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Abstract—Virtualization of custom logic computations (i.e., by
sharing a fixed function across distinct data streams) provides
a means of reusing hardware resources, particularly when
resources are limited. This is common practice in traditional
processors where more than one user can share processor re-
sources. In this paper, we virtualize a custom logic block using C-
slow techniques to support fine-grain context-switching. We then
develop and present an analytic model for several performance
measures (throughput, latency, input queue occupancy) for both
fine-grained and coarse-grained context switching (to a secondary
memory). Next, we calibrate the analytic performance model with
empirical measurements. We then validate the model via discrete-
event simulation and use the model to predict the performance
and develop optimal schedules for virtualized logic computations.
We present results for a Taylor series expansion of a cosine
function with added feedback and an AES encryption cipher.

I. INTRODUCTION

Virtualization of computational resources, primarily proces-
sor cores, has a long history. From early multitasking operating
systems [1] that support context switching between otherwise
unrelated processes, hypervisors [2], [3] that support context
switching between operating system images, to simultane-
ous multithreading microarchitectures [4] that switch between
threads effectively at each clock cycle, traditional computing
paradigms (via fetch-execute engines) regularly share compute
resources in such a way as to effectively provide a virtual copy
of the compute resource to each user. Virtualization provides
a way by which hardware resources can be reused, which
is commonly known as resource sharing. Sharing is a com-
mon technique for utilizing available hardware resources for
computing such as DSP blocks, memory controllers, memory
bandwidth, and IP cores.

In this paper, we model the performance of a virtualized
fixed logic computation and tune a schedule for optimal
performance. Our interest is in supporting a set of distinct
data streams that all wish to perform the same computation.
Virtualizing the logic computation involves sharing hardware
resources and context-switching each distinct data stream into
the hardware. This context switch can be either fine-grained
(in which context is changed each clock cycle) or coarse-
grained (in which the state of the computation is swapped out
to a secondary memory). Good candidates for virtualization
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Fig. 1. Hardware virtualization for N distinct data streams that perform the
same computation. The N streams are multiplexed into a shared hardware
(HW) block, processed, and then demultiplexed back into N streams.

are logic computations with long combinational paths (i.e.,
substantial computational requirements).

To virtualize a function, consider the hardware block (HW)
shown in Figure 1 that has an Nx1 input multiplexer and
1xN output demultiplexer. This HW block is a function imple-
mented in custom logic. N distinct data streams (each with
a dedicated input and output port) share the single instance
of the HW block. These data streams are then multiplexed
into the custom logic block, processed, and then demultiplexed
back into independent streams. For our purposes, we are not
considering I/O bound computations, but rather assume there is
sufficient bandwidth at the input and output ports of Figure 1.
When the logic function is purely combinational (i.e., feed-
forward), any input from any data stream can be presented to
the HW block at any clock cycle, even if it is deeply pipelined.
In this case, there are no constraints on scheduling. When the
logic function is sequential (i.e., has feedback) and has been
deeply pipelined, this imposes scheduling constraints. Once a
data element from a particular stream has been delivered to
the HW block, the stream has to wait a number of clock ticks
equal to the pipeline depth before it can provide a subsequent
data element from that same stream.

Pipelined logic circuits with feedback can be context
switched to compute multiple data streams concurrently. Es-
sentially, the circuit can be thought of as a sequential logic
circuit with pipelined combinational logic. The pipelined
combinational logic adds latency and decreases single stream
throughput since it takes multiple clock cycles (corresponding
to the number of pipeline stages) to compute a single result
and feed it back to the input. If the number of pipeline stages



is C, then this circuit is said to be C-slowed since a single
computation takes C times more clock cycles (often mitigated
by a higher clock rate). C-slow is a technique described by
Leiserson and Saxe [5] by which each register is replaced by C
registers and then retimed to balance the registers throughout
the combinational logic. Exploiting this characteristic allows
processing multiple different contexts or data streams in a fine-
grain way using the same hardware logic. The number of fine-
grain contexts supported equals the pipeline depth.

