not help provide better fair-sharing between flows, suffering from the same weaknesses present in
RED.

5.4. TCP with per-flow queueing

Another proposal for managing TCP buffers is using frame-based fair-queueing [14] with longest
queue or random discard policy [17]. This policy is similar to plain DRR. However, it has a disad-
vantage in that the frame-based fair-queueing uses the rate allocated to each flow in its scheduling
policy. This implies that it needs to know the number of flows apriori, which is a difficult require-
ment to meet. We have shown that our multiqueue policies can adapt to any number of flows, even if
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the ratio of flows to queues is 10:1. We have also shown that a fair queueing scheduler with longest
queue discard (plain DRR) does not perform very well over a single-bottleneck configuration for
small buffers.

6. Conclusion

This paper has demonstrated the inherent weaknesses in current queue management policies com-
monly vsed in Internet routers. These weaknesses include limited ability to perform well under a
variety of network configurations and traffic conditions, inability to provide a fair-sharing among
competing TCP connections with different RTTs and relatively low link ntilization and goodput in
routers that have small buffers. In order to address these issues, we presented TDRR and QSDRR,
two different packet-discard policies used in conjunction with a simple, fair-queueing scheduler,
DRR. Through extensive simulations, we showed that TDRR and QSDRR significantly outperform
RED and Blue for various configurations and traffic mixes in both the average goodput for each flow
and the variance in goodputs. We also showed that our algorithms perform well even when memory
is limited and we have to aggregate multiple sources into one queue.
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