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Abstract

Developing distributed real-time and embedded (DRE)
systems in which multiple quality-of-service (QoS) dimen-
sions must be managed is an important and challenging
R&D problem. This paper makes three contributions to re-
search on multi-dimensional QoS for DRE systems. First, it
describes the design and implementation of a fault-tolerant
real-time CORBA event service for The ACE ORB (TAO).
Second, it describes our enhancements and extensions to
features in TAO, to integrate real-time and fault tolerance
properties. Third, it presents an empirical evaluation of
our approach. Our results show that with some refinements,
real-time and fault-tolerance features can be integrated ef-
fectively and efficiently in a CORBA event service.

1. Introduction

Recent research efforts have extended middleware that
implements the Object Management Group (OMG)’s Com-
mon Object Request Broker Architecture (CORBA) [9]
standard, to support distributed real-time and embedded
(DRE) system applications such as avionics mission com-
puting [11], distributed interactive simulation [21], and
computer-aided stock trading [3]. A common goal of these
efforts is to examine how the specific requirements of each
DRE system shape the middleware itself. Many DRE sys-
tems have the following common requirements.
Distributed processing. DRE system components are de-
ployed across multiple endsystems. It is necessary for a
component to be able to invoke operations on other compo-
nents regardless of their locations.

Timeliness and real-time predictability. Many DRE sys-
tems have stringent timing constraints with severe conse-
quences if the specified deadlines cannot be met.

High reliability. Applications like avionics computing sys-
tems may require a very high degree of reliability even in

*This research was supported in part by DARPA contracts F33651-01-
C-1847 and F33651-03-C-4111 (PCES).

the face of faults. Failures in some critical components,
though ultimately unavoidable, must not be allowed to com-
promise the overall reliability of the system.

The CORBA standard addresses the issue of distributed
processing by providing a method invocation model, where
a client invokes an operation on a target object that may
reside locally or on a remote server. This model, however,
may be too restrictive because of the tight coupling between
client and server lifetimes it assumes.

A CORBA event service provides support for decoupled
communication between objects. Instead of using point-to-
point communication, interested event consumers subscribe
for the types of events they need from the event service.
Event suppliers push events to the event service instead of
directly to the consumers. The event service is responsible
for managing how to dispatch the events. This approach
reduces coupling between suppliers and consumers, but it
poses the following new challenges. First, the event service
becomes a mediator for all events and thus might become a
bottleneck for event delivery. Therefore, how to ensure end-
to-end timeliness is a concern. Second, the event service
itself becomes a potential single point of failure. Therefore,
how to provide fault-tolerance for the event path from sup-
pliers to consumers is also a concern.

Hence, how to integrate fault-tolerance and real-time
abilities in a CORBA event service is an important research
problem. Fault-tolerance can be achieved by providing re-
dundancy. Real-time support requires elimination of delays
to meet timing constraints. It is therefore necessary to de-
termine how to trade off fault-tolerance and real-time prop-
erties carefully, which is the research problem this paper ad-
dresses. We focus on an application domain that has been
important to the DRE systems R&D community over the
past decade, notably systems that use event services to me-
diate communication and/or concurrency among local and
remote software objects. Accordingly, we focus our efforts
on policies and mechanisms to achieve both real-time pre-
dictability and fault-tolerance within an open-source event
service built on top of an open-source real-time CORBA
object request broker, The ACE ORB (TAO) [14].



In this paper we describe the design, implementation
and performance of a fault-tolerant real-time event service
(FTRTES) and compare its performance to that of TAO’s
real-time event service (RTES) upon which it is based. In
this research we have focused on the robustness of event
service subscriptions, so that if an event service crashes
the event delivery paths between event suppliers and event
consumers are still preserved, and after a crash events can
still be delivered. Furthermore, our solution approach of-
fers configuration options for trading off the latency of
supplier/consumer subscriptions for the number of channel
crashes that are assured to be tolerated.

The rest of this paper is organized as follows. Section 2
gives an overview of TAO’s RTES and FT-CORBA fea-
tures, which we use and extend in our FTRTES implemen-
tation. Section 3 describes key challenges and our solution
approach for designing the FTRTES. Section 4 describes
experiments we conducted to evaluate our FTRTES imple-
mentation. Section 5 describes related work and Section 6
offers concluding remarks.

2. Overview of TAO'sReal-Time Event Service
and Fault-Tolerant CORBA Features

The OMG Event Service is a standard CORBA Service
that allows applications to use a decoupled communica-
tion model instead of direct client-to-server method invoca-
tions [13]. In the OMG Event Service model, suppliers pro-
duce events and consumers receive events. Before sending
or receiving events, both suppliers and consumers have to
connect to an event channel which is responsible for event
delivery. In this paper, we refer to the connection establish-
ment operation as an event subscription.