When the number of contexts to be supported, N , is greater
than the pipeline depth, C, coarse-grained context switching
can be used, swapping out whatever state is stored in the
circuit to a secondary memory. In general, this will incur
some cost, representing the overhead of a context switch.
While the fine-grained context switching of the C-slowed
circuit naturally uses a round-robin schedule, there are a richer
set of scheduling choices available when building a coarse-
grain context-switched design. In this work, we constrain
our consideration to round-robin schedules and explore the
performance impact of the schedule period.

The contributions of this paper include the following: (1)
development of an analytic performance model for hierarchi-
cally scheduled, virtualized, hardware logic; (2) calibration
of the model using empirical measurements from C-slowed
implementations of (a) a cosine function implemented via
a Taylor series expansion with added feedback and (b) an
AES encryption cipher operating in the CBC mode (also with
feedback); (3) validation of the performance model using a
discrete-event simulation; and (4) use of the model to both
predict the performance of virtualized hardware logic and
choose an optimal schedule period.

II. RELATED WORK

Expanding our consideration of hardware virtualization be-
yond the fine-grained context switching that can be supported
by C-slow techniques, Plessl and Platzner’s survey paper [6]
describes three different approaches to hardware virtualization
on FPGAs: temporal partitioning of net lists, virtualized ex-
ecution, and virtual machines. Chuang [7] describes another
type of temporal partitioning whereby custom logic can be
reused by temporally shared state.

Temporal partitioning of net lists [6] is a technique for vir-
tualizing hardware described by a net list that would otherwise
be too large to physically fit onto an FPGA. It is accomplished
by partitioning the net list and swapping the partitions in and
out like virtual memory blocks. This technique requires (at
least partial) reconfiguration of the FPGA.

Temporal partitioning of state [7] is a way to share hardware
by temporally swapping its state so as to compute multiple
streams of computation on the same hardware (i.e., a single
net list). The logic is fixed, and the state is swapped (context
switched), allowing it to operate on independent streams. The
context switch can be either fine- or coarse-grain.

Virtualized execution [6] is where an abstract programming
model is defined and applications are developed targeting that
model. Any application developed for the programming model

can run on any hardware that supports the model for execution.
One example programming model is the instruction set of
a processor core. Code written for this instruction set can
execute on any processor core that supports the instruction
set. An alternative example is PipeRench [8], which has a
pipelined streaming programming model.

A virtual machine [6] defines a generic abstract FPGA
architecture that hardware can be deployed upon. Designs
targeted to a generic FPGA architecture are then remapped to
the actual architecture of a specific FPGA device for execution.
This technique is different from the others in that it does not
perform any kind of context switching.

Kudlur [9] describes a high-level synthesis methodology
called Streamroller that employs resource sharing for design-
ing a pipeline of accelerators for an application. Multifunction
loop accelerators allow the hardware to be time-multiplexed
through multiple pipeline stages. This sacrifices performance,
but increases the ability to share hardware. Canis [10] uses re-
source sharing and multi-pumping where a hardware resource,
such as a DSP block, is clocked at 2x rate and is shared by
two concurrent data streams.

Within the domain of fine-grained context switching, several
applications have been implemented using the C-slow tech-
nique. Weaver et al. [11] applied C-slow to three applications:
AES encryption, Smith/Waterman sequence matching, and
the LEON synthesized microprocessor core. They designed
an automatic C-slow retiming tool that would replace every
register in a synthesized design with C registers and retime
the circuit. AES encryption achieved a speedup of 2.4 for a
5-slow by hand implementation. Smith/Waterman achieved a
speedup of 2.2 for a 4-slow by hand implementation. And
the LEON SPARC microprocessor core achieved a speedup
of 2.0 for a 2-slow automatically C-slowed implementation.
Su et al. [12] applied C-slow to an LDPC decoder to achieve
a throughput-area efficient design.

III. MODEL DEVELOPMENT

Figure 2(a) shows the general hardware configuration that
we consider. An arbitrary sequential circuit with input x, state
y, and output z has been C-slowed and augmented with a
secondary memory that can load and unload copies of state y
to/from the “active” state register. N FIFO buffers are present
at the inputs to store data stream elements that are awaiting
being scheduled. The circuit consumes one data element (from
an individual input specified by the schedule) each clock tick.

Inputs to the performance model are described first. The
number of input data streams is denoted by N . Each data
stream, i, is assumed to provide elements with a known
distribution and given mean arrival rates λi elements/s. In what
follows, we will assume the input distribution is Poisson. The
custom logic is characterized as follows. The total combina-
tional propagation delay is given as tCL. The pipelining depth
is C (corresponding to a C-slowed design). We model the
combinational propagation delay between the pipeline registers
as a random variable X with mean µX = tCL/C and standard
deviation σX . We assume that both the secondary memory



Fig. 2. (a) General hardware configuration of a C-slowed sequential logic circuit with secondary memory supporting N data input/output streams. (b)
Queueing model of this circuit with N queueing stations (one for each data stream). Each queueing station consists of a FIFO queue and associated server
representing one virtual copy of the hardware computation.

and the input buffers operate at the clock rate of the pipeline.
State transfers to/from secondary memory take a given S clock
cycles (enabling the model to support a range of context switch
overheads), and the buffers are assumed to have single-cycle
enqueue and dequeue capability (i.e, they do not limit the
performance of the system).

With the above inputs available, we represent the perfor-
mance of the context-switched hardware via an open queueing
network model with effective service rates determined by
the clock frequency achievable by the C-slowed circuit. This
queueing model is illustrated in Figure 2(b). Each individual
queueing station represents one virtual copy of the hardware
computation. The arrival rate at each queue is λi element/s and
the model for the effective service rate is developed in the
paragraphs below.

To model the effective service rate, we first consider the
case where N = C (i.e., only fine-grained context switching
is being employed, and there is no secondary memory). The
clock frequency, fCLK , of the pipelined circuit will be limited
by the maximum propagation delay between the pipeline
registers. Order statistics establishes a bound on the clock
period as follows:

tCLK = E [max (X)] ≤ µX + σX
√
C − 1. (1)

This represents a bound on the clock period which is equal
to the expectation of the maximum of C samples drawn from
random variable X . This bound does not depend upon the
distribution of X , only its mean, standard deviation, and the
number of samples drawn from the distribution. We know
µX = tCL/C, but we do not know σX . Rather, we expect
the clock period to trend with the

√
C − 1 term and use the

bound as a model for the clock period in the modified equation

tCLK = tCL/C + k ·
√
C − 1 (2)

where σX is replaced by coefficient k which is fit to empirical
data. As the notion of representing pipelined propagation
delays via a random variable is a novel modeling approach,
we assess the effectiveness of this model by comparing its
predictions with empirical measurements below in Section IV.

Returning to Figure 2, if we employ a fixed, round-robin
schedule (with no context switches to secondary memory),
data elements will be dequeued from each input at a fixed rate
of µs = fCLK/C. This corresponds to a deterministic service
process for each server, with mean service rate µs

elements/s.
This implies we can treat each context as an independent
M/D/1 queueing station (Markovian, or memoryless, arrival
process; Deterministic service process; 1 server) [13]. For
this M/D/1 system, the maximum achievable throughput (per
stream) is

µs =
1

C · tCLK
(3)

and the total achievable throughput is

TTOT = C · µs. (4)

The average (mean) waiting time of each data element in the
queue is [13]

Wq =
1

µs
· ρ

2 (1− ρ)
, (5)

where ρ = λ/µs. The (deterministic) time in the pipelined
circuit is

Ws =
1

µs
= C · tCLK , (6)

and therefore the average latency (elapsed time from arrival
to completion of processing) for each data element is

W =Wq +Ws =
1

µs
· ρ

2 (1− ρ)
+ C · tCLK . (7)

The average (mean) occupancy of each queue is [13]

Nq = λ ·Wq =
ρ2

2 (1− ρ)
. (8)

The above analysis holds for the circumstance where N =
C and we are only using fine-grained context switching. The
second case to consider is when N > C and we are exploiting
both fine-grained and coarse-grained context switching. We
will make the simplifying assumption that N is an integer
multiple of C. The schedule is a fixed, hierarchical, round-
robin schedule with period RS (for each stream) that acts as
follows: (1) a set of C input streams is chosen to share the



hardware resource and within that set a round-robin schedule
is used; (2) after RS rounds, the current set of input streams’
state is swapped out to secondary memory and the next set
of C input streams’ state is swapped in (the time required to
complete this operation is given as S clock cycles), this set is
then scheduled to use the hardware in round-robin fashion; (3)
the entire collection of N/C input stream sets is also chosen in
round-robin fashion (hence the label hierarchical round-robin
schedule), such that once every individual input stream has had
RS input elements processed the high-level schedule returns
to the first set of C input streams.