The OMG Event Service provides two models for event
delivery: push and pull. In the push model, suppliers send
events to the event channel and the event channel sends
them to the consumers. In the pull model, the event chan-
nel polls the suppliers to obtain events,and the consumers
then poll the event channel. The Event Service also supports
hybrid push/pull models which allow the suppliers to push
events and consumers to pull events or the event channel
to pull events from suppliers and push them to consumers.
The TAO Real-Time Event Service is an extension to OMG
Event Service that provides real-time capabilities. It sup-
ports a push event delivery model with the following fea-
tures that are not part of the standard OMG Event Service.

Event scheduling. The event channel subscriptions can
supply different QoS parameters so that event delivery can
be scheduled with fixed priority, earliest deadline first, least
laxity first or maximum urgency first strategies [6].

Event filtering/correlation. Events can be filtered or cor-
related with other events by type or identifier.

Timer events. TAO’s Real-Time Event Service can be
configured to push timer events at specified rates.

Fault-Tolerant CORBA (FT-CORBA) [9] is a specifica-
tion developed by the OMG to provide fault-tolerant infras-
tructure to CORBA systems. This infrastructure enables
CORBA applications to control the creation of object repli-
cas and supports different fault-tolerance strategies for data
consistency between replicas. These strategies include re-
quest retry, redirection to different server objects, passive
replication to minimize transmission overhead and active
replication for faster response times. It also provides inter-
faces for fault detection, notification, and analysis.

The FT-CORBA specification is designed to give appli-
cations a high level of reliability. This reliability is achieved
through entity redundancy, fault detection and recovery. En-
tity redundancy is provided by replication of objects. Sev-
eral replicas of an object, which inhabit different processes
or even different hosts, are managed as an object group.
Clients treat the object group as a logical single object.
The requests made by clients are routed transparently by
the fault-tolerance infrastructure to members of the group.

In a CORBA system, an object is referenced by an Inter-
operable Object Reference (IOR). The IOR contains the ob-
ject key as well as host information such as the address and
port to which to connect. An Inter-operable Object Group
Reference (IOGR) extends the IOR structure by allowing
several profiles within an IOGR. Each profile contains a dis-
tinct object key and host information. Depending on repli-
cation styles, a client can communicate with the hosts in
only one profile or in all profiles at a time.

To maintain state consistency between replicas in an ob-
ject group, FT-CORBA defines three different replication
styles. For cold passive and warm passive replication styles,
only a single member, referred to as the primary member,
executes the operation that has been invoked on the ob-
ject group. If the system suspects the primary member has
failed, a backup member is selected to become the primary
member. In the cold passive style, a logging mechanism pe-
riodically invokes the get_state() operation, which must be
implemented by every replicated object, to obtain the state
of the object so that the state can be recorded. During re-
covery, a recovery mechanism invokes the set_state() oper-
ation of the new primary to synchronize its state with the
recorded state. In the warm passive style, backup members
periodically synchronize their states with the primary.

In the active replication style, the request issued by
a client is multicast to all members of the object group
and each replica executes the requested operation indepen-
dently. The FI-CORBA ORB has to maintain a total order
over the messages which arrive at all replicas and suppress
the repeated replies to the client. Thus clients suffer limited
delay for recovery during fail-over, but do so at a cost of
greater message ordering overhead.



In addition to state consistency, the warm passive and
active replication styles must maintain membership consis-
tency. FT-CORBA specifies ReplicationManagers to con-
trol the membership of object groups as well as fault detec-
tors to detect faults and generate and send fault reports to
ReplicationManagers. There are again two models for fault
monitoring: push and pull. For the pull model, the fault
detector periodically interrogates the liveness of each mon-
itored object. For the push model, the monitored objects
report to the fault detector to indicate that they are alive.

3 Design and Implementation

Figure 1 shows our architecture for integrating fault-
tolerance and real-time properties in event-mediated DRE
systems, including: event suppliers and consumers that
use a Fault-Tolerant Real-Time Event Service (FTRTES);
a naming service where CORBA Interoperable Object Ref-
erences (IORs) can be registered, stored, retrieved; and pri-
mary and backup instances of a replicated Fault-Tolerant
Real-Time Event Channel (FTRTEC) that implements the
FTRTES. We now describe the challenges we faced in de-
veloping the FTRTES, and the solution approaches we used
to address those challenges.

Naming Primary discovery
Service
Membership
Publish/ registration
update
IOGR
\L Fault ‘ Fault
FTRTEC | detection | FTRTEC | detection | FTRTEC
Primary R Backup AR Backup

s | | [ ]

subscription/ Subscription replication

@ &

Object group discovery

Figure 1. FTRTES Architecture

3.1. Replicate subscription state only

Context: There are two major kinds of operations in an
event service: event subscription and event transmission.
Subscription operations like connect_push_consumer and
connect_push_supplier are used for registering a consumer
or supplier with an event service to send or receive certain
types of events, and setting up constraints to correlate or
filter events by type or identifier. Event transmission opera-
tions like push are only used to transfer events from suppli-
ers to the event service and from the event service to con-
sumers.

Problem: Event subscription and event transmission have
different timing and ordering constraints in an event service.
Event transmission in DRE applications usually requires
predictable low latency and high throughput. Their effect
on the state of event service is also ephemeral as events en-
ter and leave the event channel. Replication of events to
event channel replicas can impose significant overhead and
jitter for event delivery latency, and a better approach would
be to replicate events at a lower (€.9., SCTP [24]) architec-
tural level.

Solution: Since the state change due to event delivery is
ephemeral and expensive to maintain, we only replicate the
subscription operations. The subscription information oc-
curs at a more suitable time scale for replication and is in
fact more essential for the delivery of events because it es-
tablishes the connectivity from suppliers to consumers. The
loss of subscription state can affect the correctness of entire
event delivery paths, while a limited number of lost events
may be acceptable in many applications. As a consequence,
we only replicate subscription operations, not events, at the
middleware level.

3.2. Use semi-active replication

Context: Fault tolerance in FT-CORBA is achieved
through entity redundancy and the replication of state or
operations between replicas. As we described in Section
2, FT-CORBA specifies three different replication styles for
providing state consistency: cold passive, warm passive and
,active. For both cold passive and warm passive, state con-
sistency is only required at the time when a backup object
takes over for a failed primary object. In active replication,
the backup objects keep their states consistent with the pri-
mary at the end of each client invocation.

Problem: Both the cold passive and warm passive ap-
proaches suffer from long and unpredictable recovery times
which are not suitable for DRE systems. In cold passive
replication, a new primary has to replay every subscription
operation performed since system initialization. In warm
passive replication, the situation may be better because the
new primary only has to replay subscription operations per-
formed since the last time it synchronized with the failed
primary. However, the time is still highly unpredictable. Al-
though active replication has an assured recovery time after
fail-over, it requires a multicast protocol to provide totally-
ordered reliable message delivery. This kind of protocol
usually require a lot of transport level communication and
can significantly reduce system throughput, especially over
low-bandwidth and/or high latency connections.

Solution: We adopt the semi-active replication style [7].
The object group is arranged as a linked list in which each
member in the group maintains a link to its predecessor
and/or successor. The head of the linked list is the primary



member of the object group. All clients (event consumers
and suppliers) only interact with the primary. Moreover,
only the primary can send a reply to a client. If the pri-
mary crashes, the successor of the crashed primary will be
promoted to become the new primary. The linked list is
maintained via the connection liveness of the transport layer
(e.g., using TCP or SCTP based pluggable ORB protocols).
Each replica establishes a transport connection to its pre-
decessor and reports to a set of ReplicationManagers when
and if the connection is down. At the end of each client
invocation, the primary member synchronizes its state with
the replicas using a reliable multicast protocol. The ref-
erences in the linked list are packed into an IOGR that is
passed to clients. A client must honor the order of that list
when it retries a method invocation. No heart beats or poll
messages are used to detect the failure of nodes (except per-
haps internally within the transport layer, e.g., SCTP). Fault
detection in the FTRTES only relies on the liveness of the
transport connection, and no extra threads are required.

As described by Gokhale, et al. [7], the semi-active
replication style offers three advantages over the other ap-
proaches. Compared to cold passive and warm passive
replication, semi-active replication is more predicable and
has a faster recovery time. Since there are no middleware-
level heart beats or poll messages for fault detection, it
reduces message transmission in the transport layer while
maintaining a reasonable fault detection time. When used in
conjunction with the prioritized method invocation seman-
tics defined in RT-CORBA, it does not require a potentially
expensive prioritized multicast protocol.

3.3. Customize state update strategies

Context: We consider two kinds of state update: entire and
incremental. For entire state update, the primary sends the
entire state to the replicas each time and the replicas re-
place their states with the information they received. For
incremental state update, the primary only sends the state
differences (or requests for the operations that need to be
executed) since the last state update, and the replicas then
update their states accordingly. Entire state update is more
suitable for the case that the state does not grow in size or
vary at fine granularity with time; otherwise, it is more suit-
able to use incremental state update. Our approach in the
FTRTES was to use incremental state update because the
subscription state may vary with time.