The impact of N > C on the queueing model starts with the
effective service rate expression. The number of clock cycles
to complete a full round of the hierarchical schedule (during
which each server services RS elements) is RS ·N+S ·N/C.
This implies the effective service rate is

µs =
RS

(RSN + SN/C) · tCLK

elements/s, (9)

which simplifies to (3) when S = 0 (i.e., context switches are
free) and N = C. The total achievable throughput, TTOT , is
now N · µs, or

TTOT =
N ·RS

(RSN + SN/C) · tCLK

=
RS

(RS + S/C) · tCLK

elements/s. (10)

To develop an expression for the average (mean) time that
each data element waits in one of the input buffers, we start
by using (5), the M/D/1 expression for mean queue waiting
time, and add a term, Wh, to reflect the additional time waiting
in the queue due to the hierarchical round-robin schedule. The
additional waiting time is experienced by the fraction of data
elements that arrive when their input stream is swapped out
(i.e., not receiving service). This fraction is RS(N−C)+SN/C

RSN+SN/C ,
or the number of clocks a stream is swapped out divided
by the number of clocks in a full schedule round. The
average additional time experienced by this fraction of input
elements is one half of the time the stream is swapped out,
(RS (N − C) + SN/C) · tCLK/2. Multiplying the additional
time by the fraction that experience the additional time yields

Wh =
(RS (N − C) + SN/C) · tCLK

2
· RS (N − C) + SN/C

RSN + SN/C

=
(RS (N − C) + SN/C)

2 · tCLK

2 (RSN + SN/C)
. (11)

The time in the pipelined circuit does not change from
Ws = C ·tCLK , and therefore the average latency from arrival
to completion of processing is

W =Wq +Wh +Ws

=
1

µs
· ρ

2 (1− ρ)
+

(RS (N − C) + SN/C)
2 · tCLK

2 (RSN + SN/C)

+ C · tCLK . (12)

Fig. 3. Block diagram of Cosine function application with added feedback.
The cosine function is approximated with a Taylor series expansion of Nt

terms which form a long combinational path. With the added feedback path,
this will determine the achievable clock rate.

Note that the expression for time in the server, Ws, no
longer equals 1/µs, because the waiting time due to coarse-
grained context switching is accounted for in the expression
for Wh rather than Ws. The expression for the average (mean)
queue occupancy, Nq , does not change from (8); however, the
expression for µs, the effective service rate, has changed to
(9). The mean number of elements waiting in the buffer due
to the hierarchical round-robin scheduling is Nh = λWh.

The above discussion provides analytic performance expres-
sions for total achievable throughput, TTOT , and the average
latency experienced by each data element, W , both in the
buffer, Wq +Wh, and in computation, Ws. Also available is
the average occupancy of the buffer, Nq +Nh.

IV. CALIBRATION

We use two applications across two implementation tech-
nologies to validate and calibrate (2), the model for tCLK .
Once tCLK is calibrated, it can be used as part of the model
predictions presented in the results section below. The two
applications constructed are (1) a cosine function implemented
via a Taylor series expansion with added feedback, and (2)
an AES encryption cipher. These applications were chosen
because they both have long combinational paths with a
feedback path from the output to the input, making simple
pipelining insufficient to effectively utilize their logic blocks,
and therefore requiring that they be scheduled with data from
independent data streams.

Measurements are taken for both applications on FPGA and
ASIC technologies. The logic is C-slowed to support C data
streams of computation with N = C data streams. For FPGA
technology, we target a Xilinx Virtex-4 XC4VLX100 FPGA
and use the Xilinx ISE 13.4 tools for synthesis, place, &
route of the hardware designs. For ASIC technology, we target
a 5M1P 0.18µm process using the Virginia Tech VLSI for
Telecommunications (VTVT) standard cell library. Cadence
RTL Compiler and Encounter are likewise used to synthesize,
place, & route the hardware designs. The clock period is
unconstrained in the runs for both technologies.