Problem: Without special design, incremental state update
can suffer from state inconsistency problems if the primary
crashes in the middle of replication. Suppose there are 3
members A, B and C' in a object group where A is the pri-
mary member of the group. When A tries to replicate a state
update to B and C, it crashes after B succeed in the repli-
cation but C did not. At the time B is promoted to be the

new primary, B and C' may not be in the same state.

Solution: Each incremental state update carries a sequence
number which is used to detect missing state updates. The
sequence number is incremented each time the primary
sends a new update. If a replica receives an update with
a non-contiguous number, it can request the missing incre-
mental update(s) or an entire state update from the primary.

3.4. Allow reliability /timeliness trade-offs

Context: Semi-active replication uses reliable multicast to
synchronize the state between primary and replicas.
Problem: In the semi-active replication style, the primary
has to multicast its own state to all other members of the
object group. However, IP-multicast is not applicable be-
cause it is neither reliable nor totally ordered. One intuitive
way to implement this is to use two-way CORBA calls to
transmit the state change from the primary to all backups.
However, using this approach, the client waiting time will
be proportional to the number of replicas.

Solution: To improve timeliness for fault-free operations
as well as for fault recovery stages, we used the concept
of transaction depth. If the transaction depth is n, a sub-
scription method invocation has to be blocked until the first
n replicas complete the operation, which is called assured-
replication. Other replicas can get the state change via a
so-called soft-replication which means the replication is not
assured to complete before the request invocation returns to
the client. So, if a soft-replication fails due to a crash of
the primary or a replica, we are guaranteed only the assured
depth of replication. Here as well the use of a replication
sequence number can allow a recovery from an inconsis-
tent soft-replicated state, but at a cost of a longer recovery
time. FTRTES clients are allowed to specify the transac-
tion depth using the service context mechanism in CORBA
portable interceptor to trade off reliability and timeliness.
If the transaction depth can not be met, the replicate oper-
ation has to be rolled back and the primary then throws an
exception back to the client.

In the CORBA standard, there are 3 different kinds of
method invocations : one-way, two-way, and asynchronous
method invocation (AMI). For two-way method invoca-
tions, the clients will be blocked until servers finish execu-
tion and return the results back to the clients. For one-way
method invocations, clients won’t be blocked for the com-
pletion of the operations’ execution on the server side, but
return values and exceptions from the servers are not sup-
ported so no indication of the method invocation’s success
or failure is given to the client. AMI, on the other hand,
allows clients to proceed without blocking on the method
invocation but provides the capability to return results (e.g.,
via a callback object).

Our FTRTES solution supports two approaches for send-



ing replication messages. The first one uses two-way
method invocations for assured-replicate operations and
one-way method invocations for soft-replicate operations.
When the primary member of the object group receives a
subscription request from a client, it retrieves the transac-
tion depth from the service context in the message. If the
transaction depth is greater than 1, the primary will use
two-way method invocation to replicate the request to its
successor; otherwise, it uses one-way method invocation to
replicate the operation. In the former case, each member
will pass along a transaction depth that is one less than it
received.

Our second approach for message replication is to use
AMI for both assured and soft replication. In this case, the
primary sends replication messages using AMI to all other
members in the object group once it receives a subscription
request. The primary waits for replies from the first n (equal
to the transaction depth specified by the client) replicas be-
fore it sends a reply back to the client. The AMI replica-
tion strategy allows parallel replication operations in differ-
ent replicas without sacrificing reliability. However, using
AMI introduces some additional programming complexity
to handle results that are returned asynchronously.

3.5. Collocate replication managers

Context: In FT-CORBA, ReplicationManagers are respon-
sible for the management of the object group.

Problem: ReplicationManagers need to be replicated, to
avoid a single point of failure. In turn, the ReplicationMan-
agers form another object group which needs to be managed
by some other entity. This poses a potential problem of re-
cursive replication dependency.

Solution: To avoid the recursive replication dependency
problem, we collocate ReplicationManagers with the repli-
cated FTRTES objects. The primary of the Replication-
Manager object group is also the primary of the replicated
object group. Under the semi-active replication style, if the
successor of the primary detects the failure of the primary,
it directly promotes itself to become the primary for both
the event service and the ReplicationManager groups, and
the new primary will register a new IOGR with the naming
service. This solves both the problems of a single point of
failure and of recursive replication dependency.

3.6. Support priority-banded operations

Context: In our FTRTES solution, event push operations
are not replicated and require higher throughput. On the
other hand, subscription requests need to be replicated, re-
quiring more network bandwidth and taking more time to
process. To maintain a consistent view of the object group,
the group management operations in the ReplicationMan-

ager also involve extensive communication between the pri-
mary and replicas and have non-trivial latency. Both sub-
scription and group management operations are I/O bound,
and their latency comes largely from waiting for the re-
sponses from other hosts.

Problem: As the context indicates, different kinds of op-
erations have different characteristics. In the case of the
FTRTES, the time to process the subscription and group
management operations is longer than that of event pushes.
If the FTRTES handles all operations in a reactive fashion,
the subscription operations and group management opera-
tions can impede the throughput of event push operations.

One solution is to use a thread pool and the leader
follower pattern [23] which allows a bounded number of
threads to handle requests simultaneously. Thus if one
thread has been waiting for the response from other mem-
bers of the group, there is still another thread available to
handle event pushes. However, this approach can lead to
the following problems. First, the number of executing op-
erations is bounded by the number of threads. If subscrip-
tion operations have occupied all the available threads, no
thread will be able to process event push operations until
a subscription operation completes. Second, although in-
creasing the number of threads will decrease the possibility
that an event push operation can be stalled, that can increase
system overhead due to extra context switching.

Solution: For the FTRTES, we consider the event push op-
eration to be more urgent than the subscription and group
management operations. Therefore, we assign higher pri-
ority to the push operation than to the other operations. In
addition, we adopt the endpoint-per-priority model [22] in
TAO where the server ORB uses multiple transport end-
points to accept connections from clients. Each transport
endpoint has a priority, which is the priority of the thread(s)
servicing the endpoint as well as of all the connections it
accepts. When a server ORB creates an IOR for one of its
objects, it embeds all of the server’s acceptor [23] endpoints
along with their priorities into the object’s IOR. Then, a
client ORB selects the priority that best matches the client’s
need (as specified by the Client Priority Policy) from those
offered by the server, and uses the corresponding transport
endpoint specified by the server to obtain the desired prior-
ity level.

Our FTRTES solution extends the FI-CORBA IOGR to
incorporate the endpoint-per-priority model. Each IOGR
contains several profiles which represent the primary and
replicas. Each profile contains endpoints with specific pri-
orities. When a client fails to communicate with the server
using an endpoint in the active profile, the client ORB
switches to using the endpoint given in the next profile. The
endpoint-per-priority model offers the following benefit in
our FTRTES design. It reduces delays to the push operation
because push operations have a dedicated thread that that



runs at a higher priority than the thread(s) in which sub-
scription operations run. Only two threads are strictly nec-
essary to handle clients requests: one for push operations
and one for the others.

3.7. Piggyback IOGR update onto reply

Context: Upon changes of membership in a object group,
the clients’ [IOGRs must be updated. FT-CORBA defines a
GROUP_VERSION service context that a client can send to
the server along with requests. This include a version num-
ber that allows the server to check whether the IOGR used
by the client is up to date. If the IOGR is obsolete, the server
then sends a LOCATE_FORWARD _PERM exception to the
client ORB with the new IOGR. After the client ORB up-
dates its IOGR, it re-sends the request with the new service
context.

Problem: When using semi-active replication, the request
has to take one extra round trip even if the primary of the
object group remains the same after the [IOGR has been up-
dated. If the membership of the object group has changed
and the primary has also changed, it is necessary to redi-
rect the client request to the new primary because only
the primary can execute the request and send the reply.
However, if the primary does not change, it is wasteful
to require the client to re-send the request with the new
GROUP_VERSION.

Solution: We use a service context piggybacked on a re-
ply to update the IOGR when applicable. In our FTRTES
implementation, when a primary receives a request with
an obsolete GROUP_VERSION, it still processes the re-
quest and sends a reply. However, the reply contains an-
other service context with the latest IOGR. This allows
the client to update the IOGR without extra delay. If a
non-primary replica receives a request, it still sends a LO-
CATE_FORWARD_PERM exception back to the client.

3.8. Present a common facade interface

Context: The CORBA event service specification in-
cludes ConsumerAdmin, SupplierAdmin, ProxyPushCon-
sumer, and ProxyPushSupplier interfaces. The separation
of the interfaces allows freedom to deploy different event
service components on different hosts.

Problem: Multiple event service interfaces create extra
overhead for IOGR management on the client, and are un-
necessary because each replicated FTRTES object is con-
tained within one host. To the client, each interface is rep-
resented by a different IOGR with no relationship assumed
between different IOGRs. For example, if a client pub-
lishes two kinds of events and establishes two different log-
ical connections with an event service, it gets two distinct
IOGRs (a and b) to ProxyPushConsumers. Suppose that

the primary crashes and the client ORB detects the failure
because it fails to establish a transport connection with the
primary profile in IOGR a. The client ORB can redirect the
request to the host in the next profile of the IOGR a and
the update the IOGR when it get the reply. When the client
needs to push an event through IOGR b, the client ORB has
to repeat the same procedure, which results in unnecessary
delay.