The Cosine application is illustrated in Figure 3. It consists
of a cosine function in the middle (representing the HW
block), an output register, a feedback path, and an adder to
mix the input with the output feedback. This is a synthetic
application built to have a long combinational path through
the cosine function via a configurable number of Taylor series
terms, Nt, that approximate the cosine.
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Fig. 4. Total achievable throughput plot for virtualized logic of the Cosine
Taylor series expansion function with feedback on an FPGA with Nt = 20
terms. The number of streams refers to the logic pipeline depth, C, with
N = C. For each value of C, data points were taken from 10 tool flow runs.

In the experiment, we measure tCLK on 10 independent
runs first for an FPGA with the number of terms, Nt, ranging
from 2 to 24 terms, and the number of streams, C, ranging
from 1 to 44 streams. Curve fitting the model in (2) across
data sets concurrently yields:

tCLK = 8.6 ns
term ·

Nt

C
+
(
1.9 ns− 4.7 ps

term ·Nt

)
·
√
C − 1.

(13)
Comparing this expression to (2) shows that we are model-

ing total combinational delay, tCL, as 8.6 ns/term ·Nt and the
coefficient, k, as 1.9 ns− 4.7 ps/term ·Nt.

To validate this model, we compute the total achievable
throughput, TTOT , from equations (3, 4) as 1/tCLK , and plot
the observed data values from the synthesis, place, & route
runs and the model prediction in Figure 4. This shows the
achievable throughput for the virtualized design with Nt = 20
terms of the Taylor series. The solid line represents the model
prediction. The dotted lines represent confidence intervals on
the model [14] (computed as a 95% confidence for 10 future
observations).

We make several observations about the total achievable
throughput of the virtualized designs. First, the model does
a reasonably good job of characterizing the shape of the
curve. Many of the measured data points are within the
confidence intervals, although not all. Second, throughput
initially increases linearly (at low stream counts) but eventually
levels off and adding additional streams does not provide
any significant throughput gains. Essentially, the clock rate
gains (due to deeper pipelining) have provided their maximum
benefit. Finally, the maximum throughput achievable is present
at 24 streams and higher.

Next, we curve fit tCLK for the ASIC technology. The
resulting model yields:

tCLK = 2.3 ns
term ·

Nt

C
+
(
3.2 ns− 9.8 ps

term ·Nt

)
·
√
C − 1.

(14)
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Fig. 5. Total achievable throughput plot for virtualized logic of the Cosine
Taylor series expansion function with feedback on an ASIC with Nt = 20
terms. The number of streams refers to the logic pipeline depth, C, with
N = C. For each value of C, data points were taken from 10 tool flow runs.

Fig. 6. Block diagram of AES encryption cipher (CBC block mode)
application. With a fully unrolled block cipher and no pipelining (initially),
the highlighted feedback path will determine the achievable clock rate.

Comparing this expression to (2) shows that we are model-
ing total combinational delay, tCL, as 2.3 ns/term · Nt, and
the coefficient, k, as 3.2 ns − 9.8 ps/term · Nt. The plot of
the empirical performance results of the total achievable
throughput for the ASIC design is shown in Figure 5. The
observations made with FPGA technology clearly still hold
with the ASIC technology.

Next, we use an AES encryption cipher [15] in CBC block
mode (that has a feedback path) illustrated in Figure 6 to cali-
brate tCLK in the model. In our implementation, the individual
block cipher is fully unrolled forming a long combinational
function up to 14 rounds (the AES 256-bit standard), enabling
us to investigate the impact of short vs. deep combinational
logic functions. The AES block cipher is shown in the middle
of the figure. Operating in cipher-block chaining (CBC) mode,
an initialization vector (IV) is XOR’d with a plaintext block to
produce the input to the cipher. The output is then registered
which becomes the ciphertext output. The ciphertext is then
fed back, through a multiplexer to be mixed again with the
next block of plaintext.

In the experiment, we measure tCLK on 10 independent
runs for an FPGA for design parameters Nr = 4 and Nr = 14,
and the number of streams, C, ranging from 1 to 28 (i.e., up
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Fig. 7. Total achievable throughput plot for virtualized logic of the AES
encryption cipher on an FPGA with Nr = 14 rounds. The number of streams
refers to the logic pipeline depth, C, with N = C. For each value of C, data
points were taken from 10 tool flow runs.

to 2 pipeline registers are included per round). Curve fitting
the model in (2) across data sets concurrently yields:

tCLK = 5.7 ns
rnd ·

Nr

C
+
(
1.7 ns− 55 ps

rnd ·Nr

)
·
√
C − 1. (15)

Comparing this expression to (2) shows that we are modeling
total combinational delay, tCL, as 5.7 ns/rnd · Nr and the
coefficient, k, as 1.7 ns − 55 ps/rnd · Nr. The plot of the
empirical performance of the total achievable throughput for
this FPGA design is shown in Figure 7. We can observe that
the modeled total achievable throughput matches closely to
the observed data values.

Next, we curve fit tCLK for the ASIC technology. The
resulting model yields:

tCLK = 7.7 ns
rnd ·

Nr

C
+
(
4.3 ns− 112 ps

rnd ·Nr

)
·
√
C − 1.

(16)

Comparing this expression to (2) shows that we are modeling
total combinational delay, tCL, as 7.7 ns/rnd ·Nr, and the coef-
ficient, k, as 4.3 ns−112 ps/rnd ·Nr. The plot of the empirical
performance results of the total achievable throughput for the
ASIC design is shown in Figure 8. The observations made with
FPGA technology again still hold with the ASIC technology.

V. RESULTS

With the modeling expressions from Section III, we can
explore the performance implications of some of the design
parameters. For example, consider the impact of schedule
period, RS , on throughput and latency. For throughput, (10)
implies that whenever there is a non-zero cost for context
switching, S > 0, increasing the schedule period, RS , always
leads to higher achievable throughput, TTOT . Essentially, the
cost of doing a context switch is being amortized over a
larger number of executions. The circumstances get a little
more cloudy; however, when we consider the average latency
experienced by a data element. For small schedule periods
(i.e., small values of RS), the total achievable throughput is
low which has a negative impact on latency. On the other hand,
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Fig. 8. Total achievable throughput plot for virtualized logic of the AES
encryption cipher on an ASIC with Nr = 14 rounds. The number of streams
refers to the logic pipeline depth, C, with N = C. For each value of C, data
points were taken from 10 tool flow runs.

small schedule periods diminish the time that a data element
waits at the front of a queue for the hierarchical schedule to get
around to serving its group, resulting in better (lower) latency.
Large schedule periods give the exact opposite effect, greater
achievable throughput (with its inherent positive impact on
latency) but longer times waiting to be scheduled.

To validate these modeling expressions, we developed a
cycle-accurate discrete-event simulation of the system and
measured the average latency of data elements from when they
enter the input queue to when they exit the system. Consider
a candidate design with 4 fine-grained contexts (C = 4),
8 total contexts (N = 8), a 100 MHz clock rate, and a 4
clock overhead to perform a coarse-grained context switch
(S = 4). Figure 9 plots the total latency, W , as predicted
by (12) vs. the schedule period, RS , for two different offered
loads. The points on the graph correspond to empirical results
from a discrete-event simulation run with the same parameters.
The offered load is the ratio of the aggregate arrival rate (of
all streams) to the peak service rate of the system (i.e., when
S = 0). Offered load then evaluates to N · λ · tCLK . We
draw two conclusions from this figure. First, there is good
correspondence between the analytical model of (12) and the
empirical simulation results. This bolsters our confidence that
the analytic model is reasonable. Second, as is readily apparent
in the graph, the schedule period that optimally minimizes
latency is different for different offered loads. At low offered
load (0.16) minimum latency is experienced with schedule
period RS = 2; and at higher offered load (0.48) one must
increase the schedule period to RS = 4 to achieve minimum
latency.