Solution: Our FTRTES implementation uses the Facade
pattern [5] to solve this problem. We create a single inter-
face that combines all operations from the various interfaces
of the event service. For operations that return object ref-
erences in the original CosEvent model, opaque object han-
dles are returned instead. All the invocations on the original
object reference are replaced by invocations on the facade
interface, with an object handle as a parameter. Therefore,
the change of membership in an object group only needs
to update one instead of many IOGRs on each client. This
saves communication and overhead for extra IOGR updates.

3.9. Provide a client-side adapter

Context: Although the Fagade pattern can remove the
cost of updating multiple [IOGRs and reduce unnecessary
communication when object group membership changes,
it changes the interface between the event service and the
client. This may require source code modifications to the
clients using the event service.

Problem: The use of a facade interface breaks backward
compatibility of legacy applications using the event service.
Solution: To solve this problem, we use the Adapter pat-
tern [5] to avoid the interface incompatibility problem intro-
duced by the Facade pattern. For applications that require
backward compatibility, we provide an object for adapt-
ing calls to the original TAO RTES interfaces into the new
FTRTES interface given by the Fagade pattern. For client
applications written in C++ with source code, the adapter
can be linked directly to the application with only minor
source code modification and high run-time efficiency. To
take advantage of the features provided by FT-CORBA, all
the requests sent by clients should contain the service con-
texts defined in the specification. For client applications
written for an ORB that is not FI-CORBA compliant, the
adapter can be compiled into a binary executable and de-
ployed in the same host with client. Client applications
then interact with the adapter instead of the event service
directly, and the adapter can then convert the request into
FT-CORBA compliant messages. This allows the client ap-
plications to make immediate use of the FI-CORBA feature
without source code modification. Using an adapter object
on the client side also allows us to combine several stages of
subscription operations into one. For example, in the RTES,
the supplier subscription requires 3 CORBA method invo-



cations : for_suppliers(), obtain_proxy_consumer() and con-
nect_proxy_supplier(). Our new interface for the FTRTES
provides one operation, connect_proxy_supplier(), which
combines the functionality of the other 3 operations and
thus reduces the latency for subscription operations.

4. Empirical Evaluation

This section compares the performance of our Fault-
Tolerant Real-Time Event Service described in Section 3
with the TAO Real-Time Event Service. We also exam-
ine the effect of node failures on the throughput of event
push and subscription operations. The testbed we used
to conduct our experiments consisted of 2 Pentium-IV 2.5
GHz machines and 2 Pentium-IV 2.8 GHz machines, each
with 512MB RAM and 512KB cache and running KURT-
Linux 2.4.18, connected by a 100 Base-T Ethernet isolated
network. Our experiments used ACE/TAO version 5.4.5 /
1.4.5, and ran as root in the real-time scheduling class.

Our experiments assumed a single-failure fail-stop fault
model with no nested failures. The methodology we
adopted for each experiment, and our experimental results
and analysis, are presented in the following subsections.

4.1. RT event latency with/without FT

We first describe benchmarks we conducted to measure
end to end event latency in both our FTRTES implemen-
tation and the TAO RTES on which our implementation
is based. The goal of these experiments was to quantify
the additional overhead of the fault-tolerance features we
added. Both event consumers and suppliers were located
in one 2.8 GHz machine and the FTRTES or RTES was lo-
cated on the other 2.8 GHz machine. We configured the
FTRTES with between 0 and 3 backup replicas in addition
to the primary. The measured latencies of event push oper-
ation are summarized in Figure 2. The standard deviations
for all these cases were between 10.88 psec and 13.12 usec.

From Figure 2, we can see that the average latency
was about 80 usec higher, and the maximum latency was
about 140 psec higher (with 3 backup replicas), with
the FTRTES than with the RTES. This additional latency
stemmed from the extra service contexts attached to every
message with the FTRTES. All FTRTES clients were re-
quired to inject these service contexts and the FTRTES was
required to interpret them. These service contexts included
the FT_.GROUP_VERSION we discussed in Section 3 and
the FT_REQUEST service context defined in FT-CORBA,
which contained three fields: client_id, retention_id and ex-
piration_time. These fields had two purposes in our experi-
ments: the server could use the client_id and retention_id to
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Figure 2. FTRTES/RTES Latency Comparison

detect duplicate requests in order to ensure at-most-one re-
quest delivery semantics, and the expiration_time field was
used for evaluating the liveness of a request.

4.2 Effects of transaction depth

In this experiment, we configured the system with a pri-
mary on a 2.8 GHz machine, one replica and the event con-
sumer and supplier on a 2.5 GHz machine, a second replica
on the other 2.8 GHz machine, and a third replica on the
other 2.5 GHz machine. We varied the transaction depth
from one to four for both two-way/one-way and AMI repli-
cation. Since we do not replicate event state, we only mea-
sured the latency of subscription operations. The results are
shown in Figure 3.
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Figure 3. Subscription Time Scalability

As may be expected, for two-way/one-way call replica-
tion, the subscription latency grew linearly with the trans-
action depth. This was due to fact that the replication op-
eration was serialized among the replicas: the state was not
replicated to the next replica until the previous replica fin-
ished the operation. Soft replication then traded off reliabil-
ity for response time by allowing replication to continue to
other replicas without waiting for previous ones to finish.
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With AMI replication, the subscription latency remained
essentially constant as replicas after the first one were
added, because the replicas perform the replication opera-
tions in parallel without waiting for the other replicas. Only
the primary waits, until as many of the replicas finish as are
specified by the transaction depth.

4.3 Event latency during fail-over

The experiments in this subsection examined the event
push latency under fail-over conditions. Our experimen-
tal setup was the same as in Section 4.2 and the supplier
sent events at 10 Hz frequency. We measured the latency of
each event passing from the point it was sent by the event
supplier until it reached the event consumer.

There are several factors that can affect performance dur-
ing fail-over. The first factor to consider is the interfer-
ence of group management operations with event push op-
erations as we discussed in section 3. When the primary
crashes, the backup will start to re-organize the object group
to maintain group integrity which can delay event dispatch-
ing in the new primary if the event dispatching operation
is not prioritized. We crashed the primary 50 msec after
a certain number of events was handled and compared the
cases where the server ORB used one versus two unpriori-
tized threads to handle requests, as well as when event push
operations are given higher priority than other operations.
Figure 4 shows our results. All events were delivered be-
tween 1600 psec and 1800 psec when push operations were
prioritized. In contrast, more than 50% (or 30%) of the
events were delivered after 1.94 seconds when the server
ORB used one (or two) unprioritized thread(s) to handle re-
quests. Thus, prioritization with at least 2 threads greatly
improved the predictability of event delivery.

The second factor to consider is the timing of when the
fault occurs. If the primary crashes after it receives an event
but before it replies to the event suppliers, the supplier has
to wait until it detects the failure of the transport connection
and re-route the event to the new primary. If the primary
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crashes when it is not dispatching any events, the supplier
can save the time needed to re-route the event. Figure 5
shows the effect of the timing of the primary failure. The
first column in Figure 5 summarizes the event latencies over
1000 samples during fail-over when the primary crashes in
the middle of an event push. The average value in this case
was 5242 psec and the maximum value was 5408 usec.
The second column summarizes the the latencies when the
primary crashed in between event push operations, which
had an average value of 1642 pysec and a maximum value
of 1707 psec.

The third factor that affects event push performance
under fail-over conditions is dynamic memory allocation
along the event dispatching path. General purpose heap
memory allocators can usually optimize memory alloca-
tion requests that show repeated patterns; therefore, the first
memory allocation iteration of the pattern will take signifi-
cantly more time than the rest. Under a fail-over situation,
the first event that arrives at the newly elected primary may
exhibit a longer processing time due to the memory alloca-
tion inside the ORB and its Portable Object Adapter, e.g.,
for decoding or encoding GIOP messages.

The fourth factor that can affect event push operation
performance is the time for transport connection establish-
ment. During an event push, the supplier Client ORB will
check the availability of the connection to the primary. If
the connection has been disconnected, the client ORB will
try to re-connect to the primary and wait until it times out.
After that, the client will connect to the first replica in the
IOGR list and send the event if the connection can be estab-
lished. In this case, the event could be delayed by waiting
for a connection establishment time-out and a connection
establishment time.

We examined the effect of each of these factors on fail-
over event latency by mitigating each one in turn. To re-
move memory allocation variance, an initialization event
was sent to every member of the FTRTES object group at



start up time. Similarly, we also modified the TAO ORB
configuration to avoid reconnecting when the supplier de-
tects the connection to the primary has failed.