Now that the model has been validated, we can use it
with the calibrated tCLK sub-model from (13) for the Cosine
application on an FPGA with Nt = 20 to predict the latency
and total achievable throughput, TTOT , performance (shown in
Figure 10) for a different set of parameters. We then optimize
the value of the schedule period, RS , using a computed figure
of merit (described below). Depending on the offered load,
a minimum RS is needed in order to supply enough total
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Fig. 9. Latency vs. schedule period at two offered loads (0.48 and 0.16).
C = 4, N = 8, and S = 4. The curves are from (12) and the points are
empirically measured via a discrete-event simulation.

throughput to meet demand. As offered load increases, the
minimum RS needed also increases. On the latency plot, there
are three regions of interest. The first region is the high latency
on the left which drops steeply. This high latency is due to
queueing delay. As RS increases, total achievable throughput
increases, causing queueing to decrease. The second region
is at the knee in the curve. This region gives optimal latency
performance. The third region is to the right where the latency
gradually increases. This increase is due to the wait time
incurred by the round robin schedule as RS increases. It now
takes longer for a data stream to be serviced.

The total achievable throughput plot increases as RS in-
creases because the cost of a context switch, S, is amortized
by the higher schedule period. To optimize for both latency
and throughput, we computed a figure of merit (FoM) defined
as TTOT /W (total achievable throughput divided by latency).
A plot of the figure of merit shows that it is initially low (due
to low throughput and high latency), increases to a peak (the
optimal value), and then decreases gradually (since latency is
increasing faster than throughput).

Solving for the maximum figure of merit optimizes the
schedule period, RS , concurrently for high throughput and
low latency. A plot of the optimal RS is shown across a
range of offered loads (from 0.0 to 1.0) as the dashed curve
in Figure 11. Also shown as a solid curve is the minimum
feasible RS required for a stable system. Both of these curves
follow the same general shape, with schedule period increasing
at higher offered loads.

Next, we look at the model results with tCLK calibrated to
(16) for the AES encryption cipher application on an ASIC.
Instead of showing different values of the offered load, we
will instead show different values of the number of pipeline
stages, C while keeping the total number of contexts, N ,
and the arrival rate, λ, constant. The performance plot in
Figure 12 shows the latency, W , again, having an initial steep
drop, followed by a gradual climb as the schedule period, RS ,
increases. As C increases, the overall latency improves. This
is due to more contexts being able to execute on the hardware
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Fig. 11. Schedule period, RS , versus the offered load (using the same
parameters as in Figure 10).

without needing to be swapped out. We also see that the total
achievable throughput increases with C which is due to both an
improved clock frequency and less context-switching required
to execute all N contexts. (Only N/C contexts-switches are
required in a full hierarchical scheduling round.) The figure of
merit, likewise, is higher for higher C because total achievable
throughput is higher and latency is lower.

Optimizing on the figure of merit for the best schedule
period, RS , versus the number of pipeline stages, C, gives
the plot in Figure 13. This shows that as C increases, the
optimal RS decreases.
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VI. CONCLUSIONS AND FUTURE WORK

Virtualization of compute resources has a long history, yet
there isn’t yet good guidance for designers as to how to best
provision pipelined sequential circuits for sharing across input
data streams. This paper provides an initial effort at providing
that guidance. Analytic models are developed for achievable
throughput, latency (including traditional queueing, increased
queueing due to hierarchical scheduling, and compute time),
and occupancy of the input buffers. The novel portions of these
models have been empirically validated, including: (1) the
expression for increased queueing delay due to the hierarchical
schedule, and (2) the modeling of combinational logic delay

between pipeline stages as a random variable. Using the mod-
els, we demonstrate the ability to choose an optimal schedule
period as a function of one (or more) input parameters. This
is illustrated by optimizing schedule period as the offered load
varies or as the number of pipeline stages vary.

Future work is to extend the modeling results to include
analytic predictions of resource usage, which will enable
quantitative time-area tradeoffs to be understood. The hier-
archical schedule could be broadened to incorporate dynamic
scheduling decisions. For example, a schedule that gives more
time to highly backlogged input streams (i.e., with deep input
buffers) has the potential to significantly improve latency.
The performance model in this paper only considers fully
unrolled logic computations, however, it would be relatively
straightforward to expand the model to support partially rolled
implementations as well. Lastly, the case study can be ex-
panded along two dimensions, both adding a coarse-grained
context-switch implementation, possibly resulting in a model
for the cost of context switching, S, and also a larger set of
functions.
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