With each of these factors having its worst impact, the
average event latency was 616 msec, with a maximum of
1956 msec. With prioritization of event push operations,
the average event latency dropped to 5242 psec with a max-
imum value of 5408 psec. When we also only triggered
primary crashes between events, the average event latency
was reduced to 1642 psec with a maximum value of 1707
usec. When we also performed initial memory allocation
prior to the first event push, the average event latency was
1311 psec with a maximum value of 1405 psec. Finally,
when we also avoided unnecessary re-connections the av-
erage event latency dropped to 806 psec with a maximum
value of 927 usec.

These results show that the mitigation steps described
in this section are essential to optimizing FTRTES perfor-
mance. By applying them in our FTRTES implementation,
we were able to bring the fail-over event latency when faults
did not occur during an event push close to the event latency
with no failures seen in Figure 2 in Section 4.1.

5. Related Work

RT-CORBA [10] provides support for application con-
trol of system resources to achieve end-to-end predictabil-
ity. RT-CORBA provides end-to-end real-time QoS support
via prioritized object method calls.

TAO’s Real-Time Event Service [11] provides predica-
ble anonymous message delivery. It also allows applications
to specify QoS requirements explicitly, so events can be
scheduled and delivered to their destinations with rigorous
QoS assurances. The Real-Time Notification Service [8]
extends the Real-Time Event Service with structured event
support.

Electra [16, 15] and Orbix+Isis [1, 15] are based on spe-
cialized group communication toolkits (Horus and Isis re-
spectively) to provide support for fault-tolerance by repli-
cating CORBA objects. Both Electra and Orbix+Isis re-
quire modifications to the ORB in order to deliver CORBA
messages using the group communication toolkits. The ad-
vantage of this approach is the ease of application develop-
ment; however, this may result in proprietary systems with
limited replication strategies. For example, both Electra and
Orbix+Isis only support active replication.

The Eternal System [19, 18] applies the Interceptor pat-
tern [23] to support fault-tolerance. It intercepts system
calls made by CORBA clients to low-level OS I/O subsys-
tems, and transforms point-to-point communication into the
Totem [17] group communication protocol for replicating
CORBA objects. This approach does not require modifica-
tion of the ORB implementation.

AQuA [2] does not require ORB modification either. It
uses a gateway for accepting calls from clients and trans-
lating the request messages into the group communication
primitives of Ensemble/Maestro [12, 25] which allows it to
replicate objects, and detect and filter duplicate messages.

The Object Group Service (OGS) [4] provides a set of
CORBA services to support fault-tolerance, including a
group service, a consensus service, a monitoring service and
a messaging service. Unlike the previous approaches which
provide transparency to the application, this approach ex-
poses the replication of objects to the application program,
but it thus allows programmers more easily to customize the
services for their needs.

DOORS [20] also takes a service-based approach to
fault-tolerance. Instead of using a particular group commu-
nication toolkit, it allows application developers to select
suitable transport protocols via TAO’s pluggable protocols
framework. In [7], Gokhale, et al., propose the use of semi-
active replication to meet both real-time and fault-tolerance
requirements. Our work presented in this paper extends this
approach to an event-channel mediated publish-subscribe
communication model.

6. Conclusions

FT-CORBA provides a framework for fault-tolerant
point-to-point communication. However, many distributed
real-time and embedded (DRE) systems require an asyn-
chronous and publish-subscribe style of communication.
The Fault-Tolerant Real-Time Event Service (FTRTES)
presented in this paper provides DRE system an event
based communication model that meets high reliability
requirements as well as real-time requirements. Our
FTRTES implementation is distributed with TAO as open-
source software that is freely available for download from
http://deuce.doc.wustl.edu/Download.html

Our development of the FTRTES focused on provid-
ing a reliable and fault-tolerant capability within the exist-
ing TAO Real-Time Event Service [11]. We used the FT-
CORBA framework as the basis for new techniques dis-
cussed in Section 3 to provide a fault-tolerant and pre-
dictable system. That experience revealed several valuable
lessons about building fault-tolerant and real-time CORBA
applications and middleware. First, the exposure of multi-
ple interfaces to the clients can lead to longer IOGR update
times and proliferation of transport connection times dur-
ing fail-over. It is better to use the Facade pattern to en-
capsulate the functionality of the entire server. If backward
compatibility is an issue for legacy applications, the adapter
pattern can be introduced. Second, the semi-active repli-
cation style is more suitable than active or passive replica-
tion styles in applications with real-time constraints. Third,
although for two-way/one-way replication setting a trans-



action depth is an effective way of trading off consistency
and performance, AMI replication offers better state repli-
cation performance overall at a cost of some additional pro-
gramming complexity. Fourth, prioritizing event handling
together with an endpoint-per-priority model can greatly re-
duce the duration and variability of fail-over event dispatch-
ing latency.
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